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Abstract

Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a

medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids

have attracted great interest due to their potential health benefits. However, complete infor-

mation regarding their absorption and bioavailability in Caco-2 cell model is scarce. The per-

meation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and

phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was

studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were

identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight

with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the

apparent permeability values (Papp) were determined, for the first time in the extract, for 24

compounds in both directions across cell monolayer. For some compounds, such as triter-

penoids and some flavonoids, Papp values found were reported for the first time in Caco-2

cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion

is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize

the extract resulted in reduced permeability for most compounds. Finally, the biopharma-

ceutical classification (BCS) of all the compounds was achieved according to their perme-

ability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE

compounds could be classified as classes III and IV (low permeability); therefore, RE itself

should also be classified into this category.
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Álvarez I, Ibáñez E, et al. (2017) Evaluation of the

intestinal permeability of rosemary (Rosmarinus

officinalis L.) extract polyphenols and terpenoids in

Caco-2 cell monolayers. PLoS ONE 12(2):

e0172063. doi:10.1371/journal.pone.0172063

Editor: Miguel Angel Medina, Universidad de

Malaga, SPAIN

Received: October 19, 2016

Accepted: January 30, 2017

Published: February 24, 2017
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Introduction

Rosemary (Rosmarinus officinalis L.) is a shrub from the Labiatae (Lamiaceae) family that is

primarily distributed throughout the Mediterranean area. It has been demonstrated that rose-

mary and its major compounds, the diterpenes carnosic acid (CA) and carnosol (CAR) and

the caffeoyl derivative rosmarinic acid, exert various beneficial effects on health, including

potent antioxidant capacity [1, 2] and hepaprotective [3], antimicrobial [4, 5], anti-inflamma-

tory [6, 7], anti-cancer [8–13] and antidiabetic effects [14].

We have previously reported the antiproliferative effects of a polyphenol-enriched rose-

mary extract (RE) obtained via supercritical extraction in several colon cancer cell models

[13]. Transcriptomic and metabolomic analysis suggested that the extract activated genes

related to antioxidant phase II enzymes and cell cycle progression [12]. This result was consis-

tent with the activation of nuclear receptor factor 2 (NRF2)-dependent pathways, ROS and

glutathione metabolism by CA as determined using a comprehensive Foodomics approach

[11]. However, bioguided purification of the extract revealed potential synergistic antiproli-

ferative effects between diterpenes and triterpenes [13].

The rosemary polyphenols (di- and triterpenes) are considered promising drug candi-

dates in the pharmaceutical, cosmetic, and nutritional fields. However, these compounds

exhibit physicochemical characteristics that result in unfavorable transcellular transport

across epithelial barriers. Several attempts have been made to evaluate the absorption of

the active compounds from rosemary extract in cell and animal models. The bioavailability

of major diterpenoids derived from rosemary extract in different tissues in a rat model of

obesity has been reported [15]. Moreover, the absorption, distribution and elimination of

carnosic acid have been evaluated in rats [16]. However, complete information regarding

the absorption and bioavailability of a full range of rosemary bioactive compounds (flavo-

noids, diterpenes and triterpenes) in Caco-2 cell monolayers is not available. Studies

examining the permeation of carnosic acid and carnosol in Caco-2 cells are present in the

literature, but permeation was either insufficiently characterized [17] or was found to be

almost negligible [18]. In addition, no comparative data regarding the permeation and

potential absorption mechanisms of all compounds present in rosemary extract have been

generated so far.

Liposomes have been utilized to improve solubility and selectivity and to improve bio-

availability of poorly soluble drugs by modifying drug absorption, reducing metabolism,

prolonging biological half-life or reducing toxicity. Phospholipid bilayers of liposomes are

very similar to the structure of cell membranes; therefore, liposomes can deliver encapsu-

lated drugs, peptides and natural compounds by fusing with target cell membranes, and

their specificity can be improved by antibody coupling [19–22]. Several plant polyphenols

and bioactive compounds, such as catechins [23], anthraquinones [24], phenylpropanoids

[25], and diterpenes [1], have been shown to possess the capacity to interact with phospho-

lipid membranes.

In the present paper, a Caco-2 cell monolayer model, which is a well-accepted model of

human intestinal absorption [26], was used to comprehensively study and compare the perme-

ation properties of different bioactive compounds (flavonoids, diterpenes, triterpenes and phe-

nylpropanoids) identified in a rosemary extract (RE) by HPLC-ESI-QTOF-MS and obtained

via supercritical fluid extraction [27]. The permeation behaviors of the compounds were com-

pared when the extract was in a free form or encapsulated into liposomes. Moreover, all com-

pounds were biopharmaceutically classified based on their permeability and solubility data for

bioequivalence purposes.
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Materials and methods

Chemicals and cell culture materials

All chemicals were of analytical reagent grade and were used as received. For mobile phase

preparation, formic acid and acetonitrile were purchased from Sigma-Aldrich (Steinheim,

Germany) and Fisher Scientific (Madrid, Spain), respectively. Water was purified using a

Milli-Q system from Millipore (Bedford, MA, USA). The standard compounds ursolic acid,

rosmarinic acid, genkwanin, diosmetin and luteolin were obtained from Extrasynthese

(Genay, France). Carnosol, carnosic acid and apigenin were obtained from Fluka, Sigma-

Aldrich (Steinheim, Germany). Egg yolk phosphatidylcholine was purchased from Lipoid

GmbH (Ludwigshafen, Germany), and cholesterol was obtained from Avanti Polar Lipids

(Alabaster, AL, USA). Methanol and dimethyl sulfoxide (DMSO) from Fisher Scientific

(Madrid, Spain) were used to prepare the stock solutions utilized for quantitation purposes.

