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Abstract 

Upon infection plant viruses modulate cellular functions and resources to survive and 

reproduce. Plant cells in which the virus is replicating are transformed into strong metabolic 

sinks. This conversion gives rise to a massive reprogramming of plant primary metabolism. 

Such a metabolic shift involves perturbations in carbohydrates, amino acids and lipids that 

eventually lead to increase respiration rates, and/or decrease in photosynthetic activity. By 

doing so, plants provide metabolic acclimation against cellular stress and meet the increased 

demand for energy needed to sustain virus multiplication and defense responses against 

viruses. This review will highlight our current knowledge pertaining to the contribution of 

primary metabolism to the outcome of viral infections in plants. 
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Introduction  

A viral infection is a highly dynamic process in which infected plant cells are transformed 

into major metabolic consumers (sinks) for products of photosynthesis. During the infection, 

nitrogen and carbon skeletons are required for the synthesis of new molecules and energy is 

necessary to fuel biosynthesis. The source-to-sink transition elicits reallocation and increases 

demands for photosynthetic assimilates, increases respiration rates, or decreases in 

photosynthetic activity. Such a metabolic shift contributes to sustain viral proliferation but is 

also necessary to activate defense mechanisms. Due to the uneven nature of viral infections in 

plants and that different virus-host interactions have been studied, it is complicated to depict 

an unequivocal generalized picture of the metabolic responses triggered by plant viruses. In 

addition, many reactions in central metabolism are reversible and complex, hindering the 

perception of major changes in metabolite levels. Nevertheless, a considerable effort has been 

made to elucidate alterations in metabolite contents linked to viral infections in plants of 

which significant commonalties arise (Figure 1). In this review, the current knowledge on the 

modulation of plant primary metabolism during viral infections and its importance for plant 

compatibility and/or resistance are discussed.  

Metabolomics strategies based on chromatography, mass spectrometry (MS) or nuclear 

magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis have 

provided an excellent platform to understand the input of certain metabolites in the plant’s 

response to viral infections [1-7]. Recent studies have gone steps further by using system 

biology approaches to study primary metabolism in plant-virus interactions. For instance, 

time-course transcriptomics and GC-MS-based metabolomics supported by functional reverse 

genetics were used to study the reciprocal influence of primary metabolism and Tobacco 

rattle virus (TRV) infection in Arabidopsis thaliana [8]. GC-MS-based metabolomics and 

gene expression data identified altered and unique metabolic signatures characteristic of two 
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tomato inbred lines that exhibited susceptibility or resistance to Tomato yellow leaf curl virus

(TYLCV) [9], or in response to mild and aggressive isolates of Potato virus Y (PVY) in 

potato leaves at different times of disease development [10].  

Plant virus, carbohydrate metabolism and photosynthesis 

The carbohydrate status has profound implications in mobilization and synthesis of storage 

compounds, symptoms development and defense functions, and its alteration is diagnostic for 

perturbations in photosynthesis and respiration. The accumulation of sugars in the infected 

tissue causes an imbalance in the ratio of nitrogen and carbon, and the sensing of such 

changes results in a feedback transcriptional regulation of photosynthesis genes, and 

occasionally, photosynthetic repression [11-17]. Even though repression of photosynthesis 

and induction of sink metabolism is a general response to viral infection, the effects on sugar 

levels varies considerably between different host-virus interactions. Changes in sugar levels 

involving the accumulation of enlarged starch grains in the chloroplast have been reported for 

some compatible interactions [18-21], whereas starch content decreases for some others 

[22,23]. Interestingly, viral accumulation is unaffected in starch-depleted Arabidopsis mutants 

suggesting that starch catabolism is not strictly required for virus multiplication in this species 

[8,20]. Metabolism of sink tissues, where sugar is used, is mainly sustained by sucrose 

synthesized in source leaves and transported through the phloem into sink tissues. Sucrose 

and soluble sugars are abundant in different host species infected with ToMV, Cauliflower 

mosaic virus (CaMV), and TRV [2,8,24], whereas soluble sugar contents decrease upon 

infection with PVY, Turnip yellow mosaic virus (TYMV), Jatropha mosaic virus (JMV), 

Ageratum enation virus (AEV) or Squash mosaic virus (SqMV) [5,6,10,25,26].  

