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Glyphosate has been the most intensely herbicide used worldwide for decades,

and continues to be a single tool for controlling weeds in woody crops. However,

the adoption of this herbicide in a wide range of culture systems has led to the

emergence of resistant weeds. Glyphosate has been widely used primarily on citrus

in the Caribbean area, but a study of resistance in the Caribbean islands of Cuba

and the Dominican Republic has never been carried out. Unfortunately, Parthenium

hysterophorus has developed glyphosate-resistance in both islands, independently.

The resistance level and mechanisms of different P. hysterophorus accessions (three

collected in Cuba (Cu-R) and four collected in the Dominican Republic (Do-R) have been

studied under greenhouse and laboratory conditions. In in vivo assays (glyphosate dose

causing 50% reduction in above-ground vegetative biomass and survival), the resistance

factor levels showed susceptible accessions (Cu-S ≥ Do-S), low-resistance accessions

(Cu-R3 < Do-R4), medium-resistance accessions (Do-R3 < Cu-R2 < Do-R2) and

high-resistance accessions (Do-R1 < Cu-R1). In addition, the resistance factor levels

were similar to those found in the shikimic acid accumulation at 1000µM of glyphosate

(Cu-R1 ≥ Do-R1 > Do-R2 > Cu-R2 > Do-R3 > Do-R4 > Cu-R3 >> Cu-S ≥ Do-S).

Glyphosate was degraded to aminomethylphosphonic acid, glyoxylate and sarcosine

by >88% in resistant accessions except in Cu-R3 and Do-R4 resistant accessions

(51.12 and 44.21, respectively), whereas a little glyphosate (<9.32%) was degraded in

both susceptible accessions at 96 h after treatment. There were significant differences

between P. hysterophorus accessions in the 5-enolpyruvylshikimate-3-phosphate

synthase (EPSPS) activity enzyme with and without different glyphosate rates. The R

accessions showed values of between 0.026 and 0.21µmol µg−1 TSP protein min−1

basal EPSPS activity values with respect to the S (0.024 and 0.025) accessions. The

same trend was found in the EPSPS enzyme activity treated with glyphosate, where

a higher enzyme activity inhibition (glyphosate µM) corresponded to greater resistance

levels in P. hysterophorus accessions. One amino acid substitution was found at position
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106 in EPSPS, consisting of a proline to serine change in Cu-R1, Do-R1 Do-R2. The

above-mentioned results indicate that high resistance values are determined by the

number of defense mechanisms (target-site and non-target-site resistance) possessed

by the different P. hysterophorus accessions, concurrently.

Keywords: P. hysterophorus, target-site and non-target-site mechanisms, resistance levels, glyphosate

INTRODUCTION

Herbicide resistance is an evolutionary phenomenon that allows
resistant weed biotypes to be exposed to the normal dose
of a herbicide undergoing any suffering growth alterations
(Fernández et al., 2016). This biological phenomenon is
favored by intensive herbicide applications with the same active
ingredient or with the same mode of action (Neve et al., 2014;
Evans et al., 2016). Glyphosate weed resistance is one of the
world’s most interesting cases, 35 glyphosate-resistant species
have been detected and characterized (mainly using test dose
response curves and shikimic acid accumulation) up to date
(Heap, 2016).

Glyphosate ((N-phosphonomethyl)-glycine) is a post-
emergent herbicide that is non-selective, highly systemic and
widely used for weed control around the world (Franz et al., 1997;
Székács and Darvas, 2012). It is well metabolized in plants and
slow-acting with visible phytotoxic symptoms in sensitive plants
at 10–20 days after application (Amrhein et al., 1980; Shingh and
Shaner, 1998; Monquero et al., 2004). It inhibits the shikimate
pathway by inhibiting 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS), which catalyzes the synthesis reactions of
aromatic amino acids involved in the formation of essential
proteins in plants (Sammons and Gaines, 2014).

Glyphosate resistance selection is due to two different
mechanisms known as non-target site resistance (NTSR) and
target site resistance (TSR) (Shaner et al., 2012; Sammons and
Gaines, 2014). NTSR involves a reduced rate of herbicide in
the meristem tissues due to limited absorption/translocation,
and/or sequestration of the herbicide into compartments such as
vacuoles (Michitte et al., 2007; Ge et al., 2012; Vila-Aiub et al.,
2012). Metabolic pathways capable of degrading the herbicide
to non-toxic compounds in plants also belong to these group
mechanisms (De Prado and Franco, 2004; Cruz-Hipólito et al.,
2009, 2011; Busi et al., 2011; de Carvalho et al., 2012; González-
Torralva et al., 2012; Alcántara-de la Cruz et al., 2016a). TSR has
been produced by one or more mutations in the DNA sequence
(González-Torralva et al., 2014; Sammons and Gaines, 2014;
Fernández et al., 2015; Yu et al., 2015), or by the overexpression
of the EPSPS protein by gene amplification (Gaines et al., 2010;
Salas et al., 2012, 2015).

When growers reported noticing any deficiency in their
weed control, they usually increased the glyphosate doses,
which increased the pressure selection as well as triggering the
acquisition of a second resistance mechanism (Jasieniuk et al.,
1996; González-Torralva et al., 2012). Then, the level of weed
resistance to glyphosate increased (Bostamam et al., 2012).

