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ABSTRACT

Metazoan SR and SR-like proteins are important reg-
ulatory factors in RNA splicing, export, translation
and RNA decay. We determined the NMR structures
and nucleic acid interaction modes of Gbp2 and Hrb1,
two paralogous budding yeast proteins with simi-
larities to mammalian SR proteins. Gbp2 RRM1 and
RRM2 recognise preferentially RNAs containing the
core motif GGUG. Sequence selectivity resides in a
non-canonical interface in RRM2 that is highly related
to the SRSF1 pseudoRRM. The atypical Gbp2/Hrb1
C-terminal RRM domains (RRM3) do not interact with
RNA/DNA, likely because of their novel N-terminal
extensions that block the canonical RNA binding in-
terface. Instead, we discovered that RRM3 is cru-
cial for interaction with the THO/TREX complex and
identified key residues essential for this interaction.
Moreover, Gbp2 interacts genetically with Tho2 as
the double deletion shows a synthetic phenotype
and preventing Gbp2 interaction with the THO/TREX
complex partly supresses gene expression defect
associated with inactivation of the latter complex.
These findings provide structural and functional in-
sights into the contribution of SR-like proteins in the
post-transcriptional control of gene expression.

INTRODUCTION

Classic SR proteins belong to a family of metazoan proteins
interacting with RNA. These factors have been identified as
key players in the regulation of constitutive and alternative
splicing in metazoans (1-5). They have since been shown
to contribute to many steps of the post-transcriptional reg-

ulation of gene expression including miRNA production,
mRNA transport, translational control and mRNA de-
cay regulation (6). SR proteins display a prototypical do-
main organization that includes RNA binding domains
(RRM), sometimes associated with pscudoRRM mod-
ules, and serine/arginine rich regions whose phosphory-
lated forms appear to be recognized by a specific antibody
(7). The yeast Saccharomyces cerevisiae is devoid of this
class of proteins but has three SR-like proteins (3): Npl3,
an important factor for RNA metabolism including pre-
mRNA splicing (8) that reminds of the role of its meta-
zoan cousins; Gbp2 and Hrb1. These last two contain three
RRM domains (Npl3 has two) and probably arose from
an ancient genome duplication event (9). Unlike for Npl3,
deletion of Gbp2 or Hrbl (or both) does not compro-
mise the overall performance of mRNA splicing (8). In-
stead the two proteins were proposed to work as quality
control factors for spliced mRNA (10) and may possibly be
involved in other processes as well. Gbp2 and Hrbl inter-
act with Mtr4, a component of the RNA degradation ma-
chinery TRAMP, but also with Mex67, a key adaptor in the
mRNA export pathway (10). The latter interaction only oc-
curs upon efficient splicing; else Gbp2/Hrbl remain asso-
ciated to TRAMP and the transcript is degraded in the nu-
cleus (10). Unlike Npl3, Gbp2 and Hrbl interact with the
THO/TREX complex on nascent RNAs (11,12). The three
yeast SR-like proteins are exported to the cytoplasm as
part of the messenger RiboNucleoProtein particle (mRNP)
and are present in the polysomes (13). Npl3 has been re-
cently shown to be important for translation initiation (14),
whereas the role of Gbp2 and Hrbl in translation and/or
post-transcriptional control is still unclear.

We have performed a structural, biophysical, and func-
tional characterization of Gbp2 and Hrbl proteins. We de-
termined the NMR structures of several RRM domains
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and analysed their DNA/RNA binding by NMR, fluo-
rescence anisotropy, CD and EMSA. Gbp2 binds pref-
erentially RNA via the RRM1-RRM?2 tandem (hereafter
RRM12), with RRM2 playing a leading role in recognition
of sequences containing the core signal (GGUG). Recog-
nition surface involves a non-canonical interface clustered
around helix a1, equivalent to the recently reported pseu-
doRRM in SR proteins (15). Additionally, Gbp2 binds
with high affinity G-strand telomeric DNAs preventing
G-quadruplex formation in vitro. Gbp2/Hrbl RRM3 do-
mains do not bind nucleic acids due to the presence of
an unusual structure that blocks the access to the B-sheet
recognition sites. Here, we show that this new class of RRM
interacts physically with the THO/TREX complex by us-
ing a new protein—protein interface likely conserved in some
mammalian SR proteins. Finally, we found that Gbp2 and
Tho2 (a component of the THO complex) interact geneti-
cally and functionally.

MATERIALS AND METHODS
DNA cloning

Gbp2 and Hrbl coding sequences were cloned from Saccha-
romyces cerevisiae genomic DNA by PCR using Hifi KOD
DNA polymerase (Novagen) and a library of DNA oligonu-
cleotides (Sigma, IDT). Amplified products were purified,
digested with corresponding restriction enzymes and ligated
into a home-modified pET28 (Novagen) vector that con-
tains: a thioredoxin A N-terminal tag to enhance expres-
sion, a 6xHis tag for purification, and a TEV site for fusion
removal. Bacterial plasmids used in this work are summa-
rized in Supplementary Figure S1.

Protein expression and purification

Gbp2 (Hrbl) plasmids were transformed in E. coli BL21
(DE3) (Novagen) chemically competent cells and the cul-
tures were grown either in LB medium for non-labelled sam-
ples or in K-MOPS minimal medium (16) with PNH,4CI (1
g/1) and/or 3C-glucose (4 g/1) for isotopic labelling, both
containing 30 pg/1 of kanamycin (Sigma-Aldrich). In gen-
eral, cultures were grown at 37°C until reaching ODgyopnm =
0.6-0.8, equilibrated to 20°C and induced overnight (>18
h) with 0.5 mM IPTG (Sigma—Aldrich). Centrifuged cell
pellets (15 min at 3000 g) were resuspended in lysis buffer
(20 mM potassium phosphate pH 8.0, 300 mM NaCl and 1
tablet/50 ml of protease inhibitors (Roche)), lysed by son-
ication and pelleted at high speed (30 min at 15 000 g).
Recombinant proteins were purified from clear lysate by
metal affinity chromatography (HisTrap™ HP 5 ml, GE
Healthcare) and eluted with 300 mM imidazole-containing
buffer. Samples were dialysed against cleavage buffer (20
mM potassium phosphate pH 8.0) and simultaneously di-
gested with homemade TEV protease (100 wg/ml) at 4°C
overnight (for difficult-to-cleave constructs proteolysis was
performed at 16°C using double TEV concentration). After
complete cleavage (checked by PAGE-SDS) a second metal
affinity chromatography step was done to remove digested
tags, undigested fusion proteins and TEV, recovering in the
flow through the purified Gbp2 (Hrb1) proteins. Finally, all
Gbp2 and Hrbl proteins were purified and concentrated by

anion exchange chromatography (MonoQ 5 ml, GE Health-
care) with a linear salt gradient elution (from 100 to 1000
mM NaCl) in a 20 mM Tris-HCI pH 8.0 buffer. Sample
purity and homogeneity was asserted by PAGE-SDS, mass
spectrometry and NMR.

