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Introduction
Chronic obstructive pulmonary disease (COPD) is a progressive 
chronic inflammatory lung disease characterized by persistent 
limited airflow caused by various environmental exposures 
such as cigarette smoke (CS), occupational hazards, and air 
pollution.1 Mechanisms underlying the disease include a com-
plex interplay of inflammation, proliferation, oxidative stress, 
tissue repair, and other processes driven by various immune, 
epithelial, and airway cell types.2,3 Understanding the 
molecular mechanisms associated with COPD is important for 
preventing disease onset, slowing down disease progression, 

and managing treatment. Biological network models offer 
a framework for understanding disease by describing the 
relationships between the molecular mechanisms involved 
in the regulation of a particular biological process. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Reactome 
are open access pathway databases widely used by the scien-
tific community.4–7 They describe signaling in various areas 
of biology and can be used to interpret large-scale molecular 
data through integration and overlay on pathways to assess 
pathway overrepresentation. In contrast to these general 
pathway databases, we have developed a set of networks within 
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outcomes. These results, based on a computable network approach, can be used to identify novel mechanisms activated in disease, quantitatively compare 
different treatments and time points, and allow for assessment of data with low signal. These networks are periodically verified by the crowd to maintain an 
up-to-date suite of networks for toxicology and drug discovery applications.
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defined boundaries relevant to COPD that are available to the 
public on the Bionet website at https://bionet.sbvimprover.
com, where they can not only be viewed and downloaded but 
can also be actively commented on and edited.8,9 These net-
works can also be used to interpret large-scale molecular data 
to a fine-grained degree, due to their construction in Biologi-
cal Expression Language (BEL), a human-readable comput-
able language with the ability to capture precise biological 
information and associated context (www.openbel.org). The 
networks were based on a set of previously published lung-rel-
evant healthy biological networks, which along with the most 
current network versions are available for download at http://
www.causalbionet.com/.10–14

To ensure a comprehensive and up-to-date set of bio-
logical network models that cover a wide range of biological 
signaling, crowdsourcing can be used to gather input from 
the scientific community. Crowdsourcing is a powerful tool 
to efficiently gather feedback from a wide audience that cov-
ers expertise in many biological areas. Crowdsourcing efforts 
in biology are useful in the collection of creative solutions to 
challenging problems in various fields of biology such as sig-
naling networks, protein folding, RNA design, and sequence 
alignment.15–18 Crowdsourcing has also been harnessed to 
accomplish a large amount of manual work in annotation 
projects including disease-related genes, interactome path-
ways, and PubMed abstracts.19–21 We have previously reported 
the creation of a set of biological networks describing COPD 
processes that were improved by the scientific community 
during the first Network Verification Challenge (NVC).8,9 In 
this study, we show that the networks were further improved 
during a second NVC (NVC2), in which the crowd added 
mechanistic details in the form of new nodes and edges.

We illustrate possible network applications for the 
crowd-improved set of networks using network scoring by 
TopoNPA, a method to infer mechanism and network per-
turbation based on transcriptomics data and known activators 
and inhibitors of gene expression reported in the literature.22 
Quantitative scoring of networks is enabled by BEL, an open 
platform technology, where cause and effect relationships 
from the literature are described and annotated using a pre-
cise language and collected in a knowledgebase. This knowl-
edgebase is used to predict upstream regulators of measured 
transcriptomics data.23 This backward reasoning approach 
differs from other gene set enrichment approaches using gene 
sets defined as KEGG pathways or Gene Ontology (GO) 
classes for example,24 which make the assumption that RNA 
expression is equivalent to protein activity. Another limitation 
of methods such as gene set enrichment analysis (GSEA)25 
is that they do not take direction into account for each gene 
within the gene set. TopoNPA scoring of networks allows for 
quantitative scoring of inferred mechanisms and networks 
based on signed fold changes in the dataset. Using TopoNPA 
on a set of networks enables quantitative comparison between 
different compounds, disease subtypes, or other perturbations 

of interest.22 We describe here one application for how the 
improved set of 46 computable BEL-encoded NVC network 
models can be used by the scientific community for toxicology 
and drug discovery applications.

Materials and Methods
biological expression language. BEL is a triple-based 

language, where statements consist of two biological entities 
connected by a relationship (for causal statements: cause, rela-
tionship, and effect). The BEL framework, including a data-
base of BEL statements and other tools to be used with BEL, 
is an open-platform technology available for download at 
http://www.openbel.org/. BEL captures specific entities from 
chemicals to proteins to biological processes and relationship 
links that are directional, providing information on activation 
or inhibition. Statements within BEL are derived from the 
published literature and are compiled together to express the 
existing causal knowledge in a graph-based, computable format. 
These entities connected by relationships are represented 
as nodes and edges within a BEL graph network and are 
linked to metadata such as literature support, which contains 
PubMed ID, tissue, disease, cell type, and species. A BEL 
node consists of a function, namespace, and entity. The func-
tion gives information about the type of entity (eg, abundance 
and activity), and the namespace is a standardized ontology 
that defines the entity that each node represents (eg, MeSH, 
ChEBI, GO, and HGNC). See Supplementary File 1 for a 
list of BEL functions and namespaces. Just as the networks 
are continuously improved by the crowd, the BEL language 
evolves based on suggestions made by the OpenBEL commu-
nity. Namespaces in the NVC networks version 2.0 reported 
here were updated from v1.0 BEL Namespaces to the most 
recent version (v20150611), which includes additional and 
refined namespaces.

Network building
Networks were constructed in a three-phase process, as 
described previously.8 Briefly, networks were built using 
data and literature during Phase 1, enhanced with lung- and 
COPD-relevant mechanisms (represented by nodes in the 
networks) by the crowd during Phase 2 on the Bionet web-
site (https://bionet.sbvimprover.com/), and discussed during a 
jamboree meeting during Phase 3 in which the best perform-
ers were invited based on their point totals from the online 
phase. Networks with high crowd activity or interest were 
selected for discussion during the jamboree. Phases 2 and 3 
were repeated in NVC2. Fifteen networks were discussed 
during the NVC1 jamboree (apoptosis, cell cycle, dendritic 
cell signaling, growth factor, hypoxic stress, macrophage 
signaling, neutrophil signaling, NFE2L2 signaling, nuclear 
receptors, oxidative stress, response to DNA damage, mecha-
nisms of cellular senescence, Th1 signaling, Th2 signaling 
[Th1–Th2 signaling were merged as a result of the jamboree], 
and xenobiotic metabolism response) and nine networks were 
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discussed during the NVC2 jamboree (calcium, epigenetics, 
macrophage signaling, necroptosis, neutrophil signaling, 
oxidative stress, senescence, Th1–Th2 signaling, and xenobi-
otic metabolism response). After the NVC2, it was decided 
to merge the four senescence-related models (mechanisms 
of cellular senescence, regulation of CDKN2A expression, 
regulation by tumor suppressors, and transcriptional regula-
tion of the SASP) into one model called senescence. In both 
NVC1 and NVC2, changes were implemented by the orga-
nizers and new versions were uploaded to the Bionet website. 
The latest versions edited after the NVC2 jamboree are the 
version 2.0 networks.