Ragweed parthenium (Parthenium hysterophorus L.) is a
troublesome annual weed of theAsteraceae family that is native to

the Gulf of Mexico and other Latin American countries (Rosario
et al., 2013). Its prolific seed production (130,000–200,000 seeds
m−2), as well as the seeds’s ability to persist in the soil and
germinate over a wide range of temperatures, have contributed to
the widespread distribution of ragweed parthenium in perennial
and annual crops (orchards, citrus, soybean, corn) as well
as in surrounding areas (Joshi, 1991; Pandey et al., 2003;
Navie et al., 2004; Adkins and Shabbir, 2013). In addition, the
subtropical environment of the Caribbean Islands (Cuba and
Dominican Republic) allows year-round germination, growth,
and reproduction of ragweed parthenium, which also contributes
to its widespread distribution in the region. Glyphosate has
been used repeatedly in perennial crop areas and fallow fields
in the Caribbean Islands for many years to manage ragweed
parthenium and other troublesome weeds. However, growers
have recently observed reduced ragweed parthenium control
with single or multiple glyphosate applications. Previous reports
have documented glyphosate-resistant ragweed parthenium
in Colombia (Rosario et al., 2013), Florida (southeast US)
(Fernandez, 2013) and Dominican Republic (Jimenez et al.,
2014), but in these three cases the causes of resistance to
glyphosate have been inconclusive.

The main objective of this work is a survey of P. hysterophorus
in Cuba and the Dominican Republic that had never been done
before. The specific objectives were to determine (1) the level
of glyphosate resistance of different accessions; (2) the possible
NTSR and TSR mechanisms involved; and (3) to find out if the
resistance genes may also increase the multiplicative or additive
resistance levels in P. hysterophorus.

MATERIALS AND METHODS

Plant Material
In 2013, mature P. hysterophorus seeds were collected from plants
not controlled with glyphosate at doses normally used (2 L ha−1;
720 g ae ha−1) in areas with perennial crops in two Caribbean
Islands. Seeds from Cu-S and Do-S accessions never exposed
to glyphosate were collected from adjacent areas and used as
a reference control (Table 1). Seeds collected from 25 mature
plants were stored under laboratory conditions (25◦C) for 2
weeks and then placed in paper bags at 4◦C. Approximately
300 seeds of these accessions were sown directly into trays (40
× 60 × 15 cm), containing a mixture of sand and peat (2:1,
v/v) and placed in a greenhouse at 28/20◦C day/night under a
16 h photoperiod with 850µmol m−2 s−1 photon flux density,
and 80% relative humidity. At the four leaf stage plants of all
accessions were treated with glyphosate at 720 g ae ha−1 using a
laboratory spray chamber equipped with a flat fan nozzle (TeeJet
8002 EVS) with a total output volume of 200 L ha−1 water at

Frontiers in Plant Science | www.frontiersin.org 2 December 2016 | Volume 7 | Article 1845

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Bracamonte et al. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands

TABLE 1 | History of different P. hysterophorus accessions used in this

study.

Accessionsa Location Crop Glyphosateb (time of

applications per year),

number of application years

Cu-R1 Ceiba Orchardsc 720 (2 or 3 times), >10

Cu-R2 Ceiba Citrusc 720 (1 time), >10

Cu-R3 Arimao Citrus 720 (2 times), unknown

Cu-S Arimao Road trails No herbicide treatment

Do-R1 Villa Altagracia Citrusc 900 (2 times), >15

Do-R2 San Cristobal Citrus 900 (2 times), >15

Do-R3 Monseñor Nouel Citrus 720 (2 times), >10

Do-R4 Maria T. Sánchez Orchards 720 (1 time), >10

Do-S Maria T. Sanchez Road trails No herbicide treatment

aCu, P. hysterophorus harvested in Cuba; Do, P. hysterophorus harvested in Dominican

Republic; bglyphosate g ae ha−1; cthe last application was performed manually for every

plant.

a pressure of 200 kPa. Four weeks after glyphosate treatment
plant survival of the resistant accessions was estimated, and seed
produced from surviving plants was collected and stored in paper
bags for all subsequent trials. In the case of susceptible accessions
(Cu-S and Do-S), no plant survival was observed 4 weeks after
glyphosate treatment.

Dose-Response Assay
Seeds of putative resistant (Cu-R1, Cu-R2, Cu-R3, Do-R1, Do-
R2, Do-R3, and Do-R4) and susceptible (Cu-S and Do-S) of
the P. hysterophorus accessions were germinated in trays (12
× 12 × 6 cm) containing the same substrate as described
before and placed in a growth chamber of similar environmental
conditions controlled as before. One week after germination,
individual seedlings were transplanted into pots (6 × 6 ×

8 cm) and grown under fluctuating 30/20◦C day/night with a
14 h photoperiod and 850 µmol m−2 s−1 photon flux density,
and 80% relative humidity. As glyphosate (EPSPS inhibitor) is
used in early post-emergence, at the four leaf stage, resistant
and susceptible P. hysterophorus seedlings were treated with
increasing glyphosate doses: 0, 31.25, 62.5, 125, 250, 500, 1000,
2000, 4000, and 8000 g ae ha−1 (Roundup Energy 45% w/v,
SL, Monsanto Spain). The experiment were conducted with 10
replications (one plant pot−1) of each accession per herbicide
dose, and the experiments were repeated twice. Thirty days after
herbicide treatment, herbicide effects on plant survival (LD) and
above-ground vegetative biomass (GR) were assessed.

Leaf Segment Shikimate Accumulation
Assay
Leaf segments (50mm diameter) were harvested from the
youngest fully expanded leaf from a batch of 15 plants per
P. hysterophorus accessions at the 4–6 leaf stage (Hanson et al.,
2009). Approximately 50mg of fresh tissue was transferred to
2mL Eppendorf tubes containing 1 mL of 1 mM NH4H2PO4

(pH 4.4). Glyphosate was added to the tubes at the following
concentrations: 0, 0.1, 0.5, 1, 5, 10, 50, 100, 200, 400, 500,

600, and 1000 µM. The Eppendorf tubes were incubated in
a growth chamber during 24 h under the previously described
conditions. After 24 h, the tubes were stored at −20◦C until
analysis. Eppendorf tubes were removed from the freezer and
thawed at 60◦C for 30 min. Two hundred and fifty micro liters
of 1.25 N HCL was added to each tube, and placed at 60◦C
for 15 min. A 125 µL aliquot from each tube was pipetted into
a new 2mL Eppendorf tube, and 500 µL of periodic acid and
sodiummetaperiodate (0.25% [wt/v] each) was added. They were
incubated at room temperature for 90 min, after which 500
µL of 0.6 N sodium hydroxide and 0.22 M sodium sulfite was
added. The contents of all tubes were transferred to glass vials.
Samples were measured in a spectrophotometer at 380 nmwithin
30 min. For each glyphosate concentration and accession, three
replications were stablished and repeated twice.