NMR

Samples of Gbp2 and Hrbl constructs were prepared at
concentrations of 200-800 wM in 25 mM potassium phos-
phate (pH 6.5), 25 mM NaCl, 0.1 mM DTT and 10% D,O
buffer (also containing 10 wM of DSS for proton chemi-
cal shift referencing). NMR experiments were acquired at
25°C, on Bruker AV600 and AV800 spectrometers with cry-
oprobes. 3D triple resonance experiments (HNCA, HNCO,
CBCA(CO)NH) (17) were recorded for backbone assign-
ment of Gbp2 and Hrbl single-domain constructs and 3D-
HCCH TOCSY experiments (18) for side chain assign-
ments. SN relaxation data Ty, T, and "N{'H} heteronu-
clear NOE were recorded on a Bruker AV600 spectrometer
for all Gbp2/Hrbl constructs under the same experimental
conditions using standard pulse sequences (19) (see Supple-
mentary Figure S6, S7 and S8 for more details). NMR spec-
tra were processed/analysed with NMRPipe (20), Topspin
(Bruker), and CcpNmr Analysis (21).

Distance restrains were obtained from 2D NOESY ex-
periments (50-80 ms mixing time) of Hrbl RRM1, RRM2,
RRM3 and Gbp2 RRM3 and backbone angle restrains (¢
and ) 3C/'H chemical shifts using TALOS+ (22). Struc-
tures were calculated with CYANA 2.1 (23) starting from
50 random conformers followed by restrained simulated an-
nealing protocol. The 20 lowest target function conformers
without distance (>0.2 A) and angle (>5°) violations were
selected and subjected to a final molecular dynamics simula-
tion refinement at 0 K with AMBER 9.0 (24) using implicit
water solvent model (ibg = 5). The final ensemble of struc-
tures for each protein were analysed and represented using
the molecular graphic packages MOLMOL (25) and Py-
MOL v0.98 (DeLano Scientific LLC, Palo Alto, CA, USA).
Gbp2 RRM1 and RRM2 structural models were created by
homology with Hrbl structures using PyMOL.

NMR titrations

DNA and RNA probes used for titration experiments were
chemically synthetized by IDT (Supplementary Table S3).
Protein samples were prepared in NMR buffer (see above)
and titrated with the nucleic acid probes reaching 1:1 and
1:2 excess of DNA/RNA (100-200 wM). 'H-'>N HSQC
spectra were acquired for each titration point and the chem-
ical shift perturbation (CSP) was calculated for each amide
signal using the following formula:

ASY — \/((A(SIH)Z + (A815N/5)2> -0.5

CSP results were mapped into the
structures/models using PyMOL v0.98 software.

calculated



Fluorescence anisotropy binding titrations

Measurements were performed in a BMG Polarstar Galaxy
plate reader using 96-well black plates (Corning) regulated
at 26°C, with 485 and 520 nm excitation and emission filters,
respectively. The concentration of the fluorescein labelled
oligonucleotides (IBA GmbH) was 40 nM and the buffer
was 20 mM Tris—HCI, 150 mM NaCl, pH 8.0. A 1:1 binding
model compatible with the experimental data was fitted to
the isotherms using BIOEQS software (26), to obtain the
free energy of formation of complexes from their individual
elements employing a numerical solver engine. Errors in the
fitting parameters were obtained by confidence limit testing,
using the same software, at the 67% confidence level. No
changes in the fluorescence emitted by the fluorescein dye
were observed upon binding of any of the tested proteins.

Experimental details of other biophysical experiments
(fFEMSA and CD) are further explained on Supplementary
Figures S12 and S16.

cerevisiae genetic manipulations and TAP purifications

All yeast strains used in this work were derived from
BMA64 (MAT« ade2-1; his3-11,15; leu2-3,112; trplA;
ura3-1) (27). Tandem affinity purification (TAP) tags were
integrated into C-terminal positions by homologous recom-
bination (28). Gbp2 mutants were obtained by PCR using
plasmid pBS4473 carrying the Gbp2 coding sequence as
template. After fusion to the TAP tag cassette, mutations
were introduced in the genome by homologous recombina-
tion. Knockout strains were constructed by standard gene
disruption while double mutant strains were generated by
crossing and dissection. Strains used in this study are listed
in Supplementary Table S2.

Tandem Affinity Purifications were performed as de-
scribed (29). Eluates were fractionated on 4-20% gradient
PAGE-SDS and bands of interest were identified by mass
spectrometry after trypsin digestion.

B-Galactosidase activity assays

The pLG-SDS5 plasmid (30) was introduced in yeast by
transformation (31). B-Galactosidase activitics were mea-
sured as indicated previously (32).

RESULTS
Gbp2 and Hrb1 RRM3 have novel N-terminal extensions

We obtained several Gbp2 and Hrbl protein constructs
containing one to three of the putative RRM domains
of each protein (Supplementary Figure S1) and assigned
their NMR spectra. The '*C conformational shifts from
single-domain constructs confirm the predicted RRM with
the exception of RRM3 domains that appeared to have
an extra N-terminal helix («0) (Supplementary Figure S2).
Gbp2 RRM1 coexists in slow exchange equilibrium be-
tween folded and unfolded forms, the latter populated
~20% at 25°C (Supplementary Figure S3). The unfolded
population rises to ~40% at 35°C, value close to the T,
estimated in the CD-monitored thermal denaturation ex-
periments (Supplementary Table S1). Gbp2 RRMI1 equi-
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librium remains on RRM12 and RRM 123 constructs (data
not shown).

We solved the NMR structures of Hrbl RRM1, RRM2,
RRM3 and Gbp2 RRM3 domains (Figure 1, Supplemen-
tary Figures S4, S5 and Table 1). The conformational equi-
librium in Gbp2 RRM1 and the tendency to aggregate for
Gbp2 RRM2 impeded to obtain their structures but we
could model them from the Hrbl RRMs (49-71% sequence
identity). Hrbl RRM1 and RRM2 have the typical RRM-
fold BaBPRaP (Supplementary Figure S5A and B), the first
one contains a disordered histidine/arginine-rich loop (se-
quence RGHHRG) that could not be assigned perhaps due
to complex histidine acid/base equilibrium exchange (pH
6.5). Hrbl RRM2 has a conserved Trp residue (also present
in Gbp2 and homologs) in helix a2 that plays a chief role in
nucleic acid recognition (see below).