Network statistics
Network statistics and metrics were calculated on the net-
works presented to the crowd at the start of the NVC (v1.1) 
and on the most recent networks containing the outcomes of 
NVC1 and NVC2 (v2.0). Basic network metrics such as num-
ber of nodes, edges, activation edges, inhibition edges, and 
the proportion of inhibition edges were calculated. In addition 
to these basic network characteristics, the following metrics 
were computed:

•	 Mean degree: the average of node degrees. This metric 
informs the overall topology of the network. A low aver-
age degree (,2) is typically observed in linear networks.

•	 Max degree: the maximum degree in the network, repre-
senting the size of the largest hub.

•	 Mean node betweenness (MNB) or betweenness cen-
trality: the number of shortest paths between pairs of 
other nodes that go through that node. Nodes with high 
betweenness centrality are considered as high traffick-
ing nodes. This metric characterizes the centrality of the 
nodes and hence the topology of the networks (for exam-
ple, bottlenecks for the paths in the network). A complete 
graph has a vanishing (=0) MNB.

•	 Largest clique size: the number of nodes in the largest 
complete undirected subgraph in a network. This num-
ber is expected to be low because complete subgraphs 
that are not triangles are not expected to be biologically 
meaningful.

•	 Mean path length (MPL): the average of the shortest 
path length between all pairs of nodes. This metric gives 
an indication of the density of the network. A low MPL 
characterizes networks for which the shortest path of 
causal statements, from one node to another, are made of 
few edges; for example, in a complete graph, this equals 1.  
It does not necessarily imply that the mean degree is 
high. A typical cascading signaling pathway with little 
feedback would be expected to have a high MPL.

•	 Frustration: the minimum number of edges that should 
be removed to make the network balanced. Balance in a 
signed graph is characterized by the property that every 
path between two nodes has the same sign (the sign of 

a path is the product of its edge signs). Equivalently,  
a graph is balanced if and only if every cycle is positive. 
A negative feedback loop contributes to the network 
frustration. For example, tightly regulated processes such 
as cell cycle or apoptosis are expected to have a high frus-
tration metric.

•	 # connected components: number of connected compo-
nents, that is, the number of disjoint (ie, not sharing any 
edge) subnetworks within the network.

For all of these network metrics, the differences 
between the pre-NVC networks (v1.1) and post-NVC2 
networks (v2.0) were calculated to understand crowd con-
tribution effects on the networks. For the Th1–Th2 signal-
ing and senescence networks, both of which were integrated 
from separate networks following jamboree discussions, 
the individual pre-NVC networks (v1.1) were combined for 
comparison with the already combined post-NVC2 net-
works (v2.0).

datasets Analysis
The three datasets that were analyzed are shown in Table 1.

Network perturbation amplitude. The Network Pertur-
bation Amplitude (NPA) methodology aims at contextualiz-
ing high-dimensional transcriptomics data by combining gene 
expression (log2) fold-changes into fewer differential node 
values (one value for each node of the network), represent-
ing a biological entity (mechanism, chemical, biological pro-
cess).22,26,27 A node can be inferred as increased or decreased 
based on gene expression data, because there are signed rela-
tionships (increase or decrease) between the node and down-
stream mRNA abundance entities.23,27 The differential node 
values are determined by a fitting procedure that infers values 
that best satisfy the directionality of the causal relationships 
(positive or negative signs) contained in the network model, 
while being constrained by the experimental data (the gene 
log2-fold-changes, which are described as downstream effects 
of the network itself).

The differential values of the network are then used to cal-
culate a score for the network as a whole, called the TopoNPA 
score.22 For these network scores, a confidence interval 
accounting for the experimental variation and the associ-
ated P-value are computed. In addition, companion statistics 
are derived to inform the specificity of the TopoNPA score 
with respect to the biology described in the network model. 
These are depicted as *O and K* if their P-values are below 
the significance level (0.05). A network is considered to be sig-
nificantly impacted if all three values (the P-value for experi-
mental variation, *O, and K* statistics) are below 0.05.22

Leading nodes are the main contributors to the network 
score, making up 80% of the TopoNPA score. These nodes 
can be useful for interpreting the data to predict mecha-
nisms that might be driving the biological process that the 
network represents.22
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To increase the specificity and relevance of node scores 
and network scores, we consider only the nodes in the net-
work that are bounded by experimental evidence in the fol-
lowing sense: for any given node, at least one ancestor node (ie,  
a node from which a directed path to the node under consid-
eration exists) and at least one child node (ie, a node to which 
a directed path from the node under consideration exists) in 
the directed graph must have downstream RNA abundance 
nodes: their values can be directly inferred based on experi-
mental mRNA data. After removing the nodes that do not 
satisfy the above criteria, the largest connected component is 
kept (if the resulting network is not connected). Finally, the 
“causeNoChange” edges are disregarded for scoring. Selec-
tions of these simplified networks that have been scored using 
these criteria are shown in the results.

results
Network resource comparison. We previously described 

novel aspects of the NVC networks compared with other net-
work resources.8,9 Herein, we select a particular network, cal-
cium signaling, to further illustrate the differences between 
the NVC networks constructed using BEL (https://bionet.
sbvimprover.com) and the pathways available in the KEGG 
(http://www.genome.jp/kegg/pathway.html) and Reactome 
Pathway Databases (http://www.reactome.org) (Fig. 1).

Network boundaries. The NVC Calcium Network (v2.0) 
is an example of a network with similar content and size as 
the KEGG Calcium Signaling pathway map (map04020) and 
Reactome Calmodulin pathway (R-HSA−111997.1). All three 
networks describe the increase of calcium as a result of inositol 
1,4,5-triphosphate activation (Fig. 1, box 1 highlighted in  
yellow) and the role of calcium in activating calmodulin kinase 
(CAMK) (Fig. 1, box 2 highlighted in yellow). However, the 
BEL network was constructed specifically to describe calcium 
signaling that leads to cell proliferation in the lung, while the 
KEGG and Reactome pathways describe calcium signaling in 
a more general manner that is tissue agnostic and can lead to 
proliferation as well as, for example, contraction, metabolism, 
apoptosis, and exocytosis in the KEGG pathway.

Network resource comparison. The NVC Calcium Net-
work (v2.0) contains 47 nodes (35 unique concepts when genes, 
proteins, and activity nodes are flattened together) and 52 edges, 
the KEGG pathway map contains 48 nodes/unique concepts 

and 60 edges, and the Reactome pathway contains 46 nodes 
(34 unique concepts) and 49 edges (Table 2). The NVC2 net-
work is supported by 38 unique literature references for specific 
edges, while there are 20 references for the KEGG pathway 
and 28 references for the Reactome pathways. There is no over-
lap in references between the three resources and the average 
date of publication for the NVC2 references is 2006, whereas 
the KEGG and Reactome average dates are 2002 and 2000, 
respectively. The NVC2 and Reactome refe rences support a 
particular edge, whereas the KEGG references are not specific 
to a particular edge. The NVC2 network contains multiple node 
functions such as abundance, activities, and phosphorylations 
that have been specifically tested in the literature, while the 
KEGG pathway depicts a single layer of gene symbol nodes 
that could represent RNAs, proteins, modified proteins, or pro-
tein activities. Reactome contains nodes that reflect activities 
and phosphorylations that can be repeated throughout the dia-
gram to indicate location.