14C Glyphosate Absorption and
Translocation
Absorption and translocation study was carried out following the
methodology proposed by Cruz-Hipólito et al. (2011) The 14C-
glyphosate was mixed with commercially formulated glyphosate
to prepare a solution with a specific activity of 0.834 kBq µL−1

and a glyphosate concentration of 1.8 g ae L−1 (360 g ae ha−1

in 200 L). P. hysterophorus plants at 4-leaf stage were treated
with the radiolabeled herbicide by applying one droplet of
1µL of glyphosate solution (0.834 kBq µL−1) on the adaxial
surface of the second leaf in each plant using a micropipette
(LabMate). The 14C-glyphosate unabsorbed in the treated leaf
was removed with 3mL of water: acetone solution (1:1, v/v) 96 h
after droplet application. Preliminary assays with two accessions
(Cu-R1 and Cu-S) studied had revealed that the glyphosate
absorption leveled-off at 96 h after the droplet applications. The
rinsate was mixed with 2mL of scintillation liquid and analyzed
by liquid scintillation spectrometry (LSS) (Scintillation Counter,
Beckman LS 6500, Fullerton CA). The plants were separated into
the treated leaf, rest of the shoot and root after being placed
in cellulose cones. The plant tissue was dried at 60◦C over 96 h
and combusted in a biological sample oxidizer (Packard Tri
Carb 307, Perkin-Elmer, Waltham, MA). The 14CO2 evolved was
trapped and counted in 18 mL of a mixture of Carbo-Sarb E and
Permafluor (9:9, v/v) (Perkin-Elmer). Thus, over 95% of the total
radioactivity applied was recovered. There were five replications
and the experiment was arranged in a completely randomized
design, and repeated twice. The proportion of absorbed herbicide
was expressed as:

[% absorbed = (kBq in combusted tissue/(kBq in combusted

tissue + kBq in leaf washes))× 100].

Glyphosate Metabolism
P. hysterophorus plants were treated with a glyphosate
rate of 360 g ae ha−1 at 4–6 leaf stage. At 96 h after
treatment (HAT), glyphosate and its metabolites, i.e., AMPA
(aminomethylphosphonic acid), glyoxylate and sarcosine,
were determined by reversed-polarity capillary electrophoresis
following the methodology described by Rojano-Delgado
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et al. (2010). The calibration equations were established using
non-treated plants and known concentrations of glyphosate and
its metabolites, which were determined from their enclosed areas
under the peaks in the electropherogram. The average value for
the amount of glyoxylate naturally produced by the plant was
subtracted from the average of the produced or reduced amount
after treatment of each accession (Rojano-Delgado et al., 2010).
The experiment was arranged in a completely randomized design
with four replications per accession and repeated three times.

EPSPS Enzyme Activity Assays
The enzyme extraction was conducted according to the protocol
described by Dayan et al. (2015). Five gram of the leaf tissue
of all P. hysterophorus accessions (Table 1) were ground to fine
powder in a chilled mortar. Immediately after that, the powdered
tissue was transferred to tubes containing 100mL of cold
extraction buffer (100mM MOPS, 5mM EDTA, 10% glycerol,
50 mMKCl and 0.5mM benzamidine) containing 70µL of β-
mercaptoethanol and 1% in polyvinylpolypyrrolidone (PVPP).
Samples were stirred and subsequently centrifuged for 40 min
(18,000 g) at 4◦C. The supernatant was decanted into a beaker
using a cheesecloth. (NH4)2SO4 was added to the solution to
obtain 45% (w/v) concentration, with stirring during 30 min.
After that, the mix was centrifuged at 20,000 g for 30 min at 4◦C.
The previous step was repeated to precipitate the protein in the
extracts but in that case with a (NH4)2SO4 concentration of 80%
(w/v) stirring for 30 min. Finally, they were centrifuged at 20,000
× g for 30 min at 4◦C.

All the pellets were dissolved in 3mL of extraction buffer
and dialyzed in 2 L of dialysis buffer (30mm, 1000-MWC
dialysis tubing at 4◦C on a stir plate) over 12 h. The protein
concentrations were determined by Bradford assay (Bradford,
1976).

The assay for the determination of EPSPS activity followed
the methodology described by Dayan et al. (2015) using the
EnzCheck phosphate assay Kit (Invitrogen, Carlsbad, CA) to
determine the inorganic phosphate release. The EPSPS activity
from the nine accessions was determined in the presence and
absence of glyphosate. The glyphosate concentrations used were:
0, 0.1, 1, 10, 100, and 1000 µM to determine the enzyme activity
inhibition (I50). The assay buffer was composed of 1mMMgCl2,
10% glycerol, and 100 mM MOPS, 2 mM sodiummolybdate
and 200 mM NaF. The experiments were conducted with three
replications of each accession per glyphosate concentration and
repeated three times. EPSPS enzyme activity was expressed as
percentage of enzyme activity in presence of glyphosate respect
to the control (without glyphosate).

EPSP Synthase Gene Sequencing
For RNA extraction 100–200mg of young leaves were taken
from plants of each P. hysterophorus accession, and stored at
−80◦C for the extraction of RNA. Their tissue was ground
in liquid nitrogen in a STAR-BEATER 412–0167 mill (VWR
International Eurolab S.L., Barcelona, Spain). Total RNA was
isolated from leaves as described by Pistón (2013), and the
amount and quality were determined in a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Walthman, MA, USA).

