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Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrap-
ping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy
wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interfer-
ometer. The virtuality of the pyramid wavefront sensor allows easy tuning of pyramid apex angle and
modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the
Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is
shown that the virtual pyramid wavefront sensor is robust to random noise. © 2017 Optical Society of America
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1. INTRODUCTION

Phase unwrapping is an important step in several optical inter-
ferometry, adaptive optics and imaging applications [1–3]. The
effects of noise become crucial when the number of pixels per
interference fringe is not sufficiently large and the signal to noise
ratio is low. In such situations, conventional phase unwrapping
methods are not consistent [4]. Most phase unwrapping meth-
ods are application dependent and demand an optimization of
multiple parameters. The sources of noise are inherent diffrac-
tion, light source fluctuations, aberrations due to the sample and
the optical system. Noise can be overcome by smartly avoiding
noisy pixels in a branch cut phase unwrapping algorithm [1], al-
though this fails if the noise is high [5–11]. Filtering is often used
to reduce noise and such an operation allows smoothening near
the phase jumps and elimination of potential useful information,
which could adversely affect phase unwrapping [12].

Recently, a virtual Hartmann-Shack (HS) method was pro-
posed for phase unwrapping [4]. The wrapped phase was as-
sumed to be incident on an array of simulated microlenses. The
locations of the simulated HS focal spots were estimated us-
ing the intensity weighted centroiding algorithm [13] and the
unwrapped phase was recovered from the calculated local wave-
front slopes. It was shown that the accuracy of phase unwrap-
ping primarily depends on sampling of the wrapped phase and
diffraction-limited wavefront sensing can be achieved using an
iterative estimation procedure in the presence of noise. How-
ever, the performance of the virtual HS is limited by localized

errors due to centroiding arising from random noise and has
a cumulative effect on the unwrapped phase. In addition, the
wrapped phase is sub-divided into a finite number of subaper-
tures and the slope sampling is limited by the resolution of
the phase map. Ambiguities due to jumps in phase close to
the borders of the subapertures can cause further inaccuracies.
Aforementioned shortcomings place a lower limit on the signal-
to-noise ratio (SNR) for which diffraction-limited performance
may be achieved [14]. In this letter, a novel method of phase
unwrapping is proposed based on the principles of a pyramid
wavefront sensor (PWS) [15] that significantly lowers this limit.
The PWS performs better averaging of random noise with a
larger pupil sampling and better resolution. Here, the wrapped
phase is assumed to be located in the back focal plane of a lens,
which is situated at a focal distance away from a simulated pyra-
midal prism with four facets. Since the PWS is not physically
present, this method of phase unwrapping is called the virtual
PWS. Modulation plays an important role in controlling the
dynamic range and sensitivity of the PWS [16] and its role in
phase unwrapping is studied. The method is tested on noisy
interferograms recorded experimentally with a CCD camera in a
digital phase-shifting (PS) point diffraction interferometer (PDI)
[4, 17] by using a spatial light modulator to avoid mechanically
moving components. The light used was a 632.8 nm He-Ne laser.
Aberrations are introduced with the help of a MEMS deformable
mirror (Boston Micromachines Corporation™) in closed-loop
with a commercial HS wavefront sensor.
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2. METHOD

Let us imagine that the wrapped phase, φw(x, y) (experimen-
tally obtained in a PS-PDI when aberrations were induced with
a deformable mirror) defined in the interval [-π π] within a cir-
cular pupil, P(x, y) be located at the back focal plane of a lens
with a focal length of 1 m (physically not present) that focusses
light onto a pyramidal prism (physically not present) with its
phase, T(X, Y) [16, 18] as illustrated in Fig. 1. This pyramidal
phase would divide the incident light into four distinct pupils
and using a fast Fourier transform (FFT) method [19], the pupil
plane intensity, Ipyr can be evaluated as shown below:

Ipyr(x, y) =
∣∣∣FFT(FFT(P(x, y).eiφw(x,y)).T(x, y))

∣∣∣2 (1)

A few examples of the sources of aberrations used when record-
ing the wrapped interferogram are imperfections in the optical
elements, a patient’s eye [20], a specimen under an optical micro-
scope [21] and atmospheric turbulence in a telescope [22]. From
a linear combination of the intensities in the four pupils of the
virtual PWS (Ij, 1≤ j ≤ 4) in Ipyr(x, y), the local ‘x’ and ‘y’ wave-
front slopes, Sx(x, y) and Sy(x, y) can be evaluated [16]. The un-
wrapped phase, φ(x, y) is reconstructed from the estimated slope
values using the slope geometry of Southwell [13, 14, 23]. The
Zernike polynomials are used to decompose the reconstructed
wavefront φ(x, y) using a least square fitting technique to elimi-
nate the high spatial frequency components and artifacts arising
from noise.