Changes in carbohydrates accumulation respond to different causes that include physical 

disturbance of the transport path (e.g. modification of plasmodesmata by viral movement 
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proteins), inhibition of sugar transport proteins, induction of starch hydrolysis or cell wall 

invertases. Cucumber mosaic virus (CMV) increases sucrose concentration in the phloem sap 

of CMV-infected melon plants likely by altering sucrose localization [27]. Sucrose export 

routes can be severely affected by callose deposition at the cell-to-cell interfaces observed in 

multiple plant-virus interactions [28]. Infection of cotyledon of marrow plants by CMV 

causes a gradual increment of soluble sugars and a detriment of starch likely due to enhanced 

starch hydrolase activities [29,30]. The elevated hexose levels observed in tobacco plants 

infected with PVYN are concomitant with increased invertase activity, which cleaves sucrose 

into glucose and fructose [31]. Interestingly, cell-wall invertase-overexpressing transgenic 

tobacco or Arabidopsis plants accumulate large amounts of soluble sugars and are resistant 

against PVYN and Tobacco mosaic virus (TMV), respectively [31]. This observation suggests 

that high hexoses contribute to make plants less susceptible to viral infection, and highlights 

the relevance of the regulation of carbohydrate metabolism for defense. 

Plant viruses and amino acid metabolism 

Viruses are important modulators of the amino acid content in infected cells, and amino acid 

metabolism is critical in the plant response to infection. For instance, in tobacco, alanine, 

glutamine and proline levels increase in both locally infected leaves and leaves undergoing 

systemic acquired resistance to TMV [1]. High concentrations of individual and total amino 

acids have also been reported in different host species following infection with ZYMV, 

Papaya ringspot virus (PRSV), Bromo mosaic virus (BMV), and TRV [2,23,32,33]. Amino 

acids are significantly abundant at the time points of maximal viral accumulation in TRV-

infected Arabidopsis, although developmental timing is the dominant source of variance in 

the amino acid content [8]. In potato, infection with PVY leads to an initial decrease in amino 

acid concentration followed by a gradual increase over time that is particularly significant in 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6

leaves infected with the aggressive PVYNTN isolate compared to the mild PVYN isolate [10]. 

Although the precise role of virus-responsive amino acids during the infection has not been 

elucidated, it is tempting to propose that they may participate in antiviral responses. For 

instance, several amino acids and intermediates of the amino acid biosynthetic pathway 

accumulate to higher levels in TYLCV-resistant tomato lines compared to susceptible lines 

[9]. In Arabidopsis, accumulation of proline is observed during the hypersensitive reaction 

(HR), a plant response whereby the rapid death of cells at the infection site restricts the 

growth and spread of pathogens to other parts of the plant. External application of proline 

produces HR-like cell death symptoms [34,35]. In contrast, the lht1 (lysine histidine 

transporter 1) Arabidopsis mutant, which has reduced contents of alanine, glutamine and 

proline, shows enhanced resistance to multiple pathogens [36]. Likewise, genetic inactivation 

of DIN4 gene, which is critical in branched-chain amino acid (BCAA) metabolism, 

compromises TRV proliferation in infected plants, suggesting that BCAA metabolism 

contributes to plant susceptibility [8].  

Plant viruses and respiration 

Plant defense and stress responses induced upon viral infections implicate the up-regulation 

of the majority of the energy-associated networks (including the glycolysis, the oxidative 

pentose phosphate pathway, the TCA cycle, mitochondrial energy transport, and ATP 

biosynthesis) [37]. A sharp increase in respiration concomitant with reduced net 

photosynthetic rates has been reported in plant-virus interactions [5,22,38,39]. In this 

scenario, the elevated levels of carbohydrates and the increasing accumulation of amino acids 

during viral infections fuel the energy-generating TCA pathway to maintain high respiration 

rates [40]. Furthermore, several organic acids connected to the TCA cycle exhibit positive 

responses to plants viruses in different host species [2,5-7,10]. This supports the notion that 
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primary metabolism is largely reconfigured during pathogen infections to satisfy the energy 

demand required for plant defense and, likely, virus multiplication [41].  