Gbp2 and Hrbl RRM3 include an additional structural
element (Figure 1 and Supplementary Figure S4): the N-
terminus of both constructs interacts with the C-terminus
of the domain (that is also the C-terminus of the proteins) to
form a singular network of interactions not observed previ-
ously in RRM domains (Figure 1 and Supplementary Fig-
ure S4). The domains start with a short helix («0; 1 and a
half turn) followed by a short extended sequence that forms
a small two-stranded B-sheet with the C-terminus of the
protein; these two elements pack against the central -sheet
blocking the canonical RNA binding interface (Figure 1B
and Supplementary Figure S4). The ‘mini-sheet’ is defined
by up to three interstrand hydrogen bonds and generates the
characteristic Ha—Ha NOE peaks in the 2D NOESY spec-
tra (Figure 1B). Finally, the N-terminal extension shows
an unusual glycine-rich tight turn that fastens around the
C-terminal of the protein. This so-called ‘closed-loop’ is
stabilized by a conserved network of interactions involv-
ing the guanidinium group of Arg 374 in the turn (Figure
1B and Supplementary Figure S4), which forms two hydro-
gen bonds: one with Tyr 450 Or via Hel (Arg 347 Hel-Tyr
423 Om in Gbp2) and another through Hn21 protons with
Val 426 O (Arg 347 Hn21- Leu 399 CO in Gbp2). The first
hydrogen bond probably contributes to slow down the Tyr
ring flipping, resulting in the detection of the four ring res-
onances instead of two (Figure 1B). On the other hand, the
interaction involving Hn21 protons reduces the exchange
rates enough to allow the observation of the Nm21-Hm21
correlations in the 'H-"N HSQC spectra (Figure 1B).

Gbp2 and Hrbl multidomain constructs have different dy-
namics

We used PN relaxation data to investigate the dynamics
of the RRMs in different molecular contexts (Supplemen-
tary Figures S6 and S7). Gbp2/Hrbl RRM3 and Hrbl
RRM2 have correlation times (t.) of ~5.5 ns, typical for
their molecular weight (~10 KDa) (Supplementary Figure
S8). Conversely, Gbp2 RRMI has the largest 7. of a single-
domain construct probably due to the conformational equi-
librium described above. Hrbl RRM1 and Gbp2 RRM?2
also have 7. larger than expected likely due to the contri-
bution of internal disordered loops or protein aggregation.

Correlation times of the RRMs domains increase in
Gbp2/Hrbl RRMI12 constructs (with the exception of
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Figure 1. (A) Stereoview of the NMR structure (20 conformers) of Hrbl RRM3 (PDB: 2MZT). The C-terminal domain shows a N-terminal extension
(in red) also present in the structure of Gbp2 RRM3 (PDB code 2MZQ) (Supplementary Figure S4). (B) Structural close-up of the details of the novel
element in Hrbl RRM3. The N-terminal helix packs against the B-sheet. The structure of the ‘closed loop’ is maintained by a hydrogen bond network
involving Arg374, Asp427 and Tyr450. The resonances of some guaninidium group NHs are downfield shifted (He) or exchange with the solvent slower
than usual (Hnx). The observation of the four ring resonances of Tyr450 indicates a slow down on the ring flipping dynamics. Finally the C-terminal part
of Hrb1 forms a small two-stranded antiparallel B-sheet spectroscopically characterized by the Ha-Ha interstrand NOE.
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Table 1. Summary of NMR restrains and structural calculation statistics for different domain structures of Gbp2p and Hrblp

Hrbl RRM1 Hrbl RRM2 Hrbl RRM3 Gbp2 RRM3

NMR experimental restrains
NOE-derived
Intraresidue 274 190 589 533
Sequential 163 137 540 521
Medium-range (1 < i-j < 4) 164 131 476 476
Long-range (i-j > 4) 375 283 1312 1370
Total per residue 13.0 10.0 30.1 30.2
TALOS+ obtained restrains
¢ angle restrains 49 58 70 71
{ angle restrains 51 56 69 68
Structure statistics
Mean AMBER energies (kcal/mol + SD)
Total —3772 £23 —2537+ 12 —3300 £ 11 —2925 £ 12
Van der Waals —643 £ 15 —599 £ 10 —764 £ 6 =751 +£7
Restrains (distance + angle) 441 6+1 27+ 1 19+1
Violations
Distance? . 02+04 1.1+0.2 1.5+1.0 14+£09
Maximum distance violation (A) 0.15 0.20 0.26 0.17
Angle® 0.5+07 0.5+0.7 0.8+0.9 02+04
Maximum angle violation (°) 7.6 7.4 6.6 3.6
Ramachandran Plot analysis (%)¢
most favoured regions 79.2 80.2 84.3 85.1
additionally allowed regions 17.6 16.6 13.6 12.7
generously allowed regions 2.0 24 1.7 2.1
disallowed regions 1.3 0.8 0.4 0.2
RMSD from ideal geometry
Bond lengths (A) 0.010 0.010 0.009 0.009
Bond angles (°) 1.98 2.22 1.85 2.05
Averages RMSD to mean structure (range) (162-236) (262-336) (357-454) (330-427)

N, CO, Ca (A) (£ SD) 1.39 +£0.40 0.72 +£0.19 0.33 +£0.09 0.43 +0.08

All heavy (A) (£ SD) 447 +2.18 3.87 +£1.63 0.72 +0.09 0.85 4+ 0.09

a Averaged value per structure of distance violations > 0.15 A =+ SD.
b Averaged value per structure of total angle violations 4 SD.
¢ Obtained from PROCHECK-NMR.

Gbp2 RRM1 affected by the fold/unfold equilibrium) and
are in the expected range for a molecule of the size of these
tandems (Supplementary Figure S8). This is consistent with
amodel in which RRM1 and RRM2 contact in the tandem
and couple their dynamics. The higher thermal stability of
the tandems in comparison to the single-domain constructs
(Supplementary Table S1) supports this model.

The correlation times of the domains further increase
in Hrbl RRM123 and nicely correlate to the expected for
a spherical particle in the Stokes model (Supplementary
Figure S8). In contrast, in Gbp2 RRM123 the rotational
dynamics of the RRMs are faster suggesting that RRM3
and RRM12 are largely independent. Indeed the compari-
son among the '"H-"N HSQC spectra of Gbp2 RRM123,
RRM12 and RRM3 shows fewer differences than the equiv-
alent with Hrbl constructs (Supplementary Figure S9), sug-
gesting that Hrbl RRM3 makes contacts with the tandem,
which affects both the chemical shifts and the 7.

Gbp2 RRM2 recognises the GGUG core sequence

Gpb2 RNA binding specificity has been investigated in vitro
(33) and in vivo (34) and the protein was early identified as
a telomeric DNA binding protein (35). We studied the in-
teraction of various Gbp2 constructs with the RNA probe
5-UUGGUGUU-3" which derives from the SELEX con-
sensus sequence (HGGUGW; H=A/C/UW = A/U) (33)
and contains the core tetranucleotide signal (GGUG) re-

cently identified in vivo by PAR-CLIP (35). Fluorescence
anisotropy titrations showed that this RNA interacts with
Gbp2 RRM2 (Figure 2A and Table 2) (K4 ~ 50 wM). Bind-
ing to Gbp2 RRM1 is at least 10 times weaker and Gbp2
RRM3 does not interact in the concentration range tested.
RRM12 and RRM123 bind with similar apparent affinity
but ~10 times stronger than RRM2 (Figure 2A and Table
2). The results show that RRM1 cooperates with RRM2 in
RNA recognition, a common scenario in RRM tandems,
and confirm the neutral role of RRM3. None of the Gbp2
protein constructs bind significantly to the U, and A,
RNA probes suggesting that the interaction is sequence-
specific (Supplementary Figure SI0A). As Gbp2 has been
described as a DNA-binding protein we also explored Gbp2
DNA/RNA selectivity. Affinities for the d(TTGGTGTT)
probe is ~5-fold lower than for the cognate RNA for all
Gbp2 constructs demonstrating that the protein prefers
RNA (Figure 2A and Table 2).

