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Summary: The challenges of delimiting and identifying marine invertebrate species impede estimations of true biodiversity. 
This is particularly true in the case of gorgonian diversity, in which only classical morphological characters (e.g. branching 
pattern, size and colouration of the colony and sclerites, etc.), which can be homoplastic and continuous, have been used. In 
this study, using an integrative taxonomic approach, we analysed two morphs initially considered as two eco-typical variants 
of Leptogorgia alba Duchassaing and Michelotti, 1864, living sympatrically in the littoral area of Ecuador. We explored the 
use of classical morphological and morphometric characters to delimit species in combination with the analyses of molecu-
lar markers (mtMutS, CoxII-Igr-CoxI, ITSs, and 28S rRNA) to infer phylogenetic relationships. Based on our results, two 
species should be considered, L. alba and a new species, L. manabiensis n. sp., which showed distinguishing morphological 
features that cannot be attributed to phenotypic plasticity. Both species also showed significant differences in morphometric, 
non-correlated characters in all size classes. The phylogenetic analyses showed a polyphyletic L. alba - L. manabiensis n. 
sp. species complex, and ancestral polymorphism and incomplete lineage sorting as possible evolutionary processes leading 
to this pattern. In conclusion, the combination of morphological and morphometric evidences provides the best support for 
the identification and delimitation of these challenging species. In addition, molecular analyses, mainly supported by nuclear 
markers, allow fundamental aspects of the evolutionary history of these organisms to be discerned.
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Diferenciación intrincada intra- e interespecífica en Leptogorgia (Octocorallia: Gorgoniidae). Descripción de una 
nueva especie en base a distintas fuentes de evidencias

Resumen: Las dificultades existentes en la delimitación e identificación de especies de invertebrados marinos, impiden 
estimar la verdadera biodiversidad. Esto es particularmente observable en el caso de estudios sobre la diversidad de gor-
gonias, en los que tradicionalmente sólo se han utilizado caracteres morfológicos (por ejemplo, patrón de ramificación, 
tamaño y coloración de la colonia y escleritos, etc.) que pueden ser homoplásicos y continuos. En este estudio, utilizando 
un enfoque basado en una taxonomía integradora, se analizaron dos morfologías inicialmente consideradas como dos 
variantes eco-típicas de la especie Leptogorgia alba Duchassaing y Michelotti, 1864, ambas viviendo simpátricamente 
en el litoral de Ecuador. Exploramos el uso de caracteres morfológicos clásicos y morfométricos para delimitar especies, 
en combinación con marcadores moleculares (mtMutS, CoxII-Igr-CoxI, ITSs y 28S rRNA), con el objetivo de inferir sus 
relaciones filogenéticas. En base a nuestros resultados, se debe considerar la existencia de dos especies, L. alba y una nue-
va especie, L. manabiensis n. sp. que muestran caracteres morfológicos distintivos que no son atribuibles a la plasticidad 
fenotípica. Ambas especies también presentaron diferencias significativas en los caracteres morfométricos analizados, no 
correlacionados, en todas las clases de tamaño. Los análisis filogenéticos mostraron un origen polifilético del complejo de 
especies L. alba - L. manabiensis n. sp., a partir de un polimorfismo ancestral y una separación incompleta de los linajes, 
como posibles procesos evolutivos conducentes al patrón observado. En conclusión, la combinación de evidencias mor-
fológicas y morfométricas proporcionan el mejor apoyo para la identificación y delimitación de estas especies. Además, 
los análisis moleculares, apoyados principalmente por marcadores nucleares, permiten discernir aspectos fundamentales 
de la historia evolutiva de estos organismos.

Palabras clave: resolución incompleta de linajes; hibridación; ITS; mtMutS; 28S; CoxII-Igr-CoxI; Igr, Ecuador.
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INTRODUCTION

In the last decade, several studies have highlighted 
the difficulties of identifying marine species, especial-
ly invertebrates, using only morphological characters 
(Calvo et al. 2009, López-González et al. 2015, Alfaya 
et al. 2015), which can lead to an underestimation of 
biodiversity, and possibly adversely impact the conser-
vation of endangered species or those with restricted 
distributions (see e.g. Rocha-Olivares et al. 2001, 
Dincă et al. 2011, Eberle et al. 2016).

Understanding species boundaries in corals, par-
ticularly in octocorals, is a challenge for several fields 
of study, including taxonomy, evolutionary biology, 
life history and ecology (Vermeij et al. 2007, Stefani et 
al. 2008, Gori et al. 2012). The identification of octoc-
orals has traditionally relied on morphological features 
(from the seminal studies of Bayer et al. 1983, Breedy 
and Guzman 2003, Vargas et al. 2010); however, this 
is often problematic as some features are homoplastic 
(Sánchez and Wirshing 2005, Sánchez et al. 2007, Gori 
et al. 2012). Moreover, morphometric analyses have 
shown that the observed overlapping range for some 
continuous characters in octocorals is widely attributed 
to an apparent phenotypic plasticity, making consistent 
taxonomic units difficult to establish (Weinbauer and 
Branko 1995, Sánchez 2009). Evolutionary processes, 
such as interspecific hybridization, explosive radia-
tion and incomplete lineage sorting (Hatta et al. 1999, 
Vollmer and Palumbi 2004, Forsman et al. 2010), 
may also contribute to the difficulty of distinguishing 
closely related species.

