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Aurora A drives early signalling and vesicle
dynamics during T-cell activation
Noelia Blas-Rus1, Eugenio Bustos-Morán2, Ignacio Pérez de Castro3, Guillermo de Cárcer3, Aldo Borroto4,

Emilio Camafeita5, Inmaculada Jorge5, Jesús Vázquez5, Balbino Alarcón4, Marcos Malumbres3,

Noa B. Martı́n-Cófreces1,2,* & Francisco Sánchez-Madrid1,2,*

Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by

inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A

kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the

immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with

pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the

dynamics of microtubules and CD3z-bearing vesicles at the IS. The absence of Aurora A

activity also impairs the activation of early signalling molecules downstream of the TCR and

the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of

Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating

Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the

propagation of the TCR activation signal.
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T
-cell activation depends on the ability of the T-cell receptor
(TCR) to recognize specific antigen peptides presented
in the context of the major histocompatibility complex

(MHCp) on the antigen-presenting cell (APC)1. The binding of
the TCR to MHCp promotes the formation of the immune
synapse (IS). In this process, the TCR and its associated
molecules localize to a central area of the T cell–APC contact,
the central supramolecular activating complex (cSMAC).
Adhesion molecules relocate to the peripheral SMAC2–4.
Essential proteins in this process are the Src family kinase
members (Lck and Fyn). Lck phosphorylates the immunoreceptor
tyrosine-based activation (ITAM) motifs of the TCR/CD3
complex5, leading to the recruitment of crucial molecules for
the downstream signalling pathways and the IS formation3.
The formation of the IS also triggers changes in the tubulin
cytoskeleton, including the translocation of the centrosome,
or microtubule (MT)-organizing centre (MTOC), to the IS,
accompanied by the Golgi apparatus, multivesicular bodies and
mitochondria6–8. These changes facilitate the polarized secretion
of cytokines and exosomes towards the APC9–11. MTOC
polarization orchestrates active MT growth and forms the core
of a dense MT network that regulates vesicular traffic at the IS12.

The Aurora family of serine/threonine kinases comprises three
members in humans—Auroras A, B and C—which are encoded
by three different genes13 and are key regulators of different
mitotic processes14. Aurora A plays a critical role in centrosome
and spindle dynamics during mitosis, whereas Aurora B regulates
the attachment of the kinetochore to MTs and cytokinesis15.
Aurora A expression and activity peak in late G2 and the
protein is concentrated at centrosomes13,16. During centrosome
maturation, Aurora A promotes MT assembly by recruiting
nucleation and stabilization factors17. Aurora A is self-activated
by autophosphorylation at T288 in its T loop, helped by cofactors
including Bora, Tpx2, Ajuba and PAK1 (refs 14,18,19).

Owing to its role in controlling MT dynamics, we hypothesize
that Aurora A may play a role in the activation of T lymphocytes
during IS formation. Consistent with our hypothesis, we report
here that Aurora A is activated on TCR stimulation and controls
the dynamics of MT and CD3z vesicles at the IS. We have also
found an unexpected contribution of Aurora A to the early and
late signalling events in T cells. Specific targeting of Aurora A
impairs activation of the TCR/CD3 complex, by deregulating
Lck phosphorylation and location, preventing early T-cell
activation and downstream expression of CD69, CD25 and
interleukin (IL)-2. Our data reveal a novel role for Aurora A as a
major regulator of early signalling and the tubulin cytoskeleton
during T-cell activation.

Results
Active Aurora A localizes to the IS. To assess the specific
location of activated Aurora A, we conjugated human CD4þ

T cells from peripheral blood from healthy donors with beads
coated with stimulatory anti-CD3 and anti-CD28 antibodies,
and stained with anti-phospho-specific antibody against the
Aurora-T288 residue, which detects active Aurora A. In these
experiments, T288-phosphorylated endogenous Aurora A was
found in two different pools: one in the centrosome and the other
at the T-cell-bead contact region (examples of conjugates at
different stages of the process are shown; Fig. 1a); the low signal
of activated Aurora A in non-stimulated control conjugates
was not detected at the IS (Fig. 1a). Pretreatment of peripheral-
blood-derived human CD4þ T cells with the specific
Aurora A inhibitor MLN8237 blocked the phosphorylation of
Aurora A (Fig. 1a). Quantitative analyses showed that
phosphorylated Aurora A is accumulated at the IS in stimulated

CD4þ T cells, and that this is prevented by MLN8237 treatment
(Fig. 1b). Staining of phosphorylated endogenous Aurora A on
TCR stimulation was also abolished in T cells silenced
with specific small interfering RNAs (siRNAs) for Aurora A,
confirming the specific binding of the antibody (Supplementary
Fig. 1a). Active Aurora A also localized at the IS in conjugates
of naive mouse OTII T lymphocytes with primary dendritic
cells pulsed with OVA peptide (Fig. 1c). These results clearly
show that TCR triggering promotes the activation of Aurora A
and its recruitment to the IS. However, pretreatment of J77 cells
with the specific Aurora A inhibitor MLN8237 did not alter the
number of conjugates formed with staphylococcal enterotoxin E
(SEE)-pulsed Raji cells (Supplementary Fig. 1b), indicating that
inhibition of Aurora A does not result in a global defect in
cytoskeleton dynamics.

To parse the localization of activated Aurora A with respect to
total Aurora A, we transfected primary CD4þ T cells with
Aurora A-GFP wild type (WT) or Aurora A-GFP KD
(kinase dead mutant) and then conjugated the transfected cells
with stimulatory anti-CD3/CD28-coated beads (Fig. 1d,e).
Quantitative analysis of Aurora A-GFP or active Aurora A
(Aurora A T288) accumulation demonstrated that it is mainly
found at the IS. However, Aurora A KD accumulation at the
IS is significantly decreased, compared with WT. Moreover,
overexpression of the Aurora A-GFP KD mutant, disperses the
remaining active protein. Thus, the phosphorylated active form of
Aurora A is specifically recruited to the IS.

Aurora A controls MT dynamics at the IS. Aurora A plays an
important role in the dynamics of the centrosome during
mitosis20,21. To ascertain its possible function in MT dynamics
and centrosomal polarity during T-cell activation, we analysed
the dynamics of the microtubular network in CH7C17 T cells
transiently transfected or stably expressing an EB3-GFP fusion
protein (EB3 cells; Fig. 2a–d and Supplementary Movie 1). EB3
and EB1 (end-binding proteins) are plus-tip-tracking proteins
that are also found in the pericentrosomal matrix and promote
MT growth22. Cells were settled on anti-CD3/CD28-coated
chambers and time-lapse confocal three-dimensional (3D)
imaging was performed by XYZ stack acquisition. The
stimulating surface allows IS-like formation, associated
centrosome polarization and MT polymerization12. EB3 cells
were pretreated or not (vehicle) with MLN8237 for 30 min before
imaging. Maximal projection of the XYZ stack (Fig. 2a and
Supplementary Movie 1) revealed that the relative amount of
EB3-GFP incorporated into MT plus ends (þ tips) was clearly
decreased in Aurora A-inhibited cells. This effect was measured
in 3D as the ratio of EB3-GFP fluorescence incorporated in
þ tips with respect to the whole-cell fluorescence using Imaris
software, confirming that Aurora A-inhibited cells polymerize
MTs less efficiently (Fig. 2b and Supplementary Movie 1). The
amount of polymerized MT observed along the time course was
clearly decreased in MLN8237-treated cells (Fig. 2a). We also
analysed the localization of the MTOC and the EB3-GFP
fluorescence by 3D and orthogonal projections of the XYZ
stacks. Fluorescence was mainly detected close to the stimulating
surface (Fig. 2c,d). This can be also observed by comparing
bottom and top slices of the XYZ stacks (Supplementary Fig. 2a).
Despite the effect of Aurora A inhibition on MT dynamics, no
significant change on MTOC translocation in cell conjugates was
observed either at 10 or at 30 min of activation (Fig. 2e).

