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Abstract
A fundamental initiative for evolutionary biologists is to understand the molecular basis

underlying phenotypic diversity. A long-standing hypothesis states that species-specific

traits may be explained by differences in gene regulation rather than differences at the pro-

tein level. Over the past few years, evolutionary studies have shifted from mere sequence

comparisons to integrative analyses in which gene regulation is key to understanding spe-

cies evolution. DNA methylation is an important epigenetic modification involved in the reg-

ulation of numerous biological processes. Nevertheless, the evolution of the human

methylome and the processes driving such changes are poorly understood. Here, we

review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and

the underlying genome sequence, as well as its evolutionary impact. We also summarize

the latest advances in the field, revisiting the main literature on human and nonhuman pri-

mates. We hope to encourage the scientific community to address the many challenges

posed by the field of comparative epigenomics.

Introduction
Methylation of nucleotide bases is the only covalent modification of DNA commonly found
across many different taxa. So far, three types have been described: N6-methyladenine (6mA),
N4-methylcytosine (4mC), and 5-methylcytosine (5mC). While 6mA and 4mC are restricted
to prokaryotes and certain eukaryotes [1–3], 5mC is the predominant epigenetic modification
in eukaryotic DNA [4]. In mammals, 5mC mainly occurs in the context of Cytosine-phos-
phate-Guanine (CpG) dinucleotides [5].

The distribution of CpG methylation is uneven across mammalian genomes. While the
majority of CpGs (~60%–80%) are methylated [5], regions of densely clustered CpGs, known
as CpG islands (CGIs), are often devoid of methylation [6]. Many CGIs are found in the vicin-
ity of gene promoters, with approximately two-thirds of genes having a CGI at their promoter.
Methylation of promoter CGIs provokes long-term transcriptional repression of the associated
genes [5,7]. Classical examples include X chromosome inactivation [8] and genomic imprint-
ing [9]. In contrast, the functional impact of DNAmethylation outside gene promoters is not
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so well understood. Gene body methylation has been reported to be involved in alternative
splicing [10], and methylation of transposable elements is involved in the suppression of retro-
transposition [11]. Finally, certain unmethylated domains in CpG-poor regions have been
shown to coincide with distal regulatory elements, such as active enhancers, and usually co-
locate with other epigenetic marks, such as histone modifications [12–15]. Together, these
findings suggest that DNA methylation patterns are complex and highly dependent on the
genomic context [16].

Non-CpG methylation, the methylation of cytosines followed by a base other than guanine,
has also been reported. Indeed, non-CpG methylation is abundant in plants [17,18] and
recently has also been identified in some mammalian cell types [12,18–20]. Furthermore, addi-
tional chemical modifications arisen from the oxidative conversion of 5mC have also been
described [21–24]. The significance of these epigenetic marks in the mammalian genome is
currently poorly understood, so our focus is on methylation that occurs in CpG dinucleotides

Despite being a key regulator of genomic function, the role of DNA methylation in species
evolution is only beginning to be explored. More than four decades ago, it was first proposed
that regulatory changes could lead to species-specific adaptations as well as phenotypic vari-
ability [25]; however, technical limitations at that time prevented this hypothesis from being
tested. Within the past decade, the development of high-throughput genomic technologies has
allowed the study of species evolution from a molecular perspective. Taking advantage of these
technologies, recent studies have provided the first insights into the evolution of the epigenome
[26]. Some of the key questions in the field are starting to be addressed: Is regulatory evolution
coupled with sequence evolution? To what extent do regulatory changes affect transcription?
What are the evolutionary landmarks of DNA methylation? In this review, we survey the incip-
ient field of evolutionary epigenomics, focusing on CpG methylation. We discuss the current
state of the field and conclude by suggesting future research avenues.

The Interplay between the Genome and the Methylome
There is a close interplay between DNAmethylation and the underlying nucleotide sequence.
The mutagenic nature of 5mC is one of the primary players in this crosstalk, as methylcytosines
are prone to spontaneous deamination to thymine, resulting in a CpG-to-Thymine-phosphate-
Guanine (TpG) mutation rate that is ~10-fold higher than for other dinucleotides [27]. This is
reflected in the nucleotide divergence between primates: While the average human-chimpan-
zee divergence is ~1% across the genome, at CpG sites it increases to ~15% [28]. Furthermore,
heavily methylated, CpG-rich, subtelomeric regions exhibit a high rate of deamination, which
is balanced by the rapid gain of guanines and cytosines, commonly attributed to biased gene
conversion [29]. Nonetheless, in a proportion (~15%) of these genomic regions, the loss of
CpG dinucleotides is not compensated [29]. Indeed, high deamination rates over evolutionary
time are thought to be the cause of the overall depletion of CpGs that is characteristic of mam-
malian genomes.