Although molecular studies of octocorals have been 
performed, resolution at the species level is not always 
observed, such as in the genera Pacifigorgia, Leptogor-
gia and Eugorgia (Vargas et al. 2014, Ament-Velásquez 
et al. 2016), and the Alcyonium species complex (Mc-
Fadden and Hutchinson 2004), or even at the genus 
level, as in Plexaura, Pseudoplexaura, Eunicea and Eu-
nicella, for instance (Sánchez et al. 2003, McFadden et 
al. 2006, Gori et al. 2012, Costantini et al. 2016). Based 
on the idea that “more is better” (Winkler et al. 2015), 
many authors have supported the use and concatenation 
of nuclear and mitochondrial markers, such as ITSs (in-
ternal transcribed spacers ITS1 and ITS2), 28S rRNA, 
mtMutS and Cox (partial Cox-II and I including the 
Igr1 region) (McFadden et al. 2006, 2011, Aguilar and 
Sánchez 2007, Sánchez et al. 2007). In addition, antho-
zoan mitochondrial genomes, especially those of octoc-
orals, evolve 10 to 100 times more slowly than those of 
other metazoans (France and Hoover 2002, McFadden 
et al. 2004, Hellberg 2006), and possible incongruences 
between mitochondrial and nuclear phylogenetic recon-
structions may be attributed to hybridization.

Methodological advances in morphological analy-
sis, such as the use of morphometric statistics, can 
provide additional characteristics regarding the shape 
and structure of organisms (Gori et al. 2012). These 
techniques may better delimit difficult cases of species 
identification, reducing possible taxonomist subjectiv-
ity (Mutanen and Pretorius 2007) and molecular con-
flicts. Furthermore, these analyses have been shown to 
be at least as accurate as classical morphological and 
phylogenetic analyses in the delimitation of closely 
related species such as between Eunicellla singularis 
morphotypes (Gori et al. 2012), and within the Choris-
toneura fumiferana species complex (Lumley and 
Sperling 2010) and Ophion scutellaris (Thomson spe-
cies group) (Schwarzfeld and Sperling 2014).

In other ecosystems, combining analyses has pro-
vided a stronger evaluation of species identification 
(Schwarzfeld and Sperling 2014). Thus, an integrative 
taxonomic approach is likely best for understanding 
octocoral benthic community diversity (Dayrat 2005, 
Padial et al. 2010, Pérez et al. 2016). 

Using such an approach, we investigated two Ecua-
dorian morphotypes of the genus Leptogorgia Milne-
Edwards and Haime, 1857, which is considered one 
of the most cosmopolitan genera of the Gorgoniidae 
family (Grasshoff 1988, Breedy and Guzman 2007, 
Soler-Hurtado and López-González 2012). Specifi-
cally, these two morphs may represent eco-typical vari-
ants of Leptogorgia alba Duchassaing and Michelotti, 
1864, or they may constitute two distinct species co-
existing in the same habitat. With more than 60 valid 
species (Williams and Chen 2012), Leptogorgia is 
widely distributed in the Mediterranean and Caribbean 
seas, Atlantic and Pacific oceans, and South African 
and sub-Antarctic coasts (Bayer 1961, Grasshoff 1988, 
Williams and Chen 2012). In the eastern Pacific, Lep-
togorgia is one of the most frequently encountered 
genera (in terms of species richness and abundance), 
with 27 described species known for this area (Breedy 
and Guzman 2007, Horvath 2011, Soler-Hurtado and 
López-González 2012). Leptogorgia species are gener-
ally restricted to shallow-water habitats (although Lep-
togorgia styx Bayer, 2000, has been found at a depth of 
1900 m at the East Pacific Rise) and are distinguished 
from each other based on a few characters including 
the colour of the colony, branching patterns (filiform, 
dichotomous, or pinnate), the absence of anastomosis 
(in most cases), the polyp mound, and coenenchymal 
sclerites (spindles and captans) (Bayer et al. 1983, 
Grasshoff 1988, Breedy and Guzman 2007). 

Here, we report our analyses of the morphological 
and genetic variation of two Leptogorgia alba Duchas-
saing and Michelotti, 1864 morphs, using molecular 
analyses and classical morphology, with the support of 
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morphometric techniques, to determine whether they 
represent a single species or distinct species. This study 
contributes towards understanding the relationship be-
tween genetic and morphological variation in this case 
study.

METHODS

Sampling

Leptogorgia colonies were collected by SCUBA 
diving from rocky bottoms in Machalilla National 
Park (Manabí, Ecuador), which is considered one of 
Ecuador′s most important marine-terrestrial reserves. 
Sampling was performed between February 2010 and 
June 2014. We collected 40 colonies from each of the 
two morphs of Leptogorgia. The attachment at the base 
of the holdfast with coenenchyme was left in place so 
that the colony could have the possibility to regener-
ate following collection. Growth plasticity and growth 
rates in closely related shallow-water species and gen-
era are faster than initially suspected (e.g. Rossi et al. 
2011, Viladrich et al. 2016). These morphs are among 
the most common gorgonians at 3-30 m depth in the 
littoral zone of Ecuador. Given the uncertainty in their 
species status, they are of special interest for conserva-
tion management.