To further assess the function of Aurora A in primary naive
T cells, we used a mouse model of conditional Aurora deficiency.
CD4þ cells were isolated from lymph nodes and spleens of
experimental [Aurka(lox/lox); RERT(ert/ert)] (knockout (KO)
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mice) and control [Aurka(þ /þ ); RERT(ert/ert)] (WT mice),
treated with tamoxifen and IL-7 for 96 h, to suppress Aurora A
expression (Fig. 3a). These cells were transfected with a plasmid
encoding EB3-GFP and then activated with anti-CD3/CD28
stimulating monoclonal antibodies (Fig. 3b,c and Supplementary
Movie 2). We found that Aurora A-deficient T cells had
significantly less EB3 incorporation in MT þ tips than their
WT counterparts (Fig. 3b,c and Supplementary Movie 2).
Furthermore, the effect of Aurora A deficiency was similar to

the effect of the MLN8237 inhibitor on WT cells, whereas the
inhibitor did not have additional effects on Aurora A KO cells,
suggesting that these and previously recorded effects of the
inhibitor were Aurora A specific. MTOC and EB3-GFP
tracking of MTs was also observed at the bottom of the cells
(Supplementary Fig. 2b,c).

We next tracked the dynamics of MT growth using EB3-GFP
imaging and total internal reflection fluorescence (TIRF)
microscopy in cells settled on anti-CD3/CD28-coated surfaces,
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Figure 1 | Aurora A is located at the IS contact area and is activated on TCR triggering. (a) Maximum Z projection of a confocal stack of human primary

CD4þ T cells pretreated with vehicle (DMSO) or Aurora A inhibitor (MLN8237, 10mM) and conjugated with anti CD3/CD28-coated beads. Images show

three representative conjugates in DMSO and two in MLN8237-treated cells at different stages of cell conjugation. Cells were fixed and stained for PKCy
(red), T288-phosphorylated Aurora A (magenta) and a-tubulin–fluorescein isothiocyanate (FITC) (green). Bright field with DAPI frames are included. Scale

bar, 10mm. (b) Quantification of T288-phosphorylated Aurora A accumulation at the IS contact area in conjugates as in a from three independent experiments

(n¼ 93 in non-activated, n¼ 105 in DMSO, n¼ 109 in MLN8237). Data represent means±s.d. Means were compared with a t-test. (c) Maximum Z

projections of confocal stacks of transgenic OTII CD4þ cells conjugated with OVA peptide-pulsed bone-marrow-derived dendritic cells (DCs). Cells were

incubated for 30 min, fixed and immunostained for T288-phosphorylated Aurora A (magenta) and actin (green). The right-hand image shows CMAC cell

tracker labelling of DCs (cyan) and bright field. Scale bar, 10mm. (d) Maximum Z projection of a confocal stack of human primary CD4þ T cells transfected

with Aurora A-GFP WT or Aurora A-GFP KD (green) and conjugated with anti CD3/CD28-coated beads. Cells were incubated for 30 min, fixed and stained

for T288-phosphorylated Aurora A (magenta). Bright field with DAPI frames are included. Scale bar, 10mm. (e) Quantification of T288-phosphorylated Aurora

A and transfected Aurora A accumulation at the IS contact area in conjugates as in d (n¼45 in Aurora A-GFP WT, n¼ 29 in Aurora A-GFP KD).

Data represent means±s.d. Means were compared with a t-test. n.s., nonsignificant. *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001.
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to improve the XY spatial and time resolution23–25. EB3 cells were
treated with MLN8237 or dimethyl sulfoxide (DMSO; vehicle) for
30 min before imaging and images were taken every 300 ms.
MLN8237-treated EB3-GFP cells had fewer EB3-decorated tips
emerging from the centrosome, indicating impaired MT growth
(Fig. 3d,e and Supplementary Movies 3 and 4). MT growth
was similarly impaired in Aurora-KO primary CD4þ T cells,
displaying fewer and slower growing MTs than control
cells (0.140±0.037 and 0.190±0.023 mm s� 1, respectively;
mean±s.d.) (Fig. 3f,g and Supplementary Movies 5 and 6).
Thus, these results show that the MT network at the IS is
disrupted in T cells with defective Aurora A activation.

Aurora A regulates CD3f-bearing vesicles traffic at the IS. The
impaired MT growth observed in Aurora A-targeted T cells did
not affect the localization of the surface TCR/CD3 complexes at
the IS, as TCR/CD3e was comparably clustered at the IS of
untreated and MLN8237-treated T-cell conjugates with APC
(Fig. 4a,b). We next assessed the dynamics of CD3z-bearing
vesicles at the IS. CD3z traffics through endosomal compartments
towards the IS26. These vesicles move associated to MTs and
support the sustained activation of the T cell at the IS12,27. The
vesicles enter and leave the TIRF plane, some of them moving
towards the position of the centrosome at the centre of the IS-like
structure, probably along the MTs. Jurkat T cells expressing
CD3z-mCherry were treated with DMSO or MLN8237, settled
onto anti-CD3/CD28 and analysed by TIRF microscopy. Images
were taken every 100 ms (200 nm penetrance) and the trajectories
of detected vesicles were tracked. Treatment with MLN8237

decreased the number of vesicles at the IS-like structure and
disrupted the movement of those that were present (Fig. 4c,d and
Supplementary Movies 7 and 8). Therefore, the effect of Aurora A
inhibition on MT dynamics impedes the movement of
vesicles towards the IS structure, a finding confirmed by the
reduced speed of vesicles in Aurora A-inhibited cells (Fig. 4d).
A similar phenotype was observed in Aurora KO cells, with
few or no vesicles moving towards the centre of the IS-like
structure. Treatment of WT cells with the Aurora A inhibitor
caused a similar effect to Aurora A-deficiency (Fig. 4e,f and
Supplementary Movie 9).