The synthesis to cDNA was from total RNA being adjusted to the
same concentration in all the samples (50 ngµL−1). An iScriptTM

cDNA Synthesis Kit (Bio-Rad Laboratories, Inc. CA, USA) at
40 µL reaction volume was used following the manufacturer‘s
instructions.

The PCR reactions were carried out with cDNA samples
from each of the accession using the primers Bidens-F10
(5′- GGTTGTGGYGGTVTRTTTCC-3′) and Bidens-R11 (5′-
GTCCCAASTATCACTRTGTTC-3′) based on EPSPS gene
sequences described previously (Alcántara-de la Cruz et al.,
2016b). PCR conditions were also as described (Alcántara-
de la Cruz et al., 2016b). The PCR on cDNA amplified
fragments of 462 bp in length, comprising the region of
Thr-102 and Pro-106, which corresponds to the sequence of
the EPSPS gene of Arabidopsis Klee et al. (1987), in which
point mutations conferring resistance to glyphosate have been
associated (Sammons and Gaines, 2014; Yu et al., 2015).

The PCR fragments were cloned in the pGEM R©-T Easy
Vector System (Promega Biotech Ibérica, SL, Madrid, Spain)
and transformed into competent cells of E. coli DH5α
(Promega). Transformation was confirmed through PCR using
the M13F and M13R primers as described (Alcántara-de la
Cruz et al., 2016b). The colonies containing the length of
the fragment were sequenced by the STABVIDA sequencing
service (Caparica, Portugal). Five biological samples were used
per accession providing 15 clones in all for each one. The
quality and assembly of cDNA sequences and consensuses
were determined employing the programs of SeqMan ProTM

versión 11(DNASTAR;Wisconsin, USA) and Geneious R© versión
8.1.8 (Biomatters Ltd, Auckland, New Zealand). The multiple
sequences were aligned by means of the Muscle algorithm
incorporated into SeqMan Pro versión 11.

Data Analysis
Dose-Response and EPSPS enzyme activity data were subjected
to non-linear regression analysis (Seefeldt et al., 1995; Burgos
et al., 2013) using a three-parameter log-logistic equation
(Equation 1) to determine the glyphosate dose causing 50%
reduction in above-ground vegetative biomass (GR50), 50%
mortality (LD50), and inhibition of EPSPS activity by 50% (I50).

Y = {[(d) / (1+ (x/g)b)]} (1)

Where Y is the EPSPS activity, survival or above-ground biomass
at herbicide x dose, d is the coefficient corresponding to the upper
asymptote, b is the slope of the curve, and g is the herbicide rate
at the point of inflection halfway (i.e., LD50, GR50, I50).

Regression analyses were conducted using the drc package
(Ritz et al., 2015) for the statistical environment R (R 3.2.4; R
Core Team, 2015). Resistance indices were computed as R-to-S
GR50 LD50, or I50 ratios. To test for a common GR50, LD50, or I50
for R and S accessions, i.e., Resistance Index equals to 1, a lack-of-
fit test was used to compare the model consisting of curves with
accessions-specific g values with a reduced model with common
g (Ritz et al., 2015).

Analysis of variance (ANOVA) was conducted using Statistix
9.0 (Analytical Software, USA) to test for differences between
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FIGURE 1 | Shoot biomass in glyphosate-resistant and susceptible

P. hystherophorus accessions from Cuba (A) and Dominican Republic (B)

30 days after treatment. Symbols denoted mean (n = 10) ± standard errors of

the mean.

R and S accessions in shikimate accumulation at 1000 µM
glyphosate in the leaf segment; and proportion of the different
glyphosate metabolites; proportion of applied 14C-glyphosate
taken up by leaves, and proportions of absorbed 14C-glyphosate
remaining in the treated leaf, translocated to roots and to the rest
of the plant at 96HAT; and basal enzyme activity. Percentage data
were previously transformed (arcsine of the square root) to meet
model assumptions. Model assumptions of normal distribution
of errors and homogeneous variance were graphically inspected.
When needed, differences between means were separated using
the Tukey HSD test.

RESULTS

Physiological Studies
Dose-response assays showed the existence of the first case
of glyphosate-resistant weeds in the Caribbean (Cuba and

FIGURE 2 | Survival plants in glyphosate-resistant and susceptible

P. hystherophorus accessions from Cuba (A) and Dominican Republic (B)

30 days after treatment. Symbols denoted mean (n = 10) ± standard errors of

the mean.

Dominican Republic). The two susceptible weeds (Cu-S and
Do-S) had similar susceptibility levels (Figures 1, 2;Table 2). The
P. hyterophorus accessions from Cuba island had resistance index
(RI) values (based on the GR50 and LD50 values) that ranged from
2.7 to 24.6, and 6.1 to 27.5 fold resistance, respectively, while on
Dominican Republic island values were between 5.4 to 20, and
6.3 to 22.7 fold resistance, respectively (Table 2).

The fact that plants treated with glyphosate increase shikimic
acid accumulation in leaf disks due to the inhibition of
EPSPS activity led us to carry out the experiment depicted in
Figures 3A,B. Considering the values obtained in vivo (GR50

and LD50) and the shikimic acid accumulation in leaf disks
at 1000µM of glyphosate, the resistance order of the P.
hystherophorus accessions was Cu-R1 ≥ Do-R1 > Do-R2 > Cu-
R2 > Do-R3 > Do-R4 > Cu-R3 >> Cu-S ≥ Do-S. There were
significant differences at 1000 µM glyphosate between R and S
accessions of Cuba (p= 0.0013, DF = 3, n= 12) and Dominican
Republic (p= 0.0008, DF = 4, n= 15).
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TABLE 2 | Parameters of the log-logistic equations used to calculate the glyphosate rates required for 50% survival (LD50) and reduction fresh weight

(GR50) of the different accessions of P. hyterophorus from Cuba and Dominican Republic.