Hank´s balanced culture medium (HBSS), Dulbecco´s Modified Eagle’s Medium (DMEM),

fetal bovine serum (FBS), 100 U/mL penicillin/streptomycin, MEM Non-Essential Amino

Acids Solution (100x) and 1 M HEPES were obtained from Gibco/Thermo Fisher Scientific

(Waltham, MA, USA). The human colon adenocarcinoma cell line Caco-2 was obtained from

the American Type Culture Collection. Caco-2 cells were cultured in DMEM containing D-

glucose (4.5 g/L) and supplemented with 10% FBS, 1% NEAA, 1% HEPES, penicillin (100 U/

mL) and streptomycin (100 μg/mL) at 37˚C in a humidified atmosphere with 5% CO2.

Cell viability assay

The cytotoxic effects of free and encapsulated RE extract on Caco-2 cells were tested using the

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Caco-2 cells were

plated in 96-well plates (Costar, Fisher Scientific, Pittsburgh, PA, USA) until cell monolayers

were obtained. Then, the medium was aspirated, and cells were treated with different concen-

trations of RE for 2 h. The medium was removed, and cells were washed with PBS and incu-

bated with MTT for 3–4 h at 37˚C and 5% CO2. The medium was removed, and 100 μL of

DMSO per well was added to dissolve the formazan crystals. The plates were shaken for 15

min, and absorbance was measured using a microplate reader (SPECTROstar Omega, BMG

LabTech GmbH, Germany) at 570 nm.

Caco-2 monolayer transport studies

Caco-2 cells are a well-established in vitro model for the investigation of intestinal permeabili-

ties of different compounds or drugs [28–30]. Cells were seeded at a density of 5.0 x 105 cells

on 6-well transwell polycarbonate filters (Millipore, Spain). Cell culture was maintained at

37˚C under 90% humidity and 5% CO2. The medium was replaced every 2–3 days for both the

apical (AP) and basal (BL) sides of the transwell filters. Cell monolayers were used 19–21 days

after seeding, once confluence and differentiation were achieved. The integrity of each cell

monolayer was checked by measuring the trans-epithelial electrical resistance (TEER) before

and after the experiments with an epithelial voltohmmeter (Millicell-ERS1) (see results on S3

Table). Permeability studies were performed by adding the RE at a concentration of 200 μg/

mL or the liposomal RE formulation.

The liposomal formulation was prepared using the conventional thin film hydration tech-

nique. Egg yolk phosphatidylcholine and cholesterol (80:20 w/w) and 10% (w/w) RE with

respect to total phospholipids were dissolved in a 1:1 mixture of chloroform/methanol. A lipid

film was obtained by evaporating the organic solvent under a stream of nitrogen (N2) and then

further vacuum-dried for 3–4 h to remove any residual organic solvent. The film was hydrated
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with HEPES buffer (100 mM NaCl, 0.1 mM EDTA, 10 mM HEPES, pH 7.4) via vigorous vor-

texing for 30 min at 37˚C. The multilamellar liposomal suspension was filter-extruded through

a 100-nm polycarbonate Track-Etch Nuclepore membrane (Whatman, UK) to obtain large

unilamellar vesicles (LUVs). Size reduction was carried out with 15 extrusion cycles performed

by hand with a LiposofastTM syringe extruder (Avestin Inc., Canada). The resulting suspen-

sion was centrifuged at 4,000 rpm for 30 min (2 cycle) using an Amicon1 Ultra (Millipore,

Hayward, CA, USA) to separate the liposomes from non-encapsulated drug. The liposomal

suspension was diluted to a concentration of 1.5 mM with HBSS for absorption experiments

in the receiving chamber.

The transport experiment was initiated by removing the culture medium from the AP and

BL sides of the transwell filters. The Caco-2 monolayers were rinsed twice with pre-warmed

HBSS medium (pH 7.4) and incubated with the same solution at 37˚C for 30 min. The test

compounds were added to the AP (2.2 mL) or BL side (3.2 mL), while the receiving chamber

contained the corresponding volume of HBSS. Incubation was performed at 37˚C for 120 min,

with shaking at 50 rpm.

To follow transport across the cell monolayer, several culture medium samples of 0.2 mL

were collected at different time points (0, 30, 60, 90 and 120 min) from the AP or BL sides dur-

ing the permeability assay. The volume of the samples taken at each time point was replaced

with the same volume of HBSS to maintain the total volume in the chamber throughout the

experiment.

Before HPLC-ESI-QTOF-MS analysis, samples were centrifuged for 15 min at 12,000 rpm

and 4˚C. The supernatant was spiked with 5 μg/mL of an internal standard (luteolin) to ensure

the reproducibility of the results between analyses, and samples were stored at -80˚C until

analysis was complete. At the end of the transport study, the Caco-2 cell monolayers were also

collected, and the cells were lysed with 3 subsequent freeze-thaw cycles (10 min each) followed

by bath sonication. The samples were centrifuged for 15 min at 14,000 rpm and 4˚C, and the

supernatants (cytoplasmic fraction) and the pellets (cell membranes) were spiked with 5 μg/

mL luteolin as an internal standard. Then, the samples were subjected to protein precipitation

using methanol, vortex-mixed, maintained at -20˚C for 2 h and centrifuged at 12,000 rpm for

15 min at 4˚C. Finally, the supernatants were evaporated in a vacuum concentrator, re-dis-

solved in 100 μL of HBSS culture medium and stored at -80˚C until analysis was performed.

Apparent permeability values (Papp) for each compound were calculated according to the

following equation:

Papp ¼
dQ
dt
�

1

A � Co � 60

where Papp is the apparent permeability (cm/s), dQ/dt is the steady state flux, A is the diffusion

area of the monolayers (cm2), C0 is the initial concentration of the drug in the donor compart-

ment (μM) and 60 is a conversion factor [31].