Aurora A blockade does not affect TCR-driven actin dynamics.
To further analyse the role of Aurora A in the control of
cytoskeletal dynamics at the IS, we assessed the effect of Aurora A
inhibition on the activation-dependent interaction of TCR/CD3
with the actin–cytoskeleton-associated protein Nck. This
interaction is enabled by the conformational change in the
TCR/CD3e complex on antigenic triggering28. Aurora A
inhibition had no effect on CD3z–Nck association in pull-down
assays (Fig. 5a). This is in agreement with a surface recruitment
and accumulation of TCR/CD3e to the IS in Aurora A-inhibited
cells (Fig. 4a,b). Using a similar approach, we assessed whether
Aurora A impairment affects the activation of the small GTPase
Rac1, a hallmark for TCR-dependent actin polymerization29.
Likewise, no effect was detected in Rac1 pull-down assays
with the GST-PAK-CD (p21-activated kinase CRIB Domain30)
in stimulated CD4þ T cells when using MLN8327 inhibitor
(Fig. 5b). Furthermore, the Aurora A inhibitor did not affect

a bEB3-GFP 4D imaging: Z-max projection + time max proyection (Δt ) BF

D
M

S
O

M
LN

82
37

D
M

S
O

M
LN

82
37

X
Z

X
Y

YZ

X
Z

c

X
Y

MTOC slice

1.0

0.8

E
B

3 
in

co
rp

or
at

io
n 

in
 +

tip
s

0.6

0.4

****

0.2

0.0

12

0.8

0.6

0.4

0.2

0.0

10

8

6

4

2

M
T

O
C

 d
is

ta
nc

e 
to

 th
e 

A
P

C
 (

μm
)

M
T

O
C

 lo
ca

liz
at

io
n 

fr
om

IS
-li

ke
 s

tr
uc

tu
re

 (
a.

u.
)

0

–2

DMSO

DMSODMSO DMSO

30 min10 min

NS

NS NS

MLN8237

MLN8237MLN8237 MLN8237

Δt =0 s

Δt =0 s

3D Projection d e

Δt=0 s Δt=4.8 s Δt=10.8 s Δt=34.8 s Δt=120 s

Δt=120 sΔt=34.8 sΔt=10.8 sΔt=4.8 sΔt=0 s

Figure 2 | MT dynamics at the IS is impaired by Aurora A chemical inhibition. (a–d) Imaging of EB3-GFP-expressing CH7C17 T cells (pretreated with

DMSO or MLN8237 and settled on corresponding anti-CD3/CD28-coated glass-bottom chambers). Maximal projection of XYZ stacks for fluorescence

and single bright-field (BF) images are shown. Scale bar, 10mm. (b) Ratio of EB3-GFP fluorescence incorporated in þ tips from XYZ stacks (0 s; n¼ 34 in

DMSO and n¼43 in MLN8237). Data represent means±s.d. Means were compared with a Mann–Whitney test. (c) Orthogonal and 3D projections from

XYZ stacks. Dotted white or red lines indicate contact with substrate or media, respectively. (d) Ratio of the MTOC location from the IS-like structure

(n¼ 38 in DMSO, n¼44 in MLN8237). (e) Distance from the T-cell MTOC to the APC contact area in conjugates of T cells with SEE-pulsed APCs

(10 min, n¼ 166 in DMSO, n¼ 168 in MLN8237; 30 min, n¼412 in DMSO, n¼ 394 in MLN8237). Data represent means±s.d. from three independent

experiments. Means were compared with a t-test.
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the spreading of mCherry–b-actin-expressing T cells on
anti-CD3/CD28-coated coverslips, measured either as the total
occupied surface or as the rate of membrane extension on the
coverslip (Fig. 5c,d). This finding correlated with a similar
distribution of mCherry–b-actin at the peripheral SMAC and
cSMAC in control and Aurora A-inhibited cells. Aurora A
inhibition also had no effect on the total area occupied by adhered
cells or their lamellae (Fig. 5d). Similarly, actin accumulation at
the IS in T cell–APC conjugates was not significantly affected
by inhibition of Aurora A (Fig. 5e,f). We therefore analysed
the formation of the actin ring in cell conjugates using time-lapse
3D confocal imaging. Actin accumulation and ring formation was
similar in control and MLN8237-treated cells (Fig, 5g,h and
Supplementary Movie 10). Therefore, Aurora A appears to
specifically affect the tubulin cytoskeleton at the IS, without
affecting actin-based dynamics.

Aurora A inhibition impairs early TCR signalling. To assess the
possible role of Aurora A in TCR signalling, we analysed the
phosphorylation of several canonical downstream molecules that
are phosphorylated in response to cognate interactions in
SEE-stimulated Jurkat T cells (Fig. 6a,b) and anti-CD3/CD28-sti-
mulated human primary CD4þ T cells (Fig. 6c,d). The

phosphorylation of specific residues in CD3z (Y83), LAT (Linker
for Activation of T cell; Y132), PLCg1 (Phospholipase C; Y783),
PKCy (T538) and ERK1/2 (T202/Y204) was greatly diminished on
Aurora A inhibition with MLN8237. The role of Aurora A in TCR
signalling was also confirmed in an MHC/peptide-specific system,
in which MLN8237-treated CH7C17 Jurkat T cells were stimulated
with Hom2 lymphoblastoid B cells preloaded with haemagglutinin
(HA) peptide (Fig. 7a,b). The effect of Aurora A inhibition on TCR
downstream signalling was dose dependent (Supplementary
Fig. 3a,b). As a control of MLN8237 specificity, we added the
inhibitor just before the activation of T cells and the same effect
was observed (Supplementary Fig. 3c). By extensively washing the
inhibitor before activation, the phosphorylation levels of these
specific residues were restored, indicating that the effects of the
inhibitor were reversible (Supplementary Fig. 3d). MLN8237
shows a 200-fold higher selectivity for Aurora A over Aurora B31;
nonetheless, to rule out a possible role of Aurora B, we treated J77
T cells with AZD1152 (100 nM), which is 3,700 times more
selective for Aurora B32. AZD1152 had no effect on the
phosphorylation of T-cell proteins (Supplementary Fig. 4),
confirming that proper T-cell activation critically depends of the
isoform A, but not B, of Aurora kinase. This was further confirmed
in conjugates of Aurora-A-silenced Jurkat T cells and
Staphylococcal enterotoxin B (SEB)-preloaded Hom2 B cells as
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Figure 3 | Aurora A gene ablation impairs MT dynamics at the IS. (a) Immunoblot analysis of Aurora A protein expression in CD4þ T cells WT and KO.

(b,c) Imaging of EB3-GFP-expressing Aurora-A-deficient and control CD4þ T cells, pretreated with DMSO or MLN8237 and settled on corresponding anti-

CD3/CD28-coated glass-bottom chambers. Maximal projection of XYZ stacks for fluorescence and single bright-field (BF) images are shown. Scale bar,
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APCs. The activation of CD3z-dependent molecules was
defective in Aurora-A-silenced cells, with below-normal LAT
phosphorylation on residue Y132, probably responsible for the
concomitant decreases in PLCg1 (Y783) and PKCy (T538)
phosphorylation (Supplementary Fig. 5a).

To determine the role of Aurora A in late events of T-cell
activation, we examined the messenger RNA expression of IL-2,

CD25 and CD69. Human CD4þ T lymphocytes were treated
with MLN8237 and AZD1152 or vehicle for 30 min, and
stimulated with anti-CD3/CD28 antibodies for 3 h. Inhibition of
Aurora A impaired the upregulation of IL-2, CD25 and CD69
mRNA determined by reverse transcriptase–PCR (Fig. 7c),
indicating a defect in late T-cell activation. In contrast, Aurora
B inhibition had no effect on the mRNA production of these
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genes, supporting a specific role for Aurora A and its regulated
pathways in T-cell activation.