Accessions Survivala (%) Fresh weight reductionb (%)

d b R2 LD50 (g ae ha−1) RI p d b R2 GR50 (g ae ha−1) RI p

Cu-R1 99.8 6.1 0.98 6364 ± 122 27.5 <0.0001 99.4 1.8 0.99 1370 ± 191 24.5 <0.0001

Cu-R2 98.9 2.9 0.99 2794 ± 90 12.0 <0.0001 103.0 1.5 0.95 437 ± 28 7.8 <0.0001

Cu-R3 100.9 2.6 0.99 1415 ± 55 6.1 <0.0001 103.3 1.3 0.96 151 ± 13 2.7 0.003

Cu-S 102.7 3.1 0.97 232 ± 23 – – 103.2 1.7 0.98 56 ± 6 – –

Do-R1 100.1 5.1 0.96 4456 ± 76 22.7 <0.0001 98.2 1.8 0.98 939 ± 25 20.0 <0.0001

Do-R2 99.9 2.7 0.98 2550 ± 92 13.0 <0.0001 99.6 1.8 0.99 547 ± 30 11.6 <0.0001

Do-R3 100.7 1.7 0.99 1821 ± 63 9.3 <0.0001 97.9 1.3 0.99 339 ± 27 7.2 <0.0001

Do-R4 100.9 1.9 0.99 1242 ± 65 6.3 <0.0001 96.4 1.3 0.96 255 ± 33 5.4 <0.0001

Do-S 100.5 4.5 0.97 196 ± 8 – – 100.6 1.7 0.98 47 ± 4 – –

aFor Y = {(d) / [1 + (x/ LD50 ) exp b]} Where Y is the survival expressed as a percentage of the untreated control, d is the coefficient corresponding to the upper asymptote, b is the

slope of the curve in LD50, LD50 is the herbicide rate at the point of inflection halfway, and x is the herbicide dose.
bFor Y = (d) / [1 + (x/ GR50 ) exp b] Where Y is the above-ground weight expressed as a percentage of the untreated control, d is the coefficient corresponding to the upper asymptote,

b is the slope of the curve in GR50, GR50 is the herbicide rate at the point of inflection halfway, and x is the herbicide dose.

TABLE 3 | 14C-glyphosate absorption (% of recovered radioactivity) and translocation (% of absorbed radioactivity) in the different P. hysterophorus

accessions at 96h after treatment (HAT).

Accessions Absorptiona

(p = 0.0001,DF = 8,n = 45)

Translocation

Treated leaf

(p = 0.0003,DF = 8,n = 45)

Rest of shoot

(p = 0.0001,DF = 8,n = 45)

Root

(p = 0.0004,DF = 8,n = 45)

Cu-R1 59.3 ± 4.9 BC 77.9 ± 5.7 AB 12.1 ± 2.1 BCD 10.0 ± 2.3 BC

Cu-R2 60.2 ± 2.1 BC 82.4 ± 4.2 A 9.3 ± 1.9 D 8.3 ± 3.4 BCD

Cu-R3 56.8 ± 3.9 C 80.1 ± 3.9 AB 15.7 ± 3.4 B 4.2 ± 1.2 D

Cu-S 82.2 ± 6.7 A 35.5 ± 2.3 C 41.6 ± 6.2 A 22.9 ± 4.8 A

Do-R1 63.1 ± 6.8 B 78.3 ± 6.7 AB 10.5 ± 2.7 CD 11.2 ± 2.1 B

Do-R2 55.9 ± 7.8 C 79.3 ± 3.4 AB 16.2 ± 4.9 B 4.5 ± 1.4 D

Do-R3 60.4 ± 3.7 BC 75.6 ± 5.1 B 14.1 ± 3.8 BC 10.3 ± 3.8 B

Do-R4 58.4 ± 2.3 BC 81.4 ± 6.3 A 12.7 ± 4.3 BCD 5.9 ± 2.7 CD

Do-S 78.8 ± 5.6 A 39.1 ± 1.9 C 37.8 ± 2.3 A 23.1 ± 5.6 A

aOver 95% of the total radioactivity applied was recovered.

Mean value (n = 5) ± standard error. Means on a same column followed by the same letter were not significantly different at α = 0.05.

There were marked differences in glyphosate absorption
between the resistant and susceptible glyphosate P. hysterophorus
accessions at 96 h after treatment (HAT) (p = 0.0001, DF = 8,
n = 45) (Table 3). All accessions obtain maximum absorption at
96 HAT, and the two susceptible accessions absorbed an average
of 80.5%, while the resistance accessions absorbed an average of
59.2% of 14C-glyphosate which was recovered.

Translocation assays suggest marked differences at 96 HAT
between the Cu-S and Do-S accessions compared to the Cu-
R1, Cu-R2, Cu-R3, Do-R1, Do-R2, Do-R3, and Do-R4 ones in
treated leaf (p = 0.0003, DF = 8, n = 45), rest of the shoots (p =
0.0001, DF = 8, n = 45), and root (p = 0.0004, DF = 8, n = 45)
(Table 3). There were no significant differences in translocation
between the two susceptible accessions (Cu-S and Do-S) from
Caribbean Islands. But there were small significant differences in
the resistant accessions (Cu-R1, Cu-R2, Cu-R3, Do-R1, Do-R2,

Do-R3, and Do-R4). Nonetheless, the high amount of 14C-
glyphosate in each resistant accession remained in the treated
leaf. Due to differences in levels of glyphosate resistance between
the P. hysterophous resistant accessions, we suspect that other
mechanisms could be involved (Tables 2, 3, Figure 3).