Plant viruses and polyamines 

Polyamine metabolism, including the most common putrescine, spermidine and spermine, 

undergoes dynamic changes with polyamine levels increasing several fold during plant-virus 

interactions [42,43]. Polyamines play a key regulatory role on virus replication [42,44], and 

have a stimulatory effect on the in vitro translation of viral RNA [45,46]. A growing body of 

evidence suggests that polyamines also transduce defense responses. Elevated levels of free 

and conjugated putrescine and spermidine and elevated biosynthetic activities occur in TMV-

infected tobacco leaves undergoing the HR response, but not in TMV-infected susceptible 

plants [47-50]. Yamakawa et al. [51] found that free spermine, that accumulates to high levels 

during the HR in the intercellular fluids of the necrotic lesion-forming leaves, provides 

resistance against TMV. Induction in polyamine biosynthetic genes and spermedine-

responsive genes has been reported during CMV-elicited HR in Arabidopsis [52]. Putrescine 

levels are also augmented in compatible plant-virus interactions [33]. In agreement with a role 

in defense, high putrescine in Arabidopsis provides protection against excessive TRV 

proliferation, as both the adc1 and adc2 mutants impaired in putrescine biosynthesis are 

hypersusceptible to TRV accumulation [8]. Polyamines are also more abundant in resistant 

tomato cultivars to TYLCV infection than in susceptible cultivars [9]. In contrast to the above 

observations, putrescine concentration is reduced in plants infected with Citrus exocortis 

viroid (CEVd) [53].  

Plant viruses and lipid metabolism 
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The significance of cellular lipids in viral infections has long been appreciated because lipids 

provide energy for metabolism, participate in multiple defense signaling cascades, and are 

structural components of intracellular membranes in which replication of positive strand RNA 

viruses take place [54-58]. Membranes of different organelles also protect the viral 

components from the innate immune system as well as from RNA silencing-based antiviral 

defense [59,60]. During infection, viruses interfere with lipid (i.e. sterols and phospholipids) 

and fatty acid (FA) metabolism and biosynthesis to promote changes in the fluidity and/or 

plasticity of membranes that are required for the proper formation of viral replication 

complexes [59,61-65]. Genetic inactivation of INO2, a transcription activator involved in 

phospholipid biosynthesis, reduces Tomato bushy stunt virus (TBSV) replication and inhibits 

the activity of the viral replicase complex in yeast model host [66]. The sterol biosynthesis 

genes ERG25 and ERG4 affect the replication of TBSV in yeast [67], while silencing of N. 

benthamiana SMO1 and SMO2 genes, which are orthologs of ERG25, also result in a 

reduction in TBSV accumulation, supporting the roles of sterols in virus replication in plants 

[67]. In yeast, a mutation in the OLE1 gene encoding ∆9 fatty acid desaturase (Ole1p) 

severely inhibits BMV replication [68]. In this mutant, the ER lumenal spherule-associated 

membranes, in which viral RNA synthesis occurs, are locally depleted in unsaturated FAs 

[68,69]. TRV stimulates the incorporation of polyunsaturated FAs (linoleic and linolenic acid) 

in various intermediates in the synthesis of triacylglycerols and viral TRV accumulation is 

reduced in fad2 Arabidopsis mutants that contain reduced levels of unsaturated FA [8]. These 

observations suggest that viral replication is highly sensitive to reduced unsaturated FA 

levels. In contrast, TRV accumulates to high levels in acc1 Arabidopsis mutants, in which the 

initial step in the biosynthesis of very-long chain fatty acids is partly inhibited [8]. Elevated 

levels of linolenic acid have been reported in tobacco leaves infected with TMV [1]. A recent 

study shows that the marine virus E. huxleyi virus (EhV) induces profound transcriptome 
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remodeling in the alga Emiliania huxley targeted toward FA synthesis to support viral 

assembly [70].  