To account for the high range of size variability, 
colonies were collected according to four size classes, 
determined by the distance between the holdfast and 
the most distant branch tip (class 1, ≤70 mm; class 2, 
between 71 and 140 mm; class 3, between 141 and 210 
mm; and class 4, >211 mm).

Photographs of the sampled specimens were first 
taken underwater (Fig. 1) and then again on deck. 
Subsamples were either stored in absolute ethanol for 
molecular analysis or in 4% buffered formalin (after 

relaxation with menthol crystals) for morphological 
analysis. Formalin-fixed subsamples were subse-
quently transferred to 70% ethanol until analysis. The 
remaining colonies were air dried. 

Collected specimens were deposited in the Museo 
Ecuatoriano de Ciencias Naturales (MECN), the octoc-
oral reference collection of the research group “Biodi-
versidad y Ecología de Invertebrados Marinos” at the 
University of Seville (BEIM), the Museo Nacional de 
Ciencias Naturales in Madrid (MNCN-CSIC) or the 
Museu de Ciénces Naturals in Barcelona (MZB).

External morphology and SEM study

Colony fragments were prepared for scanning elec-
tron microscopy (SEM) according to standard methods 
(Bayer and Stefani 1989, Alderslade 1998). Addition-
ally, permanent mounts were prepared for light micros-
copy observation. The colonies were described and il-
lustrated according to standard terminologies (Bayer et 
al. 1983, Breedy and Guzman 2007).

Morphometry of the colonies

For each colony, the total area and total area without 
gaps were measured (Fig. 2) using the ImageJ software 
(Java version of NIH image) (Abràmoff et al. 2004), 
calibrated using a ruler as a reference.

The following measurements were taken from each 
colony: maximum height, maximum width, and aver-
age and maximum lengths of the primary branches. The 
number of ramifications and the number of branches of 
each order were also counted.

The following colony parameters were measured 
and calculated: mean width (mean of three measure-
ments, taken at equidistant positions at a right angle 
to the height) (Gori et al. 2012); height to width ra-

Fig. 1. – Underwater images of the two Ecuadorian morphs collected in Los Frailes, Machalilla National Park (Ecuador), where L. alba (white, 
left) and L. manabiensis n. sp. (pink, right) were observed at a sympatric location (side by side).
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tio; height to mean width ratio; ramification density 
(number of ramifications per surface area using both 
total area and area without gaps) (Weinbauer and 
Branko 1995); order of the colony [using a method-
ology developed by Horton (1945) and later modi-
fied by Strahler (1954)]; mean length of the primary 
branches; maximum length of the primary branches 
to maximum height ratio; tributary to source ratio 
of primary and secondary order branches (T/S) 
(“tributaries” (T) are branches that join branches of 
higher order (i.e. no change in order), and “sources” 
(S) are branches that join branches of equal order) 
(Brazeau and Lasker 1988); bifurcation ratio (the 
ratio of the number of branches of a given order to 
the number of branches of the next higher order) 
(Horton 1945, Strahler 1954, Brazeau and Lasker 
1988); main thickness of the primary, secondary 
and tertiary order branches; angle formed between 
primary and secondary order branches; angle formed 
between secondary and tertiary order branches; and 
angle formed by basal branches with respect to the 
central axis.

Morphometric statistical analyses

As two highly collinear variables contain the same 
information and would be redundant for the purpose of 
analysis (Anderson et al. 2008), we checked for cor-
relations among the morphometric variables measured, 
prior to modelling. Only variables having absolute 
inter-correlation values of less than 0.75 were sub-
sequently used. The data were organized into a mor-
phometric variable/sample matrix, and an Euclidean 
distance similarity matrix was calculated based on the 
normalized data (Anderson 2001). Differences in the 
multivariate structure were analysed in a distance-based 
permutational multivariate analysis of variance (PER-
MANOVA) (Anderson 2001, McArdle and Anderson 
2001). The experimental design included two crossed 
fixed factors: morph (with two levels) and size (with 
four levels). The sum of squares (SS) used was Type III 

SS, where every term in the model is fitted only after 
taking into account all other terms in the full model 
(Anderson et al. 2008). We used 9999 permutations 
of residuals under a reduced model (Anderson 2001). 
Homogeneity of dispersions was also tested with the 
PERMDISP routine, which performs a Levene-type 
test using the group means but obtains the p-values by 
permutations (Anderson 2006). Multivariate analyses 
were performed using the software PRIMER v6.1.11 
&  PERMANOVA v1.0.1 statistical package (Clarke 
and Gorley 2006). 