The cellular localization graphics in KEGG and Reactome 
give a second layer of information, with inositol 1,4,5-triphos-
phate (IP3 in KEGG, I(1,4,5)P3) in Reactome activating 
inositol 1,4,5-trisphosphate receptor (IP3R) depicted on the 
endoplasmic reticulum (ER) membrane, increasing calcium 
in the cytoplasm (Fig. 1, box 1 highlighted in yellow). From 
the KEGG and Reactome diagrams, IP3R/IP3 receptor can 
be inferred to be a calcium channel transporting calcium 
across the ER, although it is not explicitly stated. In BEL, 
this relationship is described explicitly in the NVC network 
as three different family members defined by the HUGO 
Gene Nomenclature Committee (HGNC) database (http://
www.genenames.org/) with transporter activities (tport): 
tport(p(HGNC:ITPR1)), tport(p(HGNC:ITPR2)), and 
tport(p(HGNC:ITPR3)) that activate the bp(GOBP:“store-
operated calcium entry”) node defined by the GO biologi-
cal process database.28 The nodes in the NVC network have 
more granularity than the Reactome and KEGG networks, 
specifying the type of activity and particular residues that 
are phosphorylated.

Along with the IP3 receptor, another process that is 
described by all three network resources is CAMK activa-
tion by calcium (Fig. 1, box 2 highlighted in yellow), although 
the NVC2 network describes CAMK2 while KEGG and 
Reactome pathways describe CAMK4 (only obvious for the 

Table 1. dataset overview.

DATA iDa TiSSuE TREATMENT ENDPoiNT

GSe28464 Human fibroblasts oncogenic Ras (H-RasV12) expression 4 days model of senescence; autophagic markers

e-mtaB-3150 mouse lung Reference cigarette (3R4F) smoke, prototype  
modified risk tobacco product (pMRTP),  
switch, cessation for 7 months

lung function; immune cell numbers and  
inflammatory markers in bronchoalveolar  
lavage fluid (BALF); lung macrophage counts;  
pulmonary morphometry

GSe52509 mouse lung Reference cigarette (3R4F) smoke for 4,  
6 months

B and t-cell counts and histology in lung; immune 
markers in bronchoalveolar lavage (Bal) and lung

Notes: athe GSe datasets are from the nCBi Geo database and the e-mtaB dataset is from the emBl-eBi arrayexpress database.

http://www.la-press.com
http://www.la-press.com/journal-gene-regulation-and-systems-biology-j26
https://bionet.sbvimprover.com
http://www.genome.jp/kegg/pathway.html
http://www.reactome.org
http://www.genenames.org/


Biological network models for toxicology and drug discovery applications

55Gene ReGulation and SyStemS BioloGy 2016:10

EdgesNodes

function(namespace:entity)

abundance (a)

activity 

biological process (bp)

complex abundance

protein abundance (p)

pathology (path)

actsIn

association

decreases

directlyDecreases

increases

directlyIncreases

hasComponent

hasMember

hasModification

positiveCorrelation

negativeCorrelation

NVC BEL Key

(act = molecular activity; cat = catalytic activity;
kin = kinase activity; tport = transporter activity;
tscript = transcriptional activity)

Namespaces shown

CHEBI Chemical Entities of Biological Interest

GOBP  Gene Ontology Biological Process

HGNC  HUGO Gene Nomenclature Committee

SCOMP Selventa Named Complexes

SDIS  Selventa Legacy Diseases

SFAM  Named Protein Families

Functions shown

p(HGNC:MTOR)

kin(p(HGNC:MTOR))

cat(p(HGNC:STIM1))

p(HGNC:ORAI1)

tport(p(HGNC:ORAI1))

p(HGNC:STIM1)

bp(GOBP:"store-operated
calcium entry")

tport(p(HGNC:ITPR1))

cat(complex(SCOMP:"NADPH
Oxidase

Complex"))

tport(p(HGNC:
ITPR3))

tport(p(HGNC:
ITPR2))

p(HGNC:
ITPR1)

a(SCHEM:Calcium)

p(HGNC:
ITPR3)

a(SCHEM:"Inositol
1,4,5-trisphosphate")

p(HGNC:
ITPR2)

bp(GOBP:"cell
proliferation")

kin(p(HGNC:CDK4))

p(HGNC:NFATC1)

act(complex(SCOMP:
"Calcineurin Complex”))

p(HGNC:FGF2)

tscript(p(HGNC:NFATC1)) p(HGNC:CDK4)

p(HGNC:CCND1)

kin(p(HGNC:FGFR1))

kin(p(HGNC:KDR))

a(CHEBI:calcitriol)

p(HGNC:VEGFA)

complex(SCOMP:"Calcineurin
Complex")

p(HGNC:ATP8B1)

path(SDIS:"Chronic
Obstructive
Pulmonary
Disease")

p(HGNC:KDR) kin(p(HGNC:MAPK7))

p(HGNC:RCAN1,pmod(P,S112))

p(SFAM:"CAMK2
Family")

p(HGNC:RCAN1)

complex(p(HGNC:PDGFA),p(HGNC:PDGFA))

p(HGNC:PDGFA)

kin(p(SFAM:"CAMK2
Family"))

cat(p(HGNC:FZD2))

kin(p(HGNC:CHRNA7))

p(HGNC:CHRNA7)

p("CHRN
Family")

kin(p("CHRN
Family"))

bp(GOBP:"calcium
ion import")

p(HGNC:FZD2)

p(HGNC:WNT5A)

p(HGNC:NFATC1)NCCC:NF
"Calcineurin Complex”))ri ))rin C

Complex )ppmplex

p(SFAM:"CAMK2M:"C

y ))y

A

cat(p(HGNC:STIM1))

)

tport(p(HGNC:ORAI1)

)

7))

RCHR
mily")yymily"

3

1

2

)

C:

)

(SCHEM "I i lM

p(p(
I

)

))

1

KEGG Key
CALCIUM SIGNALING PATHWAY

Na+

B

Na+

Neurotransmitter,
autacoid

Neurotransmitter,
autacoid

Neurotransmitter,
hormone,
autacoid

Growth factor

Antigen

Sperm

Membrane
depolarization

GPCR

ORAI

CaV1
CaV2

CaV3

ROC

GPCR Gq

PTK

TCR

BCR

CD38

cAMP

ATP

NADH

SPHK

NAADP

cADPR

DAG

ER/SR

IP3

S1P
??

?