In contrast to the mutagenic effect of 5mC, many genomic regions with high densities of
CpGs are constitutively unmethylated. Recent studies suggest that this CpG richness can be
solely accounted for by low CpG deamination rates, rather than being a byproduct of purifying
selection [29]. About 80% of these regions are located close to (<10 Kb) annotated transcrip-
tion start sites (TSSs), and meet the classic definition of CpG islands [30]. Therefore, the meth-
ylation state plays an important role in the dynamics of CpG dinucleotides.

On the other hand, several lines of evidence indicate that the genome harbors the informa-
tion necessary to establish local DNAmethylation patterns. How this genomic information is
encoded and read is still not fully understood, but recent work is beginning to shed light on the
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regulatory mechanisms. Fragment-insertion experiments have demonstrated that both a high
Guanine-phosphate-Cytosine (GC) content and a high density of CpG dinucleotides are neces-
sary and sufficient requirements to induce an unmethylated state [31,32]. From a mechanistic
standpoint, it is unclear how CpG and GC content richness drive the unmethylated state. Pro-
teins that specifically recognize unmethylated CpGs via CXXC domains could prevent DNA
methylation [33–35]. Other hypotheses posit the existence of proteins that recruit DNA
methyltransferases through the recognition of Adenosine-phosphate-Thymine (AT)-rich
regions [31].

Therefore, evolutionary changes in CpG dinucleotides and GC content could contribute to
alter the methylation landscape of a species (Fig 1A). With this idea in mind, regions with high
CpG density that are present exclusively in the human lineage have been identified and termed
“CpG beacons” [36]. Although their methylation state has not been studied, these regions are
good candidates to show differential methylation between species. Interestingly, human-spe-
cific CpG beacons were found to be enriched for genes related to cognition and behavior,
including the well-characterized HAR1A gene, which plays a crucial role in cortical develop-
ment [37].

Different mechanisms govern methylation patterning at CpG-poor regions. Some compel-
ling studies have revealed that methylation patterns at such regions are likely driven by the
binding of transcription factors (TFs), as the presence of specific motifs suffices to create
unmethylated domains [13,32,38,39]. Importantly, this mechanism likely plays a crucial role
during cell differentiation [40]. Further evidence results from the analysis of methylation pat-
terns after recent duplication events in the human genome. Though most duplicated segments

Fig 1. The interplay between the genome and the methylome. A) Methylated cytosines tend to deaminate over evolutionary time and, thus, the
methylation state of cytosines in different species influences the evolution of the underlying genome sequence. B) Species-specific nucleotide changes that
disrupt transcription factor (TF) binding sites can alter the methylation state of nearby CpG dinucleotides and, as a consequence, establish species-specific
differentially methylated regions (DMRs). C) The insertion of transposable elements in a particular lineage, along with the accumulation of nucleotide
changes, can lead to the emergence of novel CpG dinucleotides, creating species-specific regulatory regions.

doi:10.1371/journal.pgen.1005661.g001

PLOSGenetics | DOI:10.1371/journal.pgen.1005661 December 10, 2015 3 / 12



share conserved methylation states, duplication pairs with discordant methylation are associ-
ated with nucleotide changes at particular binding motifs [41].

Evolutionary studies in human populations have identified genetic variants that associate
with methylation levels at nearby CpGs, termed methylation quantitative trait loci (mQTL)
[42–45]. Consistent with the role of TFs in determining methylation patterns, genetic variants
that disrupt TF binding sites are more frequently associated with changes in methylation (Fig
1B). Furthermore, TF binding sites within regions that show differential methylation in the
human lineage compared to great apes show an increase of human-specific mutations [46].
Altogether, these findings suggest that evolutionary changes in TF binding motifs contribute to
shaping the methylome between species.

Finally, it has also been suggested that retrotransposition events coupled with gradual nucle-
otide changes could lead to the accumulation of novel CpG sites [47]. These regions would pro-
vide the necessary grounds for the emergence of new regulatory regions (Fig 1C). Indeed,
several reports suggest that imprinting at certain genes could have arisen as a byproduct of
DNAmethylation silencing of retrotransposons. One such case is the RB1 imprinted gene,
which results from the differential methylation of a processed pseudogene [48].

The emerging picture is that the joint actions of all the above-discussed mechanisms
throughout the evolutionary scale have modeled the architecture of the methylome (Fig 1).