DNA extraction, PCR amplification and 
sequencing

Genomic DNA was extracted from 20-30 mg of 
tissue using the DNeasy extraction Kit (Qiagen, Inc.), 
according to the manufacturer′s protocol. Amplifica-
tions were carried out in 50 µL final volume reactions 
containing 5 µL of 10× buffer (containing 10× 2 mM 
MgCl2), 1 µL dNTPs mix (10 mM), 0.8 µL of each 
primer (10 µM), 0.5 µL of Taq DNA polymerase (5U/
µL) (Biotools) and 2 µL of genomic DNA. Cycling 
parameters and primer combinations used for each 
marker are given in Table 1. The amplicons were se-
quenced for both strands using BigDye Terminator in 
an ABI 3730 genetic analyser (Applied Biosystems). 
Sequences were edited using Sequencher v.4.6 (Gene 
Code Corporation, Ann Arbor, MI, USA).

The molecular data matrix consists of sequences 
from species reported here and from other recently 
sequenced species including E. ahorcadensis Soler-
Hurtado and López-González, 2012, E. daniana (1 and 
2) Verrill, 1868, L. diffusa Verrill, 1868, L. obscura 
Bielschowsky, 1929, L. mariarosae Soler-Hurtado 
and López-González, 2012 and P. stenobrochis Valen-
ciennes, 1846 (Table 2). For Antillogorgia bipinnata 
(= Pseudopterogorgia bipinnata), the following Gen-
Bank sequences were used: mtMutS (GQ342499), Cox 
(GQ342423), ITS (EU043125), and 28S (JX203712), 
and other recently sequenced species (Table 2).

Fig. 2. – Images showing the differences between total area of the colony (left) and area without gaps (right).
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The model that best fit for nucleotide evolution for 
each final alignment was determined with jModelTest 
(Posada 2008). Phylogenetic analyses were performed 
using PhyML v3.0 for Maximum Likelihood (ML) 
(Guindon and Gascuel 2003). Maximum Parsimony 
(MP) was calculated in PAUP 4b10 (Swofford 2003). 
MP parameters included a heuristic search with tree 
bisection-reconnection branch swapping.

ML and MP supports were determined through 1000 
bootstrap replicates (bootstrap values = bv). Bayesian 
inference of phylogenetic relationships was performed 
in MrBayes 3.1 (Huelsenbeck and Ronquist 2001), 
employing two parallel runs of 5 million generations, 
verifying their convergence in Tracer v1.4 (Rambaut 
and Drummond 2007) and looking that standard devia-
tions of split frequencies were smaller than 0.01, with 
one cold and three heated Markov Chains Monte Carlo 
(MCMC) for each run, sampling one every 1000 repli-
cates. The first 10% of sampled trees were discarded as 
burn-in, and support was evaluated based on posterior 
probabilities (pp).

RESULTS

Based on the evidence provided by the study of the 
differentiation of two Leptogorgia morphs, supported 
mainly by morphological and morphometric analyses, 

and framed by their evolutionary history, here we de-
scribe a new species within the family Gorgoniidae. 

Morphological characterization

Family Gorgoniidae Lamouroux, 1812
Genus Leptogorgia Milne-Edwards and Haime, 1857

Leptogorgia manabiensis n. sp.
(Figs 3-4)

Collected examined material: Holotype: MECN (Ant0001), Los 
Ahorcados, Manabí (Ecuador), 1º40′44″S 80º50′08″W, 15 m depth, 
27 Feb. 2010, six colonies.

Paratypes: MNCN (2.04/1190), Isla de Salanago, Manabí (Ecuador), 
1°35′55.13″S 80°52′0.01″W, 7 m depth, 20 Nov. 2011, one colony. 
MZB (2017-0231), Punta Mala, Manabí (Ecuador), 1°35′55.13″S 
80°52′0.01″W, 10 m depth, 20 Nov. 2011, one colony. Other mate-
rial: MNCN (2.04/1191), Los Frailes, Manabí (Ecuador), 1°30′14″S 
80°48′33″W, 10 m depth, 1 Feb. 2012, one colony. MECN (Ant0026), 
Isla de la Plata, Manabí (Ecuador), 1°16′25.84″S 81° 4′11.70″W, 15 
m depth, 22 Feb. 2012, two colonies. BEIM (OGORG-193), Isla 
de la Plata, Manabí (Ecuador), 1°16′25.84″S 81° 4′11.70″W, 22 m 
depth, 22 Feb. 2012, one colony. MECN (Ant0018), Isla de Salango, 
Manabí (Ecuador), 1°35′55.13″S 80°52′0.01″W, 7 m depth, 20 Nov. 
2011, four colonies. MZB (2017-0232), Isla de Salango, Manabí 
(Ecuador), 1°35′55.13″S 80°52′0.01″W, 7 m depth, 20 Nov. 2011, 
one colony. MECN (Ant0002), Los Ahorcados, Manabí (Ecuador), 
1º40′44″S 80º50′08″W, 5 m depth, 27 Feb. 2010, three colonies. 
MECN (Ant002), Los Ahorcados, Manabí (Ecuador), 1º40′44″S 
80º50′08″W, 10 m depth, 27 Feb. 2010, five whole colonies. 

Table 1. – Primers and PCR conditions used to amplify fragments of nuclear and mitochondrial genes in the studied Leptogorgia species. In 
the PCR protocol column, we indicate annealing temperature, time in seconds for the denaturation (at 94ºC), annealing and elongation (at 
72ºC), respectively, and the number of cycles for each gene, independent of the primer combination used. *PCRs were performed with the 

following primer combinations: Cox: 1+3, or 1+4 and 2+3; mtMutS: 5+6; ITSs: 7+8; 28S rRNA: 9+10 or 9+11.