TCR signalling is impaired in Aurora-A-deficient mice. Phar-
macologic inhibition of Aurora A also impaired early T-cell
activation in mouse naive CD4þ T cells polyclonally stimulated
with anti-CD3/CD28 (Fig. 8a). To further assess the function of
Aurora A in primary naive T cells, we deleted Aurora A
expression in CD4þ cells from the conditional Aurora KO
mice and activated them with anti-CD3/CD28 antibodies.
Tamoxifen-induced suppression of Aurora A expression in
Aurka(lox/lox); RERT(ert/ert) cells (Fig. 3a) correlated with clear
decreases in the phosphorylation of CD3z (Y83), LAT (Y132),
PLCg1 (Y783), PKCy (T538) and ERK1/2 (T202/Y204)
(Fig. 8b,c). CD4þ T cells from the conditional Aurora KO mice
were also treated with MLN8237, obtaining a slight decrease in
the phosphorylation of PLCg1 (Y783) when compared with
vehicle-treated CD4þ T cells from the conditional Aurora KO
mice (Supplementary Fig. 5b). In complementary experiments,
we examined a transgenic mouse model of Aurora A
overexpression33. Naive CD4þ T cells isolated from lymph nodes
and spleens of Col1a1tetO-Aurka/þ ; Rosa26rtTA/rtTA mice
(Aurora KI) and controls were treated with doxycycline and IL-7
for 24 h, followed by activation with anti-CD3/CD28 antibodies.
Doxycycline treatment increased Aurora A expression in the
conditionally transgenic cells (Fig. 8d), correlating with increased
levels of TCR-dependent signalling (Fig. 8e,f).

Aurora A controls Lck kinase location and phosphorylation. To
study the mechanism underlying the earliest T-cell activation
defects in the absence of Aurora A, we assessed the possible
regulation of the Src kinase Lck by Aurora A. Lck phosphorylates
CD3 ITAMs at tyrosine residues on TCR triggering and shows
autophosphorylation activity towards its Y394 residue, an
activatory residue34. By quantitative analysis of Lck accumulation
at the IS we have detected a significant reduction in Lck
relocation to the IS contact area, as a result of Aurora A inhibition
in Jurkat T cells (Fig. 9a,b). In accordance with a perturbed Lck
localization, pharmacologic inhibition of Aurora A in human
primary CD4þ T cells impaired Lck autophosphorylation at
Y394, a hallmark of its catalytic activity (Fig. 9c,d). Notably, these
experiments showed that Lck-Y394 phosphorylation was
impaired before TCR stimulation, suggesting a role of Aurora A
in the maintenance of the preactivated pool of Lck34.

To analyse whether the effect of Aurora A on Lck activation is
dependent on the intracellular traffic of Lck27 and taking into
account that Lck recruitment at the IS is also driven by its
association with CD4 (ref. 35), we decided to assess T-cell
activation in a Lck-deficient cell line (J.CAM1 (refs 36,37))
reconstituted with full-length Lck-GFP or murine CD4-Lck
chimeric proteins. CD4-Lck is mainly localized at the
plasma membrane38,39. A murine CD4 lacking its cytosolic tail
and fused to GFP was used as a negative control40 (Fig. 9e;
CD4-DCyt-GFP). We found that Lck-GFP expression rescued
CD3 phosphorylation and thus T-cell activation in J.CAM1,
whereas MLN8237 treatment prevented such an effect. Rescue of
J.CAM1 signalling with CD4-Lck chimera was also prevented
with the Aurora A inhibitor. Therefore, Aurora A activity is
needed for Lck activity independently of its intracellular
trafficking during IS formation.

Immunoprecipitation (IP) of Lck followed by mass
spectrometry (MS) analysis revealed that Aurora A inhibition
resulted in a decrease of Lck phosphorylation at the activation
residue Y394 in resting and stimulatory conditions (Fig. 9f). This
was further corroborated by in vitro kinase assays of purified

recombinant Lck protein by immunoprecipitated Aurora A
proteins. Although WT Aurora A protein keeps Lck phos-
phorylated at residue Y394, a KD form of Aurora is unable to
maintain Lck phosphorylation at Y394 (Fig. 9g). Treatment with
the Aurora A inhibitor corroborated the KD results (Fig. 9g).
Together, these results highlight the relationship of Aurora
A-mediated signal spreading at the IS with Lck location,
phosphorylation and, therefore, regulation.

Discussion
In this study we have analysed the influence of a well-known cell
cycle regulator, Aurora A kinase, in T-cell activation. Our results
provide novel evidence that Aurora A is a key regulator of early
TCR-dependent signalling pathways and controls signalling
vesicle and microtubular dynamics. However, the direct
interaction of TCR/CD3 with Nck and actin polymerization at
IS are not affected by Aurora A inhibition. Aurora A localizes at
the IS and appears activated on antigen- and superantigen-driven
T-cell activation. Early activation of Aurora A seems to be
essential for TCR downstream signalling, leading to LAT and
PLC activation. In addition, our data provide mechanistic insight
into how Aurora A acts as master regulator of T-cell activation by
controlling Lck phosphorylation and clustering at the IS.

Aurora A localization to centrosomes and along spindle MTs at
the beginning of mitosis is well characterized13,17. The location of
Aurora A in interphase is not well established, although the
human protein atlas indicates that nuclear and cytoplasmic pools
co-exist (http://www.proteinatlas.org/). Our data reveal that a
fraction of active Aurora A (T288) appears at the IS contact area
and a second pool is concentrated at the pericentrosomal area.
The active form at the IS was observed on TCR stimulation,
whereas the centrosome fraction seemed to be basally active in
primary CD4þ T cells. The active pool and the total protein
showed a similar pattern, indicating that there is an active
redistribution of the protein on stimulation. This highlights the
possibility that Aurora A autophosphorylation might have a role
on its own localization at the IS, which is also supported by
the fact that the expression of an Aurora A KD mutant provokes
the delocalization of the active protein at the IS. However, further
studies should be conducted to prove this view. The presence of
two detectable pools suggest that Aurora A may play a possible
dual role in controlling MT dynamics and T-cell activation.
Although Aurora A can autophosphorylate, it is conceivable that
other kinases are also involved in its activation. The
MT-associated protein Tpx2 can activate Aurora A through its
stabilization during cell division and prevents PP1 phosphatase
from inactivating Aurora A41. Therefore, the distribution of
activated Aurora A at the IS, a zone where a complex
microtubular network is rapidly organized, may be responsible
for its stabilization and activation, establishing a positive feedback
for tubulin dynamics.