IP3R

CALM

Tnc

VDAC

NCX

ANT
Cyp-D

MLCK

PHK

CAMK

NOS

ADCY

PDE1

FAK2

IP3 3K

PKC

CaN

Mitochondrion

Contraction

Metabolism

MAPK
signaling pathway

Apoptosis

Proliferation
Fertilization
Learning and memory

Long term potentiation

Long term depression

Other signaling
 pathways

Phosphatidylinositol
signaling pathway

Exocytosis
secretion

Ca2+

Depletion
of Ca2+ stores  

ER/SR
+P

VOCs

cAMP

NAADPR

SERCA

RYR

PLN

STIM

PKAADCYGs

PLCξ

PLCε

PLCγ

PLCβ

PLCδ

Objects

Gene product, mostly
protein but including RNA

Other molecule, mostly
chemical compound

Another map

Phosphorylation

Dephosohorylation

Ubiquitination

Glycosylation

Methylation

Activation

Inhibition

Indirect effect

State change

Binding / association

Dissociation

Complex

Pointer used in legend

Missing interaction (eg., by mutation)

Expression

Expression

Indirect effect

Repression

Protein-protein interactions

Arrows

Gene expression relations

Enzyme-enzyme relations

+p

-p

+u

+g

+m

Molecular interaction or relation

Link to another map

e

Two successive
reaction steps

De

cAMP

MCUNCX

PMCA

3

1

2

C
p-4Y-PLCG1

PKC-delta/epsilon Phospho-PKC-
delta/epsilon

ATP
ADP

ATP

ATP cAMP

cAMP: PKA
regulatory subunit

PPi

PKA tetramer

ATPATP

ADP

33

4

4

4
2

CREB1

p-S133-CREB1 Phospho-CREB
dimer

Reactome key

Diagram objects

Small molecule(s)

Protein

Complex(es)

Set

Membrane

Encapsulated
pathway

Input Reaction node Output

Reaction types

Reaction attributes

Transition/process
Association/binding

Dissociation
Omitted

Uncertain

Stoichiometry
Catalysis
Positive regulation

Negative regulation

Set to member link

Wild type

Disease-associated

ADP

2
P

Active PKc (alpha,
gamma, delta)

PKA catalytic
subunit

ADP

CALM 1

CAMK 4

H2O

AMP

cAMP

Cam-PDE 1
homodimer Active Cam-PDE 1

Calmodulin:CaMK IV Calmodulin:CaMK
IV

Phospho-CaMK
IV:Calmodulin

p-S29-ADRBK1

ADRBK1 GRK2: calmodulin

Adenylate cyclase
(Mg2+cofactor)PI (4,

5) P2
DAGs

H2O

Ca2+

Cytosol

Nucleoplasm

Endoplasmic reticulum lumen

I (1, 4, 5) P3

IP3 receptor
homotetramer

ITPR:1 (1, 4, 5) P3
tetramer

1

2
4XCa2+:CaM

CALM 1

Ca2+ Protein Kinase A,
catalytic subunits

?

3

figure 1. Comparison of the nVC (A), KeGG (B), and Reactome (C) calcium/calmodulin signaling pathways. Shared portions highlighted in yellow with 
corresponding numbers.

KEGG pathway after clicking on the node within the online 
pathway). The final group of overlapping nodes between NVC 
and KEGG networks include stromal interaction molecular 1  
(STIM1) and calcium release-activated calcium channel 

protein 1 (ORAI1), describing store-operated calcium entry 
(Fig. 1, box 3 highlighted in yellow), a concept that the Reac-
tome network does not cover due to its focus on calmodulin 
signaling. Despite the differences in biological content, these 
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networks illustrate the similarities in causal, computational 
formats and differences in detail and visualization features 
in the NVC, KEGG, and Reactome networks. The edges 
in the NVC, KEGG, and Reactome networks are similar in 
that they can represent causal increase or decrease relation-
ships and can be downloaded for computational use. However, 
the NVC networks contain more layers of information, with 
direct causal, indirect causal, correlative, and other noncausal 
relationships (eg, member, biomarker, and component).

Network crowd verification. Participant feedback. Scien-
tists had many options for engagement during the NVC, 
including commenting on networks, voting for or against 
the validity of evidence for specific edges, adding evidence 
to existing edges, or adding new edges (in order of easiest to 
most challenging according to a participant survey). The most 
impactful, but most challenging (and highest point value), 
action was to add new edges that represented missing biology 
in the networks. This action required participants to perform 
a sophisticated set of tasks beyond identifying relevant papers, 
namely, identify the correct network to include the paper and 
translate the biology to correct BEL statements in a format 
that contained direct, mechanistic biology relevant to the 
boundaries of the particular network. Most participants had 
expertise in identifying relevant papers that included biology 
that was missing in the network and overall, participants were 
able to easily learn BEL and construct correct statements that 
depicted the biology from the papers they identified. The most 
challenging task was assembling these statements into direct, 
mechanistic edges to integrate into the boundaries of a par-
ticular network. Participant feedback indicated that improved 
ways were desired to view networks, particularly to highlight 
areas of the networks that needed more development. Feed-
back also indicated that clearer network boundaries were 
necessary, highlighting the challenges that working with 
networks entails. With regard to participant engagement, 
feedback showed that participants were motivated by learning 
about biology in the networks, the BEL language, and about 
biological networks in general.

Network changes. The latest version of the NVC net-
works edited by the crowd during the NVC2 is available 
as version 2.0 at www.bionet.sbvimprover.com. These net-
works were changed in various ways throughout the two 
NVC challenges, as summarized in Figure 2. Networks 
before the NVC (v1.1) were compared with networks 

changed at the end of NVC2 (v2.0). Network statistics for 
each network version are available in Supplementary File 2. 
The largest amount of new biology in terms of new nodes 
that was added during NVC2 by the crowd and resulting 
from the jamboree was to the epigenetics, xenobiotic metab-
olism response, and calcium networks (Fig. 2). COPD- and 
lung-relevant contexts were added to the epigenetics and 
xenobiotic metabolism response networks, and cancer- 
and liver-related contexts, respectively, were removed. In 
the calcium network, growth factors and smoke-relevant 
mechanisms that lead to calcium signaling were added, as 
well as mechanisms of store-operated calcium entry.

Overall during the NVC1 and NVC2, the size of the 
networks (number of nodes and edges) grew, as seen in the 
four left columns of the heat map (Fig. 2). While the total 
number of edges increased, the proportion of negative edges 
also increased slightly, with a few exceptions such as Wnt and 
epigenetics signaling. This increase may reflect the addition of 
regulatory mechanisms to the networks.

Mean node betweenness (MNB) did not change substan-
tially, with noticeable exceptions for the cell cycle, autophagy, 
and Th1–Th2 signaling networks. For both cell cycle and 
autophagy, the number of nodes and edges stayed relatively 
constant. A difference in MNB may be indicative of a reor-
ganization of the network topology. These networks were all 
discussed during the jamborees where network topologies 
could more easily be changed than on a per user basis dur-
ing the open phase. For Th1–Th2 signaling, MNB went up 
tenfold from 15 to 152. This may be because these networks 
were originally two separate networks with linear (tree-like) 
structures that were then integrated after the jamboree.

The sizes of the largest cliques did not change, which 
suggests that the crowd did not add feedback loops. A clique 
of size 3 is a triangle that may be a simple positive or negative 
feedback of the form A→B→C→A (A→B→C-|A, respec-
tively). Most of the networks exhibit this property, while only 
eight networks have a clique of size 4 or more, the maximum 
being 5 (neutrophil signaling, after verification). A clique 
between four nodes implies that the set of nodes all regu-
late each other; for example, in the epithelial mucus hyper-
secretion network, the nodes A = cat(p(HGNC:ADAM17)), 
B = kin(p(HGNC:EGFR)), C = p(HGNC:MUC5AC), and 
D = bp(GOBP:mucus secretion)) are all related to each other 
as A→B,C,D; B→C,D; C→D.

The mean degree stayed stable while some maximum 
node degrees increased (ie, some nodes are stronger hubs). As a 
case in point, for the megakaryocyte differentiation network, 
the maximum degree went from 12 to 34. The MPL stayed 
stable for all networks, meaning that, on average, the shortest 
path between two nodes did not change (eg, no long hanging 
linear paths).

The frustration, representing the complexity of autoregu-
lation of a network, increased in half of the networks. After 
verification, only eight networks have a decreased frustration.