Primer Code*Sequence Reference PCR protocol

Cox COII8068F 1 5´-CCATAACAGGACTAGCAGCATC-3´ McFadden et al. 2004 58°C 45:60:60 ×40
COI- Gorg2-F2 2 5´-GATTCGGAAATTGGTTTGTG-3´ Present paper
COIOCTR 3 5´-ATCATAGCATAGACCATACC-3´ France and Hoover 2002
COI-Gorg1-R3 4 5´ AGAGAAGGTGGTAATAACCAGAAA-3´ Present paper

mtMutS ND42599F 5 5´-GCCATTATGGTTAACTATTAC-3´ France and Hoover 2002 58°C 90:90:60 ×35
MUT3458R 6 5´-TSGAGCAAAAGCCACTCC-3´ Sánchez et al. 2003

ITSs ITS 2.1 7 5´-CGTAGGTGAACCTGCGGAAGGATC-3´ Hugall et al. 1999 56°C 60:90:60 ×35
ITS 2.2 8 5´-CCTGGTTAGTTTCTTTTCCTCCGC-3´ Hugall et al. 1999

28S rRNA 28S-Far 9 5´-CACGAGACCGATAGCGAA CAAGTA-3´ McFadden and van Ofwegen 2013 50°C 90:90:60 ×30
28S-Rar 10 5´-TCATTTCGACCC TAAGACCTC-3´ McFadden and van Ofwegen 2013
28S-R3 11 5´-ACTGCATRTATGAACTCCA-3´ Present paper

Table 2. – Gorgoniidae species involved in the molecular comparisons carried out in this study. Materials in bold are species sequenced for this 
study. Sequences with duplicate complete names are also numbered (e.g. 1-6) for the purpose of correctly identifying the sequence in Figure 8.

Species Igr + COI mtMutS ITSs 28S

Antillogorgia bipinnata GQ342423 GQ342499 EU043125 JX203712
Eugorgia ahorcadensis KX721173 KX721192 KX721211 KX721230
Eugorgia daniana (1) KX721188 KX721207 KX721226 KX721245
Eugorgia daniana (2) KX721189 KX721208 KX721227 KX721246
Leptogorgia alba (1) KX721176 KX721195 KX721214 KX721233
Leptogorgia alba (2) KX721182 KX721201 KX721220 KX721239
Leptogorgia alba (3) KX721183 KX721202 KX721221 KX721240
Leptogorgia alba (4) KX721184 KX721203 KX721222 KX721241
Leptogorgia alba (5) KX721186 KX721205 KX721224 KX721243
Leptogorgia alba (6) KX721187 KX721206 KX721225 KX721244
Leptogorgia manabiensis n. sp. (1) KX721177 KX721196 KX721215 KX721234
Leptogorgia manabiensis n. sp. (2) KX721178 KX721197 KX721216 KX721235
Leptogorgia manabiensis n. sp. (3) KX721179 KX721198 KX721217 KX721236
Leptogorgia manabiensis n. sp. (4) KX721180 KX721199 KX721218 KX721237
Leptogorgia manabiensis n. sp. (5) KX721181 KX721200 KX721219 KX721238
Leptogorgia manabiensis n. sp. (6) KX721185 KX721204 KX721223 KX721242
Leptogorgia diffusa KX721190 KX721209 KX721228 KX127247
Leptogorgia mariarosae KX721174 KX721193 KX721212 KX721231
Leptogorgia obscura KX721191 KX721210 KX721229 KX721248
Pacifigorgia stenobrochis KX721175 KX721194 KX721213 KX721232
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MECN (Ant0075), Los Ahorcados, Manabí (Ecuador), 1º40′44″S 
80º50′08″W, 20 m depth, 27 Feb. 2010, four colonies. MECN 
(Ant0031), Los Frailes, Manabí (Ecuador), 1°30′14″S 80°48′33″W, 
15 m depth, 1 March 2012, one colony. MECN (Ant0073), Punta 
Gruesa, Manabí (Ecuador), 1°33′38.15″S 80°50′5.28″W, 15 m 
depth, 12 Sept. 2012, one colony. MECN (Ant0076), Punta Gruesa, 
Manabí (Ecuador), 1°33′38.15″S 80°50′5.28″W, 14 m depth, 3 
Feb. 2013, four colonies. MECN (Ant0017), Punta Mala, Manabí 
(Ecuador), 1°33′41.37″S 80°50′8.79″W, 15 m depth, 20 Nov. 2011, 
two colonies. MECN (Ant0074), Punta Mala, Manabí (Ecuador), 
1°33′41. 37″S 80°50′8.79″W, 16 m depth, 3 Feb. 2013, five colonies.