Aurora A contributes to centrosome maturation through the
recruitment of MT nucleation factors. However, its absence does
not prevent the formation of the centrosomal MT aster but
instead affects the density of the aster formed in other systems17.
Our TIRF microscopy analysis demonstrates that Aurora A
controls growing MT arising from the MTOC on TCR activation,
while having no apparent effect on MTOC translocation at the IS.
In addition, during the M phase Aurora A is required for the
recruitment of adaptor proteins such as NEDD1 for the correct
formation of the mitotic spindle42. Previous work on proteins
implicated in MT regulation such as EB1 or HDAC6 (refs 12,43)
showed a defect in late T-cell activation. The role of these proteins
in MT cytoskeleton dynamics and T-cell activation seemed to be
mainly related to the maintenance of the TCR signal rather than

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11389 ARTICLE

NATURE COMMUNICATIONS | 7:11389 | DOI: 10.1038/ncomms11389 | www.nature.com/naturecommunications 7

http://www.proteinatlas.org/
http://www.nature.com/naturecommunications


its initial activation. Aurora A might regulate late T-cell activation
through a similar mechanism. Our data indicate that the decrease
in the number of MTs nucleated near the contact area may affect
polarized secretion from this area and vesicular trafficking at the
IS and throughout the T cell. Hence, Aurora A inhibition
prevents movement of CD3z vesicles around the MTOC almost
completely, possibly reflecting a global effect on vesicle
trafficking. In addition, as CD3 is tightly regulated by its cycle
of degradation and recycling44, the absence of this pool of CD3z
vesicles at the cSMAC may explain why the TCR signal cascade is
not properly propagated. It has been proved that there is a pool of
phosphorylated CD3z that, instead of going to a degradation
pathway, keeps accumulated at the endosomal compartment,
ready to maintain CD3z phosphorylation signalling26. Although
Aurora A inhibition has no effect in TCR/CD3e subunit surface
clustering at the IS, the transport of vesicles of the CD3z subunit
is clearly impaired. Taking into account the presence of this
phosphorylated CD3z pool at the endosomal compartment,
Aurora A might have an effect mainly over this recycling of the
active CD3z and, therefore, over TCR signal propagation.

Although Aurora A contributes to actin cytoskeleton dynamics
in mitosis and during mammary cell migration, no such effect
was observed during IS formation by spreading T cells.
Aurora-A-mediated phosphorylation of LIM kinase 1 at the
centrosomes in prophase is essential for modulation of actin
filaments and subsequent spindle formation. LIM kinase 1 acts by
inactivating the phosphorylation of the actin depolymerizing
family protein cofilin, thus stabilizing the cortical actin network
during spindle orientation45. In mammary cell migration, Aurora
A promotes increased expression of the cofilin phosphatase SSH1,
resulting in cofilin activation and actin reorganization and
migration46. However, our data show that Aurora A inhibition
affects neither actin accumulation during IS formation nor cell
spreading. Indeed, we found that Aurora-A-inhibited T cells form
normal-shaped lamellae. During IS formation, Nck acts as a
bridge between the TCR activation and actin cytoskeleton
reorganization at the IS. When the TCR recognizes a specific
antigen, a conformational change in the CD3e chain unmasks a
neoepitope to which Nck binds, leading to transmission of the
activation signal through the actin cytoskeleton28. CD3e-NcK
association is not affected by Aurora A inhibition, a finding in
accordance with the absence of changes in actin accumulation at
the IS in MLN8237-pretreated T cells.

Our results show regulatory effects of Aurora A on early and
late T-cell signalling. Inhibition of Aurora A abrogates proper
T-cell activation determined by the phosphorylation profile of
TCR signalling proteins such as CD3, and the adapter proteins

and kinases LAT, PLCg1 and PKCy. These effects on TCR
pathway phosphorylation events were observed in response to the
Aurora A inhibitor MLN8237 and Aurora A gene ablation in
mouse T cells, indicating that this is a specific consequence of
Aurora A inhibition. The initial activation of T cells occurs at the
plasma membrane; however, its continued progress requires the
contribution of intracellular components such as the MTOC and
the MT-dependent vesicular traffic and mitochondrial activity3.
Thus, Aurora A contributes to the propagation of TCR
activation to the intracellular compartment, leading to
activation of genes such as IL-2, CD69 and CD25. Moreover,
the strength of T-cell activation can determine the ability of
T cells to divide asymmetrically, thereby promoting functional
differentiation into subpopulations of T cells that regulate the
immune response47. Our data suggest that T lymphocytes
defective in Aurora A do not become properly activated,
possibly affecting the outcome of the adaptive immune response.

However, neither the defect on MT dynamics nor the
impairment in CD3z vesicle transport can explain the blockade
of the initial trigger of TCR signalling. These early defects of
CD3z-dependent signalling in Aurora A-targeted cells are more
likely to be explained by altered activity of Src kinases. This family
includes Lck and Fyn, the first kinases to phosphorylate the
ITAMs in CD3, which are required for full activation and signal
transmission5,48. Our data demonstrate that Lck location and
phosphorylation are altered by chemical inhibition of Aurora A,
demonstrating that Aurora A controls TCR pathways dependent
on CD3-ITAM phosphorylation. Nevertheless, the interaction of
the kinase with the HSP90 and HSP70 chaperones is maintained
in the presence of MLN8237, indicating that the inhibitor does
not seem to affect its life time (Blas-Rus et al., unpublished data).

Previous work on Lck regulation has described the initial steps
on the activation of this protein. A ‘standby’ model has been
proposed, where there is a pool of preactivated Lck whose
phosphorylation does not change on TCR activation34. In this
context, Lck function could be regulated through conformational
changes, clustering and the spatio-temporal proximity to CD45
phosphatase, as well as with the exposition of the
phosphorylatable ITAMs on TCR engagement34,49,50. However,
other recent works detected a pool of Lck that became activated
on TCR triggering assessed either by FRET-FLIM techniques51 or
other different methods52. On the other hand, other studies
addressed the importance of Lck spatial distribution in specific
lipid rafts that rearrange on MHC–TCR binding49,53,54. In this
regard, our results by complementary experimental strategies
including western blot (WB) analysis of protein activation and
MS analysis of endogenous Lck, and of in vitro kinase assays with

Figure 5 | Aurora A inhibition does not affect actin cytoskeleton dynamics. (a) Immunoblot of a pull-down assay of GST-Nck fusion protein from cell

lysates of control (DMSO; vehicle) or Aurora A inhibitor (MLN8237)-pretreated human T lymphoblasts. Activation was performed with soluble anti-CD3e
antibodies for indicated times. CD3z and GST are shown. CD3z content in whole-cell lysates is indicated in the bottom row. (b) Immunoblotting of Rac1

pull-down assay of GST and GST-PAK-CD from cell lysates of DMSO- or MLN8237-pretreated Jurkat T cells activated with SEE-pulsed Raji B cells (APCs)

for the indicated times. Loading control for Rac1 in whole-cell lysates is shown. (c) Images from TIRFm time-lapse analysis of mCherry–b-actin-expressing

Jurkat T cells spreading over anti-CD3/CD28-coated glass-bottom chambers. Cells were pretreated with DMSO or MLN8237. Images were taken every

100 ms for 5 min at 90 nm penetrance. A corresponding bright-field image is shown. Scale bar, 10mm. (d) Quantification of the area occupied by the whole

cell (lamella), the actin-rich area (peripheral SMAC (pSMAC)), the central area (cSMAC) and the distribution of mean fluorescence intensity per area

(ratios cSMAC:cell; pSMAC:cell and cSMAC/pSMAC) from cells in c (n¼48 and n¼ 36, three independent experiments). Cells were fixed after spreading

(4 min) and fluorescence images were taken. Data represent means±s.d.; t-test. n.s., nonsignificant. (e) Maximum Z projections of confocal stacks from

DMSO- or MLN8237-pretreated Jurkat T cells conjugated with SEE-APCs. Cells were incubated for 30 min, fixed and stained for a-tubulin (green) or actin

(magenta). The right-hand image shows CMAC cell tracker labelling of APCs (cyan) and bright field. Scale bar, 10mm. (f) Quantification of actin

accumulation at the IS contact area in conjugates as in e from three independent experiments (n¼ 100). Data represent means±s.d.; t-test.

