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Deep, multi-stage transcriptome of the
schistosomiasis vector Biomphalaria
glabrata provides platform for
understanding molluscan disease-related
pathways
Nathan J Kenny1,2, Marta Truchado-García3,4 and Cristina Grande3,4*

Abstract

Background: The gastropod mollusc Biomphalaria glabrata is well known as a vector for the tropical disease
schistosomiasis, which affects nearly 200 million people worldwide. Despite intensive study, our understanding of
the genetic basis of B. glabrata development, growth and disease resistance is constrained by limited genetic
resources, constraints for which next-generation sequencing methods provide a ready solution.

Methods: Illumina sequencing and de novo assembly using the Trinity program was used to generate a high-
quality transcriptomic dataset spanning the entirety of in ovo development in schistosomiasis-free B. glabrata. This
was subjected to automated (KEGG, BLAST2GO) and manual annotation efforts, allowing insight into the gene
complements of this species in a number of contexts.

Results: Excellent dataset recovery was observed, with 133,084 contigs produced of mean size 2219.48 bp. 80,952
(60.8 %) returned a BLASTx hit with an E value of less than 10-3, and 74,492 (55.97 %) were either mapped or
assigned a GO identity using the BLAST2GO program. The CEGMA set of core eukaryotic genes was found to be 99.
6 % present, indicating exceptional transcriptome completeness. We were able to identify a wealth of disease-
pathway related genes within our dataset, including the Wnt, apoptosis and Notch pathways. This provides an
invaluable reference point for further work into molluscan development and evolution, for studying the impact of
schistosomiasis in this species, and perhaps providing targets for the treatment of this widespread disease.

Conclusions: Here we present a deep transcriptome of an embryonic sample of schistosomiasis-free B. glabrata,
presenting a comprehensive dataset for comparison to disease-affected specimens and from which conclusions can
be drawn about the genetics of this widespread medical model. Furthermore, the dataset provided by this
sequencing provides a useful reference point for comparison to other mollusc species, which can be used to better
understand the evolution of this commercially, ecologically and medically important phylum.
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Background
Biomphalaria glabrata ([47], image Fig. 1a) is a neotrop-
ical species, native to the Caribbean and northern parts
of South America, but now widespread throughout trop-
ical areas of North, Central and South America [44]. It
belongs to a species complex found in both the Old and
New Worlds, and B. glabrata itself has now spread to
Africa and the Middle East (Fig. 1b). The genus Biom-
phalaria (comprising approximately 34 species) and B.
glabrata itself are perhaps best known for their role in
the transmission of the parasites which cause schisto-
somiasis (bilharzia), a disease found in 70 countries
and infecting approximately 200 million people world-
wide, with a further seven hundred million people at
risk [15, 17]. While it is not the only snail vector of
this disease, B. glabrata is the best studied, with a long
history of investigation, dating back over 50 years [41].
The genetic sequences of parasites which can cause

schistosomiasis - Schistosoma mansoni [7], Schistosoma
japonicum [53] and Schistosoma haematobium [55] have
been available for several years, with B. glabrata the inter-
mediate host of S. mansoni. The sequencing of the genome
of B. glabrata itself is still in progress, despite being
identified as a priority target for genomic sequencing as
early as 2004 [45], although preliminary data is now re-
leased on GenBank (PRJNA12879/PRJNA290623). Despite
the ever-growing availability of next-generation sequen-
cing, gastropod molluscs, which represent a sizable propor-
tion of all animal diversity with over 40,000 extant species,
are still under-represented by published, publically avail-
able genome sequences. This has hamstrung our attempts
to understand the genetic and molecular parasite/host
interactions that occur in the course of schistosomiasis.
Much work has already been conducted into the genetic