Table 2. network resource comparison.

ATTRiBuTE NvC KEgg REACToME

# nodes 47 48 46

# unique concepts 35 48 34

# edges 52 60 49

# References 38 20 28

average date of references 2006 2002 2000
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The number of connected components increased in the 
following networks (usually from one to two components): 
mTor, Mapk, Hox, growth factor, cell interaction, osmotic 
stress, NFE2L2 signaling, epithelial innate immune acti-
vation, wound healing, fibrosis, and ECM degradation. 

However, the ratio of the size of the second largest component 
to the size of the largest is less than 5% (except for cell inter-
action 12%, cytotoxic T-cell signaling 15%, and Hox 66%), 
meaning that, except for the Hox network, the largest com-
ponents comprise almost all the nodes. The extra components 
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figure 2. Changes in network statistics as a result of nVC activity. differences between the latest version of the networks and the original networks have 
been posted to the Bionet website.   
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added during network verification may be a starting point for 
further extending the biggest component. However, in the 
case of the Hox network, two components describing sepa-
rated processes are described in the context of this network. 
Besides the metrics discussed above, a scale-free property  
(ie, the degree distribution follows an exponential distribu-
tion) was tested. None of the networks (v1.1. and v2.0) exhibit 
a significant scale-free property (Supplementary File 2).

Network applications. Because the networks were con-
structed in BEL, they can be shared within the scientific 
community and used to understand data through overlay on 
to specific pathways of interest or implementing a more global 
process overview using computational inference approaches. 
We illustrate a few cases of how the networks could be used in 
toxicity assessment and drug discovery for network computa-
tion using the TopoNPA approach. This approach employs the 
two-layer network model to infer the activation or inhibition of 
model backbone nodes based on gene expression data.22 Using 
these inferences and the network model topology, TopoNPA 
computes the perturbation of the network as a whole. The 
approach differs from traditional pathway analyses, because 
it is quantitative and it uses backward reasoning instead 
of assuming that changes in gene expression directly imply 
changes in protein activity. The comparison of TopoNPA with 
other methods was described in detail by Martin et al.22

In vitro treatment effects on transcriptomics data are reflected 
in TopoNPA network scores. The NVC2 networks were scored on 
the in vitro dataset GSE28464 from the NCBI GEO database 
to illustrate that expected pathway activation can be inferred 
from transcriptomics data using network scoring.29 In this 
dataset, HRASV12 was expressed in fibroblasts, as a model for 
oncogene-induced senescence and cell cycle arrest. Consistent 
with the expectations, the senescence and cell cycle networks 
scored significantly in the HRASV12 dataset (Fig. 3). Within 
the senescence network, leading nodes that contribute to 80% 
of the senescence network score were predicted to be increased, 
including bp(GOBP:oncogene-induced cell senescence), repre-
senting oncogene-induced cell senescence, and p(HGNC:HRAS 
sub(G, 12, V)), representing HRASV12 mutation, ranking 
first and eighth in their contribution to the significant senes-
cence network score (Fig. 3A, boxed in yellow). Many nodes 
representing RAS, RAF, and MAPK mechanisms also scored 
highly and/or were high contributors to the network score as 
leading nodes. The relationship from angiotensin II activating 
CDKN1A protein is an example of an edge added to the senes-
cence network during the NVC process.

The cell cycle network also had a significant network 
score with cell cyclins and E2Fs inferred as decreased lead-
ing nodes (Fig. 3B, highlighted in yellow), while inhibitors 
of cyclins and E2Fs (CDKN1A and RB1) were inferred as 
increased leading nodes (Fig. 3B, highlighted in blue). NVC 
contributions include RRM1, MAD2L1, SIRT1, and TP53 
acetylation, which adds more detail to the role of THAP1 
and TP53 in regulating cell cycle. The nodes predicted in 

the senescence and cell cycle networks are consistent with an 
expected decrease in cell cycle due to HRASV12 signaling.

Quantification/comparison of toxicity in two related data-
sets using the network suite. Networks were used to evaluate 
and compare two recently published mouse lung datasets 
(E-MTAB-3150 and GSE52509), in order to quantify the 
effects of different exposures on biological processes at dif-
ferent time points.30 In the first study (E-MTAB-3150), mice 
were exposed to CS or aerosol from a prototype modified risk 
tobacco product (pMRTP). After two months, mice were 
switched from CS exposure to pMRTP or fresh air (cessa-
tion) for an additional five months and compared with mice 
subjected to CS for the whole duration (seven months). In the 
study reported in the GSE52509 dataset, mice were exposed 
to smoke for four or six months.31

Macrophage signaling is of particular interest in the first 
study (E-MTAB-3150). The NPA score for the macrophage 
signaling network significantly increased with smoke expo-
sure for all time points and decreased with switch and cessa-
tion (Fig. 4A). This trend matched the measured end points 
of macrophage count in bronchoalveolar lavage fluid (BALF) 
and pigmented macrophages in lung tissue (Fig. 4B).30 Lead-
ing nodes within the macrophage signaling network that con-
tributed most to the score are depicted by relative contribution 
to network scores in Figure 5. The Il1r1 protein and activity 
were top contributors to the network score for the first four 
months of smoke exposure, after which Irak4 and Myd88 
activity were top scoring contributors. These nodes also con-
tributed most to the five-month pMRTP, switch to pMRTP, 
and cessation scores. Irak4 and Myd88 act in the TLR path-
way that leads to macrophage activation induced by smoke for 
six months (Fig. 6, boxed in yellow). A number of new nodes 
were added during the NVC2 process, including detail around 
the TLR pathway and effects of macrophage activation. Two 
of these new nodes, prostaglandin E2 and nitric oxide, were 
leading nodes that contributed highly to the macrophage sig-
naling network score.

NPA scores can be calculated for the whole suite of net-
works and also allow to compare different datasets, as the rela-
tive signal compared with a control is used. Figure 7 shows that, 
as expected, most of the networks were predicted to be sig-
nificantly impacted with CS exposure in the E-MTAB-3150 
dataset, with an increasing impact over time. In contrast, 
most of the networks were predicted to be not impacted sig-
nificantly with pMRTP exposure. Upon cessation or switch to 
pMRTP from smoke exposure, the network scores decreased. 
Interestingly, this approach also proves powerful when applied 
to a dataset with fainter signal, as judged by the number of 
differentially expressed genes. Indeed, the number of differ-
entially expressed genes in GSE25209 is low (hundreds) com-
pared with those in the E-MTAB-3150 dataset (thousands) 
for smoke-exposed mice (Supplementary File 3). Despite the 
low signal, TopoNPA still detected a signal and predicted 
activation of key networks known to be involved in smoking, 
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was inferred and contributed to the significant Th17 signaling 
network score (Fig. 8, boxed in yellow). These network infer-
ences match measurements from the study, reporting a higher 
number of Th17 cells and IL17-positive cells in the six-month 
smoke-exposed lung tissue.31 Additionally, the study reported 
enrichment of innate and adaptive immune cell communica-
tion pathways by Ingenuity Pathway Analysis of transcrip-
tomics data, which matches the significant network scores in 
T-cell and other immune networks (Fig. 7).

discussion
Network resources have different strengths. Many dif-

ferent network resources are available online, with different 
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in activity or abundance. darker colors denote higher magnitude scores. leading nodes contribute to 80% of the network score and are denoted by their 
shapes outlined in gray. nodes added within this section of the network during the nVC are labeled in red. (A) Senescence network. nodes boxed in yellow 
reflect experimental HRASV12 mutation, resulting in oncogene-induced senescence. (B) Cell cycle network. Predicted upregulated nodes (yellow) contain 
cell cycle inhibitors RB1, e2F4, and CdKn1a predicted increased. Predicted decreased nodes (blue) contain cell cyclins and e2Fs predicted decreased.

including the inflammatory, cell stress, cell proliferation, 
and tissue repair networks (Fig. 7). The networks that score 
significantly in GSE52509 were similar to those in the 
C57BL6-pMRTP-SW dataset, sharing 24 significant and 11 
nonsignificant networks out of the 46 total networks. Note 
that scores cannot be compared across datasets.