(g) Image sequence for IS formation between mCherry–b-actin-expressing T cells and SEB-APCs (DMSO- or MLN8237-treated). XYZ stacks were acquired

every 25 s (maximal projections of XYZ stacks and 3D reconstructions with Imaris Software are shown from representative conjugates). (h) Ratio of T cells

forming lamella on contact with an APC from g. Data represent median±interquartile range. Mann–Whitney test (DMSO: 28 cells (n¼4); MLN8237: 25

cells (n¼ 3)).
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purified recombinant Lck protein indicate that the activating Lck
residue Y394 is phosphorylated in T cells before TCR stimulation.
Remarkably, the targeting of Aurora A decreases Y394
phosphorylation and shows a delocalized Lck clustering at the IS.
Reconstitution experiments in the Lck-deficient cell line J.CAM1 by
either Lck-GFP or CD4-Lck, which retains Lck at the plasma
membrane, revealed that Aurora A is required for TCR signalling in

both situations. Taking into account the importance of Lck spatial
distribution and proper phosphorylation for its activity, the
dephosphorylation and mislocalization of Lck in the absence of
Aurora A activity may explain the observed defects in TCR
signalling pathways. A detailed analysis of other phosphorylated
residues, including Ser/Thr, is needed to understand the complex
regulation of Lck by Aurora A and this deserves future
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investigation. Furthermore, the assessment of how Aurora A
controls Lck activity, either directly or indirectly through associated
kinases, is an issue that remains to be explored.

In summary, our results show that Aurora A plays an
important role in the early events initiated on TCR stimulation

and unravel a novel molecular mechanism that regulates early
signalling and cytoskeletal and vesicle dynamics in T cells. The
prevention of T-cell activation by Aurora A inhibition has
important clinical implications. Aurora A inhibitors are currently
under evaluation for cancer therapy in Phase I–II clinical trials55.
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In these trials, aggressive B-cell and T-cell non-Hodgkin
lymphomas have shown an overall positive response, promoting
new Phase III studies. It will be important to define the extent to
which the new function reported here participates in these
responses and to determine whether the T-cell activation pathway
can provide new biomarkers, critical for understanding these
therapeutic effects. Very recently, a transcriptomic analysis points
Aurora A as a targetable molecule for graft versus host disease
prevention in a primate model56. Hence, our data provide a
mechanistic explanation by how Aurora A controls T-cell
activation. Given the importance of Aurora A inhibitors in
cancer therapy, these results may provide new opportunities for
treating lymphocyte diseases such as graft versus host disease,
T-cell lymphomas or leukaemias.

Methods
Cells. The human Jurkat-derived T-cell lines J77 (Val.2 Vb8þ TCR) and J.CAM1
(refs 36,37), the lymphoblastoid B-cell lines Raji (Burkitt lymphoma; acquired from
the DSMZ Organization; ACC-319) and Hom2 (HLA-DR1 EBV-transformed)
were cultured in RPMI 1640þGlutaMAX–Iþ 25 mM HEPES (Gibco–Invitrogen)
supplemented with 10% fetal bovine serum (Hyclone, Thermofisher). The human

Jurkat-derived CH7C17 cells (Vb3þ transgenic TCR, specific for HA peptide)
were grown in the same medium supplemented with 400 mg ml� 1 hygromycin B
(Roche Diagnostics) and 4 mg ml� 1 puromycin (Invitrogen, Eugene, OR, USA).
CH7C17 (ref. 57) clones expressing EB3-GFP were generated by CH7C17
transfection and post selection with G418 (1 mg ml� 1). All lymphoid cell lines
were tested for specific expression of CD (clusters of differentiation) with specific
antibodies by flow cytometry. HEK293T cells were cultured in DMEM medium
(Invitrogen) supplemented with 10% fetal bovine serum, 50 IU ml� 1 penicillin and
50 mg ml� 1 streptomycin, and exclusively used to produce and purify recombinant
proteins. All cell lines were routinely tested for mycoplasm. Human peripheral
blood mononuclear cells (PBMCs) were isolated from buffy coats obtained from
healthy donors by separation on a Biocoll gradient (Biochrom) according to
standard procedures. Monocytes were separated from PBMCs by a 30-min
adherence step at 37 �C in RPMI supplemented with 10% FCS. Non-adherent cells
were washed off and CD4þ T cells were purified from PBMCs using magnetic-
activated cell sorting (MACS; Miltenyi Biotech). Non-adherent cells were obtained
after 30 min of the adhesion step at 37 �C. To generate SEE-responsive human T
lymphoblasts, PBMCs were cultured for 5 days in the presence of SEE
(0.1 mg ml� 1) and then phytohaemagglutinin (5 mg ml� 1) was added for 2 days.
To favour its proliferation, IL-2 (50 U ml� 1) was added later to the medium every
2 days for a time period of 8 days. These studies were performed according to the
principles of the Declaration of Helsinki and approved by the local Ethics
Committee for Basic Research at the Hospital La Princesa (Madrid); informed
consent was obtained from all human volunteers. These studies were performed
according to the principles of the Declaration of Helsinki and approved by the local
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Figure 7 | Aurora A inhibition impairs TCR signalling and gene expression. (a) Immunoblottings showing phosphorylation of the molecules indicated

in lysates of CH7C17 Jurkat T cells pretreated with DMSO or MLN8237 and conjugated for the indicated times with HA-peptide-pulsed Hom2 B cells.

(b) Quantification of blots as in a–c from four to six independent experiments. Error bars represent interquartile range. Medians were compared with a

Friedman test (*Po0.05). n.s., nonsignificant. (c) IL2, CD69 and CD25 mRNA levels in primary human CD4þ T cells pretreated with DMSO, MLN8237

(10mM) or the Aurora B inhibitor AZD1152 (100 nM) and activated by settling on anti-CD3/CD28-coated plates for 4 h. mRNA levels were normalized to

the housekeeping gene GAPDH and the levels of the target mRNA in non-stimulated cell levels. Error bars represent interquartile rage. Medians were

compared with a Mann–Whitney test. **Po0.01.
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Ethics Committee for Basic Research at the Hospital La Princesa (Madrid);
informed consent was obtained from all human volunteers.