In line with these results, Gbp2 RRM2 'H-*N HSQC
spectrum shows larger perturbations than Gbp2 RRM1 one
upon titration with 5¥-UUGGUGUU-3" (Figure 2B and
Supplementary Figure S11). Gbp2 RRM3 NMR spectrum
remains unperturbed with this probe and others (Uy;, A2,
(UA)7 and (CU)¢ (data not shown)). The chemical shift per-
turbation and line broadening effects map to the B-sheet
(canonical interface) and to helix al (Figure 2C) in Gbp2
RRM2 model. This helix contains a WQxLKD motif that
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Figure 2. Nucleic acids binding mode of Gbp2 RRM2. (A) Fluorescence anisotropy binding isotherms obtained upon titration of fluorescein labelled RNA
and DNA with various Gbp2 protein constructs (fitted values on Table 2). (B) Superposition of full 'H-!>N HSQC spectra of Gbp2 RRM2 on its free
(black) and 5--UUGGUGUU-3" RNA bound form (red). Black labels identify some crosspeaks experience shift that could be assigned and green labels
crosspeaks that disappear upon titration. Chemical shift perturbations are plotted on Supplementary Figure S10. (C) Mapping of the CSP (Supplementary
Figure S10) on the structure of Gbp2 RRM2 (modelled from Hrbl RRM2). Residues with broadened HSQC peaks are depicted in magenta, those with
CSP > 0.1 ppm in red and those with 0.1 > CSP > 0.05 ppm in light red. The changes span through the B-sheet (canonical RNA binding interface) and
through helix al. (D) NMR structure of SRSF1 pseudo-RRM?2 in complex with 5-UGUGGAC-3’ (15) showing side-chains involved in protein RNA-
recognition. Hydrogen bonds responsible of G6 specificity are shown in yellow. Equivalent residues are found in Gbp2 RRM2 (C) and define a conserved
motif in helix a1, which is found in Npl3 and in some SRSF human proteins (D).
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Table 2. Energetic parameters of the interactions between different Gbp2 constructs/mutants and RNA/DNA probes determined by fluorescence

anisotropy

Gbp2 construct RNA/DNA? AG (kcal.mol~1) Kp (L.M)
RRM2 UUGGUGUU 5.84 +0.05 54+ 4
RRMI2 72+0.1 55+0.7
RRMI123 7.5+02 33408
RRMI n.d. > 10004
RRM3 n.i. n.i.
RRM?2 d(TTGGTGTT) 48402 310 £ 90
RRMI12 6.3140.05 2442
RRMI123 6.5+0.1 1742
RRMI1 n.d. > 10004
RRM3 n.i. n.i.
RRM2 W232A d(TTGGTGTT) n.d > 1000 9
RRMI2 W232A 5.940.1 49+9
RRM2 W232A UUGGUGUU n.d > 1000 4
RRMI2 W232A 6.6£0.2 15+4
RRM2 Uy n.d. > 1000 4
RRMI12 n.d. > 10009
RRM2 A n.d. > 10009
RRM123 n.d. > 10004

4Sequences 5'- to 3’ and fluorescein-labeled (at 5'-phosphates).
bFree energy values correspond to the dissociation reaction.

¢Apparent Kp values obtained from the free energies determined as indicated in the main text.
dLower limit estimation obtained by simulation assuming similar fluorescence anisotropy changes.

n.d.: not determined due to insufficient saturation.

n.i.: no interaction was detected. The changes on anisotropy are within the error along the entire concentration range.

is conserved in yeast SR-like and in several members of
the SRSF protein family and it is directly involved in RNA
recognition in SRSF1 pseudoRRM2 (15) (Figure 2C and
D). The mutation of the key residue Trp232 in Gbp2 RRM2
severely impairs RNA/DNA recognition (Table 2 and Sup-
plementary Figure S10B and C). A similar result was re-
ported for SRSF1 (15) strengthening the idea that Gbp2
RRM2 adopts the same binding mechanism. However, this
mutation in the Gbp2 RRMI12 construct causes a more
modest impact showing that the tandem can exploit addi-
tional interfaces (probably involving RRM1 and RRM2 B-
sheets) that are not accessible to single-domain constructs.
It also should be noticed that Gbp2 RRM 12 W232A retains
sequence specificity (affinity is still tighter than wild-type
for U, and A)»), either because the tandem interface has
on itself GU-rich specificity or because it plays a supportive
role that alleviates the impact of the mutation on the pseu-
doRRM interface. Indeed, key RNA recognition residues
are still present in the mutant (Figure 2C and D).

Gbp2 RRM2 binds telomeric DNA

Next we studied Gbp2 binding of telomeric DNA (35).
Fluorescence-EMSA show that Gbp2 RRM123 causes a
quantitative band shift at equimolecular concentrations
and that RRM2 is specifically involved in the interaction
(Supplementary Figure S12A). In contrast, Hrb1 binds TG-
43 less efficiently and its RRM2 does not exhibit the typ-
ical bandshift observed for Gbp2 (Supplementary Figure
S12B). Gbp2 RRM 123 recognises TG-43 better than Hrb1,
and with sub-uM affinity (K4 ~59 nM) and once again
RRM3 seems to be dispensable for binding (Supplemen-
tary Figura S13A). The changes in the 'H-'>N HSQC spec-
trum upon TG-43 binding are located to RRM12 region,

whose signals disappear (Supplementary Figure S13B).
This global depletion of the NMR signals is also observed
for Gbp2 RRM2 (Supplementary Figure S13C) and is com-
patible with an scenario in which the tandem RRM 12 forms
large protein/DNA oligomers that increase t. (shorter T).
The unperturbed RRM3 domain does not seem to interact
with the DNA and retains substantial mobility, probably
because it protrudes out of the oligomer core.

TG-43 DNA forms different types of DNA G-
quadruplexes (Supplementary Figure S14) in potassium-
containing media with the characteristic circular dichroism
band at 260 nm (Supplementary Figure S15 left panel)
(36). Gbp2 binding to linear TG-43 (in potassium ion-free
solutions) blocks its ability to form G-quadruplexes (Sup-
plementary Figure S15 middle) but at the same time Gbp2
binding to TG-43 already in the quadruplex form cannot
melt them (Supplementary Figure S15 right). These data
suggest that Gbp2 binding sites overlap (at least partially)
with the GGG motifs.