One of the networks that scored significantly for the 
impact of six-month smoke was the Th17 signaling net-
work. The network shows mechanisms that can contribute to 
Th17 signaling and were predicted to be increased or decreased. 
Il17 differential gene expression was not statistically signifi-
cant based on the microarray data; however, evidence of Il17a 
and Il17f activation from the overall transcriptomics signal 
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language formats, visualization, and download application 
capabilities.32,33 Out of these, we chose to compare two of the 
most widely used network resources, KEGG and Reactome, 
to the NVC networks focusing on the calcium signaling net-
work as a point of comparison. BEL networks enhanced in 
the NVC cover 46 different COPD-relevant processes. The 
KEGG pathway database is a well-known resource in the sci-
entific community that can be used to interpret data.4,5 Cre-
ated by a select team of biologists, KEGG contains hundreds 
of pathways covering a wide variety of processes including 
metabolism, cellular processes, diseases, and more. Reactome 
is an open-source, open-access collection of manually curated 
and peer-reviewed pathways and suite of data analysis tools 

to support pathway-based analysis.6,7 Similarly, the NVC 
networks are manually curated by a team of scientists and 
organized into discrete subject areas. However, unlike the 
KEGG and Reactome pathways, these network graphs are 
open to the crowd for editing and each of the edges that make 
up the network is supported by literature source(s) along with 
a quotation from the paper that supports the edge and experi-
mental context. The ability for the crowd to edit the networks 
facilitates a peer-review process, which ensures comprehensive 
and current networks.

The NVC networks have different edge and node types 
that describe the relationships between nodes in great detail 
to reflect exactly what was proven in the experiment the 
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figure 4. macrophage signaling network scores in the e-mtaB-3150 dataset and pigmented macrophage counts in the same study. (A) macrophage 
signaling network score increased with time with smoke exposure and decreased with switch or cessation. pMRTP did not have significant macrophage 
signaling network scores at any time point. Green, blue, and red asterisks indicate significant O, K, and experimental P-values, respectively. (B) Pigmented 
macrophage in the alveolar lumen increased with smoke exposure over time and decreased with switch or cessation. pmRtP did not induce an increase in 
pigmented macrophages. 
Notes: *P , 0.05 compared with sham. #P , 0.05 compared with smoke exposure.

http://www.la-press.com
http://www.la-press.com/journal-gene-regulation-and-systems-biology-j26


Biological network models for toxicology and drug discovery applications

61Gene ReGulation and SyStemS BioloGy 2016:10

*act(p(MGI:Tlr2))(+)

*kin(complex(SCOMP:Ikapp...(+)

*cat(p(MGI:Traf6))(+)

*p(MGI:Abcg1)(−)

*kin(p(MGI:Irak1))(+)
*p(MGI:Myd88)(+)

*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)
*p(MGI:Il1r1)(+)

*cat(p(MGI:Il1r1))(+)

*act(p(MGI:Tlr2))(+)

*kin(complex(SCOMP:Ikapp...(+)

*cat(p(MGI:Traf6))(+)

*p(MGI:Abcg1)(−)

*kin(p(MGI:Irak1))(+)
*p(MGI:Myd88)(+)

*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)

*cat(p(MGI:Il1r1))(+)
*p(MGI:Il1r1)(+)

*p(MGI:Tnfrsf1a)(+)

*tscript(complex(SCOMP:N...(+)

*kin(p(MGI:Ptk2))(−)

*kin(p(MGI:Chuk))(+)

*a(CHEBI:prostaglandin E...(+)

*kin(complex(SCOMP:Ikapp...(+)

*kin(p(MGI:Irak4))(+)

*tscript(p(MGI:Vdr))(−)

*p(MGI:Nfkb1)(−)

*complex(SCOMP:p85/p110 ...(+)

*act(p(MGI:Tlr2))(+)

*kin(complex(SCOMP:Ikapp...(+)

*cat(p(MGI:Traf6))(+)

*kin(p(MGI:Irak1))(+)

*p(MGI:Abcg1)(−)
*p(MGI:Myd88)(+)

*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)
*p(MGI:Il1r1)(+)

*cat(p(MGI:Il1r1))(+)

*kin(p(MGI:Map3k7))(−)

*act(p(MGI:Tlr2))(−)

*kin(complex(SCOMP:Ikapp...(−)

*cat(p(MGI:Traf6))(−)

*p(MGI:Tlr2)(−)
*act(p(MGI:Myd88))(−)

*p(MGI:Cd36)(−)
*p(MGI:Irak1)(−)

*kin(p(MGI:Irak1))(−)
*kin(p(MGI:Irak4))(−)

*act(p(MGI:Tlr2))(+)

*kin(complex(SCOMP:Ikapp...(+)

*cat(p(MGI:Traf6))(+)

*kin(p(MGI:Irak1))(+)

*p(MGI:Myd88)(+)
*p(MGI:Abcg1)(−)

*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)

*cat(p(MGI:Il1r1))(+)
*p(MGI:Il1r1)(+)

*tscript(complex(SCOMP:N...(+)

*kin(p(MGI:Ikbkb))(+)

*p(MGI:Myd88)(+)

*kin(complex(SCOMP:Ikapp...(+)

*p(MGI:Abcg1)(−)
*kin(p(MGI:Irak4))(+)
*p(MGI:Ikbkb)(+)

*act(p(MGI:Myd88))(+)
*cat(p(MGI:Il1r1))(+)

*p(MGI:Il1r1)(+)

*cat(p(MGI:Traf6))(+)

*p(MGI:Myd88)(+)

*kin(p(MGI:Ikbkb))(+)

*kin(complex(SCOMP:Ikapp...(+)

*p(MGI:Abcg1)(−)
*act(p(MGI:Myd88))(+)

*kin(p(MGI:Irak4))(+)
*p(MGI:Ikbkb)(+)

*cat(p(MGI:Il1r1))(+)
*p(MGI:Il1r1)(+)

*act(p(MGI:Tlr2))(+)

*cat(p(MGI:Traf6))(+)

*kin(complex(SCOMP:Ikapp...(+)

*p(MGI:Abcg1)(−)

*p(MGI:Myd88)(+)
*kin(p(MGI:Irak1))(+)
*p(MGI:Il1r1)(+)

*cat(p(MGI:Il1r1))(+)
*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)

*p(MGI:Il1r1)(+)

*act(p(MGI:Tlr4))(+)

*p(MGI:Cd36)(+)

*p(MGI:Tlr2)(+)