Fig. 1. Illustration of the proposed virtual pyramid wavefront
sensor. Here, the lens ‘L’ and the pyramidal phase T(x, y) are
physically not present. The wrapped phase is obtained in a
digital PS-PDI [17] and Ipyr is evaluated using Eq. 1.

To compare and test the capability of the proposed method
in the presence of noise, simulations are performed. The PS PDI
interferograms (I1, I2 and I3 corresponding to phase shifts of
0, π/2 and π respectively) and hence the wrapped phase are
calculated as follows:

φw(x, y) = tan−1
[

2I2(x, y)− I3(x, y)− I1(x, y)
I3(x, y)− I1(x, y)

]
. (2)

Here, the interferograms (I1−3) in a digital PS PDI are obtained
as described earlier [4, 17].

Root-mean-square (RMS) of the residual wavefront is used
to evaluate the quality of reconstruction [4]. Alternately, the
Strehl ratio of the residual wavefront is evaluated by assuming
that the pupil plane has aberrations equal to the difference of
the induced aberration and the reconstructed wavefront. If the
estimated wavefront is different from the induced wavefront,
the Strehl ratio would be lower than unity.

3. RESULTS

Figure 2(a) shows the wavefronts - defocus, astigmatism, coma
and secondary astigmatism - generated in closed-loop using the

Fig. 2. Experiments: (a) wavefronts measured with a commer-
cial HS wavefront sensor; (b) wrapped phase (radians: -π to
π) obtained in a PS PDI; (c) wavefront reconstructed with the
virtual PWS and (d) residual wavefront error.

deformable mirror and the HS wavefront sensor. The wrapped
phase images are calculated using Eq. (2) from the interfero-
grams recorded by a digital PS PDI and are shown in Fig. 2(b).
From the wrapped phase, the intensity at the pupil plane, Ipyr
of a pyramid wavefront sensor is evaluated using Eq. (1) and 25
measurements in a circular modulation such that the tip of the
pyramid oscillates in a circular path around the focal point of
the focussed beam. The radius of the circular path is the mod-
ulation amplitude. Then, the local wavefront slopes, Sx and Sy
are estimated. Finally, the wavefronts are reconstructed using
the singular value decomposition technique [13]. The recon-
structed wavefronts are decomposed using the first four orders
of Zernike polynomials and are shown in Fig. 2(c). It may be
noted that the wavefronts reconstructed with the virtual PWS
match well with the induced aberrations as validated by the low
residual wavefront error shown in Fig. 2(d), which is calculated
by subtracting the decomposed wavefronts in Fig. 2(c) from the
induced aberrations in Fig. 2(a). Here, a modulation amplitude
that maximizes the estimated Strehl ratio for each aberration is
used. This optimal modulation depends on the nature of the
aberrations, their magnitude and SNR. Although 1529 × 1529
‘x’ and ‘y’ local slope values were calculated from the wrapped
phase, for reconstruction of the wavefront, the slope matrices
were resized to 31 × 31 by using bilinear interpolation. This
sampling was chosen because a higher sampling needs more
computations and increasing the slope sampling beyond 31 ×
31 did not increase the Strehl ratio any further. On average,
the Strehl ratio and RMS were found to be 0.28 and 0.14 µm
respectively for the residuals in Fig. 2(d), indicating a big leap in
performance over virtual HS [4] that resulted in a mean Strehl
ratio and mean RMS error of 0.11 and 0.20 µm for the same
wrapped phase images.

The estimated Strehl ratio and RMS error as a function of
modulation amplitude are shown in Fig. 3. Simulations were
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Fig. 3. Effect of modulation amplitude on wavefront sensing
accuracy in the experiments and theoretical predictions at SNR
= ∞ in terms of (a) Strehl ratio and (b) RMS error.

performed at SNR = ∞ and clearly, the accuracy is higher under
noise-free conditions. In addition, the experimental curves are
broader than the theoretical counterparts. The differences arise
due to inaccuracies in the generation of the aberrations, mis-
alignment errors in the digital PS PDI and the presence of noise
in the interferograms. The tilt due to PS (as seen in Fig. 2(b))
prevents convergence with increasing modulation as predicted
earlier [16].