Gbp2 interacts with THO via its RRM3 domain

As RMM3 of Gbp2/Hrbl does not appear to bind nu-
cleic acids, we reasoned that it could be involved in protein-
protein interactions, as shown for other RRM variants (see
(37) and references therein). To investigate this hypothesis,
we purified Gbp2 from a Gbp2-TAP strain following the
standard tandem affinity purification protocol (29). Con-
sistent with previous investigations (12,38), we detected 2
major bands of high molecular weight that were confirmed
by mass spectrometry as THO/TREX subunits Tho2 and
Hprl (Figure 3A). Next we constructed the Gbp2ARRM3-
TAP strain, replacing RRM3 by the TAP cassette, and
found no evidences of Tho2 and Hrpl co-purification de-
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Figure 3. (A) Gradient (5-20%) SDS-PAGE of the eluted fractions of each TAP purification: lines 1-4 and 5-8 correspond to the GBP2-TAP obtained in
the Hrb1 wild type and deletion backgrounds; lines 9—-12 and 13-16 correspond to the GBP2ARRM3-TAP obtained in the Hrb1 wild type and deletion
backgrounds. Stars mark the positions of TAP-tagged proteins and black dots mark label identified (by mass spectrometry) components of THO. Subunits
of the THO complex smaller than Gbp2 are poorly visible due to degradation fragments thereof. (B) Silver stained gel of the eluted fractions from TAP of
various Gbp2 mutants. Similar levels of Tho2 and Hprl components of THO complex are observed for wild type and closed-loop mutant A425-427; the
levels of Tho2 and Hprl are much reduced in the Y412F/Y414F double point mutant and not detectable in Y412A/Y414A and ARRM3.

spite recovery of similar amount of Gbp2 (Figure 3A). This
absence of THO/TREX is not due to competition with
Hrbl as the results are similar in a AHrbl genetic back-
ground (Figure 3A), indicating that Gbp2 RRM3 is re-
quired for interaction with the THO/TREX complex.
Deletion experiments indicated that the Gbp2 nucleic
acid binding tandem is not required for THO/TREX
binding as the Tho2 subunit co-purifies with the
Gbp2ARRMI12-TAP (Supplementary Figure S16A).
To definitively demonstrate that Gbp2 RRM3 is me-

diating THO/TREX recruitment we fused it to Npl3,
a non-THO/TREX binding SR-like protein (12), and
compared the TAP-purified protein profiles of Npl3-TAP
and Npl3-Gbp2RRM3-TAP strains. As expected the
Tho2 was absent from the Npl3-TAP purification (12)
but associated with the Npl3-Gbp2 chimera (confirmed
by mass spectrometry analysis) (Supplementary Figure
S16B). These important results demonstrate that RRM3
is necessary and sufficient for THO/TREX recognition



and show that this property can be transferred to other
molecular contexts.

Given the robustness of the TAP assay, we used it to de-
lineate the interface of Gbp2 RRM3 interacting with THO.
Gbp2/Hrbl contain two distinctive features: the ‘closed-
loop’ revealed by our structural analyses (see above) and
a surface motif (YXYGG) in loop 5 (Supplementary Fig-
ure S17 A) with the two tyrosines exposed (Supplementary
Figure S17 B) highlighted by sequence conservation in fun-
gal orthologs. To investigate which of these two features
are relevant for THO recognition, three new Gbp2-TAP
mutants were obtained: Gbp2 (Y412F/Y414F) and Gbp2
(Y412A/Y414A) target the conserved tyrosines in the loop
S motif whereas Gbp2 (A425-427) was designed to disrupt
the ‘closed-loop’ by removing the final mini-B-sheet. Substi-
tution of Y412 and Y414 by alanine abolished Tho2/Hrpl
co-purification while their mutation to structurally related
phenylalanine residues reduced the presence of Tho2 and
Hprl in TAP cluates to just above background levels (Fig-
ure 3B). The A425-427 mutation does not affect THO re-
cruitment, thus demonstrating a specific effect of the tyro-
sine substitutions. The NMR spectra of both Y412/414 mu-
tants show that their overall structure is the same as wild
type (Supplementary Figures S18 and S19) therefore the
loss-of-function is not attributable to a destabilization ef-
fect. These results strongly suggest that the conserved motif
in loop 5 is involved in THO recognition.

Gbp2 interacts functionally with Tho2

Unlike their metazoan counterparts, only the Npl3 yeast
SR-like protein has been implicated in splicing (8). Re-
cently, however, a study described Gbp2 and Hrbl1 as qual-
ity control/surveillance factors delivering incorrectly pro-
cessed splicing transcripts to the nuclear exosome (10). Con-
sistent with previous results, we observed that deletion of
GBP2 and HRBI, alone or in combination, did not af-
fect constitutive splicing using a variety of reporters (data
not shown). Moreover, single and double deletion mutant
strains grew on different media and temperature condi-
tions without showing noticeable phenotypes (Supplemen-
tary Figure S20) apart from a minor (but reproducible) in-
crease on cell density for late cultures in the Ahrbl Agbp2
double mutant (Supplementary Figure S20). This result
suggests that these proteins have a subtle and long-term
negative effect on cell growth consistent with results recently
obtained for the Gbp2/Hrb1 homolog in Aspergillus nidu-
lans (39).

As Gbp2 and Hrbl interact with the THO/TREX com-
plex, we next tested for genetic interactions between these
genes and THO?2. In particular, the C-terminal domain of
Tho?2 was reported to bind RNA/DNA (40) and we rea-
soned interaction of THO/TREX with Gbp2 and/or Hrbl
could become functionally more important in strains car-
rying Tho2 mutants with impaired RNA/DNA binding.
Thus we crossed Atho2, tho2 Ajy7; 1597 O tho2 Ajps-1597 (40)
with a Agbp2 Ahrbl strain. Tetrad dissection revealed that
spores carrying the gbp2 deletion associated with any of
the tho2 allele grew very poorly (Figure 4A and data not
shown). This was particularly striking in the case of the
tho2 A 49s-1597 that by itself display only a very weak growth
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Figure 4. (A) Growth of spores from tetrad dissection of Agbp2 Ahrbl
with 1102 Ay408_1597. Spores were incubated for 72 h at 30°C. (B) Growth
of spores from tetrad dissection of ghp2 ARRM3 Ahrbl with Atho2. (C)
Expression of a lacZ reporter in tho2 and/or ghp2 ARRM3 mutants was
monitored by assaying B-galactosidase activity. Note that the data are plot-
ted on a logarithmic scale. Two biological samples assayed each in dupli-
cate were used to monitor variations.

phenotype ((40), and Figure 4A). In contrast, Ahrb1 Atho2,
Ahrbltho2 Ajr71_1597 and Ahrb1tho2 Ajyps_1597 spores grew
like single tho2 mutants and the AArbl mutation has lit-
tle additional impact on the growth of ghp2/tho2 double
mutants (Figure 4A and data not shown). This synthetic
genetic interaction between GBP2 and THO?2 reveals a
functional link between Gbp2 and the THO/TREX com-
plex and represents a marked difference between GBP2 and
HRBI.

