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Drosophila melanogaster contains two calcium-binding proteins, Frq1 and Frq2,

in the nervous system that control the number of synapses and the probability of

release. To understand the differential function of the two proteins, whose

sequence is only 5% dissimilar, the crystal structures of Frq1 and Frq2 are

needed. Here, the cloning, expression, purification, crystallization and

preliminary crystallographic analysis of Frq2 are presented. The full-length

protein was purified using a two-step chromatographic procedure. Two different

diffracting crystal forms were obtained using a progressive streak-seeding

method and detergents.

1. Introduction

Ca2+ transients are a universal signal in biological systems and over

100 Ca2+-binding proteins are known across species. These proteins

can be grouped into two main classes: the high-affinity, low-capacity

and the low-affinity, high-capacity families. By and large, both

families make use of the EF-hand motif as the most common struc-

tural domain to coordinate Ca2+ (Berridge et al., 2000; Ikura & Ames,

2006; Zhou et al., 2013).

In nervous systems, the speed of signal transmission is largely

dependent on the efficiency in Ca2+ dynamics at the synapse. The

distinct types of Ca2+ signals differ spatially, temporally and in

magnitude. Thus, it is not surprising that synapses exhibit a large

repertoire of Ca2+-binding proteins. The variety of Ca2+ sensors

ensures the correct transduction of Ca2+ signals into specific changes

in synaptic function. This specificity depends on three main factors:

the affinity of the sensor for Ca2+, their location with respect to the

Ca2+ signals and their interaction with other proteins. Examples of

Ca2+ sensors are calmodulin, with a role in synaptic plasticity, and

synaptotagmin, which is involved in fast neurotransmission. The

neuronal calcium sensor (NCS) family of proteins (also known as

frequenin; Frq) are related to calmodulin and are enriched in or

expressed only in the nervous system, where they have distinct roles

in the regulation of neuronal function (Burgoyne & Weiss, 2001;

Burgoyne et al., 2004; Burgoyne, 2007). The structures of different

proteins of the family are known (Ames & Lim, 2012).

Frq belongs to the high-affinity Ca2+-binding class and is conserved

from yeast to humans, where its orthologue is named neuronal

calcium sensor-1 (NCS-1; Pongs et al., 1993). In Drosophila, the Ca2+-

binding protein frequenin (Frq) exhibits a remarkable example of

structural duplicity towards the same function. The gene is dupli-

cated, frq1 and frq2, although the encoded proteins, Frq1 and Frq2,

are 95% identical. In addition, the sequences of these two proteins

are identical throughout the 12 sequenced Drosophila genomes

which span >40 million years of evolution (Sánchez-Gracia et al.,

2010). This unusual protein sequence conservation and the main-

tenance of a duplicated gene throughout such a long time challenge

interpretation. It is hypothesized that conserved duplications result

from the functional subspecialization of one of the components

within the context of a more general function or expression in which

both duplicates would be required (Rastogi & Liberles, 2005).

Drosophila Frqs control Ca2+ levels through the �1 voltage-gated

Ca2+-channel subunit encoded in the gene cacophony (cac; Dason et

al., 2009). The mammalian NCS-1 also controls Ca2+-channel activity

(Wang et al., 2001; Tsujimoto et al., 2002). Both Drosophila Frqs
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regulate neuronal probability of release and number of synapses

(Romero-Pozuelo et al., 2007; Dason et al., 2009). The mammalian

NCS-1 is likely to play similar roles since it is involved in brain

diseases such as autism and schizophrenia among other pathologies

currently without effective treatment. Aiming to understand the

subspecialization of Drosophila frq genes and identify structural

details for target recognition, we have initiated the crystal structure

solution of Frq2. Here, we report the cloning, expression, purification,

crystallization and preliminary X-ray analysis of full-length Ca2+-

saturated and unmyristoylated Frq2 from D. melanogaster.

2. Materials and methods

2.1. Gene cloning, protein expression and purification

The open reading frame of Drosophila Frq2 was previously cloned

as described by Romero-Pozuelo et al. (2007). A PCR fragment was

amplified with the forward primer 50-CACCATGGGCAAGAAGA-

ATTCAAAATTG-30, which included an NcoI site, and the reverse

primer 50-GGATCCTAATCACCACCTAAACTTAACGC-30, with a

BamHI site. The PCR fragment was first cloned in the pENTR

Directional TOPO vector (Life Technologies) and subsequently

cloned in multiple cloning site 1 of the pETDuet-1 expression plasmid

(Novagen) between NcoI and BamHI.