Mice. The Aurora A conditional model has been described58. These
mice carry an Aurka(lox) conditional allele and the RERTert allele expressing
an inducible Cre recombinase. After the appropriate crosses, we obtained the
experimental Aurka(lox/lox); RERT(ert/ert) and control Aurka(þ /þ );
RERT(ert/ert) mice used in this study. Cre activation on tamoxifen treatment
induces conversion of the Aurka(lox) allele to the Aurka(D) allele. The Aurora
kinase A (AurkA)-inducible mouse model has been reported recently33. This model
was generated using the tetracycline-inducible single-copy transgenic

system59 and carries the M2-rtTA gene inserted within the Rosa26 allele
and a cassette containing the Aurora-A complementary DNA under the
control of the doxycycine-responsive promoter (tetO) inserted downstream
of the Col1a1 locus. The final mouse model, Col1a1tetO-Aurka/þ ;
Rosa26rtTA/rtTA, overexpresses exogenous Aurora-A on doxycycline
treatment in a wide range of proliferative and non-proliferative tissues
and cells.

Both Aurora A mouse models were maintained in a mixed background (129/Sv,
CD1, C57BL/6J and FVB/N). Mice were housed in the pathogen-free animal facility
of the Centro Nacional de Investigaciones Oncológicas (Madrid) in accordance
with the animal care standards of the institution. For experimentation, genotyped
littermates, male or female mice of 7–9 weeks were used. These animals were
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observed on a daily basis and sick mice were killed humanely in accordance with
the Guidelines for Humane Endpoints for Animals used in biomedical research. All
animal protocols were approved by the Instituto de Salud Carlos III Committee for
Animal Care and Research.

Mouse CD4þ T cells were obtained from single-cell suspensions of the spleen
and mesenteric lymph node. The cell suspensions were incubated with biotinylated
antibodies against CD8, CD16, CD19, CD24, CD117, MHC class II (I-Ab), CD11b,
CD11c and DX5, and were subsequently incubated with streptavidin microbeads
(MACS; Miltenyi Biotec). CD4þ T cells were negatively selected in an auto-MACS
Pro Separator (Miltenyi Biotec). Cells were then labelled with antibodies to CD4
and CD25, and analysed by flow cytometry to confirm their purity and resting
status. For conditional KO and knockin studies, mouse CD4þ T cells were
cultured with tamoxifen for 96 h (Aurora A gene deletion model) or doxycycline
for 20 h (Aurora A overexpression model) in RPMI 1640þGlutaMAX–Iþ 25 mM
HEPES (Gibco–Invitrogen) supplemented with 10% fetal bovine serum
(Hyclone, Thermofisher), 50 IU ml� 1 per ml penicillin, 50mg ml� 1 per ml
streptomycin and 5 ng ml� 1 per ml murine IL-7.

Antibodies and reagents. The antibodies used in this study were anti-CD3z Y83
(ab68236; 1:1,000 for WB), anti-LAT Y132 (ab4476; 1:1,000 for WB), anti-Aurora
A T288 (ab83968; 1:200 for immunofluorescence (IF)) and anti-Aurora A (a13824;
[35C1]; 1:500 for WB) from Abcam; anti-a-Tubulin (T6199; clon DM1A; 1:2,000
for WB) and fluorescein isothiocyanate-conjugated anti-a-Tubulin (F2168; clon
DM1A; 1:100 for IF) from Sigma; anti-ERK1/2 (SKU 13-6200; 1:500 for WB), anti-
V5 (R960-25; 1:1,000 for WB and 0.5 mg per point for IP) and anti-Src pY418 (44-
660G; that recognizes
Lck Y394 (ref. 34), 1:1,000 for WB) from Invitrogen; anti-ERK1/2 T202/Y204
(44285; 1:1,000 for WB) from Calbiochem; anti-Aurora A (04-1037; 1:1,000 for
WB) and anti-Lck (05-435; 1 mg per point for IP) from Millipore; anti-PKCy
(610090; 1:1,000 for WB), anti-Rac1 (610651; 1:1,000 for WB), anti-mouse
CD3e (553057; clon 2C11; 10 mg ml� 1) and CD28 (553294; 5 mg ml� 1) and
anti-human CD28 (555725; 2 mg ml� 1) from BD Pharmingen; anti-human CD3e
(317302; clon OKT3; 1:200 for IF) from BioLegend; anti-PKCy T538 (9377S;
1:1,000 for WB), anti-PLCg1 (2822S; 1:1,000 for WB), anti-PLCg1 Y783 (#2821L;
1:1,000) and anti-Lck (2752; 1:1,000 for WB and 1:200 for IF) from Cell Signaling
Tech; anti-PKCy (sc-1875; 1:200 for IF) and anti-LAT (sc-7948; 1:500 for WB)
from Santa Cruz. The anti-human CD3e (300314; HIT3a; 5 mg ml� 1) was from
eBioscience. The anti-human-CD3z and anti-GST antibodies were produced in
Dr B. Alarcón’s laboratory (Centro de Biologı́a Molecular Severo Ochoa, Madrid).
Goat anti-Armenian hamster IgG was from Jackson ImmunoResearch (127-005-
160; 10 mg ml� 1). Cell tracker CMAC (7-amino-4-chloromethylcoumarin; C2110,
0.1 mM) was from Molecular Probes–Invitrogen. Enterotoxins E (SEE; 0.3 mg ml� 1)
and B (SEB; 5mg ml� 1) from Staphylococcus aureus were purchased from Toxin
Technologies; the HA peptide (200 mg ml� 1) was synthesized by Lifetein LLC.
Recombinant human Lck, histidine tagged was from MBL (RB-P3043). The Aurora
A inhibitor MLN8237 and Aurora B inhibitor AZD1152 were from Selleckchem.
Prolong Gold anti-fade mounting medium (P-36934), phalloidin conjugated to
Alexa Flour 647 (A-22287; 1:100 for IF), goat anti-rabbit and goat anti-mouse
highly cross-adsorbed secondary antibodies conjugated to Alexa Fluor 488
(A-11034 and A-11029, respectively; 1:500 for IF), 568 (A11036 and A-11031,
respectively; 1:500 for IF) or 647 (A-21443 and A-21236, respectively; 1:500 for IF),
donkey anti-goat highly cross-adsorbed secondary antibody conjugated to Alexa
Fluor 647 (A-21447; 1:500 for IF) and donkey anti-rabbit secondary antibody
conjugated to Alexa Flour 555 (A-31572; 1:500 for IF) were from Thermofisher
Scientific. Fibronectin and Poly-L-Lys were from Sigma. Horseradish
peroxidase-conjugated secondary antibodies for WB (anti-rabbit 31460, mouse
31430 or goat IgGþ IgM 31460) were from Pierce–Thermofisher Scientific. Murine
IL-7 was from PreproTech (217-17).