Comparative Epigenomics
Comparative epigenomics, the interspecies comparison of DNA and histone modifications, is a
promising research field that can enlighten our understanding of mammalian epigenome evo-
lution [49]. Furthermore, together with TF footprints and chromatin accessibility maps, it can
be used as a tool to map regulatory elements [50,51]. Evolutionary studies have shown that
90% of unmethylated regions that are associated with gene promoters are shared across distant
vertebrates, from zebrafish to humans, indicating that the unmethylated state at gene promot-
ers is a deeply conserved epigenetic feature [52]. Histone modifications are also conserved at
promoters, in sharp contrast to enhancers, whose evolution is much more rapid and less con-
strained [50].

Importantly, co-localization of different epigenetic marks, including DNA methylation, sev-
eral histone modifications, and H2A.Z, has been used to study the evolution of the epigenome,
the transcriptome, and the genome in humans, mice, and pigs [49]. This study revealed several
important points: (i) the co-occurrence of different epigenetic marks is conserved across spe-
cies, (ii) histone modifications are predictive of gene expression levels in all three species and
can explain more than 50% of the variance in gene expression [49,53,54], and (iii) interspecies
epigenetic variation often occurs in neutrally evolving regions, leading to the suggestion that
the epigenome might act as a buffer by masking genetic changes from immediate phenotypic
changes [49]. Such deep comparative epigenetic analyses are extremely valuable and provide
the groundwork to characterize general features of the species epigenomes [49,50,55]. Yet, only
when we identify the differences that separate us from our closest nonhuman relatives do we
get closer to understanding the uniqueness of our species.

Human and Nonhuman Primates
Though methylomes are overall quite well-conserved between primate species [56,57], several
studies have now identified hundreds of species-specific differentially methylated regions
(sDMRs) (Table 1). Early studies focused exclusively on methylation levels at gene promoters
and CGIs [58,59], providing some interesting examples, including sDMRs in the brain and
associated with known disease genes [60–62]. On the premise that changes in gene expression
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patterns are major contributors to evolutionary innovation [63–66], several studies have also
attempted to link expression differences with underlying epigenetic changes at regulatory
regions. Early studies using methylation arrays with limited coverage suggested that differential
promoter methylation underlies only ~12%–18% of observed gene expression differences
between human and chimpanzee [67]. However, other studies focusing on histone modifica-
tions indicate that a larger proportion (~40%) of differentially expressed genes can be
accounted for by interspecies epigenetic differences [49,53,54]. More recent genome-wide
DNAmethylation studies have shown that most sDMRs actually locate distal TSS, and that
these sites are also enriched in particular histone modifications [46]. This finding highlights
the importance of epigenetic modifications at distal regulatory elements, as well as the close
interplay between different epigenetic marks. Of note, it has been observed that regions of
methylation divergence often coincide not only with regulatory elements of genes functionally

Table 1. Comparative studies of DNAmethylation patterns in primates.

Reference Species Methodology Tissue Highlights

Wang, J. (2012) Human, Macaque MeDIP-chip and
SEQUENOM
MassARRAY

Prefrontal cortex >100 differentially methylated regions; Validated DMRs
associated with genes with neural functions and with

schizophrenia and Alzheimer's disease

Pai, A. (2011) Human, Chimpanzee Illumina 27K array Liver, heart, and
kidney

14.5% of promoter CpG sites are differentially methylated
between tissues; 8.6% of promoter CpG sites are

differentially methylated between species; Interspecies
differences in promoter methylation underlie 12%–18% of

gene expression differences

Molaro, A.
(2011)

Human, Chimpanzee Whole-genome bisulfite
sequence

Sperm 70% of genes are hypomethylated in both chimpanzee
and human sperm; 6% and 35% of orthologous SVAs
had a methylation level below 50% in chimpanzee and

human sperm, respectively

Martin, D.I.K.
(2011)

Human, Chimpanzee,
Orangutan

MethylSeq Neutrophils 10% of CpG islands-like regions present different
methylation states between chimpanzees and humans;
Regions with differential methylation might have diverged

in gene regulatory function

Fukuda, K.
(2013)

Human, Chimpanzee MeDIP-chip
(chromosomes 21 and

22)

Peripheral blood
leukocytes

16 sDMRs between chimpanzees and humans in
chromosomes 21 and 22; Genetic changes underlying
these differences in methylation include gain/loss of
CTCF-binding sites and changes in CpG density

Hernando-
Herraez, I.
(2013)