*act(p(MGI:Tlr2))(+)
*p(MGI:Myd88)(+)
*p(MGI:Irak1)(+)

*kin(p(MGI:Irak1))(+)
*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)

*act(p(MGI:Tlr2))(+)

*kin(complex(SCOMP:Ikapp...(+)

*kin(p(MGI:Irak1))(+)

*p(MGI:Abcg1)(−)

*p(MGI:Cd36)(+)
*cat(p(MGI:Il1r1))(+)
*p(MGI:Myd88)(+)
*p(MGI:Il1r1)(+)

*kin(p(MGI:Irak4))(+)
*act(p(MGI:Myd88))(+)

*p(MGI:Mapk1)(+)

*cat(p(MGI:Il1r1))(+)

*p(MGI:Ikbkb,pmod(p,s,18...(−)

*p(MGI:Ikbkb,pmod(p,s,17...(−)

*p(MGI:Abcg1)(−)
*p(MGI:Myd88)(+)

*kin(p(MGI:Irak4))(+)
*act(p(MGI:Myd88))(+)

*p(MGI:Il1r1)(+)
*p(MGI:Ikbkb)(−)

*kin(p(MGI:Map3k7))(+)

*p(MGI:Abcg1)(−)

*cat(p(MGI:Traf6))(+)

*kin(complex(SCOMP:Ikapp...(+)

*kin(p(MGI:Irak1))(+)
*p(MGI:Myd88)(+)
*p(MGI:Il1r1)(+)

*cat(p(MGI:Il1r1))(+)
*act(p(MGI:Myd88))(+)
*kin(p(MGI:Irak4))(+)

*p(MGI:Tnfrsf1a)(+)

*cat(p(MGI:Tradd))(+)

*act(p(MGI:Myd88))(+)

*p(MGI:Nfkbia)(−)

*tscript(complex(SCOMP:N...(+)

*kin(p(MGI:Chuk))(+)

*kin(p(MGI:Map3k7))(+)

*kin(complex(SCOMP:Ikapp...(+)

*p(MGI:Alox5)(+)
*cat(p(MGI:Tnfrsf1a))(+)

*p(MGI:Irak1)(+)

*kin(p(MGI:Irak1))(+)

*act(p(MGI:Tlr2))(+)

*kin(p(MGI:Map3k7))(+)

*p(MGI:Tlr4)(+)

*tscript(complex(SCOMP:N...(+)

*kin(p(MGI:Irak4))(+)
*p(MGI:Myd88)(+)

*act(p(MGI:Tlr4))(+)
*act(p(MGI:Myd88))(+)

1 mo 2 mo 3 mo 4 mo 5 mo 7 mo

CS

pMRTP

Cessation

Switch

figure 5. leading node contribution for macrophage signaling network in the e-mtaB-3150 dataset. Word size indicates relative contribution to 
network score. 
Notes: *significant score; (+) inferred increase; (−) inferred decrease.
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figure 7. Heat map of network scores comparing the impact of CS exposure, pmRtP, and cessation in the e-mtaB-3150 and GSe52509 datasets. each 
treatment is compared to fresh air at the same time point. Scores are normalized to the maximum scores for each network. a network is considered 
impacted if, in addition to the significance of the score with respect to the experimental variation, the two companion statistics (O and K) derived to inform 
the specificity of the score with respect to the biology described in the network, are significant.  
Note: *o and K statistic P-values below 0.05 and NPA significantly nonzero.

annotated reference describes. Nodes defined by a namespace 
serve to standardize the language and multiple functions such 
as abundance, activity, modifications (ie, phosphorylation), 
biological process, and pathology to describe the biology in a 
fine-grained manner. Edges are defined by causal, correlative, 
and other numerous noncausal relationships and each causal/
correlative edge is based on a literature reference containing 

tissue, species, disease, and experimental metadata. Like the 
NVC networks, KEGG and Reactome describe biological 
processes in a causal manner, though they have less granu-
lar information about the nodes and edges and, for the case 
of KEGG, no specific literature reference was found for each 
relationship. Reactome has references by edge in the net-
work downloads but not in an easily viewable format on the 
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graph itself. References for the NVC calcium network were, 
on average, more recent than the KEGG and Reactome net-
works, implying that the NVC network contains more up-to-
date information, most likely because of the crowdsourcing 
effort. Among the 86 references used to support the calcium 
pathways across all three resources, all references were unique. 
This illustrates the range of literature and boundaries that were 
used to build the calcium pathways across the three network 
formats. The visualization of the KEGG and Reactome path-
ways allows the viewer to easily traverse the networks within 
a graphical representation that includes cellular localization 
of the nodes. KEGG and Reactome pathway diagrams have 
detailed cellular localization information that the BEL net-
works do not show graphically. However, this information can 
be described in the edge annotation or the node label.

Many analysis tools are available to use with the KEGG 
and Reactome pathways to interpret data. NVC networks also 
support analytics for mapping nodes in a dataset as well as 
taking into account the relationships between the nodes with 
the exact edge data. NVC networks can be downloaded in 
JSON graph format (JGF) and viewed and applied to data 
using Cytoscape or other JGF-compatible network visualiza-
tion software. Edge information can be used to filter and com-
pute on the networks.

Other network resources that are geared toward a 
community-driven approach include WikiPathways34 and 
the Cell Collective.35 These resources do not have a calcium 
pathway appropriate for comparison, but like KEGG and 

Reactome, they are limited by less granular information about 
the nodes and edges compared with NVC networks and, like 
KEGG, no specific literature reference is given for each rela-
tionship. However, they do benefit from the contribution of 
information from the scientific crowd, where WikiPathway 
users can edit and contribute to existing pathways and Cell 
Collective users can contribute information to the Knowledge 
Base, collaboratively build models and simulate and analyze 
them in real time. Like KEGG and Reactome, WikiPathways 
provides a graphical representation, containing cellular locali-
zation information.

Each of these network resources offers advantages for 
viewing and interpreting biology. The NVC networks cover 
lung- and COPD-relevant processes in a very detailed and 
granular manner and are open to public feedback, and the data 
can be computed at the node and edge level. The KEGG and 
Reactome pathways cover a wide range of biology with many 
widely used node-centric analysis tools, the Cell Collective 
allows for quantitative computation of networks, and KEGG, 
Reactome, and WikiPathways provide a simplified represen-
tation for easy visualization.

NVc crowd excels at identifying and encoding lite
rature. A review of the crowd changes and participant sur-
vey feedback after two iterations of the NVC allowed for an 
understanding of aspects that worked well and aspects that 
can be improved for subsequent challenges. One important 
finding was that the crowd was able to identify relevant lit-
erature that contained COPD mechanisms missing from the 
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figure 8. th17 signaling network scored with GSe52509 mouse lung exposed to 6 month smoke. the whole toponPa-scored version is shown. arrow 
edge indicates a positive relationship, while ball and stick edge indicates a negative relationship (includes causal and correlative statements). nodes are 
colored by nPa score; yellow indicates inferred increase and blue indicates inferred decrease. darker colors denote higher magnitude scores. leading 
nodes contribute to 80% of the network score and are denoted by their shapes outlined in gray. nodes added within this section of the network during the 
NVC process are labeled in red. Nodes boxed in yellow reflect prediction of Il17 cytokines.
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networks. Keeping networks up-to-date with the constant 
stream of published literature is difficult for the small team 
of scientists who created the networks. Crowdsourcing this 
effort through the Bionet website allows for a diverse group 
of international scientists to share in this effort to collect rel-
evant literature and note missing areas in a network using each 
individual’s expertise and biological perspective. This process 
allows the community as a whole to benefit from up-to- 
date networks.