and molecular responses made by B. glabrata to infection,

in the hope of identifying potential targets for treating and
mitigating the effects of schistosomiasis. (For examples, see
[3, 8, 9, 12, 18, 25–27, 33, 34, 38–40, 43, 46, 52, 54, 58]).
This work has revealed several molecular families involved
in immune response within B. glabrata and the Mollusca
as a whole, but has been hamstrung by the limitations of
EST- and specific target gene-based approaches. Presently
existing public sequence resources for B. glabrata remain
limited, despite a range of prior efforts, including EST
based [35, 36] BAC [2] and transcriptomic datasets [13, 14]
with the latter, most recent resource identifying 30,206
transcripts with at least one associated gene ontology (GO)
term from adult samples. While a raft of prior sequencing
work has been undertaken in this organism (summa-
rized in [13]) it has generally lacked the scope which
modern next-generation sequencing methods can bring
to bear, and as such no suitable reference genomic or
transcriptomic resource covering the course of the in
ovo development of B. glabrata exists.
A high-quality, well-assembled and annotated transcrip-

tome, in the absence of a complete genomic resource, is
therefore vitally important to provide a framework for
future investigation. Next-generation sequencing and de
novo assembly algorithms have progressed to the point
where the construction of highly informative datasets is
straightforward, cost-effective and of much utility to la-
boratories worldwide [37, 48], and such an approach has
immediate utility for the B. glabrata community in a range
of contexts. Furthermore, in the absence of a B. glabrata
genome, which has been noted as problematic to assemble
in recent literature [13] it will allow for the first time
comprehensive investigation of the effects of parasite
infection in comparative studies involving B. glabrata,
Homo sapiens and schistosome species, acting as a firm
reference point for such work.

Fig. 1 a Adult albino Biomphalaria glabrata (image courtesy of Lewis et al., [32] CC BY 2.5). b Approximate native and introduced distribution of
B. glabrata worldwide [44]. c Gastropod phylogeny (after [30]) showing position of B. glabrata (underlined in red) within the Panpulmonata
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The Mollusca also remain relatively undersampled,
with the sequences of two bivalves, the oysters Pinctada
fucata and Crassostrea gigas [51, 57], a single cephalo-
pod [4] and two gastropods (Patellogastopoda), Lottia
gigantea and Patella vulgata [29, 49] publically available.
Seven other species of mollusc have genomic sequence
data available from the NCBI genome site, although these
have yet to be formally published. Species with published
genomes are also relatively far removed from the Panpul-
monata, which, as can be seen in Fig. 1c, is separated
phylogenetically from their closest sequenced relatives in
the Patellogastopoda by several major branching events.
Molluscan transcriptomic resources are more widely

available, and, for example, another pulmonate species,
Radix balthica, has been the target of a de novo transcrip-
tomic approach [16], and has yielded reasonable results,
albeit with a relatively low mean contig length (536 bp). A
number of EST and transcriptomic analyses have been
performed in this phylum and in this species (e.g. [14]),
but in general our knowledge of the transcriptional reper-
toire of the wider Mollusca remains depauperate.
The dataset presented in this paper will therefore

stand as an excellent resource for the investigation of a
range of traits within the Mollusca, and more pertinently
for human health, for efforts investigating the progres-
sion of schistosomiasis within B. glabrata. As demon-
strated in this paper, the pathways involved in growth
and disease response are well represented and in many
cases likely complete in this dataset, allowing the firm
inference of the true responses of B. glabrata to infec-
tion, and providing valuable insight into these networks
within the Mollusca as a whole.

Methods
Animal culture and RNA extraction
B. glabrata M-line strain were sourced from BRI
Resources, NIAID, NIH and cultured in the laboratory as
described in Grande and Patel [24]. M-line strains were
used due to their history of use in laboratory-based and
sequencing studies, and known susceptibility to schisto-
somiasis. The RNA used to prepare this library was
obtained from early cleavage stage embryos up through to
advanced veliger larval stages until the point prior to hatch-
ing (Fig. 2). Total RNA was immediately extracted after
collection in both embryonic and larval samples, which
were mixed as shown in Fig. 2, and these samples were
prepared using Trizol following the manufacturer’s instruc-
tions (Life Technologies), with tissue homogenized using
sterile plastic pestles. RNA concentration and quality were
quantified with a Nanodrop spectrophotometer. Samples
were mixed according to the proportions seen in Fig. 2,
with pooled sequencing chosen due to fiscal constraints,
and to ensure maximum sequencing depth from the single

lane available. The sample for sequencing was stored at -80
°C and shipped on dry ice to the sequencing provider.