Human, Chimpanzee,
Bonobo, Gorilla,

Orangutan

Illumina 450K array Peripheral blood ~9% of the assayed CpG sites showed significant
methylation differences between chimpanzees and

humans; 184 genes perfectly conserved at protein level
show significant epigenetic differences between

chimpanzees and humans

Hernando-
Herraez, I.
(2015)

Human, Chimpanzee,
Gorilla, Orangutan

Whole-genome bisulfite
sequence

Peripheral blood 72% of the hypomethylated regions (HMRs) were shared
among all four species; 42.6% of HMRs were on human

CpG islands; 52.6% of HMRs were on human CpG
shores

Gokhman, D.
(2014)

Neandertal, Denisovan Deamination rate as a
proxy for DNA
methylation

Femur, costae, and
tibia bones

>2,000 DMRs between archaic and present-day humans;
Substantial changes in methylation in the HOXD cluster

Fraser, H. B
(2012)

Human Illumina 27K array Lymphoblastoid cell
lines

21.4% of CpG sites differed in methylation between
populations; 5.4% of these CpG sites were strongly

associated with local SNPs

Heyn, H. 2013 Human Illumina 450K array Lymphoblastoid cell
lines

439 population-specific differentially methylated CpG
sites (pop-CpG); Significantly decreased gene

expression associated to promoter hypermethylation in
12.9% (13 out of 101) of pop-CpG; Significantly

increased gene expression associated to gene body
methylation in 23.9% (27 out of 113) of pop-CpG

doi:10.1371/journal.pgen.1005661.t001
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related to the tissue being studied but also with genes with functions specific to other tissues
and developmental time points [56,62,67]. Though it is unclear how to explain the latter obser-
vation, it could be due to vestigial regulatory elements that were functional during develop-
ment, and their methylation state has remained unaltered in adult tissues [68]. This is an
engaging interpretation, since many human-specific morphological features emerge during
early development. Indeed, developmental stages are crucial for the acquisition of human-spe-
cific traits, and species-specific differences in histone modifications have also been reported in
genes involved in developmental processes. Recent studies have shown that many genes that
have gained H3K27ac marks since the human-macaque split have important roles in limb
development or the acquisition of human-specific traits [69]. Similarly, thousands of promot-
ers and enhancers associated with genes crucial in cortical development were reported to dis-
play human-specific gains both in H3K27ac and H3K4me2 [70].

In sum, from primate epigenetic comparative studies, we have started to gain insight into
the molecular mechanisms through which evolutionary novelties may have arisen in the
human lineage. These studies suggest that epigenetic modifications in regulatory elements
could have altered expression patterns of key genes, leading to evolutionary adaptations.

Humans and Extinct Hominids
Genome sequencing of extinct hominids has provided a better understanding of the population
history and genome evolution of our species [71,72]. However, additional studies have been
limited due to the tiny amounts and degraded nature of DNA that can be extracted from
ancient bones. Recently, a novel method was developed to infer DNA methylation patterns
from the genome sequence of Neandertals and Denisovans, opening the possibility of studying
for the very first time the methylome of extinct species [73]. This method is based on the differ-
ent spontaneous deamination rates of methylated and unmethylated cytosines, and takes
advantage of the characteristic CpG-to-TpG substitution pattern of methylated cytosines that
accumulate over thousands of years of chemical degradation. Using this approach, over a thou-
sand DMRs among humans, Neandertals, and Denisovans were identified. Of particular note,
one human-specific DMR was located in theHOXD cluster, a key regulator of limb develop-
ment [74]. Whereas the HOXD9 promoter and HOXD10 gene body are hypomethylated in
humans, both archaic species were hypermethylated at this locus, while the gene body of
HOXD9 was also hypermethylated in the Denisovan genome. As a result, the authors postu-
lated that this differential methylation in the HOXD cluster could account for some of the ana-
tomical differences between archaic and present-day humans [73]. However, these results are
based on the analysis of the genome of just one individual of each species, and thus it is possible
that the observed differences could simply represent epigenetic polymorphisms. Furthermore,
to determine if these DMRs truly represent human-specific changes, the ancestral methylation
state is required. To date, this has not been feasible due to the lack of primate DNAmethylation
data from bone tissues.

Few studies have addressed DNA methylation patterns across human populations [44,75].
Fraser et al. [75] reported differences in DNA methylation near TSS between European and
African populations, although these changes were relatively small in magnitude and did not
show any apparent correlation with gene expression levels. Importantly, while over half of
these differences could be accounted for by common cis-linked genetic variants, they also
acknowledge that more complex genetic interactions and environmental factors may contrib-
ute to DNAmethylation variation. Heyn et al. [44] reported that methylation patterns charac-
teristic of three distinct human populations (Caucasian, African-American, and Han Chinese)
were able to recapitulate the demographic history of each group. Population-specific DMRs,
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besides being associated with several histone modifications and TF binding sites, were found to
occur in genes related to susceptibilities to different diseases and xenobiotic response factors.
These findings suggest that certain methylation changes might be due to local selective pres-
sures, such as geographic differences in pathogens or other environmental factors.