Conclusions and perspectives 

Viral infections cause profound perturbations in primary metabolism. Although inferences 

can be made from transcriptomics and metabolomics studies, little is known about the 

mechanisms used by viruses to interfere with metabolism in both compatible and 

incompatible interactions and the manner that the metabolite content contributes to viral 

infection and pathogenesis. Massive reprogramming of primary metabolism aims to meet the 

increased demand for energy needed to sustain viral multiplication and defense responses 

against viruses. The emerging view, however, is that accumulation of protective metabolites 

serve to alleviate the cellular stress imposed by the virus. As a result, viral infections confer a 

stage of metabolic acclimation that enables plants to cope with other environmental stresses. 

For instance, CMV and BMV infection of beet and rice, respectively, improve plant tolerance 

to freezing and drought stress, which correlates with increased osmoprotectant and 

antioxidant levels in infected plants [33]. Likewise, the enhanced biosynthesis of putrescine in 

the compatible TRV-Arabidopsis interaction makes infected plants more tolerant to freezing 

stress than non-infected plants [8]. Therefore, plants benefit from the vast array of infection-

associated metabolic responses by improving their tolerance to stress. 

Systems biology strategies continue to increase our understanding of the dynamic role of 

primary metabolism during viral infection. However, there are still many questions to answer 

that concern the precise roles of photosynthesis, sugar partitioning, source-to-sink regulation, 

respiration and photorespiration in different plant-virus interactions. Future studies should 

also be expanded to include the use of genetically engineered plants with altered metabolite 
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levels to determine the precise function of virus-responsive metabolites in host antiviral 

responses or acclimation to environmental stresses.  
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Figure legend: 

Figure 1. A simplified schematic representation of plant primary metabolism showing the 

major compounds that are altered in response to viral infections. Further details are given 

within the text and literature cited herein. ACP (acyl carrier protein), ER (endoplasmic 

reticulum), FA (fatty acids), LPA (lysophosphatidic acid), PA (phosphatidic acid). 

Glycolipids: DAG (diacylglycerol), DGDG (digalactosyl diacylglycerol), MGDG 

(monogalactosyl diacylglycerol), SQDG (sulfoquinovosyl diacylglycerol). Phospholipids: PC 

(phosphatidylcholine), PE (phosphatidylethanolamine), PI (phosphatidylinositol), PG 

(phosphatidylglycerol),  



acetyl-CoA

pyruvate

3-phosphoglycerate

phosphoenolpyruvate

fructose 6-P

glucose 6-P

glucose

citrate

isocitrate

2-oxoglutarate

succinyl CoAsuccinate

fumarate

malate

oxalacetate

glutamate glutamine

chlorophyll arginine
proline

putrescine polyamines

asparagine aspartate

homoserine

threonine

lysine
methionine

β-alanine
alanine

tryptophan
phenylalanine

tyrosine

malonyl-CoA

16:0-ACP
18:0-ACP
18:1-ACP

PA

PI

DAG

MGDG DGDG SQDG

PE

sucrose

fructosestarch

raffinosegalactose

stachyose

mannose

mannose 6-P

Tricarboxylic 
acid cycle

inositol

Photosynthesis

Respiration

GABA

pyruvate
alanine

Lipids and Fatty acids

PG

PG

Plastid ER

FA

leucine
valine

isoleucine G
lu

co
ne

og
en

es
is

G
ly

co
ly

si
s

LPA

DAG

MGDG DGDG SQDG
(18:2, 18:3)

PA DAGLPA

(18:2, 18:3) PC

serine
cysteine

glycine

Figure
Click here to download Figure: Current Opinion Llave 2016 Figure 1.pdf

http://ees.elsevier.com/coviro/download.aspx?id=17833&guid=2753c608-21df-4751-9b67-bd2f5ac0c518&scheme=1