Figure 4 shows the results of simulations using the virtual
PWS. Here, the wavefronts measured by the HS wavefront sen-
sor were used as the starting point in the simulations (see Fig.
4(a)) and no effects of noise were included while estimating the
wrapped phase shown in Fig. 4(b) from the calculated interfer-
ograms [4, 17]. The wavefronts reconstructed with the virtual
PWS from the wrapped phase in Fig. 4(b) are shown in Fig. 4(c).
The mean RMS error shown in Fig. 4(d) is 0.10 µm and the best
accuracy was achieved near a modulation of 0.5 mm (see Fig. 3).

Fig. 4. Simulations: (a) wavefronts measured with a commer-
cial HS wavefront sensor; (b) simulated wrapped phase (radi-
ans: -π to π) in a PS PDI; (c) wavefront reconstructed with the
virtual PWS and (d) residual wavefront error.

To study the effects of noise through simulations, indepen-
dently generated white Gaussian noise was added to each of
the interferograms (I1−3) before calculating the wrapped phase
(see Eq. (2)). As the SNR increases, the discrepancies in the
detected slopes reduce resulting in an increase in the Strehl ratio
of the residual wavefront map as illustrated by the simulation
results in Fig. 5(a) while sensing the aberrations introduced
by the deformable mirror (see Fig. 2(a)). With an increase in
the magnitude of aberrations or with the inclusion of higher-
order aberrations, the minimum SNR needed for convergence
increases. This is attributed to an increase in the number of
fringes per pixel. However, for a fixed modulation amplitude
(optimal value predicted at SNR = ∞) and following an iterative
approach while estimating Strehl ratio [4, 16], it is possible to
improve performance as illustrated in Fig. 5(b). This is done by
assuming that the residual wavefront obtained in the first loop
of the phase unwrapping process is the new wavefront for the
second iteration. This new wavefront is used to calculate the
interferograms and the wrapped phase for the second iteration
and so on. This iterative procedure can be implemented in an op-
tical system by monitoring the point spread function with a CCD
camera. It can be seen in Fig. 5(b) that for the case of defocus,
a decrease in the SNR from 10 dB to 5 dB requires an increase
in the minimum number of iterations by three to go beyond the
diffraction limit. Since most applications including visual optics

Fig. 5. Simulations: (a) Accuracy improves with increasing
signal while sensing simulated aberrations (Fig. 4(a)) and
results of (b) iterative evaluation. Here, random noise (single
trial) is added to the calculated interferograms.

involve a combination of the low-order aberrations that play a
prominent role, the proposed method was tested with randomly
simulated wavefronts containing up to three orders of Zernike
polynomials excluding the piston and the two tilt terms. On
average, the peak-to-valley of the randomly simulated aberra-
tions is 2.3 µm and the chosen modulation amplitude is 0.5 mm
(sensitivity improves with smaller modulation and the lower
limit is given by the number of iterations for convergence). The
modulation amplitude is progressively reduced with increasing
iteration number to avoid over-estimation. The performance of
the virtual PWS is compared with virtual HS [4] and Fourier [24]
phase unwrapping methods in the presence of noise. In the case
of the virtual HS, reconstruction was performed with 20 × 20
subapertures and 32 × 32 pixels were used for centroiding the
virtual HS focal spots. An identical slope sampling of 20 × 20
was used in the case of the virtual PWS for comparison. This
sampling was chosen to compare against the optimal sampling
in a virtual HS when sensing aberrations with a digital PS PDI
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[4]. At SNR = 10 dB, the Fourier phase unwrapping algorithm
fails [4] and the virtual PWS is evidently superior and saturates
at a higher Strehl ratio value in comparison with the virtual HS
for cases of 10 dB and 5 dB SNR (Fig. 6), illustrating the potential
of the virtual PWS at very low SNR. The error bars for each itera-
tion shown in Fig. 6 indicate the standard deviation of the Strehl
ratio values of ten independently generated random wavefronts.
Likewise, in the case of high-order aberrations and their random
linear combinations, the virtual PWS consistently converged to
higher Strehl ratios in the presence of random noise.