There is now accumulating evidence indicating the influence of different environmental fac-
tors on methylation patterns [76]. Although it is unclear the extent to which this phenomenon
occurs, it is reasonable to assume that different environments could lead to epigenetic diver-
gence. Given that it is not possible to control the environment in most studies involving non-
model organisms, the results need to be carefully interpreted: some of the observed differences
between species or populations might be due to environmental factors and not the result of
heritable regulatory changes. Further research is required to understand the crosstalk between
the genome, the epigenome, and the environment.

Inheritance of Epigenetic Variation
DNAmethylation patterns can be influenced by stochastic events or environmental factors cre-
ating a source of epigenetic variability [77,78]. Whether this variation could be passed on to
future generations has been the subject of intense research [79,80]. A major barrier for its
transmission is the robust reprogramming that resets almost all epigenetic marks both in the
germline and the zygote [81]. In plants, however, it is a relatively common phenomenon,
mainly attributed to the limited reprogramming that occurs in the germline [82–84]. On the
contrary, the inheritance of epigenetic changes in mammals is extremely rare. Nonetheless, if
some loci were to escape the DNA demethylation process, they would be good candidates for
experiencing epigenetic inheritance. Recent genome-wide studies assessing mouse and human
germ cell reprogramming have reported a few genes that avoided this erasure [85–87]. Remark-
ably, some of these genes were related to metabolic and neurological disorders [87]. Other
studies have also described cases in which transgenerational epigenetic inheritance might have
occurred [88–91]. These epigenetic alterations are unstable over time, and the phenotypic
effects disappear in a few generations. Moreover, changes in the genetic sequence are often dis-
regarded as sources of observed heritability.

The notion of transgenerational epigenetic inheritance is very appealing, particularly when
suggested that it could respond to environmental challenges [92]. In such situations, it has
been proposed that the persistence of epigenetic changes across generations could be consid-
ered adaptive and, therefore, it might impact fitness and influence species evolution [93].
Despite this provocative idea, to date there is no solid evidence to substantiate this claim, par-
ticularly in mammals, and experimental attempts have failed to prove an adaptive role of epige-
netic variation [79].

Future Directions
Our understanding of DNA methylation and evolution has substantially grown over the past
years. Nonetheless, the field of evolutionary epigenomics is still in its infancy, and several steps
are required to complete an accurate and detailed picture of the human epigenome.

Despite remarkable achievements accomplished through the parallel survey of genetic, epi-
genetic, and transcriptional information [40,94,95], a comprehensive evolutionary perspective
is required to elucidate the complexity of regulatory mechanisms and to assess the significance
of epigenetic changes. Such integrative studies will also be key to interpreting noncoding varia-
tion. Besides, many comparative studies disregard the spatial and temporal dynamics of DNA
methylation and have exclusively focused on adult organs. Notably, studying embryonic devel-
opmental stages is crucial to understanding species evolution, since many of the phenotypically

PLOSGenetics | DOI:10.1371/journal.pgen.1005661 December 10, 2015 7 / 12



relevant changes occur at these stages. The usage of bulk tissue samples, composed by multiple
and variable proportions of cell types, is also problematic. However, the recently developed sin-
gle-cell bisulfite sequencing will likely overcome this limitation [96].

Future studies also need to determine which genomic regions are more susceptible to
experiencing epigenetic changes induced by environmental factors, since such regions could
represent confounding factors when studying interspecies epigenetic differences. Studies of
methylation patterns in populations with similar genetic backgrounds but different environ-
ments would be a good starting point. On the other hand, non-CpG methylation as well as
5mC derivatives have only been recently reported, and they have not been studied in an evolu-
tionary context.

Finally, the major challenge for the next years is to move beyond mere comparative descrip-
tions and offer insight into phenotypic consequences. To that end, experimental assays are
required. In this regard, humanized mice have proved useful resources [97,98]. However, they
might not be suitable for interpreting certain phenotypes; perhaps induced pluripotent stem
cells (iPSCs) could fill this gap [99]. iPSCs can be differentiated to several cell types, providing
a system in which to investigate the phenotypic effects of interspecies differences. We foresee
an exciting decade for the field.
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