Analytical methodology

HPLC analyses were performed on an Agilent 1260 HPLC instrument (Agilent Technologies,

Palo Alto, CA, USA) equipped with a binary pump, an online degasser, an auto-sampler, a

thermostatically controlled column compartment, and diode array detectors. The samples

were separated on an Agilent Zorbax Eclipse Plus C18 column (1.8 μm, 4.6 × 150 mm). The

mobile phases consisted of water plus 0.1% formic acid as mobile phase A and acetonitrile as

mobile phase B, using a gradient elution based on the following profile: 0 min, 5% B; 5 min,

62% B; 10 min, 68% B; 19 min, 80% B; 34 min, 95% B; 37 min, 5% B and finally a conditioning
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cycle of 5 min under the initial conditions before the next analysis. The flow rate was 0.8 mL/

min, the column temperature set at 25˚C and the auto-sampler compartment was refrigerated

at 4˚C to avoid sample degradation.

Detection was performed using an Agilent 6540 Ultra High Definition (UHD) Accurate-

Mass Q-TOF mass spectrometer equipped with a Jet Stream dual ESI interface, which increases

LC/MS sensitivity by improving the spatial focusing of electrospray droplets. Mass spectra were

recorded in negative ionization mode over a mass range from 100–1700 m/z. Ultrahigh pure

nitrogen was used as the drying and nebulizing gas. The operating parameters were as follows:

drying gas flow rate, 10 L/min; drying gas temperature, 325˚C; sheath gas temperature, 400˚C;

sheath gas flow, 12 L/min; nebulizer, 20 psig; capillary, 4000 V; fragmentor, 130 V, nozzle volt-

age, 500 V; skimmer, 45 V and octopole 1 RF Vpp, 750 V. Continuous infusion of the reference

ions m/z 112.985587 (trifluoroacetate anion) and 1033.988109 (adduct of hexakis (1H,1H, 3H-

tetrafluoropropoxy) phosphazine or HP-921) in negative ion mode were used to correct each

spectrum to achieve accurate mass measurements, typically better than 2 ppm. All operations,

acquisition and analysis of data were controlled using Masshunter workstation software version

B.06.00 (Agilent Technologies, USA).

Statistical analysis

Two-way ANOVA and statistical comparisons of the different treatments were performed

using Tukey´s post-test in GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA,

USA). Differences were considered statistically significant at p< 0.05. Statistical significance is

detailed in figures using the following symbols: � p<0.05, �� p<0.01 and ��� p<0.001.

Results and discussion

We recently reported the composition of the rosemary leaf extract (RE) under study as deter-

mined by HPLC-ESI-QTOF-MS analysis [13]. In that study, bioguided purification of the

most active fractions was undertaken to identify the compounds bearing the highest antiproli-

ferative capacities in a colon cancer cell model. The aim of the present study was to compare

the intestinal absorption and permeability behavior of all compounds in the RE, both when the

extract was in a free or in an encapsulated formulation, using the Caco-2 model system. To

achieve this, the quantitation of bioactive compounds and absorption results will be discussed

by grouping the different bioactive compounds into families (flavonoids, diterpenes, triter-

penes and phenylpropanoid derivatives).

HPLC ESI-UHD-Qq-TOF-MS analysis

For quantitative purposes, six standard calibration graphs were prepared using HBSS culture

medium to quantify the major compounds in the rosemary extract using the following com-

mercial standards: carnosol, carnosic acid, ursolic acid, rosmarinic acid, genkwanin, and

diosmetin.

Variability of peak area produced by mass data change over time may be a limitation for

quantification by mass spectrometry, depending on the instrument. Thus, an internal standard

(luteolin) was used at a concentration of 5 μg/mL to improve reproducibility. This compound

met all requirements in terms of structural similarity compared with the analytes, retention

time (which did not interfere with other compounds) and compensation for potential varia-

tions in instrumental analysis. Moreover, to avoid ion suppression or signal enhancement of

signals due to interference derived from the matrix, the calibration solutions were prepared in

HBSS culture medium, which was the same matrix containing the samples in the permeability

assay. Therefore, compound concentrations were determined using the corrected area for each
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individual compound (three replicates) and by interpolating the corresponding calibration

curve. The limit of detection (LOD) ranged from 0.0008 ± 0.0002 (diosmetin) to 0.04 ± 0.01

(ursolic acid) μg/mL. The limit of quantification (LOQ) ranged from 0.003 ± 0.001 (diosmetin)

to 0.14 ± 0.03 (ursolic acid) μg/mL.

Quantification was performed using available commercial standards for carnosol, diosme-

tin, apigenin, genkwanin and carnosic, ursolic and rosmarinic acids. Compounds that had no

commercially available standards were tentatively quantified on the basis of calibration curves

for other compounds with similar structures. Thus, rosmanol, its isomers epiisorosmanol and

epirosmanol, miltipolone, rosmadial and rosmaridiphenol were quantified with the carnosol

standard. Hinokione and 12-methoxycarnosic acid were expressed as carnosic acid. The urso-

lic acid calibration curve was used to quantify augustic, benthamic, micromeric and betulinic

acids, in addition to anemosapogenin. Finally, the genkwanin standard was used for cirsimari-

tin quantification; [9]-shogaol was expressed as rosmarinic acid, and diosmetin was used to

estimate the hispidulin content.

Determination of Papp values

After quantifying the concentrations of all identified compounds in samples derived from the

apical and basolateral compartments, as described in the previous section, concentration val-

ues were used to obtain Papp values based on the formula described in the Materials section.

Values are shown in Table 1 for both the AB and BA directions and for free and encapsulated

formulations. Some compounds could not be quantified because their concentrations fell

below LOQ values, sometimes for both directions or formulations (free or encapsulated) and

occasionally for one of these. Detailed explanations for clustering compounds in families are

provided in the following sections.

Flavonoids and phenylpropanoid derivatives. The phenylpropanoid derivative (9)-sho-

gaol (a gingerol-like compound) and its isomer (Fig 1D) were present in all the samples but

were below their respective LOQs; thus, no conclusions could be drawn for these compounds.