The plasmid was transformed into Escherichia coli BL21 (DE3)

cells. The bacteria were then cultured at 310 K for 16 h in LB medium

containing 100 mg ml�1 ampicillin. 10 ml aliquots were subcultured

into 1000 ml fresh 2�TY medium plus ampicillin (100 mg ml�1) and

allowed to grow to an A600 of 0.75 at 310 K. Overnight protein

expression was induced with 0.3 mM isopropyl �-d-1-thiogalacto-

pyranoside (IPTG) at 289 K.

Cells were harvested by centrifugation (20 min, 1300g). The cell

pellet was then resuspended in lysis buffer (50 mM HEPES pH 7.4,

100 mM KCl, 1 mM DTT) and lysed by sonication. After centrifu-

gation (45 min, 47 808g) at 277 K, the clear supernatant was filtered

(0.22 mm pore diameter), adjusted to 1 mM CaCl2 and loaded onto a

hydrophobic HiTrap Phenyl FF column (GE Healthcare). The

column had previously been equilibrated with buffer A (20 mM Tris–

HCl pH 7.9, 1 mM CaCl2, 1 mM DTT). The protein was then eluted

using the buffer 20 mM Tris–HCl pH 7.9, 2 mM EGTA, 1 mM DTT

by decreasing the protein calcium content (Fig. 1a). Afterwards, the

protein was loaded onto an ion-exchange HiTrap Q HP column (5 ml;

GE Healthcare) that had previously been equilibrated with buffer A.

The column was extensively washed with buffer A so that the protein

was fully saturated with Ca2+. A salt gradient was applied from 0 to

0.5 M NaCl. The protein eluted in two major peaks at 250 (peak 1)

and 500 mM NaCl (peak 2) (Fig. 1b). The protein corresponding to

peak 1, with the higher calcium content, was dialyzed against buffer

consisting of 20 mM Tris–HCl pH 7.9, 50 mM NaCl, 1 mM DTT, and

concentrated to 10 mg ml�1 using a concentrator with a 10 kDa cutoff

membrane (Vivaspin). The final protein concentration was deter-

mined spectrophotometrically using a molar absorption coefficient of

19 940 M�1 cm�1 at 280 nm. The sample was aliquoted and immedi-

ately frozen at 193 K for subsequent crystallization experiments.

The final sample purity was verified by SDS–PAGE and mass

spectrometry (MALDI–TOF) (Fig. 1c).

2.2. Crystallization

Preliminary crystallization conditions were established using the

JBScreen Classic Kit (Jena Bioscience), Crystal Screen, Crystal

Screen 2 (Hampton Research), ProPlex (Molecular Dimensions),

Index (Hampton Research), SaltRX (Hampton Research) and The

PACT Suite (Qiagen) with the sitting-drop vapour-diffusion method

at 293 K. Drops consisting of 250 nl protein solution (10 mg ml�1)
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Figure 1
Purification of Frq2. (a) Hydrophobic and (b) anion-exchange chromatography.
The red and green lines represent the conductivity and the absorbance (280 nm) of
the solution, respectively. (c) MALDI–TOF spectrum of the final purified sample.
SDS–PAGE gels of the protein obtained after the hydrophobic column [inset in (a)]
and the final crystallized sample [inset in (c)] are shown. Molecular-weight markers
(Mw) are indicated (kDa).



and 250 nl reservoir solution were equilibrated against 65 ml reservoir

solution. Condition D1 (25% PEG 4000, 0.2 M NaCl, 0.1 M HEPES

pH 7.5) from ProPlex produced needle-like crystals (Fig. 2a) that did

not diffract. To improve the crystal quality, various strategies were

tested around this condition at 277 and 293 K.

Very thin plate-shaped crystals were grown at 277 K when the

protein sample had previously been dialyzed against water. In this

case, a 1 ml drop consisting of Frq2 protein solution (10 mg ml�1) was

mixed with reservoir solution (26% PEG 4000, 0.1 M CaCl2, 0.1 M

HEPES pH 7.5) in a 1:1 ratio and the mixture was equilibrated

against 500 ml reservoir solution using the hanging-drop method

(Fig. 2a). To increase the thickness of the crystals, progressive streak-

seeding methods were carried out (Figs. 2b, 2c, 2d and 2e). The

reservoir solution PEG 4000 concentration was gradually decreased

to 21% in the different seeding rounds.

Similar plate-like crystals were also obtained at 293 K from drops

consisting of Frq2 solution (10 mg ml�1), reservoir solution (26%

PEG 4000, 0.1 M CaCl2, 0.1 M HEPES pH 7.5), 0.2 M Triton X-114

(Hampton Research) in a 1:1:0.5 ratio (Fig. 2f ).