RNA sequencing, quality control and assembly
A single lane was sequenced on the Illumina HiSeq
platform (HiSeq2000) at the Sequencing Service of the
Biomedicine and Biotechnology Institute of Cantabria
(IBBTEC; Santander, Spain) with 101 bp, paired end,
read length. The resulting reads were made available to
us in fastq format on an external server, and were
downloaded for local analysis, with statistics as detailed
in Table 1. Initial assessments of the quality of read
data were performed using FastQC [6]. Reads were
assembled using Trinity r2012-06-08 [23] with all de-
fault settings. After assembly, contigs less than 500 bp
in length were removed from our dataset, and final
assembly metrics were determined using a perl script
available from the authors upon request. CEGMA [42]
was run on the TRUFA platform [31].

Functional annotation and KEGG pathway assignment
We searched for homologues and annotated our dataset
according to GO terms with BLAST2GO 2.5.0 (web start)
queries against the nr database [11, 21]. D. melanogaster
GO term distribution in that species’ genome was down-
loaded from B2GO-FAR [22] and analysed with the
Combined Graph function embedded in BLAST2GO. For
assignment to KEGG pathways, the KAAS-KEGG
Automatic Annotation Server (http://www.genome.jp/
tools/kaas/) was used to process data using the single-
directional best-hit (SBH) option, the default (60)
BLAST bit score threshold and the hsa, mmu, xla, dre,
cin, spu, dme, ame, cel, smm, nve and tad datasets.
Where genes were not found in our dataset, BLASTp
of known orthologues of genes was performed against all
spiralian (= lophotrochozoan sensu [20]) sequences in the
nr database. Where no possible spiralian orthologue was
found, genes were noted as ‘absent in Molluscs’, otherwise
these were coded as ‘Absent’ in our dataset.

Manual annotation
tBLASTn [5] using gene sequences of known homology
(sourced from the NCBI nr database) as queries against
standalone databases created on a local server using
BLAST 2.2.29+ manually identified genes of particular
interest to this study. These putatively identified se-
quences were then reciprocally BLASTed against the
total NCBI nr database using BLASTx for confirmation
of identity. Where identity was uncertain after recipro-
cal BLAST, diagnostic residues or domains were used
to infer identity as noted in text.
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Results and discussion
Sequencing results and quality control
Summary statistics related to reads can be seen in Table 1.
Read quality was found to be excellent, with lower quartile
Phred scores above 32 through to the 101st base
(Additional file 1: Figure S1). The mean GC content of
reads, 39 %, is consistent with values observed in previous
EST-based investigations, for example [14], where 38.54 %
content was found. In the first 5 positions in our reads a
number of sequences were found to be over-represented,
likely to be a result of bias in adaptor hexamer binding as
previously noted in other Illumina-based sequencing ex-
periments [28] as no residual adaptor sequence was ob-
served in our tests of the raw data.

Assembly and completeness of dataset
Statistics on the final assembly can be seen in Table 2,
with a graph of the distribution of sequence lengths seen
in Fig. 3a. The compressed fasta file with our transcrip-
tome assembly (≥500 bp) can be downloaded from
Figshare with the doi 10.6084/m9.figshare.3117385, and
the untrimmed assembly (≥100 bp) is available from
10.6084/m9.figshare.3117406 (to download directly, type
https://dx.doi.org/ before the doi reference). In our 500
bp minimum length assembly we recover 295 Mbp of
transcribed sequence, which provides a deeper resource

to draw from than heretofore available in this species.
With 90,315 contigs greater than 1 kb in length and an
N50 of 3,221 bp, the dataset is well-assembled and will
reliably span complete domains, allowing for easy identi-
fication of genes.
Assessment with the Core Eukaryotic Genes Mapping Ap-

proach (CEGMA) set of 248 ultra-conserved core eukaryotic
genes (CEGs) found in nearly all eukaryotic organisms [42]
identified 247 of these as present in our dataset. This repre-
sents 99.6 % coverage, a figure comparable or better than
most complete genomic sequencing projects, and suggests
that this transcriptomic resource provides an almost total re-
covery of the basic genetic repertoire of this species.