Fig. 6. Comparison of phase unwrapping methods at (a)
10 dB and (b) 5 dB while sensing ten randomly simulated
wavefronts. Corresponding sample wrapped phase maps
are shown within the plots.

The method was also tested on a randomly simulated atmo-
spheric turbulence phase screen for a 1 m class telescope on a 125
x 125 grid [16] as shown in Fig. 7(a). Its high spatial frequency
components result in a challenging wrapped phase shown in
Fig. 7(b). The reconstructed wavefront (Fig. 7(c)) obtained by
applying the virtual PWS resulted in a residual (Fig. 7(d)) with a
Strehl ratio of 0.88 and RMS error of 0.05 µm after four iterations
when 61 × 61 slope sampling is used. Here, Zernike decompo-
sition is not applied to avoid eliminating vital high-frequency
information.

Fig. 7. (a) Simulated turbulence phase screen (b) Wrapped
phase corresponding to (a) in the interval [-π π]; (c) recon-
structed with the virtual PWS (d) residual wavefront error.

4. DISCUSSION

Focal spot centroiding influences the reconstruction accuracy of
HS wavefront sensors [25]. The centroiding errors arising from
noise in the wrapped images lead to inaccuracies in the virtual
HS method [4] and the estimated Strehl ratio drops with increas-
ing noise [14]. Furthermore, the total number of subapertures
needs to be increased to compensate for a decrease in SNR and
in order to retain the same number of pixels per subaperture
(and not compromise centroiding accuracy), the effective pupil

diameter is a larger matrix. This makes the virtual HS method
slow and computationally challenging for low SNR. The virtual
PWS is relatively robust and the 4 pupil intensity images enable
a direct evaluation of global wavefront slopes and does not need
local wavefront slope estimation that may involve additional
errors as is the case with the virtual HS. The size of the pupils
can be adjusted to the number of slope measurements needed
for phase unwrapping. And, by controlling the apex angle of
the pyramidal prism, the pupils can be placed right next to one
another in a 2 × 2 grid. For instance, to compute 31 × 31 slope
values, an intensity matrix, Ipyr with 62 × 62 pixels is sufficient
to estimate the wavefronts. In comparison, a virtual HS uses
∼ 20 × 20 pixels per subaperture and to obtain 31 × 31 slope
values, it requires to compute an intensity matrix of dimension
620 × 620 pixels, ten times larger than the matrix needed in a
virtual PWS. In the absence of noise, the virtual HS and virtual
PWS gave similar results with minor differences in the residual
wavefronts.

Modulation amplitude has an important role in controlling
the dynamic range and sensitivity of a pyramid wavefront sensor
[26]. It was shown earlier that the optimal modulation ampli-
tude increases in the presence of noise [27]. The same can be
noted in Fig. 3. In addition, a decrease in the magnitude of the
aberrations leads to a decrease in the optimal modulation ampli-
tude [16] and hence the modulation amplitude is premeditatedly
reduced with increasing iterations as the residual decreases. In
practical situations, optimal modulation can be obtained by min-
imizing the difference between the wrapped phase image and
the rewrapped image obtained from the reconstructed wave-
front. The accuracy can be improved further by increasing the
number of facets in a pyramid wavefront sensor [27]. In ad-
dition, increasing the number of phase-shifts in a PS PDI, the
measurement noise can be reduced. The conclusions derived
with Strehl ratio as an evaluation metric in Figs. 5 and 6 were
not affected when RMS error is used.

The virtuality of the PWS that is proposed here is unaffected
by the practical limitations of a physical PWS including the need
for moving parts to achieve modulation, the precise alignment
of the tip of the pyramidal prism at the focus of a lens and
manufacturing defects, all of which can adversely affect recovery
of the aberrations. There exist non-moving solutions for closed-
loop operation [28]. However, they need several iterations to
achieve diffraction-limited point spread function [16].

In conclusion, a novel method of phase unwrapping called
the virtual PWS has been proposed. Although the virtual PWS is
tested on wrapped phase images in a PS PDI, the efficacy of the
method is not limited to this application. It can be easily adapted
to any complex phase unwrapping application including digital
holographic microscopy, sample motion-detection in spectral do-
main optical coherence tomography and other medical imaging
modalities such as magnetic resonance elastography.
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