Biochemical Studies
Previous tests demonstrated that the highest glyphosate
translocation and metabolism was reached at 96 HAT in the
P. hysterophorus accessions (unpublished data). There were
significant differences at 96 HAT in glyphosate metabolism levels
between accessions (p = 0.0014, DF = 8, n = 36). Glyphosate
levels decreased, whereas glyphosate metabolites (AMPA,
glyoxylate and sarcosine) increased at 96 HAT in the Cu-R1,
Do-R1, Do-R2, Cu-R2, and Do-R3 accessions. Higher glyphosate
levels remained in the Cu-R3 and Do-R4 (low resistance), and
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FIGURE 3 | Shikimic acid accumulation in leaf segments of plants from

Cuba (A) and Dominican Republic (B) accessions of P. hysterophorus.

Symbols denoted mean (n = 3) ± standard errors of the mean.

very high one in the Cu-S and Do-S (susceptible) accessions. In
these last accessions, sarcosine was not detected (Table 4). These
results can also explain the low level of resistance of the accession
(Cu-R3 and Do-R4) with a single resistance mechanism, while
the other glyphosate resistant accessions have at least two
mechanisms (Tables 3, 4).

The EPSPS enzymes of all the accession plants were inhibited
by glyphosate. The I50 (herbicide dose which reduces the enzyme
activity to 50%) values were different in all accessions, ranging
between approximately 47.65 in Cu-R1, 25.2 in Do-R1, 22.1
in Do-R2, 1.4 in Cu-R2, 1.2 in Do-R3, 1.2 in the Cu-R3,
and 1.1-fold resistance in Do-R4 accessions relative to their
susceptible accession, respectively (Figure 4, Table 5). These
results were in accordance with the in vivo resistance level
shown for the different accessions, and suggest that multiple
mechanisms in the target-site could be expressed in these
accessions.

FIGURE 4 | EPSPS enzyme activity expressed as percentage of the

untreated control in leaf extracts of plants from Cuba (A) and Dominican

Republic (B) accessions of P. hysterophorus. Symbols denoted mean (n = 3)

± standard errors of the mean.

The basal activity of EPSPS enzyme (without glyphosate) in
the resistant accessions was between 0.026 and 0.21 µmol µg−1

protein min−1, while the susceptible accessions (Cu-S and Do-S)
were lower with 0.024 and 0.025 µmol µg−1 protein min−1,
respectively (Figure 5). There were market differences between
accessions in both Cuba (p = 0.0001, DF = 3, n = 12), and
Dominican Republic (p = 0.0002, DF = 4, n = 15). The Cu-R1,
Do-R1, and Do-R2 exhibited 8.8, 7.2, and 4.8-times higher basal
enzyme activities than their susceptible accessions, respectively.
For Cu-R2, Do-R3, Do-R4 ,and Cu-R3 accessions the values
were similar to those found for their susceptible accessions,
respectively.

Molecular Studies
A total of 462 bp of the EPSPS gene of P. hysterophorus plants
of resistant and susceptible accessions were sequenced. The
fragments were aligned and numbered based on a published
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TABLE 4 | Glyphosate metabolism expressed as a percentage of total glyphosate and its metabolites in P. hystherophorus susceptible and

resistant-glyphosate accessions at 96 HAT.

Accessions Glyphosate

(p = 0.0014,DF = 8,n = 36)

Metabolites

AMPA

(p = 0.0003,DF = 8,n = 36)

Glyoxylate

(p = 0.0001,DF = 8,n = 36)

Sarcosine

(p = 0.0002,DF = 8,n = 36)

Cu-R1 9.80 ± 1.70 D 60.54 ± 1.32 B 18.14 ± 0.32 C 11.52 ± 0.96 A

Cu-R2 21.12 ± 0.93 C 55.31 ± 1.57 B 20.80 ± 0.51 AB 2.77 ± 0.31 E

Cu-R3 73.42 ± 3.63 B 26.14 ± 0.26 C 0.44 ± 0.02 E ND

Cu-S 91.82 ± 4.81 A 7.68 ± 0.33 E 0.50 ± 0.02 E ND

Do-R1 11.83 ± 0.74 D 58.94 ± 2.79 B 21.74 ± 0.97 A 7.49 ± 0.27 C

Do-R2 11.37 ± 0.80 D 64.70 ± 2.93 A 18.54 ± 0.83 C 5.39 ± 0.15 D

Do-R3 9.56 ± 0.72 D 60.95 ± 2.71 B 20.36 ± 0.94 B 9.13 ± 0.53 B

Do-R4 71.21 ± 1.06 B 20.05 ± 2.20 D 7.28 ± 0.93 D 1.01 ± 0.71 F

Do-S 90.68 ± 4.39 A 8.86 ± 1.06 E 0.46 ± 0.03 E ND

Mean value (n = 4) ± standard error. Means on a same column followed by the same letter were not significantly different at α = 0.05.

ND, non-detected; AMPA, aminomethylphosphonic acid.

EPSPS sequence of Arabidopsis thaliana (L.) Heynh. (GenBank:
CAA29828.1). The resistant accessions of P. hysterophorus Cu-
R1 fromCuba, and Do-R1 andDo-R2 fromDominican Republic,
showed an amino acid substitution at position 106 consisting of
a Proline to Serine (Figure 6).

DISCUSSION

P. hysterophorus is universally recognized for its widespread
distribution and high seed production, commonly known as the
parthenium weed. Parker (1989) identified two biotypes with
different flowering patterns inMexico (Caribbean area), and they
were genetically distinct biotypes (Clermont and Toogoolawah).
Moreover, Hanif et al. (2011) found that these two biotypes
differed in their morphology and reproductive behavior; in
particular, the Toogoolawah biotype shows a greater tendency
toward self-pollination, but these biotypes can also present out-
crossing. It makes sense that it would reproduce prolifically and
that higher resistance levels due to accumulation of multiple
mechanisms, by multiple crossings, would proliferate within
populations (Table 6).