A deeper analysis of the samples revealed that both compounds were partly retained by Caco-2

cells without any transport to the receptor chamber because amounts of these compounds

below their LOQs were also detected in the cytoplasmic fractions of Caco-2 cells, as previously

reported for (6)-shogaol [32].

Despite the fact that flavonoids were less frequently represented in the extract based on our

previous quantitative characterization [13], their potential absorption and biological activity

are worthy of analysis. Flavonoids present in the RE were apigenin, hispidulin, diosmetin, gen-

kwanin and cirsimaritin (Fig 1A). Conclusions regarding apigenin in the context of the whole

extract could not be reached because the concentration fell below its LOQ. However, several

studies have reported apigenin absorption in the Caco-2 cell model [33–37]. For the other four

flavonoids, no permeation was detected in either of the directions when the RE sample was

encapsulated into liposomes. However, significant permeation was detected for the RE in its

free form in both the AB and BA directions. The highest values for AB were obtained for cirsi-

maritin and genkwanin, with no significant differences between them (p>0.05); this is the first

report of cirsimaritin and genkwanin values in Caco-2 cells. Diosmetin and hispidulin exhib-

ited lower permeation values that demonstrated statistically significant differences compared

to cirsimaritin (p<0.001 and 0.01, respectively), but there was no difference between them

(p>0.05). Higher values than those observed in our study have been reported for pure diosmetin

in both flux directions [38], but it must be noted that competition with other polyphenols and

terpenoids may take place in the whole extract. Absorption values for hispidulin and apigenin

in the whole extract were in agreement with those reported for the pure compounds [39, 40].
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Regarding the basal-apical direction, cirsimaritin, genkwanin and hispidulin demonstrated simi-

lar permeation values with no significant differences between them (p>0.05), followed by dios-

metin, which had the lowest value (p<0.001).

Based on our results, we can conclude that rosemary flavonoids did not exhibit differences

when comparing the two flux directions (AB and BA) for the free-form extract, which suggests

a passive diffusion transport mechanism. No transport at all was observed when these com-

pounds were incorporated into liposomes.

Diterpenoids. Diterpenoids (10.87% w/w of the extract) together with triterpenoids con-

stitute the major group of compounds in the extract and comprise up to 10 compounds (Fig

1B and Table 1) [13]. The diterpenoids present in the RE were carnosic acid, carnosol, rosma-

nol and its isomers (epiisorosmanol and epirosmanol), 12-methoxycarnosic acid, rosmadial,

rosmaridiphenol, hinokione and miltipolone.

Among all the diterpenes and the non-encapsulated RE, the highest permeability in the AB

direction was obtained for carnosic acid (with p<0.001), followed by epirosmanol and rosma-

nol, which did not demonstrate statistically significant differences between them (p>0.05). A

carnosol isomer, rosmadial, 12-methoxy carnosic acid, miltipolone and carnosol exhibited

Table 1. Papp values.

Non encapsulated RE Encapsulated RE

AB direction BA direction AB direction BA direction

Compound Family Papp SD Papp SD Papp SD Papp SD

Apigenin Flavonoid N.C. N.C. N.C. N.C.

Cirsimaritin Flavonoid 3.33E-05 1.17E-06 3.07E-05 6.29E-06 N.A. N.A. N.A. N.A.

Diosmetin Flavonoid 2.50E-06 N.E. 4.13E-06 1.38E-06 N.A. N.A. N.A. N.A.

Hispidulin Flavonoid 9.05E-06 3.04E-06 1.31E-05 9.60E-07 N.A. N.A. N.A. N.A.

Genkwanin Flavonoid 1.49E-05 2.47E-06 1.62E-05 3.42E-06 N.A. N.A. N.A. N.A.

Carnosol Diterpene 1.46E-05 2.10E-06 1.35E-05 5.15E-06 4.03E-08 3.18E-08 2.61E-07 2.72E-08

Carnosol isomer Diterpene 2.15E-05 3.30E-06 2.13E-05 5.73E-06 4.03E-08 3.18E-08 4.03E-08 3.18E-08

Carnosic acid Diterpene 1.27E-04 1.55E-05 9.04E-05 1.09E-05 N.A. N.A. N.A. N.A.

12-Methoxycarnosic acid Diterpene 1.85E-05 4.04E-06 2.77E-05 5.12E-06 N.A. N.A. N.A. N.A.

Rosmadial Diterpene 1.90E-05 2.84E-06 1.59E-05 1.20E-06 2.67E-06 6.43E-07 1.24E-05 9.19E-07

Rosmanol Diterpene 4.59E-05 7.48E-06 4.42E-05 3.53E-06 2.91E-05 9.45E-06 3.33E-05 N.C.

Epirosmanol Diterpene 5.51E-05 2.79E-05 1.21E-05 7.90E-06 1.92E-06 4.17E-07 2.63E-06 6.02E-07

Epiisorosmanol Diterpene 1.04E-04 1.79E-05 9.23E-06 6.55E-06 8.18E-06 3.02E-06 1.30E-05 3.52E-06

Miltipolone Diterpene 1.76E-05 1.97E-06 N.A. N.A. N.A. N.A. 1.68E-07 8.91E-08

Hinokione Diterpene N.A. N.A. 1.36E-05 1.22E-06 N.A. N.A. N.A. N.A.

Rosmaridiphenol Diterpene 2.43E-06 6.44E-07 2.68E-06 1.28E-06 N.A. N.A. N.A. N.A.

Augustic acid Triterpene 7.35E-06 3.64E-06 7.93E-06 4.12E-06 N.A. N.A. N.A. N.A.

Betulinic acid Triterpene 0.00E+00 0.00E+00 6.30E-06 5.66E-07 N.A. N.A. N.A. N.A.

Anemosapogenin Triterpene 3.27E-06 1.79E-06 6.17E-06 2.99E-06 N.A. N.A. N.A. N.A.