To test whether Gbp2 RRM3 is required for Gbp2 func-
tion, we crossed a gbhp2 ARRM3 Ahrbl strain with a Atho2
strain and monitored the growth of the spores after dissec-
tion. We observed a synthetic growth phenotype between
gbp2 ARRM3 and Atho2 as spores grew very poorly (Fig-
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ure 4B). This result indicates that Gbp2 RRM3 is required
for the functional interaction of GBP2 and THO?2.

Because both Gbp2 and Tho?2 are subunits of mRNPs,
we tested the impact of Atho2 and gbp2 ARRM3 muta-
tion, alone or in combination, on the expression of the lacZ
reporter that is known to be sensitive to Tho2 function
(40). The pLS-SDS5 reporter was introduced in otherwise
wild type, single mutant or double mutant strains and 8-
galactosidase expression was assayed (Figure 4C). Consis-
tent with the lack of phenotype of Agbp2 strains, inactiva-
tion of Gbp2 by deletion of RRM3 had almost no effect
on lacZ expression. In contrast, deletion of tho2 reduced
lacZ expression by >2 orders of magnitude as previously
reported (40). Surprisingly, deleting Gbp2 RRM3 in the
Atho2 background partly suppressed the reduction of lacZ
expression: 6-8-fold more B-galactosidase was detected in
the Atho2 gbhp2 ARRM3 double mutant as compared to the
Atho?2 strain. This observation indicates that besides inter-
acting physically and genetically, the THO/TREX complex
and Gbp2 interact functionally contributing to mRNP ex-
pression.

DISCUSSION

The SR protein superfamily comprises a large number
of eukaryotic RNA binding proteins (5 families and 11
subgroups (41)) involved in different aspects of mRNA
metabolism and characterized by a common architecture
composed by RNA binding domains (principally RRM-
type) and serine/arginine rich domains. S. cerevisiae lacks
canonical SR proteins; instead it has three SR-like proteins
(Gbp2, Hrbl and Npl3). The splicing factor Npl3 (8) has
two RRMs and is more similar to mammalian SR proteins.
Gbp2 and Hrb1 have an additional RRM domain and have
been recently linked to pre-mRNA splicing quality control
(10). However, the absence of a clear deletion phenotype
((42) and this work) challenges the search of other biologi-
cal roles of Gbp2/Hrbl.

RRM domains of Gbp2/Hrbl are specialized

In our work, we provide an extensive biophysical charac-
terization of Gbp2/Hrbl RRM domains, finding that the
tandem RRM1-RRM2 binds nucleic acids, while RRM3
is a protein-protein interaction platform. Gbp2 binds se-
lectively RNA sequences containing the GGUG element
through an interface built by helix a1 and strand B2 of
RRM2. This binding mode is equivalent to that of SRSF1
pseudoRRM2 (15), but Gbp2 RRM2 binds weakly (50
wM versus 0.7 wM). The most likely reason is that the
SRSF1/RNA interface is larger and involves additional
contacts with the a2—-B4 loop that are structurally precluded
in Gbp2 (because this loop is not long enough). Despite this
low affinity Gbp2 has some selectivity as it can discriminate
GU-rich from U-rich and A-rich sequences. Because A/U-
rich elements are frequently found in yeast 3'-UTR (43) we
would expect Gbp2 to be preferentially distributed along
the ORFs of mRNAs, which is in fact the case (33,34,44).
Gbp2/Hrbl RRM2 are probably involved in the recruit-
ment of Skyl kinase using a binding mode similar to that
proposed for SRSF1 RRM2 (15). The protein—protein in-
terface would involve Trp 232 and partially overlaps with

the RNA interface. Skyl phosphorylation occurs in the cy-
toplasm and is necessary for Gbp2, Hrbl and Npl3 reim-
port to the nucleus. Binding to Skyl ‘activation loop’ by
these SR-like proteins might function in two ways: to recruit
Skyl and to disassemble the RNA-binding proteins from
the mRNPs facilitating their remodelling in a translation-
ready form.

We show that Gbp2 RRM3 is necessary and sufficient
for recruitment to the THO/TREX. We confirm that this
interaction is RNA/DNA independent (12) because the
construct Gbp2 ARRM12-TAP, lacking the RNA-binding
region, co-purifies with THO/TREX. RRM3 contains
two new features: the ‘closed-loop’ and the loop 5 motif
(YxYGG). The first one appears to have evolved to sup-
press the intrinsic RNA binding ability of RRMs by form-
ing a well-defined blockage over the canonical 3-sheet in-
terface. There are other examples of non-canonical struc-
tural elements interacting with the canonical B-sheet, but
to our knowledge none of them disrupt RNA recognition
to the level observed in RRM3. Mutational analysis indi-
cates however that this feature is not required to maintain a
RRM3 structure competent to interact with the THO com-
plex. The second feature is critical for THO recruitment, in
particular the two conserved tyrosine residues. Gbp2/THO
interaction is not probably just driven by shape comple-
mentarity recognition. Our data reveals that the tyrosine
hydroxyl groups are not structurally important for Gbp2
RRM3 fold (Supplementary Figure SI8A), but are crucial
for THO recognition (Tyr to Phe mutation reduces binding
dramatically) very likely by participating to a complex net-
work of hydrogen bond interactions.

The human proteome has around ~1600 RRM anno-
tated. We found that only SRSFI RRMI1 and SRSF9
RRM1 have a YxYGG motifin loop 5. Moreover, the struc-
ture of SRSF1 RRM1 shows remarkable similarities with
Gbp2/Hrbl RRM3 in the region around this loop (Sup-
plementary Figure S17B), which leads us to predict that
SRSF1 and SRSF9 might be recruited to the human THO
in a similar manner than Gbp2. To our understanding this
is a novel hypothesis and might serve to discover new func-
tional links in the SRSF field.

Gbp2 and Hrbl1 participate in different biological processes

We find out that Gbp2 function becomes crucial in spores
carrying simultaneously a #h02 C-terminal truncation that
abolished the DNA/RNA binding of THO without com-
promising its structural integrity. Hrbl does not appear to
contribute to this phenotype, possibly because it is not ex-
pressed in these conditions or because it affects transcripts
that are not essential for this step. This indicates that Gbp2
and Hrbl are not functionally redundant at least during
spore germination. The hypothesis of a differential spe-
cialization of Gbp2 and Hrbl has been discussed in the
past. However only our data and the recent high-resolution
transcriptome-wide mapping of Gbp2/Hrbl binding sites
(34) provide direct evidences in this way. In this study, the
PAR-CLIP analysis shows a strong correlation between
Gbp2/Hrbl binding sites with those of THO/TREX. Addi-
tionally and only for Hrbl, there is also a strong correlation



with other splicing factors, leading the authors to suggest an
additional role of Hrbl in intron removal.