Glyphosate has been used repeatedly in perennial crop areas
and fallow fields in the Caribbean Islands for many years to
manage P. hysterophorus and other troublesome weeds. However,
using glyphosate alone without any additional alternative and/or
IWM (Integrated Weed Management) led to the emergence of
glyphosate-resistant weeds early in the second decade of the
21st century (Tables 1, 2). Herbicide response between different
locations depends on local ecological factors, such as a variation
in soil type, tillage practices, types of crops, fertilizers, etc.,
(Shaner and Beckie, 2014; Jussaume and Ervin, 2016). Our
results showed different glyphosate resistance levels between the
P. hysterophorus accessions. This differences could be addressed
to the use of different glyphosate formulations and dose rate,
the application technique (manual or mechanical) employed
by farmers, and the agro environment conditions (Neve et al.,

TABLE 5 | Parameter estimates of the equation used to calculate the

sensitivity of EPSPS enzyme activity to glyphosate in extracts from leaf

tissue of the different accessions of P. hyterophorus from Cuba and

Dominican Republic.

Accessions d b R2 I50 (µM)a RI P

Cu-R1 100.1 0.9 0.97 646.2 ± 35.8 47.6 <0.0001

Cu-R2 99.8 0.8 0.96 18.9 ± 1.4 1.4 0.1902

Cu-R3 97.0 1.0 0.99 17.4 ± 2.8 1.2 0.2186

Cu-S 96.2 1.2 0.98 13.6 ± 2.2 – –

Do-R1 100.0 0.8 0.99 468.1 ± 22.0 25.2 <0.0001

Do-R2 100.4 0.7 0.99 410.7 ± 26.1 22.1 <0.0001

Do-R3 94.5 1.2 0.98 22.6 ± 1.5 1.2 0.3714

Do-R4 94.0 1.2 0.96 20.8 ± 6.1 1.1 0.6042

Do-S 93.6 1.2 0.99 18.5 ± 5.7 – –

aFor Y = {(d) / [1 + (x/ I50) exp b]} Where Y is the EPSPS activity, d is the coefficient

corresponding to the upper asymptote, b is the slope of the curve in I50, I50 is the herbicide

rate at the point of inflection halfway, and x is the herbicide dose.

2014; Renton et al., 2014; Jussaume and Ervin, 2016; Matzrafi
et al., 2016; Owen, 2016). It has been shown that an increase in
the relative humidity and temperature increases the glyphosate
absorption, translocation, and toxicity in many weed species (Ge
et al., 2011; Hatterman-Valenti et al., 2011; Vila-Aiub et al., 2012;
Santos et al., 2016). This research also revealed that the low
GR50 and LD50 values for the susceptible accessions showed that
glyphosate has been a very effective tool for farmer for over 15
years, as has been shown in P. hysterophorus from Colombia,
Dominican Republic, and Florida (Fernandez, 2013; Rosario
et al., 2013; Jimenez et al., 2014).

Plants with low levels of GR50 and LD50 are related to an
increased inhibition of EPSPS activity and a greater accumulation
of shikimic acid (Shaner et al., 2005; Gaines et al., 2010;
Fernández et al., 2015). High levels of resistance (RI) and
low shikimic acid accumulation observed in the different
P. hystherophorus accessions were consistent with those of plants
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which have acquired resistance to the addition of more than
one NTSR and/or TSR mechanisms, as has been shown in
dicotyledonous weed species such as Amaranthus tuberculatus
(Nandula et al., 2013), Conyza sumatrensis (González-Torralva
et al., 2014), and several grass weed species (Michitte et al., 2007;
de Carvalho et al., 2012; Fernández et al., 2015).

According to Shepherd and Griffiths (2006), a cuticular wax
layer provides a protective barrier for a wide range of abiotic
stresses (pesticide). Resistant and tolerant plants have displayed
a cuticle containing a massive amount of epicuticular wax
which forms a nonuniform 3D cover as has been revealed by
scanning electron micrographs (De Prado et al., 2005; Wang
and Liu, 2007; Rojano-Delgado et al., 2012; Alcántara-de la
Cruz et al., 2016a). The limited glyphosate absorption by the
resistant P. hysterophorus accessions was likely to have been due
to differences in outer leaf surfaces. Different translocation can be
explained by 14C-glyphosate and/or its metabolite accumulation
in the tips of the resistant treated leaves, while 14C was removed
from the susceptible treated leaves (Table 3). Since the first
case of glyphosate resistance was detected in a population of
Lolium rigidum in Australia (Powles et al., 1998), both previously
mentioned mechanisms were considered responsible for this
resistance (Wakelin et al., 2004; Michitte et al., 2007; Preston
and Wakelin, 2008; de Carvalho et al., 2012; González-Torralva
et al., 2012, 2014; Nandula et al., 2013; Fernández et al., 2015).
Subsequent studies in the main dicot and monocotyledonous
glyphosate-resistant weeds seem to have demonstrated that the
main NTSR mechanism involved in their resistance is due to a
lesser glyphosate absorption and/or -translocation (Feng et al.,
2004; Michitte et al., 2007; de Carvalho et al., 2012; González-
Torralva et al., 2012, 2014; Vila-Aiub et al., 2012; Nandula et al.,
2013; Adu-Yeboah et al., 2014).