Micromeric acid Triterpene 7.20E-06 2.26E-06 2.45E-06 1.63E-06 N.A. N.A. N.A. N.A.

Benthamic acid Triterpene 5.20E-06 2.40E-06 7.03E-06 3.25E-06 N.A. N.A. N.A. N.A.

Ursolic acid Triterpene 0.00E+00 0.00E+00 7.20E-06 2.26E-06 N.A. N.A. N.A. N.A.

(9)-Shogaol Phenylpropanoid N.C. N.C. N.C. N.C.

(9)-Shogaol Isomer Phenylpropanoid N.C. N.C. N.C. N.C.

Papp values in cm/s for all the compounds quantitated in the free and encapsulated formulations of RE in both AB and BA directions. Values represent the

mean of six independent replicates ± standard deviation (SD). N.C., non-calculated (see text for further explanations). N.E., no error was obtained as only

one of the replicates was used as the other presented values below LOQ. N.A. indicates Papp = 0 (non-absorbed).

doi:10.1371/journal.pone.0172063.t001
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Papp values ranging from 2.1 to 1.46E-05. In contrast, the diterpenoid rosmaridiphenol dem-

onstrated lower absorption (Papp in the E-06 range), while hinokione showed no absorption.

For the BA direction, the highest permeability value was obtained for carnosic acid (p<0.001)

followed by the rest of the compounds, with no relevant differences between them (p>0.05)

with the exception of miltipolone, which was not absorbed.

In general, absorption values of the compounds were lower for the encapsulated form than

for the free extract. When absorption for the encapsulated form in the AB direction was stud-

ied, rosmanol demonstrated the highest permeability followed by epiisorosmanol, rosmadial

and epirosmanol. The encapsulated formulation dramatically decreased the permeability for

epirosmanol, epiisorosmanol (both at p<0.001) and rosmanol (p<0.05) in the AB direction,

with no changes in the BA direction compared with the free formulation. As there is no differ-

ence in polarity between these compounds (see Log P in Table 2), it can be assumed that the

few differences in their structures must be crucial for their absorption. Both isomers of carno-

sol showed significantly lower absorption values than those previously reported. The rest of

the compounds showed no absorption in the encapsulated extract (12-methoxy carnosic acid,

carnosic acid, rosmaridiphenol, miltipolone and hinokione). For the BA direction, identical

behavior for the abovementioned compounds was observed.

It can be concluded that among all the diterpenes, rosmanol and its isomers epiisorosmanol

and epirosmanol exhibited the highest permeabilities for both formulations, particularly in the

AB direction. Rosmadial and rosmanol demonstrated similar absorption values when the free

Fig 1. Chemical structures of all the compounds identified in RE. A: Flavonoids, B: diterpenes, C: triterpenes, D: phenylpropanoid

derivatives.

doi:10.1371/journal.pone.0172063.g001
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Table 2. Chemical family, physicochemical and permeation data and BCS classification.

Compound Family D (M) S (mg/mL) Vs D0 Solubility Log P Permeability BCS Class

Based on Log P Based on Log P

Based on Papp Based on Papp

Apigenin Flavonoid 3.70E-02 4.47E-03 8.28 3.31E-02 High 1.90 Low III

N.C. N.C.

Cirsimaritin Flavonoid 3.18E-02 2.57E-04 123.79 4.95E-01 High 2.04 Low III

Low III

Diosmetin Flavonoid 3.33E-02 4.27E-03 7.81 3.12E-02 High 1.78 Low III

Low III

Hispidulin Flavonoid 3.33E-02 1.58E-03 21.01 8.41E-02 High 1.78 Low III

Low III

Genkwanin Flavonoid 3.52E-02 4.17E-04 84.39 3.38E-01 High 2.17 Low III

Low III

Carnosol Diterpene 3.03E-02 2.57E-05 1177.43 4.71 Low 4.58 High II

Low IV

Carnosol Isomer Diterpene 3.03E-02 2.57E-05 1177.43 4.71 Low 4.58 High II

Low IV

Carnosic acid Diterpene 3.01E-02 1.51E-02 1.99 7.95E-03 High 5.14 High I

Low III

12-methoxycarnosic acid Diterpene 2.89E-02 5.50E-03 5.25 2.10E-02 High 5.4 High I

Low III

Rosmadial Diterpene 2.90E-02 9.12E-05 318.37 1.27 Low 3.74 High II

Low IV

Rosmanol Diterpene 2.89E-02 5.75E-05 501.65 2.01 Low 3.70 High II

Low IV

Epirosmanol Diterpene 2.89E-02 5.75E-05 501.65 2.01 Low 3.70 High II

Low IV

Epiisorosmanol Diterpene 2.89E-02 5.75E-05 501.65 2.01 Low 3.70 High II

High II

Miltipolone Diterpene 3.33E-02 3.55E-05 938.23 3.75 Low 1.02 Low IV

Low IV

Hinokione Diterpene 3.33E-02 2.19E-05 1521.42 6.09 Low 5.85 High II

N.C. N.C.

Rosmaridiphenol Diterpene 3.16E-02 1.55E-06 20404.08 81.62 Low 4.89 High II

Low IV

Augustic acid Triterpene 2.11E-02 1.15E-04 184.25 7.37E-01 High 6.52 High I

Low III

Betulinic acid Triterpene 2.19E-02 2.04E-05 1072.43 4.29 Low 7.38 High II

N.C. N.C.

Anemosapogenin Triterpene 2.12E-02 1.20E-04 175.96 7.04E-01 High 6.32 High I

Low III

Micromeric acid Triterpene 2.20E-02 1.23E-04 178.77 7.15E-01 High 6.91 High I

Low III

Benthamic acid Triterpene 2.12E-02 5.89E-04 35.93 1.44E-01 High 6.13 High I

Low III

Ursolic acid Triterpene 2.19E-02 1.51E-05 1446.66 5.79 Low 7.33 High II

N.C. N.C.