The main incentive for participants, according to a survey, 
was the learning process, and although educating the commu-
nity about BEL and network biology is an excellent outcome 
of the NVC, there were many challenges associated with this 
large, crowdsourced effort to edit the networks. These chal-
lenges included clearly defining and communicating rules and 
boundaries up front in a way that everyone can consistently 
follow, the follow-up effort required to edit the changes made 
to the networks to ensure consistency and adherence to the 
network framework rules, and the creation of accurate BEL 
statements capturing the biology stated in a publication.

An idea for future challenges is to separate knowledge 
creation from network construction. Adding new and relevant 
edges to a network was a heavily incentivized portion of the 
challenge and is an important mechanism for filling knowl-
edge gaps in the network and maintaining the networks with 
newer information from the literature. While the crowd par-
ticipants performed well at identifying relevant literature and 
representing key ideas in BEL, it was challenging for partici-
pants to select and add mechanistic, nonredundant paths that 
were well integrated with the rest of the network, especially 
for the larger networks. As seen from the network statistics, 
the crowd contributed to the number of nodes and edges but 
not necessarily to changing the topology of the network. Sep-
arating the curation and network building portions of the task 
could provide several advantages. For example, BEL evidences 
could be voted on by the crowd for accuracy and relevance and 
refined prior to incorporation into a network. It is difficult to 
edit evidences and statements once they are connected into a 
network, as all neighboring edges and all individual evidences 
supporting the same edge are affected. Moreover, evidences 
could be more readily shared across networks where applica-
ble, and evidences that are highly relevant, but not the most 
streamlined, direct connection within a given network, could 
be omitted from the network but retained for other applica-
tions. Making the challenge tasks more manageable and nar-
rowly defined in this manner could potentially attract more 
participants as well as increase the quality and value of the 
resulting networks and associated knowledge. Every year, as 
more biological experts participate in the challenge and more 
literature is published, the networks can be kept up-to-date 
with the current understanding of the biology contained in 
these networks.

Networks can be used in toxicity and drug discovery 
applications. In addition to application as a tool to understand 

signaling pathways regulating a disease process, biological 
networks can be used to predict active mechanisms driving 
measured biological changes based on a knowledgebase of 
known regulators of these measured changes. In this study, 
we use network scoring to infer upstream mechanisms known 
to regulate measured gene changes applied to three datasets. 
Networks that contain these mechanisms can then be scored 
to infer perturbation of biological processes represented by the 
networks in a quantitative manner. In the GSE28464 study, 
mutated HRASV12 was expressed in fibroblasts and acti-
vation of senescence and cell cycle was inferred by network 
scoring of the transcriptomics data. These results were consis-
tent with experimental expectations of HRASV12, inducing 
senescence and cell cycle arrest.36 This example illustrates the 
ability of the network scoring approach to infer known active 
mechanisms using transcriptomics data. Novel mechanisms 
predicted to be active from transcriptomics data as a result of a 
treatment could also be identified in biological networks using 
this approach.

A major advantage of this network-based transcrip-
tomics data scoring approach is the ability to quantitatively 
compare treatments and time points within a dataset within 
discrete biological processes. In the E-MTAB-3150 dataset, 
the effects of smoke, pMRTP, switch to pMRTP, and cessa-
tion were quantified on the biological process and mechanistic 
level through network and mechanism scores. Network scor-
ing indicated that smoke impacted lung biology captured by 
networks more than pMRTP, switch to pMRTP, or cessation 
and with a greater magnitude over time. pMRTP appeared 
to impact lung biology less than smoke, based on the lower 
pMRTP vs sham network scores and fewer networks scor-
ing significantly. Switching from smoke to pMRTP or ces-
sation showed a decrease in network perturbation compared 
with sham group over time. Additionally, scoring mechanisms 
within the network gives insights on which mechanisms are 
predicted to induce gene expression changes observed in the 
dataset. Il1 receptor signaling was predicted to impact mac-
rophage activation the most in early time points with smoke 
treatment, followed by an increased impact of Irak4 and 
Myd88 activity on macrophage activation in later time points 
(Fig. 5). Il1r1/MyD88 signaling has been shown to contrib-
ute to elastase-induced lung inflammation and emphysema,37 
and although there are no publications implicating Irak4 in 
emphysema or COPD, a recent conference poster reported 
MyD88/Irak4 promotion of lung fibrosis in a mouse model 
of COPD.38 This network approach can potentially high-
light novel mechanisms such as Irak4 that drive disease and 
increase our understanding of COPD progression. Findings 
such as these could lead to a list of potential biomarkers or 
novel targets that could then be confirmed in multiple datasets 
in the primary disease tissue and narrowed down by aspects 
of ease of targetability and low off-target effects to identify 
ideal targets. Additionally, the quantitative aspect to network 
scoring can be used in toxicity testing to rank the impact of 
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different treatments and study dosing and time effects for a 
particular perturbation.

Another advantage of the network approach is the 
ability to glean information from a dataset with a low tran-
scriptomics signal. Similar to the E-MTAB-3150 dataset, 
GSE52509 contained data from smoke-exposed mouse lungs 
for four and six months; however, this dataset had a much 
lower transcriptomics signal. This difference in signal could 
be attributed to a larger variation in the data, or potentially 
the lower dosage and duration per day of smoke exposure 
in GSE52509 compared with the E-MTAB-3150 dataset. 
In the E-MTAB-3150 study, mice were exposed to smoke 
2.4 times longer per day at 1.5 times higher concentration. 
Similar types of networks and leading nodes were inferred 
in both studies to be activated in processes relevant to CS 
exposure, and they matched experimental end points of pig-
mented macrophage and Th17 counts in E-MTAB-3150 and 
GSE52509 studies, respectively.

Although the networks focus on lung- and COPD-
relevant context and were scored on lung datasets, these net-
works can apply to other disesases and tissues. The networks 
include edges that are based on literature from lung-relevant 
cell types such as fibroblasts, smooth muscle, and immune 
cells; these cell types are not specific to lung but can apply to 
many other tissues and disease contexts. The networks to be 
scored should be evaluated based on the context of the data-
set. For the GSE28464 dataset, only the senescence and cell 
cycle networks were scored, while the immune networks were 
not scored since the experiment was performed in fibroblasts 
and not immune cells. Since many of the pathways that the 
networks describe such as canonical MAPK and NFKB sig-
naling are conserved across tissues, these networks provide an 
important resource that can be built on to include context-
specific mechanisms according to scientists’ needs.

conclusion
The computable biological language BEL allows for encod-
ing of scientific literature with high granularity and is well 
suited for sharing mechanistic biology in a network context. 
The NVC takes advantage of the well-defined nature and ease 
of use of BEL to allow the scientific community to verify, 
enhance, and use these networks. These networks can then 
be used for toxicological and drug discovery applications. We 
illustrated one way to use these networks through quantitative 
network scoring based on transcriptomics data. Mechanisms 
were inferred from the data and could be quantitatively com-
pared within a dataset, leading to insights in disease-driving 
mechanisms and toxicity assessment.
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