2.3. X-ray analysis

Plate-like crystals obtained by streak-seeding methods at 277 K

or with the use of the detergent Triton X-114 at 293 K were cryo-
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Figure 2
Crystals of Frq2. (a) Needle-like crystals obtained with commercial screens. (b) Plate-like crystals grown at 277 K. (c)–(e) Crystals obtained by progressive streak-seeding
methods. Seeds from (b), (c) and (d) yielded to crystals shown in (c), (d) and (e), respectively. Final diffracting crystals are shown in (e). ( f ) Crystals grown in the presence of
Triton X-114. Scale bars, 0.2 mm.



protected by adding 20% glycerol to their corresponding reservoir

solutions. Crystals were mounted in a fibre loop and flash-cooled in

liquid nitrogen for data collection. A data set was collected from each

plate-like crystal at the ESRF, Grenoble (Table 1). Data were

processed with iMosflm (Battye et al., 2011) and scaled with SCALA

(Evans, 2006). Solvent-content calculations were performed with

CCP4 (Winn et al., 2011).

3. Results and discussion

The full-length Drosophila Frq2 gene was cloned into a bacterial

expression plasmid for protein production. The overexpressed

protein was purified to homogeneity using a two-step procedure.

Because of the high hydrophobic character of the calcium-bound

Frq2, we were able to purify the protein by hydrophobic chromato-

graphy (Fig. 1a). Subsequent anion-exchange chromatography was

used to isolate a homogeneous calcium-saturated protein sample

(Fig. 1b). The purity of the protein was analyzed by SDS–PAGE and

it was about 99% pure (Fig. 1c). Mass spectrometry suggested that the

protein contained a mutation since the measured mass (21 756.0 �

10.9 Da) was not coincident with the expected value (21 744.2 Da)

(Fig. 1c). Sequencing of the pET-Duet construct verified the presence

of an I178M mutation. Further analysis indicated that this change is a

post-translational modification that does not alter the function of the

protein (to be published elsewhere).

Non-diffracting needle-like crystals were obtained using commer-

cial screens (Fig. 2a). Extensive optimization procedures yielded two

different diffracting plate-like crystals that were obtained using

hanging-drop vapour-diffusion techniques at 277 and 293 K. At

277 K, the crystals were extremely thin and delicate (Fig. 2b). They

bent when mounted in the fibre loop, the quality of diffraction was

low and the data could not be processed (Fig. 3a). Diffraction was

improved (Fig. 3b) by producing thicker plates with progressive

streak-seeding methods (Figs. 2b, 2c, 2d and 2e). Initial plates grown

at 277 K were also improved at 293 K and by using the detergent

Triton X-114 as an additive (Fig. 2f ). Two data sets were collected at

the ESRF, Grenoble (Table 1). Crystals grown using seeding tech-

niques were monoclinic and those grown in the presence of Triton X-

114 were orthorhombic. A summary of the X-ray diffraction data and

processing statistics is shown in Table 1. To solve the crystal structure

of Frq2, molecular-replacement calculations will be performed using

as search models the structures of different neuronal calcium sensors

(Ames & Lim, 2012).

The authors would like to acknowledge ESRF beamlines ID14-1

and ID23 for help in data collection. Financial support was provided

by research grants BIO2011-28184-C02-02 to MJS-B and BFU2009-

12410/BMC to AF from ‘Ministerio de Economı́a y Competitividad’

(MINECO). SB-M and AC-S were supported by a JAE-Intro (CSIC)

and an FPI (BES-2009-026298 associated with BFU2008-00368

project, MINECO) fellowships, respectively. AM was financed by a

JAE-Doc contract (CSIC) and MJS-B by a Ramón y Cajal contract

(RYC-2008-03449).

References

Ames, J. B. & Lim, S. (2012). Biochim. Biophys. Acta, 1820, 1205–1213.

crystallization communications

Acta Cryst. (2014). F70, 530–534 Baños-Mateos et al. � Frq2 533

Figure 3
X-ray diffraction of Frq2 crystals. (a) Pattern of initial plate-like crystals obtained
at 277 K (shown in Fig. 2b). (b) Pattern of crystals improved by progressive streak-
seeding (shown in Fig. 2e).

Table 1
Data-collection and processing statistics.

Values in parentheses are for the highest resolution shell.

Crystal improved
by streak-seeding

Crystal improved
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ESRF beamline ID14-1 ID23
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� (�) 90.0 90.0
� (�) 91.1 90.0
� (�) 90.0 90.0

Resolution limits (Å) 42.97–2.22 (2.34–2.22) 27.46–2.30 (2.42–2.30)
Solvent content (%) 45.6 45.0
Molecules in the asymmetric unit 4 2
Rmerge 0.08 (0.47) 0.16 (0.59)
Mean I/�(I) 12.2 (2.6) 7.9 (3.0)
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