(Continued )
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and encapsulated formulations were compared. In contrast, epirosmanol and epiisorosmanol

showed higher absorption values in the AB direction when encapsulated (p<0.001 for both).

Finally, miltipolone exhibited interesting behavior: no absorption was observed in the BA

direction for the free formulation, whereas no absorption was observed in the opposite direc-

tion (AB) for the encapsulated form.

Interestingly, certain facts should be noted for individual compounds. Diterpenoids, such as

carnosol and its isomer, demonstrated less absorption when encapsulated, regardless of the

direction analyzed. In the case of both carnosol isomers, the Papp values for the AB direction and

for the BA direction were significantly higher for the free formulation (carnosol (p<0.01) and

carnosol isomer (p<0.001)) than for the encapsulated formulation. The carnosol isomer exhib-

ited a higher Papp value than carnosol in the free formulation (both directions), but no significant

differences were observed for these compounds when the AB and BA directions were compared

(p>0.05). For the encapsulated extract, no significant differences were observed between the iso-

mers in the AB direction, but carnosol demonstrated a higher permeability than its isomer in the

BA direction. These results contradict the generally accepted notion that hydrophobic diterpenes

are better absorbed when encapsulated into phospholipid vesicles and thus may deserve further

study.

Another interesting issue is related to the influence of certain moieties present in the com-

pounds on absorption behavior. For carnosic and 12-methoxycarnosic acids, Papp values could

be obtained only for the free formulation. Permeation in the AB direction was higher than in

the BA direction for both compounds, but only for carnosic acid was statistically significant

(p< 0.001). The presence of the methoxy moiety increases the permeability by almost one

order of magnitude in the AB direction but reduces the permeability in the opposite direction.

This result indicates that the increase in hydrophobicity attributable to the methoxy group

increases absorption and concomitantly enhances retention once the compound is absorbed

by reducing BA permeability. However, further studies should be undertaken to elucidate the

absorption mechanism.

Considering previous data reported in the literature, it appears that the absorption observed

in the present work for most of the compounds was higher than absorption values previously

reported. For example, the absorption of carnosic acid and carnosol has previously been stud-

ied in a Caco-2 cell model, but no permeation was observed in certain cases [18], or longer

periods of time were required to achieve permeation into the basolateral chamber [17]. No

information regarding the other diterpenoids is available in the literature, either for individual

compounds or complex mixtures or extracts.

Table 2. (Continued)

Compound Family D (M) S (mg/mL) Vs D0 Solubility Log P Permeability BCS Class

Based on Log P Based on Log P

Based on Papp Based on Papp

[9]-Shogaol Phenylpropanoid 3.14E-02 1.29E-06 24375.88 97.50 Low 5.26 High II

N.C. N.C.

[9]-Shogaol Isomer Phenylpropanoid 3.14E-02 1.29E-06 24375.88 97.50 Low 5.26 High II

N.C. N.C.

Chemical family, physicochemical and permeation data and BCS classification for all the compounds of RE studied in the absorption assay in the free form

and considering 10 mg dose scenario.

doi:10.1371/journal.pone.0172063.t002
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Triterpenoids. Triterpenoids were the most abundant family in the rosemary extract

(12.16% w/w) according to our previous analysis [13] and comprised six compounds (Fig 1C):

augustic, betulinic, micromeric, benthamic and ursolic acids and anemosapogenin.

No absorption data for the triterpenoids could be determined based on the concentrations

of the compounds in the basolateral and apical chambers when the extract was applied in the

encapsulated formulation (Table 1). Augustic acid and anemosapogenin were detected only in

the donor chamber but at levels below their LOQs. A similar result was obtained for ursolic,

micromeric and benthamic acids; however, their concentrations could be measured in the

donor chamber because they surpassed LOQs. Betulinic acid was detected both in the donor

chamber and also inside the cells but was not detected in the receptor chamber. These data

indicate that none of the triterpenoids are absorbed from the encapsulated formulation, inde-

pendent of their chemical structure. It is likely that the high hydrophobicities of these com-

pounds, which demonstrate high Log P values (Table 2), favor their retention in phospholipid

vesicles or their association with the plasmatic membrane and other lipophilic structures

inside cells.

In contrast, all triterpenoids were absorbed with low Papp values in the free formulation,

although important differences were observed (Table 1). Ursolic acid, which showed a Papp val-

ues similar to that one previously reported [41]and betulinic acid were not absorbed in the AB

direction and were partly retained by the Caco-2 cells. The other four triterpenoids were

absorbed in the AB direction, with no significant differences (p>0.05) between them. All six

triterpenoids were absorbed in the BA direction, also with low Papp values and with no signifi-

cant differences between them (p>0.05). This indicates that the slight differences between the

chemical structures of these compounds do not result in different absorption behaviors. As

mentioned for the diterpenoids, encapsulation into phospholipid vesicles did not appear to be

a good approach to increase triterpenoid bioavailability. As with most of the diterpenoids ana-

lyzed in the previous section, data regarding the absorption of rosemary triterpenoids are pre-

sented in this study for the first time.

The absorption of natural polyphenols has been widely studied in the Caco-2 model [36–

38, 42–44]. However, scant information regarding the absorption of these compounds is avail-

able for complex mixtures such as botanical extracts. In some absorption studies, no identifica-

tion of rosemary compounds was performed, and only total polyphenolic content was

determined [42]. Other studies have reported the permeabilities of only a few compounds

within a studied extract, employing a semiquantitative approach [17, 18, 44]. In the present

study, the permeabilities of all compounds identified in the rosemary extract via HPLC

ESI-UHD-Qq-TOF-MS analysis were studied in both the AB and BA directions and, addition-

ally, were compared with an encapsulated formulation of the extract. Given that the absorp-

tions of all compounds were analyzed in the context of the whole RE, several mechanisms of

interaction, such as competition and inhibition of potentiation, between compounds may

occur, particularly between compounds sharing similar chemical structures. The analyses per-

formed in this study indicate that the permeabilities of complex botanical extracts can be fully

analyzed by employing high sensitivity mass spectrometry and improved purification

techniques.