Comparison with extant resources
While sequencing efforts on the B. glabrata genome are
still underway, transcriptomic resources are vital for gain-
ing an understanding of the molecular processes behind
aspects of this species’ disease resistance, development

Fig. 2 Summary of staged RNA sources and quantities, and their relationship to known events in B. glabrata embryogenesis [10]. hpfc: hours post
first cleavage

Table 1 Basic read data: Summary statistics pertaining to reads
used in the present study

Platform Illumina HiSeq

Number of Read Pairs 52,648,074

Read Length (bp) 101

Insert Size (bp, nominal) 300

GC content (%) 39

Table 2 Basic assembly data: Summary of the metrics of
assembly used in the present study

Assembler: Trinity (k mer 25), 500bp min length

Number of contigs 133,084

Max contig length (bp) 28,281

Mean contig length (bp) 2219.48

Median contig length (bp) 1,537

N50 contig length (bp) 3,221

# contigs in N50 27,526

# contigs > 1kb 90,315

# bases, total 295,377,631

# bases in contigs > 1kb 265,182,009

GC Content % 38.04 %
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and physiology. To date, the most complete resource
available, [14], is a fairly comprehensive transcriptomic
resource, assembled from 30 adult snails, ranging from
juvenile (4-7 mm shells) to older adult (12-16 mm shells)
BgBRE individuals, from Illumina reads. However, this
transcriptome does not sample as broadly across the
course of development as the one presented here, and
suffers according to many standard metrics of assessment.
For example, the N50 of the Dheilly et al. resource, 1,067
bp according to our calculation, is threefold less than that
of the assembly described here (3,221 bp). Given that
30,206 sequences were assigned a GO identity in the
Dheilly et al. assembly, c.f. 74,492 in ours, the additional
length of our assembly also is advantageous in allowing
more firm homology assignment to be made.
To assess the degree of overlap between our sample and

the Dheilly et al. resource we then used BLASTn (with the
Megablast setting) to detect the number of sequences

shared in common between the two assemblies. Of the
326,874 sequences in the ‘transcriptsBre1et2.fasta’ file,
241,019 (73.73 %) were found in our 500 bp minimum size
assembly, and 268,903 (82.26 %) in our original, un-
trimmed dataset. Reciprocally, of the 133,084 contigs in
our assembly, 119,264 (89.62 %) have at least a partial hit
in the Dheilly et al. resource. We therefore recover the
majority of the Dheilly et al. assembly in our data, with
markedly more complete length as discussed earlier. We
suspect that much of the portions of the transcriptomic
resources that do not overlap are temporally or spatially
restricted in expression, with those in our assembly repre-
senting embryonically transcribed genes, and those in
Dheilly et al. more likely to be adult-specific.

Functional annotation and analysis
BLAST2GO was used to functionally annotate this data for
comparison with other species and previously completed B.

Fig. 3 Analysis of the composition of the transcriptome of B. glabrata. a Contig length distribution graphed using R. BLAST2GO used to compare
the distribution of BLASTx hits vs the nr database by best BLAST hit by species (b) and by GO category (c)

Kenny et al. BMC Infectious Diseases  (2016) 16:618 Page 5 of 10



glabrata GO distributions [13]. The results of this analysis
can be seen in Fig. 3b and c, and full GO annotations are
available in Additional file 2.
As a result of the excellent assembly statistics, a large

number of identifiable sequences were obtained. Of the
133,084 contigs in our dataset, 80,952 (60.8 %) possess a
homologue in the nr database (BLASTx, E value cut off
10-3). Comparison of the BLASTx best hits results by
species reveals that, despite the accessioning of oyster C.
gigas and limpet L. gigantea genomic data onto the nr
database, the closest hits gained using BLASTx are more
heavily weighted towards deuterostome species. These
species have previously been noted as having a slow rate
of molecular evolution, and it may be this resultant simi-
larity in sequence, compared with the fast-evolving
Ecdysozoan species similarly well represented in the nr
database, which causes this result.
Of the sequences with a BLAST-annotatable homologue