We propose a model in which Gbp2 would function as
an adaptor, interacting with RNA during transcription of
the coding part of the genes. Giving the ability of Gbp2
to prevent G-quadruplex formation in vitro, it may act
co-transcriptional to prevent the formation of such stable
structures. Gbp2 and Tho?2 contain nucleic acid binding do-
mains and it is tempting to speculate that Gbp2 and the
THO/TREX complex collaborate in recognizing nascent
RNAs (or ssDNA at the transcription bubble). In such con-
text, the observation that a Gbp2 C-terminal truncation
partially suppresses the reduced -galactosidase expression
observed in Atho2 strain is unexpected. However, Gbp2 has
a putative second RNA binding region - the N-terminal SR-
rich region-, besides its tandem RRM 12, and previous stud-
ies have noticed the remarkable similarities between these
regions and the C-terminal of Tho2 (1410-1597) (45). In the
absence of Tho2, the Gbp2 SR-rich region might usurp the
role of Tho2 C-terminal domain and impair gene expres-
sion. A second working hypothesis would be that the partial
suppression of the Atho2 phenotype in the Gbp2 mutant is
due to the lack of recruitment of THO/TREX. A damaged
THO/TREX complex could block downstream steps of
mRNP maturation and/or expression. Alternatively Gbp2
may efficiently recruit factors negatively impacting mRINA
expression that are usually outcompeted in the presence of
the THO/TREX complex. Future studies will reveal which
of these mechanisms (or others) better describes the rela-
tionship between Gbp2/THO at molecular level.
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netic Resonance Data Bank (accession numbers: 25497 for
Hrbl RRMI, 25498 for Hrbl RRM2, 25499 for Hrbl
RRM3 and 25496 for Gbp2 RRM3).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the members of our groups for discussion and
advice, C. Faux and D. Velazquez for technical assistance
and IGBMC services for support.

FUNDING

Spanish Ministerio de Economia y Competitividad
(MINECO) [CTQ2011-26665 and CTQ2014-52633-
P to JM.PC]; Comunidad Auténoma de Madrid
[CP1/0265/2008 to S.M.L.]; Federation of European
Biochemical Societies (FEBS) [FEBS Summer Fellowship
to S.M.L.]; Ligue Contre le Cancer (Equipe Labellisée
2014); Centre National pour la Recherche Scientifique;
CERBM-IGBMC; Investissements d’Avenir ANR-10-
IDEX0002-02  [ANR-10LABX-0030-INRT];  French

Nucleic Acids Research, 2016, Vol. 44, No. 1 447

Infrastructure for Integrated Structural Biology (FRISBI)
[ANR-10-INSB-05-01]; INSTRUCT as part of the Eu-
ropean Strategy Forum on Research Infrastructures.
The open access publication charge for this paper has
been waived by Oxford University Press - NAR Editorial
Board members are entitled to one free paper per year in
recognition of their work on behalf of the journal.

Conflict of interest statement. None declared.

REFERENCES

1. Long,J.C. and Céceres,J.F. (2009) The SR protein family of splicing
factors: master regulators of gene expression. Biochem. J., 417, 15-27.

2. Shepard,PJ. and Hertel,K.J. (2009) The SR protein family. Genome
Biol., 10, 242.

3. Busch,A. and Hertel,K.J. (2012) Evolution of SR protein and hnRNP
splicing regulatory factors. Wiley interdiscipl. Rev. RNA, 3, 1-12.

4. Lin,S. and Fu,X.D. (2007) SR proteins and related factors in
alternative splicing. Adv. Exp. Med. Biol., 623, 107-122.

5. Zhou,Z. and Fu,X.D. (2013) Regulation of splicing by SR proteins
and SR protein-specific kinases. Chromosoma, 122, 191-207.

6. Twyffels,L., Gueydan,C. and Kruys,V. (2011) Shuttling SR proteins:
more than splicing factors. FEBS J., 278, 3246-3255.

7. Roth,M.B., Zahler,A.M. and Stolk,J.A. (1991) A conserved family of
nuclear phosphoproteins localized to sites of polymerase I1
transcription. J. Cell Biol., 115, 587-596.

8. Kress,T.L., Krogan,N.J. and Guthrie,C. (2008) A single SR-like
protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol.
Cell, 32, 727-734.

9. Dujon,B. (2010) Yeast evolutionary genomics. Nat. Rev. Genet., 11,
512-524.

10. Hackmann,A., Wu,H., Schneider,U.M., Meyer,K., Jung,K. and
Krebber,H. (2014) Quality control of spliced mRNAs requires the
shuttling SR proteins Gbp2 and Hrbl. Nat. Commun., S, 3123.

11. Hécker,S. and Krebber,H. (2004) Differential export requirements for
shuttling serine/arginine-type mRNA-binding proteins. J. Biol.
Chem., 279, 5049-5052.

12. Hurt,E., Luo,M.J.,, Roéther,S., Reed,R. and Strasser,K. (2004)
Cotranscriptional recruitment of the serine-arginine-rich (SR)-like
proteins Gbp2 and Hrbl to nascent mRNA via the TREX complex.
Proc. Natl. Acad. Sci. U.S.A., 101, 1858-1862.

13. Windgassen,M., Sturm,D., Cajigas,l.J., Gonzalez,C.I., Seedorf,M.,
Bastians,H. and Krebber,H. (2004) Yeast shuttling SR proteins
Npl3p, Gbp2p, and Hrblp are part of the translating mRNPs, and
Npl3p can function as a translational repressor. Mol. Cell. Biol., 24,
10479-10491.

14. Baierlein,C., Hackmann,A., Gross,T., Henker,L., Hinz,F. and
Krebber,H. (2013) Monosome formation during translation initiation
requires the serine/arginine-rich protein Npl3. Mol. Cell. Biol., 33,
4811-4823.

15. Cléry,A., Sinha,R., Anczukéw,O., Corrionero,A., Moursy,A.,
Daubner,G.M., Valcarcel,J., Krainer,A.R. and Allain,F.H. (2013)
Isolated pseudo-RNA-recognition motifs of SR proteins can regulate
splicing using a noncanonical mode of RNA recognition. Proc. Natl.
Acad. Sci. U.S.A., 110, E2802-E2811.

16. Neidhardt,F.C., Bloch,P.L. and Smith,D.F. (1974) Culture medium
for enterobacteria. J. Bacteriol., 119, 736-747.

17. Sattler,M., Schleucher,J. and Griesinger,C. (1999) Heteronuclear
multidimensional NMR experiments for the structure determination
of proteins in solution employing pulsed field gradients. Prog. Nucl.
Magn. Reson. Spectrosc., 34, 93—158.

18. Kay,L.E., Xu,G.Y., Singer,A.U., Muhandiram,D.R. and
Forman-Kay,J.D. (1993) A gradient-enhanced HCCH-TOCSY
experiment for recording side-chain 1H and 13C correlations in H20
samples of proteins. J. Magn. Reson. Ser. B, 101, 333-337.