Description of the holotype. The colony is 155 
mm long and 120 mm wide, irregularly pinnate; 
branches slender, mostly in a plane (Fig. 3A). Liv-
ing colony dark pink in colour, and pink or light pink 
in a dried state. Unbranched distal twigs up to 50 
mm in length and 19 mm in diameter, compressed 
proximally, more cylindrical and slightly tapered 
distally (Fig. 3A, B). Slightly marked longitudinal 
grooves along the thick basal branches and near 
the base. Polyps retract within slightly raised polyp 
mounds, sparsely distributed all around the branches 
with oblong apertures (Fig. 3B). Coenenchymal 
sclerites colourless (Fig. 3C). Dominant sclerite type 
spindles, straight or bent, some with a marked waist, 
measuring up to 0.14 mm in length and 0.04 mm 
width with 4-6 whorls of tubercles (Figs 3C, 4A). 
Capstans measure up to 0.08 mm in length and 0.03 
mm wide (Fig. 3B). Crosses not present. Anthoco-
dial sclerites hyaline or colourless, rods measure up 

Fig. 3. – Leptogorgia manabiensis n. sp. (Ant0001), holotype. A, colony; B, detail of a branch; C, light micrograph of sclerites.

Fig. 4. – Leptogorgia manabiensis n. sp. (Ant0001), holotype SEM 
photographs. Coenenchymal sclerites, A, spindles; B, captans; an-

thocodial sclerites, C, rods.
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to 0.10 mm in length and 0.02 mm wide, with some 
marginal projections (Figs 3C, 4C).

Variability. Colonies vary up to a maximum of 316 
mm in length and 236 mm in width. Unbranched distal 
twigs measure up to 13.9 cm in length and 19 mm in di-
ameter. Spindles measure 0.06-0.17 mm in length and 
0.03-0.06 mm in width. Capstans measure 0.03-0.10 
mm in length and 0.02-0.07 mm in width. Anthocodial 
sclerite rods measure 0.05-0.14 mm in length and 0.01-
0.06 mm in width.

Geographic and bathymetric distribution. Lep-
togorgia manabiensis n. sp. is known from the type 
locality in Los Ahorcados, Cope, Los Frailes, Punta 
Gruesa, Punta Mala, Isla de Salango and Isla de la Plata 
(continental coast of Ecuador), living on rocky bottoms 
in shallow waters at a depth of 5-23 m.

Etymology. The specific epithet refers to the Prov-
ince of Manabí (Ecuador), the type locality where the 
new taxon was discovered. 

Remarks. According to classical morphological 
characters, L. alba and L. manabiensis n. sp. show two 
main differences (Figs 3, 4, 5, 6). The first is colony 
colour, which is clearly distinct between the two spe-

cies (Fig. 1): L. alba is white (alive and dry) and L. 
manabiensis n. sp. is deep pink (alive) and pink/light 
pink (dry). The second difference is the length and di-
ameter of the unbranched distal branches, which are 
slightly longer and thicker in L. alba, up to 153 mm 
in length and 2.7 mm in diameter. In L. manabiensis 
n. sp., unbranched distal twigs reach up to 139 mm 
in length and 1.9 mm in diameter. Other differences 
found between the two studied species are discussed in 
the morphometric analysis section below.

For a complete description and list of the materials 
of Leptogorgia alba examined for this study, see Soler-
Hurtado et al. (2016).

Morphometric analyses

Nine morphological characteristics were se-
lected: maximum height, maximum length of the 
primary branches to maximum height ratio, order 
of colony, bifurcation ratio, tributary to source ratio 
of secondary order branches, main thickness of the 
primary order branches, angle formed between pri-
mary and secondary order branches, angle formed 
between secondary and tertiary order branches, and 
angle formed by basal branches. There were sig-
nificant differences in the multivariate structure be-
tween the species, L. alba and L. manabiensis n. sp., 

Fig. 5. – Leptogorgia alba (BEIM-0071). A, colony; B, detail of a branch; C, light micrograph of sclerites.
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and among colony size class (Table 3). Interactions 
between species and size class were not detected. 
The multivariate dispersion did not show any sig-
nificant difference, either between the levels of the 
factor “morph” (PERMDISP F1,75: 2.25; P(perm): 
0.14), or among the levels of the factor “size” (PER-
MDISP F1,73: 1.22; P(perm): 0.36). Figure 7 shows 
a graphical comparison of the nine morphological 
characteristics analysed in the two gorgonian spe-
cies. Colonies of L. alba tended to be characterized 
by higher maximum length of the primary branches 
to maximum height ratio, the angle formed be-
tween primary and secondary order branches, the 
angle formed between secondary and tertiary order 
branches, and the angle formed by basal branches 
(Fig. 7). In contrast, colonies of L. manabiensis n. 
sp. tended to be characterized by a higher order of 
colony, bifurcation ratio, and tributary to source 
ratio of secondary order branches (Fig. 7). In sum-
mary, the two forms cannot be considered as ontoge-
netic stages of a single species.

Molecular analyses

One matrix was prepared with the concat-
enated data from the four marker alignments: 
mtMutS+Cox+ITSs+28S (16 specimens, 3353 charac-
ters). New sequences were deposited in GenBank (Table 
2). According to jModelTest, the nucleotide substitution 
model that best fit the data was HKY+I. Trees obtained 
by Bayesian, MP and ML analyses all showed the same 
topology. In the concatenated alignment including the 
outgroups, a total of 152 sites were parsimony-informa-
tive. However, only 7 sites were parsimony-informative 
between L. manabiensis n. sp. and L. alba: six from the 
ITSs region and one from 28S. The mitochondrial frag-
ments were uninformative. Thus, the topology of the 
concatenated tree largely matched the tree obtained us-
ing nuclear data alone (ITSs+28S) (not shown). 