in the nr database, 74,492 were mapped and of these
53,412 were assigned GO terms. The distribution of
several GO assignment distributions in the three second-
level functional categories (biological process, cellular
component and molecular function), can be seen in Fig. 3c.
In concert with our CEGMA results, we are therefore
confident that this dataset contains the sizeable majority
of transcribed RNA in this species, although it is likely a
number of RNAs of low copy number and restricted
temporal expression are not present.
The GO terms shown in Fig. 3c correspond to those

shown in [13], a previously published annotated B.
glabrata transcriptomic dataset. This allows comparison
of the results of BLAST2GO analysis between our data,
previously extant data for this species, and the distribu-
tions of the proteomes of the well-described model organ-
isms D. melanogaster and M. musculus. The distributions
seen in Fig. 3c suggest that our dataset is more representa-
tive of the GO term distributions seen in complete pro-
teomes than those available previously in B. glabrata.
While some differences are to be expected in the distribu-
tion of GO identities from species to species and GO
distribution is an imperfect measure of the completeness of
a dataset, our results, in red, mirror those of the fully se-
quenced species much more closely than those of the previ-
ously available B. glabrata datasets shown in blue (Fig. 3c).

Pathway mapping and completeness
Along with CEGMA and GO-based evidence, KEGG
pathway mapping suggests we have near-100 % coverage
of all major signaling and metabolic pathways, with well-
conserved processes such as gluconeogenesis and the
citrate cycle demonstrating complete coverage of all
their constituent steps. The coverage of these, and other
key pathways, can be seen in Table 3, and all annotations
can be seen in Additional file 3. Generally, greater than

90 % coverage can be seen for all genes expected in
protostome metazoans (NB, KEGG pathways shown also
show genes restricted to other clades).
To illuminate the coverage provided by our dataset

and its utility in reconstructing cellular processes in-
volved in immune responses and developmental signal-
ling, the Wnt, apoptosis and Notch signaling pathways
are shown in Fig. 4. Apoptosis is a key part of molluscan
disease response [50] and the Wnt and Notch pathways
are involved in a wide range of patterning mechanisms
in the process of growth and development.
While coverage of the KEGG apoptosis pathway map

is the least well-recovered of the pathways shown here,
at 77 % it is still remarkably complete, and contains
many prospective targets for future research. The
differences in orthology between spiralian genes and the
more well-researched vertebrate paralogs (after the
whole genome duplications observed in that lineage) will
require careful unteasing. For example, protostomes
exhibit far less CASP gene diversity, but sub- and neo-
functionalisation in vertebrates may mean that single B.
glabrata orthologues likely play the role of several
paralogous sequences from the Vertebrata. The recovery
of greater than three quarters of this pathway in B. glab-
rata here nevertheless represents a considerable advance
in our knowledge of this pathway in the Mollusca in
general, and in B. glabrata in particular.
Similarly, the Wnt and Notch signaling pathways are well-

recovered in our dataset and are representative of similar
signaling cascades not shown in figures here, but available
in Additional file 3. Such recovery in key conserved signal-
ing cascades suggests that our dataset could also be of utility
for a range of further investigations in fields such as endo-
crinology, developmental and cell biology.
It should also be noted that some genes may be present

in our dataset, but be considerably different in sequence to
the query database used to identify genes, which currently
contains a very limited number of spiralian gene se-
quences. This would lead to under-reporting of complete-
ness, and lends further weight to hypothesized excellent
coverage in our dataset in known gene pathways.