19. Farrow,N.A., Muhandiram,R ., Singer,A.U., Pascal,S.M., Kay,C.M.,
Gish,G., Shoelson,S.E., Pawson,T., Forman-Kay,J.D. and Kay,L.E.
(1994) Backbone dynamics of a free and phosphopeptide-complexed
Src homology 2 domain studied by 15N NMR relaxation.
Biochemistry, 33, 5984-6003.


http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv1303/-/DC1

448 Nucleic Acids Research, 2016, Vol. 44, No. 1

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Delaglio,F., Grzesiek,S., Vuister,G.W., Zhu,G., Pfeifer,J. and Bax,A.
(1995) NMRPipe: a multidimensional spectral processing system
based on UNIX pipes. J. Biomol. NMR, 6, 277-293.

Vranken,W.F., Boucher,W., Stevens,T.J., Fogh,R.H., Pajon,A.,
Llinas,M., Ulrich,E.L., Markley,J.L., Ionides,J. and Laue,E.D. (2005)
The CCPN data model for NMR spectroscopy: development of a
software pipeline. Proteins, 59, 687-696.

Shen, Y., Delaglio,F., Cornilescu,G. and Bax,A. (2009) TALOS+: a
hybrid method for predicting protein backbone torsion angles from
NMR chemical shifts. J Biomol. NMR, 44, 213-223.

Gtntert,P., Mumenthaler,C. and Wiithrich,K. (1997) Torsion angle
dynamics for NMR structure calculation with the new program
DYANA. J. Mol. Biol., 273, 283-298.

Case,D.A., Darden,T.A., Cheatham,T.E.I., Simmerling,C.L.,
Wang,J., Duke,R.E., Luo,R., Merz,K.M., Pearlman,D.A.,
Crowley,M. et al. (2006). University of California, San Francisco.
Koradi,R., Billeter,M. and Wiithrich,K. (1996) MOLMOL: a
program for display and analysis of macromolecular structures. J.
Mol. Graph., 14, 51-55.

Royer,C.A., Smith, W.R. and Beechem,J.M. (1990) Analysis of
binding in macromolecular complexes: a generalized numerical
approach. Anal. Biochem., 191, 287-294.

Baudin-Baillieu,A., Guillemet,E., Cullin,C. and Lacroute,F. (1997)
Construction of a yeast strain deleted for the TRP1 promoter and
coding region that enhances the efficiency of the polymerase chain
reaction-disruption method. Yeast, 13, 353-356.

Puig,O., Rutz,B., Luukkonen,B.G., Kandels-Lewis,S.,
Bragado-Nilsson,E. and Séraphin,B. (1998) New constructs and
strategies for efficient PCR-based gene manipulations in yeast. Yeast,
14, 1139-1146.

Rigaut,G., Shevchenko,A., Rutz,B., Wilm,M., Mann,M. and
Séraphin,B. (1999) A generic protein purification method for protein
complex characterization and proteome exploration. Nat.
Biotechnol., 17, 1030-1032.

Guarente,L., Yocum,R.R. and Gifford,P. (1982) A GAL10-CYCl1
hybrid yeast promoter identifies the GAL4 regulatory region as an
upstream site. Proc. Natl. Acad. Sci. U.S.A.,79, 7410-7414.

Ito,H., Fukuda,Y., Murata,K. and Kimura,A. (1983) Transformation
of intact yeast cells treated with alkali cations. J. Bacteriol., 153,
163-168.

Dreumont,N. and Séraphin,B. (2013) Rapid screening of yeast
mutants with reporters identifies new splicing phenotypes. FEBS J.,
280, 2712-2726.

Riordan,D.P, Herschlag,D. and Brown,P.O. (2011) Identification of
RNA recognition elements in the Saccharomyces cerevisiae
transcriptome. Nucleic Acids Res., 39, 1501-1509.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Baejen,C., Torkler,P., Gressel,S., Essig,K., Soding,J. and Cramer,P.
(2014) Transcriptome Maps of mRNP Biogenesis Factors Define
Pre-mRNA Recognition. Mol. Cell, 55, 745-757.

Lin,J.J. and Zakian,V.A. (1994) Isolation and characterization of two
Saccharomyces cerevisiae genes that encode proteins that bind to
(TG1-3)n single strand telomeric DNA in vitro. Nucleic Acids Res.,
22, 4906-4913.

Kypr.J., Kejnovska,I., Renciuk,D. and Vorlickova,M. (2009) Circular
dichroism and conformational polymorphism of DNA. Nucleic Acids
Res., 37, 1713-1725.

Tripsianes,K., Friberg,A., Barrandon,C., Brooks,M., van
Tilbeurgh,H., Séraphin,B. and Sattler,M. (2014) A novel
protein-protein interaction in the RES (REtention and Splicing)
complex. J Biol. Chem., 289, 28640-28650.

Oeffinger,M., Wei,K.E., Rogers,R., DeGrasse,J.A., Chait,B.T.,
Aitchison,J.D. and Rout,M.P. (2007) Comprehensive analysis of
diverse ribonucleoprotein complexes. Nat. Methods, 4, 951-956.
James,S.W., Banta,T., Barra,J., Ciraku,L., Coile,C., Cuda,Z., Day,R.,
Dixit,C., Eastlack,S., Giang,A. et al. (2014) Restraint of the G2/M
transition by the SR/RRM family mRNA shuttling binding protein
SNXAHRBI in Aspergillus nidulans. Genetics, 198, 617-633.
Pena,A., Gewartowski, K., Mroczek,S., Cuéllar,J., Szykowska,A.,
Prokop,A., Czarnocki-Cieciura,M., Piwowarski,J., Tous,C.,
Aguilera,A. et al. (2012) Architecture and nucleic acids recognition
mechanism of the THO complex, an mRNP assembly factor. EMBO
J, 31, 1605-1616.

Richardson,D.N., Rogers,M.F., Labadorf,A., Ben-Hur,A., Guo,H.,
Paterson,A.H. and Reddy.,A.S. (2011) Comparative analysis of
serine/arginine-rich proteins across 27 eukaryotes: insights into
sub-family classification and extent of alternative splicing. PLoS One,
6, 24542,

Giaever,G., Chu,A.M., Ni,L., Connelly,C., Riles,L., Véronneau,S.,
Dow,S., Lucau-Danila,A., Anderson,K., André,B. et al. (2002)
Functional profiling of the Saccharomyces cerevisiae genome. Nature,
418, 387-391.

Tian,B. and Graber,J.H. (2012) Signals for pre-mRNA cleavage and
polyadenylation. Wiley Interdiscipl. Rev. RNA, 3, 385-396.
Tuck,A.C. and Tollervey,D. (2013) A transcriptome-wide atlas of
RNP composition reveals diverse classes of mRNAs and IncRNAs.
Cell, 154, 996-1009.

Gewartowski, K., Cuéllar,J., Dziembowski,A. and Valpuesta,J.M.
(2012) The yeast THO complex forms a S-subunit assembly that
directly interacts with active chromatin. Bioarchitecture, 2, 134-137.



	&nbsp;<0:italic >cerevisiae</0:italic>@empty  genetic manipulations and TAP purifications