The reconstruction based on the data obtained 
from the four concatenated genes (Fig. 8) showed a 
well-supported Leptogorgia alba–L. manabiensis n. 
sp. clade (Clade I) (pp=1; bv=100). Specimens of L. 
alba and L. manabiensis n. sp. were divided into dif-
ferent subclades, but without taxonomic congruence. 
A well-supported polyphyletic assemblage consisting 
of Eugorgia daniana as sister group to the L. alba + L. 
manabiensis n. sp. clade and E. ahorcadensis (Clade II) 
was also observed (pp=1; bv≥85). Leptogorgia diffusa 
and L. obscura, which are closely related to L. mari-
arosae (Clade III), formed the sister group to Clade II 
(pp0=1; bv≥97). Pacifigorgia stenobrochis and Anti-
logorgia bipinnata (designated as an outgroup) were 
basal to clades I, II and III.

DISCUSSION

The morphological and morphometric results pre-
sented here, which showed significant differences in 
colony shape and branching, support the existence of 
two distinct species, L. alba and L. manabiensis n. sp., 
coexisting in Machalilla National Park (Ecuador). In ad-
dition, the molecular data has contributed to our under-
standing of the evolutionary history of this group of spe-
cies. Overall, we have shown that the delimitation and 
identification of challenging species is possible through 
an integrative taxonomic approach based on morphol-
ogy and on molecular and morphometric techniques. 
Indeed, in this study, evidence based on morphological, 
molecular and morphometric analyses have provided 
three semi-independent datasets. Taken together, these 
evidences help to better understand the true diversity 
and evolutionary history within this species group. 

Previous morphological studies based on a limited 
set of characters, including L. alba (Breedy and Guz-
man 2007), suggested that variability in colony colour 
and shape represented intraspecific morphological 
variation, correlated with differences in environmen-
tal factors principally due to local currents and depth 
(Lewis and Wallis 1991, Carlon and Budd 2002, Gori 
et al. 2012). However, the two species analysed here 
were living in close proximity in the same study area; 
thus, differences in colony morphology between L. 
alba and L. manabiensis n. sp. cannot be attributed to 
phenotypic plasticity based on environmental condi-
tions or ecological niches.

Table 3. – PERMANOVA table of results. Two crossed fixed 
factors: morph and size.

df SS MS Pseudo-F P(perm)

Morph 1 39.80 39.80 5.67 <0.01
Size 3 129.5 43.16 6.15 <0.01
Morph × size 3 29.79 9.93 1.41 0.10
Residual 69 484.22 7.01
Total 76 684

Fig. 6. – Leptogorgia alba (BEIM-0071) SEM photographs. Coe-
nenchymal sclerites: A, spindles; B, captans; Anthocodial sclerites: 

C, rods
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Fig. 7. – Graphical representation of selected morphometric colony features for L. alba (La) and for L. manabiensis n. sp. (Lm) (n=80). Thick 
black lines indicate mean values, and dotted vertical lines indicate the dispersion range values.

Fig. 8. – Phylogenetic relationships between 20 specimens from the Gorgoniidae family (7 species, 4 genera). Tree topology was inferred 
by Bayesian analysis, based on combined mitochondrial (coxII+Igr+coxI and mtMutS) and nuclear (ITSs and 28S) genes. The stars indicate 
clade supports for BI/ML/MP (pp ≥95; bootstrap=70). Sequences with duplicate, complete names were also numbered (e.g. 1, 2, 3, etc.) for 

the purpose of correctly identifying the sequence in the phylogenetic tree.
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Moreover, Guzman and Breedy (2008) divided 
the genus Leptogorgia into three species groups 
based on morphological characteristics, including an 
“alba-group” consisting of some species “with flat or 
slightly raised polyp-mounds, pinnate or dichotomous 
branching and white colonies” (Guzman and Breedy 
2008). In addition, Ament-Velásquez et al. (2016), 
using molecular phylogenetic analyses, demonstrated 
that the white phenotype was consistent and revealed 
a synapomorphy for the previously defined “alba-
group”. In light of our analyses, based on the morpho-
logical definition of the “alba-group”, L. manabiensis 
n. sp. must not be considered part of it due to its pink 
colour, reinforcing the idea that it is a differentiated 
species. However, on the other hand, the molecular 
similarity and relationship between L. manabiensis 
n. sp. and L. alba revealed the artificialness of using 
colour as a character to define this “alba-group”.