Disease-related pathway components
To assay the potential utility of this transcriptomic data-
set as a resource for investigation of disease processes,
we have targeted particular gene families for manual
annotation. We are able to recover a range of disease-
response associated genes in our transcriptome, includ-
ing a number of genes from families not before
identified in B. glabrata. These genes are listed in
Table 4, and their complete sequences can be found
in Additional file 4.
Molluscs generally utilize innate immune responses,

such as cell-mediated reactions, to fight infection, as they
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appear to lack the adaptive immune system found in
vertebrates. Numerous gene families were also examined
and found to be present in this resource. Nuclear factor
kappa-light-chain-enhancer of activated B cells (NF- κβ)
genes are found in all metazoan lineages, and are noted
as "rapid-acting" primary transcription factors, capable
of quick response to harmful stimuli [19]. Two NF- κB
have been previously published in B. glabrata: BgRel
(ACZ25559.1) and BgRelish (ACZ25560.1) [59]. Both of
these sequences are found in our dataset, with several forms
of BgRelish gene identified (split between Comp98599,
which possesses eight potential isoforms, and Comp97091,
with three sequences recovered). Several variants of the
BgRel gene were noted in our sample (Comp89844, four

isoforms, and Comp91314, six isoforms). Two poten-
tial nuclear factor of activated T cells genes were also
noted in our sample, Comp99436 (two isoforms) and
Comp99884 (6 isoforms), which provide an additional
target for functional work in this well-conserved gene
family, and further suggests a role for Toll-like recep-
tor (TLR) and immune deficiency (IMD)-like path-
ways in immune response.
CREB (cAMP response element-binding protein) and

STAT (signal transducer and activator of transcription)
genes play roles in proliferation and phagocytosis respect-
ively [59]. Using known B. glabrata sequences as queries
(tBLASTn, E < 10-10), homologues of these genes are found
in at least two and 19 contigs respectively in our dataset, and

Table 3 Coverage of a range of key conserved metabolic pathways: Coverage of components of a selection of key conserved and/
or disease associated pathways, as mapped by the KAAS-KEGG automatic annotation server

KO Pathway ID KO pathway name KEGG components expected in
protostomes (total possiblea)

KEGG KASS mapped
B. glabrata homologues

% Expected pathway
covered

00010 Glycolysis/Gluconeogenesis 31 (57) 28 90 %

00020 Citrate cycle TCA cycle 22 (27) 22 100 %

00071 Fatty acid metabolism 61 (84) 60 98 %

00280 Valine, Leucine and Isoleucine degradation 47 (56) 47 100 %

04210 Apoptosis 47 (60) 36 77 %

04310 Wnt signaling pathway 65 (71) 58 89 %

04330 Notch signaling pathway 23 (24) 20 87 %
aExpected = component # found in any other protostome species in the KEGG database (Total also includes those only found in other lineages, e.g. Prokaryota).
Please note: repeats of same gene in KEGG map are included in total count

Fig. 4 KEGG pathways for Wnt (a), apoptosis (b), and Notch (c) signalling pathways, showing presence of majority of components in our
transcriptome, in green. Where components were not identified by the KEGG SBH annotation process, this is indicated in orange (where these
are not known in the Spiralia to date) or red (when these would be expected). Absence may be real or the result of marked sequence
divergence between genes in our dataset and those orthologs in the KEGG database
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these sequences can be seen in Additional file 4, which will
allow further work complementing previous investigations in
this species [59]. The functional role for these novel se-
quences are as yet uncharacterized in B. glabrata or the Mol-
lusca in general, but with the description of this
complement, further investigation is possible.
While the genes noted here represent only a small

fraction of the likely B. glabrata immune response cas-
sette and our report of these is intended to be indicative
of the utility of our dataset rather than a conclusive
treatment of the scope of these molecules, their number
and ready identifiability nevertheless underlines the util-
ity of the dataset presented here as a tool for the identifi-
cation of the components of such pathways. There are
numerous other immune-related pathways that could be
investigated using the data presented, and this resource
therefore stands as a good resource for ongoing work in
this species, especially until the advent of a complete
genomic resource.