Our results indicate that most compounds are scarcely absorbed, and passive diffusion is

suggested to be the major mechanism of absorption for most compounds, as the AB and BA

directions both yielded similar results. Further mechanistic studies must be carried out to elu-

cidate this mechanism. In contrast, we confirmed that contrary to previous observations for

other compounds, the use of liposomes to encapsulate RE compounds is not a good approach

to improve their permeability because Papp values were reduced or negligible for the majority

of the compounds. According to Fick’s Law, absorption depends on the permeability/diffusion
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constant and concentration of the compound. If the solubility of a compound demonstrating

low absorption is increased due to encapsulation into liposomes and its concentration is

enhanced in the donor chamber, an increase in the absorption may occur to compensate for

its reduced absorption, as reported for other hydrophobic natural compounds [45]. This does

not appear to be the case for the diterpenoids and triterpenoids in RE, but further studies must

be carried out to clarify these observations.

Biopharmaceutical classification

The Biopharmaceutical Classification System (BCS) was developed by Amidon and coworkers

twenty years ago to classify drugs for a waiver of in vivo bioequivalence studies [46]. This sys-

tem classifies drugs into four categories based on their intestinal permeability and solubility

(see S1 Table), and currently this system is accepted worldwide by researchers and governmen-

tal institutions such as the FDA and EMA. In addition to its regulatory use, BCS is a tool for

drug development because it helps identify the limiting factors in the absorption process [47].

In this work, the 24 compounds identified from RE were classified individually according to

this system to obtain relevant information regarding their absorbed oral fraction. For this pur-

pose, only data derived from the free extract permeation were used.

Permeability values. Log P values were obtained for all compounds using ChemDraw

software1 Ultra version 8.0 (CambridgeSoft Corp. USA) and are shown in Table 2. The Log P

value is a widely accepted parameter to express the lipophilicities of biological drugs in medici-

nal and agro chemistry. According to BCS, compounds are divided into high permeability

(Class I: high permeability, high solubility; Class II: high permeability, low solubility) or low

permeability (Class III: low permeability, high solubility; Class IV: low permeability, low solu-

bility) categories by comparing with the Log P value (2.18) of the standard metoprolol, which

is the reference compound employed for this purpose [48, 49]. Based on this parameter, the

permeabilities of all compounds derived from RE were tabulated as high or low (Table 2).

Moreover, the Papp value of this reference drug (0.6 x 10−4 cm/s) was also available, which

allowed us to establish another classification for the permeabilities of RE compounds based on

this parameter, using the Papp values of the compounds obtained in the AB direction only for

the free formulations (Table 2). Therefore, the Log P and Papp values were used in Table 2 to

classify compounds as high- or low-solubility drugs for permeability, providing two different

classifications based on the partition coefficient and the intestinal permeability.

Solubility values

Together with permeability, water solubility is another parameter that is required to classify

drugs or compounds according BCS. For this purpose, the dose number value, D0, must be

obtained from the following equation:

D0 ¼
maximum administered dose

Sw � 250

where Sw is the minimum solubility of each compound in water (in the pH range from 1.2 to

6.8) and the 250 value indicates the volume of a glass of water. A value of D0� 1 indicates that

the maximum administered dose can be dissolved in a glass of water; thus, the compound is

classified as a high-solubility drug. Unfortunately, natural compounds such as polyphenols

and terpenoids exhibit poor solubility. No experimental data regarding the solubilities of the

24 compounds identified from RE in this study are available. This problem was overcome

using Marvin Suite software (version 16.1.11.0, ChemAxon Ltd.), which provides several
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physicochemical properties, including a prediction of water solubility (Sw). Table 2 includes

the Sw values for all 24 compounds.

As no information was available regarding the maximum doses of these compounds, two

putative scenarios were selected to simulate a high-activity drug, dosed as a 10-mg tablet, or a

low-activity drug, dosed as a 100-mg tablet. Table 2 shows the results for the high-activity drug

(10-mg dose), and S2 Table includes results from the second option (100-mg dose). In the

present study, all compounds were classified for BCS by considering the experimental data for

absorption (Papp) and the calculated Log P value (Table 2). According to the Log P value, most

compounds belong to the high-permeability classes (I and II), with class II being the most

numerous (Fig 2A), except in the case of the flavonoids. However, when experimental Papp val-

ues were used for classification, the results changed dramatically, and low-permeability classes

(III and IV) became the most abundant (Fig 2B). This classification was nearly independent of

the solubility scenario and considered dose (compare Fig 2 and S1 Fig). Moreover, the different

families of compounds also exhibited different behaviors in terms of BCS classification. Most

flavones in RE were classified as class III (low permeability, high solubility) and class IV (low

permeability, low solubility) with the exception of apigenin, for which no experimental Papp

could be determined and, consequently, no BCS classification was proposed. This result was in

agreement with recently reported data and reinforces the notion that the limited bioavailabilities

of most polyphenols may be improved by strategies focused on increasing drug solubilities and

dissolution rates in the gastrointestinal fluid [50]. The phenylpropanoid derivatives shogaol and

shogaol isomer (gingerol-like compounds) were classified as class II (high permeability, low sol-

ubility), which is in agreement with the presence of a long saturated carbon chain in their struc-

ture that confers a certain degree of hydrophobicity to these compounds.