Most of the morphometric characters considered 
in this study were not noted in previous descriptions 
and revisions. In addition, our study shows that the 
differences between L. alba and L. manabiensis n. sp. 
were significant in all size classes, so not restricted to 
only larger individuals or specimens in the first stage 
of development. In a speciation framework, some 
morphological characteristics might remain stable 
for each species (e.g. the colour of the colony, some 
morphometric branching measures), while others are 
shared between the two species (Forsman et al. 2010, 
Vollmer and Palumbi 2004). Given the importance of 
understanding the morphological variation present in 
these organisms, the mechanisms and heritability in-
volved in this variation should be considered (Vermeij 
et al. 2007). Indeed, these variations could be due to 
genetic polymorphisms, in which the morphology of 
the species is determined by genotypes, independent of 
the ecological niche occupied (Carlon and Budd 2002, 
Vermeij et al. 2007).

The significant differences observed in the mor-
phometric and morphological analyses were not 
completely consistent with our molecular results, in 
which the relationship between L. alba and L. mana-
biensis n. sp. resulted in a polyphyletic assemblage. 
As expected, the mitochondrial data were only use-
ful for comparing the ingroup (L. alba and L. mana-
biensis n. sp.) and outgroup, confirming the need to 
complement the use of these markers with nuclear 
ones in the study of close relationships (Yasuda et 
al. 2015, Aguilar and Sánchez 2007, McFadden et al 
2010). Hybridization or incomplete lineage sorting, 
in which L. alba and L. manabiensis n. sp. unequally 
share a genetic polymorphism, may also explain the 
lack of congruence of the molecular nuclear data. 
This phenomenon has been observed between close-
ly related species within other coral genera such as 
Heliopora (Yasuda et al. 2015), Seriatopora (Flot 
et al. 2008) and Acropora (Vollmer and Palumbi 
2004), and in other invertebrates such as Cypraeidae 
marine gastropods (Meyer and Paulay 2005), Mel-
anoplus grasshopper species (Carstens and Knowles 
2007) and the butterfly family Lycaenidae (Wiemers 
and Fiedler 2007).

Although for some molecular phylogenies of cor-
als, hybridization processes have been used to explain 
a lack of resolution, polyphyly or paraphyly (Hatta et 
al. 1999, Diekmann et al. 2001, McFadden and Hutch-
inson 2004), possible ancestral polymorphisms linked 
to a delayed process of evolution, such as a source of 
shared haplotypes between species, should also be con-
sidered (van Oppen et al. 2001, Vollmer and Palumbi 
2004). Incomplete lineage sorting can be a particularly 
important factor to consider for rapidly and recently 
diverged species (Hoelzer and Melnick 1994, Hen-
ning and Meyer 2014, Eberle et al. 2016), as it makes 
species misidentifications more likely, thus leading to 
conflicting or misleading findings (van Velzen et al. 
2012, Nater et al. 2015). Although the molecular analy-
ses were unable to provide diagnostic characters for the 
complete delimitation of L. alba and L. manabiensis 
n. sp., they indicated that the phenotypic variation 
observed may be the result of a recent speciation and 
diversification event.

Wirshing and Baker (2015) suggested that, due to 
the common limited genetic variation within gorgonian 
species, a re-evaluation of species-level morphological 
characters is needed. Followed this recommendation, we 
provide new diagnostic morphometric characters (e.g., 
bifurcation ratio, branch thickness and branch angle) to 
complement classical morphological characters used for 
species identification, within an evolutionary context.

Evolutionary status and the relatedness of species, 
and the traits used to identify them, may not have a 
direct positive relationship (Carlon and Budd 2002). 
However, this is not to say that diagnostic species cri-
teria are not mutually exclusive: alternate criteria could 
indicate different aspects of biological information, 
providing more robust support about the identification 
of species boundaries (Rocha-Olivares et al. 2001).

Overall, the differentiation reported here between 
the new species L. manabiensis n. sp. and L. alba may 
help clarify previously cited discrepancies and reduce 
unexplained variability in these challenging gorgonian 
species. Moreover, this study confirms that the use of 
other tools and frameworks can be valuable for delim-
iting species for comparative studies. 

Of the approximately 28 Leptogorgia species that 
have been described for the eastern Pacific (Breedy 
and Guzman 2007; Horvath 2011), six (including L. 
manabiensis n. sp.) are distributed along the relatively 
unknown coasts of Ecuador (Soler-Hurtado and López-
González 2012, Soler-Hurtado et al. 2016, this paper). 
Many of the species descriptions of Leptogorgia in the 
eastern Pacific have come from specimens collected 
from northern localities such as California, Mexico, 
Costa Rica, and Panama (Breedy and Guzman 2005, 
2007, Breedy et al. 2012). Therefore, this study increas-
es our knowledge of the biodiversity of this group for 
other regions of this ocean. Furthermore, it reinforces 
the observation that Leptogorgia diversity is higher 
along the eastern Pacific coast of the Americas than 
along the western Atlantic coast, where only 12 valid 
recognized species are known to date (Bayer 1961, 
Devictor and Morton 2010). To better understand the 
evolution and biodiversity of gorgonian gardens, and 



Interspecific differentiation in Leptogorgia • 155

SCI. MAR. 81(2), June 2017, 147-157. ISSN-L 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04509.01C

to implement effective conservation strategies, future 
research focusing on the biological, ecological, and be-
havioural characters of these organisms are necessary, 
especially in the case of L. manabiensis n. sp., due to 
its restricted distribution area.
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