FREP, CREP and GREP immunoglobulin superfamily
containing genes
Along with other components of innate immune re-
sponses, molluscs are known to utilise fibrinogen-
encoding proteins (FREPs) as part of their immune
defences [1, 58]. These contain immunoglobulin super-
family domains and can therefore be recognized even
in de novo datasets [60]. Recent RNAseq-based efforts
[14] have uncovered two related families of genes
related to FREPS, known a C-type lectin-related pro-
teins (CREPs) and Galectin-related protein (GREPs)
which also are believed to play a part in mediating
these responses. Collectively, these molecules are
known as Variable Immunoglobulin and Lectin domain
containing molecules (VIgL). The transcriptomic re-
source described here contains 81 contigs with high
similarity (tBLASTn, E < 10-9) to known B. glabrata
VIgL proteins, along with many of slightly less strong
homology. While complete mapping of the VIgL fam-
ilies is beyond the scope of this manuscript, this re-
source adds significantly to the number of these genes
which can be investigated in detail for their responses
to schistosome infection in the future.

Identifying differentially expressed genes in extant datasets
A large number of previous studies have compared in-
fected B. glabrata with uninfected controls, using micro-
array and Expressed Sequence Tag (EST) based techniques,
but have been hamstrung by an inability to discern the
identity and function of gene sequences found to be differ-
entially expressed due to the short length of EST se-
quences. These studies often contain information from a
range of sample types, and a large amount of useful data,
which may be of vital utility in the fight against schisto-
somiasis, can be gleaned from them with the aid of a more
complete transcriptomic resource.
For example, [56] used a microarray-based method to

identify 98 differentially expressed sequences from haemo-
cytes of schistosome-resistant and schistosome-susceptible
B. glabrata after exposure to excretory-secretory products
from S. mansoni. Of these 98 EST derived sequences, 61
were at that time unable to be assigned homology to known
gene families due to their short length, and therefore were
excluded from further analysis in that manuscript. How-
ever, using BLASTn (cutoff E < 10-6, although this value
generally = 0.0) we were able to recognize 20 more of these
EST sequences within our transcriptomic dataset. With
their greater average length (mean = 1359.9 bp) we were
able to determine that one contig in our dataset
(comp100220_c2_seq2) corresponded to five of the ESTs
included in the list of 61 unknown sequences. This contig
can, with the aid of the complete sequences provided by
our dataset, be recognized as belonging to a single, long
alpha-actinin A like-sequence, whose prevalence in earlier
EST-based studies might indicate a cytoskeletal response to
schistosome infection.
Furthermore, the additional sequence provided by our

contigs allowed more of these unknown sequences to be
more firmly identified. Of the 20 newly identifiable EST
sequences (including all five matching comp100220_c2_
seq2), only four were unable to be matched to known
sequences in Genbank using BLASTx. In almost all
cases, the best hits were also to B. glabrata sequence
provisionally accessioned by other studies, with homolo-
gous genes in other species matching less well. Of these
16 ESTs identifiable courtesy of our resource, 5 are simi-
lar to alpha-actinin A as noted above. Others include
gastric intrinsic factor, serine/arginine-rich splicing factor
7 and NRDE-2. These genes also may be useful targets
in the treatment of schistosomiasis, and our dataset can
in this way act as a bridge between previous functional
investigations such as [56] and sequences of presently
unknown function in the nr database.

Conclusions
In this paper we have presented a deep transcriptomic
resource for the medically important species B. glabrata,
gleaned from samples taken at a variety of life stages.

Table 4 Manual annotation of disease-response associated genes

Gene # Orthologues # Isoforms/allelic variants

BgRel 1 10

BgRelish 1 11

nuclear factor of activated T
cells

2 2 and 6

CREB 1 2

STAT 1 19

FREPs, CREPs and GREPs see text 81
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This resource has been shown to contain an almost
entire cassette of genes from a variety of conserved path-
ways, suggesting it is a nearly complete sampling of the
transcribed B. glabrata RNA complement. Crucially,
given B. glabrata’s role as a vector for schistosomiasis,
the deep transcriptomic resource presented here will
allow a range of biomedical investigations to take place
and further allow research into invertebrate immune
systems, an area where our knowledge is still nascent at
best. Evidence shown here suggests that this dataset will
be a reservoir for drawing further understanding from
previous work as well as acting as a baseline for ongoing
research. The dataset presented here will therefore stand
as a useful resource for the assessment of patterns of evo-
lution within the Mollusca, for human health, and in many
other spheres, both immediately and well into the future.
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