Conversely, most terpenoids demonstrated different classes depending on the use of Log P

or Papp for their classification (see Table 2). Both diterpenoids and triterpenoids were primarily

classified as class II (high permeability, low solubility) or class IV (low permeability, low solu-

bility) when Log P or Papp was utilized, respectively, for the classification. A regulatory classifi-

cation of any compound must be based on experimental data, but the Log P approach has

previously been used for screening purposes [48, 49]. Based on our results, we confirm that

important differences may arise when experimental Papp values are used to classify compounds

versus Log P approximation. It can be concluded that the Papp value, when available, is a more

appropriate alternative to establish BCS classification because this value is derived from data

determined in a living cellular model, which provides results with greater biological signifi-

cance than those obtained from calculations based on physicochemical characteristics.

It must be noted that in this study, Sw was obtained for the individual compounds. How-

ever, the solubilities of the compounds in the complex RE mixture may be affected by the pres-

ence of other compounds, and this will exert an undeniable impact on the absorption of the

compound. This feature deserves further investigation.

Fig 2. BCS classification. Plots show the BCS classification of all compounds in RE using the 10 mg dose

scenario according LogP (A) y Paap (B) values.

doi:10.1371/journal.pone.0172063.g002
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In conclusion, BCS classification of the 24 compounds present in the RE extract was

achieved by considering the aforementioned limitations and using experimental Papp rather

than Log P when available. This revealed that most of the compounds in RE were classified as

classes III and IV. Based on this, RE enriched in diterpenes and triterpenes should also be clas-

sified as class III or IV (low permeability), which is in agreement with the low bioavailabilities

of rosemary compounds reported in the literature. However, this statement should be inter-

preted with caution due to the complexity of the extract, and further research may be required

before a final classification is given. The results obtained here represent a significant contribu-

tion to our knowledge of the oral absorptions and bioavailabilities of rosemary compounds

and their biopharmaceutical classifications and will aid in the development of delivery strate-

gies to improve solubility and bioavailability. In addition, as rosemary compounds have dem-

onstrated their influence in microbioma in previous studies [51–53] this point must be also

addressed in future studies.

Conclusions

Rosemary is widely used as a medicinal herb and to season and preserve food, and its bioactive

compounds (terpenoids and polyphenols) possess demonstrated potential health benefits

related to chronic human diseases. Although most studies have been performed in cell models,

recent evidence for such effects is emerging in animal models. However, only a few studies have

explored the intestinal absorption of these compounds to determine their permeability and the

metabolites responsible for such effects. In this study, we provide data regarding the permeabili-

ties of 24 compounds derived from a rosemary extract in Caco-2 cell monolayers (flavonoids,

diterpenes, triterpenes and phenylpropanoids) by comparing the extract in both free and encap-

sulated form. Flavonoids demonstrated a passive diffusion transport mechanism, with cirsimar-

itin and genkwanin having the highest permeation values. Among the diterpenes, carnosic acid,

rosmanol and its isomers epiisorosmanol and epirosmanol exhibited the highest permeability

values. Triterpenoids exhibited lower permeability values than diterpenes and flavonoids. Most

compounds demonstrated poor or negligible permeation when RE was incorporated into phos-

pholipid vesicles. For some of the aforementioned compounds, this study is the first report of

their permeability. In this study, we also performed biopharmaceutical classification (BCS) for

all the compounds based on their permeability and solubility data for bioequivalence purposes,

which may represent a basis for future studies focused on the development of rosemary-based

nutraceuticals or drugs. Most of the RE compounds were classified as classes III and IV (low

permeability); therefore, RE should also be classified into this category.
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absorption of curcuminoids between free and liposomed curcumin formulations. In: Curcumin: clinical

uses, health effects and potential complications: Nova Publishers; 2016. p. 99–110.

46. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classifi-

cation: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;

12(3):413–20. PMID: 7617530

47. Benet LZ. The Role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics

Drug Disposition Classification System) in Drug Development. J Pharm Sci. 2013; 102(1):34–42. doi:

10.1002/jps.23359 PMID: 23147500

48. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, et al. Molecular

properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;

1(1):85–96. PMID: 15832504

49. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharma-

ceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and

Japan. Molecular Pharmaceutics. 2006; 3(6):631–43. doi: 10.1021/mp0600182 PMID: 17140251

50. Kaur H, Kaur G. A Critical Appraisal of Solubility Enhancement Techniques of Polyphenols. Journal of

pharmaceutics. 2014; 2014:180845. doi: 10.1155/2014/180845 PMID: 26556188

51. Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C. In vitro assessment of transfer-

rin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm

Sci. 2006; 29(5):367–74. doi: 10.1016/j.ejps.2006.07.004 PMID: 16952451

52. Ambrosini MV, Bruschelli G, Mariucci G, Mandile P, Giuditta A. Post-trial sleep in old rats trained for a

two-way active avoidance task. Physiol Behav. 1997; 62(4):773–8. PMID: 9284496

53. Anilkumar AP, Kumari V, Mehrotra R, Aasen I, Mitterschiffthaler MT, Sharma T. An fMRI study of face

encoding and recognition in first-episode schizophrenia. Acta neuropsychiatrica. 2008; 20(3):129–38.

doi: 10.1111/j.1601-5215.2008.00280.x PMID: 25385522

Evaluation of the intestinal permeability of rosemary compounds

PLOS ONE | DOI:10.1371/journal.pone.0172063 February 24, 2017 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/7617530
http://dx.doi.org/10.1002/jps.23359
http://www.ncbi.nlm.nih.gov/pubmed/23147500
http://www.ncbi.nlm.nih.gov/pubmed/15832504
http://dx.doi.org/10.1021/mp0600182
http://www.ncbi.nlm.nih.gov/pubmed/17140251
http://dx.doi.org/10.1155/2014/180845
http://www.ncbi.nlm.nih.gov/pubmed/26556188
http://dx.doi.org/10.1016/j.ejps.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16952451
http://www.ncbi.nlm.nih.gov/pubmed/9284496
http://dx.doi.org/10.1111/j.1601-5215.2008.00280.x
http://www.ncbi.nlm.nih.gov/pubmed/25385522