In some plants, the glyphosate degradation to glyoxylate and
AMPA is carried out by a glyphosate oxidoreductase (GOX),
and the glyphosate degradation to sarcosine and inorganic
phosphate by a C–P lyase. These steps have been reported
by some authors such as Liu et al. (1991); Komoba et al.
(1992); Saroha et al. (1998); Al-Rajab and Schiavon (2010),
and Duke (2012) among others. However, only a few works
unify these two degradation pathways to explain the glyphosate
metabolism in leguminous plants and weeds (de Carvalho et al.,
2012; Rojano-Delgado et al., 2012). Some authors consider
that metabolism has a low contribution to the resistance or,
even more, that it is nonexistent (Saroha et al., 1998; Feng
et al., 2004; Duke, 2012; Sammons and Gaines, 2014). However,
the fact is that this mechanism involves a decrease in the
concentration of the herbicide glyphosate around the target-site,
diminishing the EPSPS inhibition rate (Duke, 2012; Sammons
and Gaines, 2014; Alcántara-de la Cruz et al., 2016a). The
GOX gene that encodes the glyphosate metabolizing enzyme
glyphosate oxidoreductase was cloned from Achromobacter sp.
strain LBAA (Barry et al., 1994). Neither plant GOX nor the
gene(s) encoding it have been isolated or elucidated. A plant
gene encoding GOX might be useful in genetically engineering
crops and weed resistance development (Duke, 2012; Rojano-
Delgado et al., 2012). Some researchers have proposed additive
effects of concurrent glyphosate resistance mechanisms in the

FIGURE 5 | Basal EPSPS activity for glyphosate-susceptible and

resistant from Cuba (A) and Dominican Republic (B) accessions of

P. hysterophorus. Vertical bars are ± standard errors of the mean. Means by

the same letter were not significantly different at α = 0.05.

same weed species (Gaines et al., 2010; Yu et al., 2010; Bostamam
et al., 2012; Rojano-Delgado et al., 2012), which would explain the
difference in the resistance between accessions keeping the same
percentage of metabolic degradation (Table 6). However, genetic
basic controlling absorption/translocation and/or metabolism
including genes involved have not been identified so far (Yuan
et al., 2006; Delye, 2013; Délye et al., 2013). This could be a highly
promising research area in the future.

Taking into account these results, resistance could be
associated with target enzyme overexpression. Some species
as ryegrass (Yu et al., 2007; Dayan et al., 2012) have shown
differences in the basal EPSPS enzyme activity as a consequence
of the EPSPS gene overexpression. However, in the L. perenne
spp. multiflorum population from Arkansas, no differences were
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FIGURE 6 | Partial protein sequence alignment of the EPSPS gene of resistant and susceptible P. hysterophorus plants. The box comprising the region of

Thr-102 and Pro-106 point mutations associated to confer glyphosate resistance. The points indicate homology between the different sequences.

TABLE 6 | Summary of glyphosate resistance mechanisms accumulated by P. hysterophorus accessions studied in this work.

Accessions GR50
a LD50

a Absorption and translocation Glyphosate metabolism Enhanced EPSPS basal activityb EPSPS (I50
b) Pro106Ser

Cu-R1 1370 6364 Low High Yes High Yes

Cu-R2 437 2794 Low High No Low No

Cu-R3 151 1415 Low Medium No Low No

Cu-S 56 232 High Low No Low No

Do-R1 939 4456 Low High Yes High Yes

Do-R2 547 2550 Low High Yes High Yes

Do-R3 339 1821 Low High No Low No

Do-R4 255 1242 Low Medium No Low No

Do-S 47 196 High Low No Low No

aglyphosate g ae ha−1; bglyphosate µM.

observed in the I50 values, which could be explained as a lack of
effective mutations in the binding site of the enzyme (Salas et al.,
2015). In our case, some accessions are candidates to possessing
an effective mutation (Figure 6, Table 6) or a possible EPSPS
overexpression, explaining their high resistance to glyphosate
compared to other accessions. We are aware of that fact, and
effective research is currently in progress to characterize the
EPSPS overexpression resistance mechanism involving these
accessions.

Results reported here are in agreement with previous works,
in which the Proline to Serine substitution was found to
confer glyphosate resistance in other weed species such as

A. tuberculatus, C. sumatrensis, Echinochloa colona; L. perenne
spp. multiflorum and L. rigidum (Bostamam et al., 2012;
González-Torralva et al., 2012, 2014; Nandula et al., 2013;
Fernández et al., 2015; Han et al., 2016). However, mutations
in the Pro-106 position generally provide only a low level (2–
4-fold) of glyphosate resistance (Kaundun et al., 2011). Here,
P. hysterophorus accessions that presented Pro-106 mutation had
a resistance factor of>12. These three accessions (Cu-R1, Do-R1,
andDo-R2) weremore highly resistant to glyphosate as a result of
showing different concurrent resistance mechanisms, including
reduced absorption and translocation, glyphosate metabolism,
and EPSPS gene mutation.
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In some species, at least more than one glyphosate resistance
mechanism have been reported, such as A. tuberculatus
(Nandula et al., 2013), L. rigidum (Bostamam et al., 2012),
L. perenne spp. multiflorum (González-Torralva et al., 2012),
and L. perenne (Ghanizadeh et al., 2015) populations which
exhibited a mutation in Pro-106 position, and a reduced
translocation. Besides, other species such as Digitaria insularis
presented a pool of mechanisms (absorption, translocation,
metabolism, and EPSPS gene mutation; de Carvalho et al.,
2012). The involvement of several resistance mechanisms is
evident when looking at the resistance levels of accessions
Cu-R2, Cu-R3, Cu-R4, Do-R3, Do-R4, and Do-R5 of
P. hysterophorus, which did not show any mutation in the
Pro-106 position. This is the first time that a mutation in
the target-site has been reported in glyphosate-resistant
P. hysterophorus.

In summary, we have confirmed resistance to glyphosate in
different P. hysterophorus accessions harvested in the Caribbean
Islands. Their resistance levels depend on the different resistance
mechanisms (NTSR and TSR) that are accumulated by these
accessions (Table 6), due to increasing selection pressure and
out-crossing. The evolution of multiple mechanisms found in
this resistance species is worrying. The farmers should implement
manage practices such as the use of cover crops, which prevent
soil erosion and allow the use of grazing, as well as the use of other

non-selective herbicides in an integrated weed management

(IWM) to facilitate the reduction and suppression of herbicide-
resistant accessions.
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