Plasmids and siRNAs and transfection. The plasmid encoding GFP-EB3 was
generously provided by Dr A. Akhmanova (Utrecht University, Utrecht, The
Netherlands)24. The plasmids encoding WT or KD Aurora A-GFP and WT or
KD V5-Aurora A were reported previously60. CD4-Lck38 in pRC3.1 plasmid was
sub-cloned in the laboratory of Dr M Alonso; Dr M Alonso also provided the
Lck-GFP39 and CD4DCyt-GFP40 constructs (CBM, Madrid, Spain), and
Actin–mCherry-expressing CH7C17 T-cell clones were generated in the laboratory
of Dr JM Serrador (CBM). The GST-PAK-CD (p21-activated kinase-CRIB-
Domain)30 was generously provided by Dr Collard (NKI, Amsterdam, The
Netherlands). The plasmid pGEX2TK (Pharmacia) was used as control. T-cell lines
were transfected with specific double-stranded siRNA against human Aurora
Kinase A 30-untranslated region (50-CCCUCAAUCUAGAACGCUA-30)61 or
a scramble negative control (50-CUAGGGUGCCGAGUGUGUU-30). For
transfection, T-cell lines were centrifuged at 1,200 r.p.m. for 5 min and washed with
Hank’s balance salt solution(HBSS); Lonza) and resuspended in Opti-Mem I
(Gibco–Invitrogen) (15� 106 cells in 400 ml). Corresponding plasmids (10 mg) were
added to cell lines and transfection was performed with the gene-pulser III system
from Bio-Rad Laboratories (240 V, 975 mO, B27 ms). After electroporation, cells
were cultured in 9 ml RPMI 1640þGlutaMAXTM–Iþ 25 mM HEPES medium.
After 4 h, 500 ml fetal bovine serum was added to the cell medium. Experiments
were performed 24 h after transfection. For mouse and human primary CD4þ

T cells, corresponding plasmids (10 mg) were added to cells and transfection was
performed with the Nucleofector I from Amaxa Biosystems (X-01). The plasmids
encoding Aurora A-V5 WT or KD (24 mg) were tranfected with Lipofectamine
(Invitrogen) in HEK293T cells. Experiments were performed 24 h after
transfection.

T cell activation and lysis for pull-down and immunoblotting. For human TCR
stimulation, T cells were incubated for the indicated times with latex microbeads
(6.4 mm diameter) conjugated to anti-CD3 antibody (10 mg ml� 1) and anti-CD28
antibody (5mg ml� 1). For mouse TCR stimulation, T cells were incubated with
anti-CD3 antibody (10 mg ml� 1) and anti-CD28 antibody (5mg ml� 1) for 15
(4 �C) followed by incubation with goat anti-Armenian hamster IgG for 15 min
(4 �C). For antigen stimulation, Raji cells were pulsed with 0.3 mg ml� 1 SEE
(30 min) and mixed with J77 or J.CAM1 cells (1:5); alternatively, Hom2 cells pulsed
with 200 mg ml� 1 HA peptide (2 h) or with 5 mg ml� 1 SEB (30 min) and were
mixed with CH7C17 cells (1:5) in HBSS. Where indicated, cells were pretreated
with MLN8237 (10 mM) or AZD1152 (100 nM), or vehicle for 45 min at 37 �C in
HBSS before stimulation with the corresponding APC or anti-CD3 and anti-CD28
antibodies. Cells were centrifuged at low speed for the indicated times at 37 �C to
favour the formation of conjugates. Cells were lysed in 5 mM Tris-HCl pH 7.5
containing 1% NP40, 0.2% Triton X-100, 150 mM NaCl, 2 mM EDTA, 1.5 mM
MgCl2, and phosphatase and protease inhibitors. Lysates were spin at 14,000 r.p.m.
(4 �C, 10 min) to remove debris and nuclei. For GST-Nck or GST-PAK-CD,
pull-down assay experiments were performed as described previously28,30. Proteins
were resolved by SDS–PAGE and transferred to nitrocellulose membranes. After
blocking with TBS containing 0.2% TWEEN and 5% BSA, membranes were blotted
with primary antibodies (o/n at 4 �C) and peroxidase-labelled secondary antibodies
(30 min), and detected with the ImageQuant LAS-4000 chemiluminiscence and
fluorescence imaging system (Fujifilm). Source images from relevant WB are
available in the Supplementary Figs 6–9.

Cell conjugate and IF and IS analysis. Raji B cells or Hom2 B cells were washed
once with HBSS and loaded with the CMAC cell tracker (10mM) and with SEE or
SEB for 30 min or HA peptide for 2 h at 37 �C. T cells (1� 105 cells) were mixed
with the corresponding APC (1:1) and plated onto Poly-L-Lys-coated slides
(50 mg ml� 1; 1 h at 37 �C). Cells were allowed to settle for 20 min at 37 �C, fixed
with 4% paraformaldehyde and 0.12 mM sucrose in PHEM (60 mM PIPES, 25 mM

Figure 9 | Aurora controls localization and phosphorylation of the tyrosine kinase Lck. (a) Maximum Z projection of XYZ stack of human Jurkat T cells

pretreated with vehicle (DMSO) or Aurora A inhibitor (MLN8237) and conjugated with SEE-preloaded Raji B cells (APCs; 30 min). Cells were fixed and

stained for a-tubulin–fluorescein isothiocyanate (FITC) (green), PKCy (magenta) and Lck (red). Bright-field images are included. Scale bar, 10mm.

(b) Quantification of Lck accumulation at the IS in conjugates as in a from three independent experiments (DMSO, n¼ 96. MLN8237, n¼ 94). Data

represent means±s.d. Means were compared with a t-test; ****Po0.0001. (c) Immunoblotting of Lck phosphorylation at Y394 in primary human CD4þ

T cells. Cells were pretreated with DMSO or MLN8237 and conjugated for the indicated times with anti-CD3/CD28-coated beads. Total Lck and actin are

included as loading controls. Arrows point Lck band. (d) Quantification of data from four independent experiments as in c. Error bars represent s.d. Medians

were compared with a Friedman test (*Po0.05). (e) Immunoblots of CD3z phosphorylation in lysates of J.CAM1 T cells transfected with Lck-GFP, CD4-Lck

or CD4-DCyt-GFP, pretreated with DMSO or MLN8237 and conjugated for 5 min with SEE-pulsed APCs. (f) T-cell lymphoblasts pretreated with DMSO or

MLN8237 were activated or not with SEE-pulsed APCs (2 min) and subjected to IP using an anti-Lck antibody. The immunoprecipitates were subjected to

MS analysis. Upper panel, MS/MS extracted ion chromatograms of the Y394-phosphorylated and non-modified forms of Lck peptide LIEDNEYTAR. Lower

panel, phosphorylated:non-modified peak ratios. (g) Recombinant Lck was incubated with Aurora A WT (in the absence or presence of MLN8237) or

Aurora A KD immunoprecipitated from nocodazole-treated (16 h), transfected HEK293 cells. Lck and Aurora were incubated for 30 min in the presence of

ATP and the mixture analysed by MS. Upper panel, MS/MS extracted ion chromatograms of the Y394-phosphorylated and non-modified forms of Lck

peptide LIEDNEYTAR. Lower panel, phosphorylated:non-modified peak ratios. See Supplementary Table 1 for representative MS/MS spectra of the

phosphorylated and non-phosphoryated forms of the peptide at the peaks.
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Hepes, 5 mM EGTA and 2 mM MgCl2), and permeabilized for 5 min at room
temperature with 0.2% Triton X-100 in immunofluorescence solution (PHEM
containing 3% BSA, 100 mg ml� 1 g-globulin and 0.2% azide). Cells were blocked
for 30 min with immunofluorescence solution and stained with the indicated pri-
mary antibodies (5mg ml� 1) followed by Alexa Fluor 488-, 568- or 647-labelled
secondary antibodies, Alexa-conjugated phalloidin (5 mg ml� 1) or fluorescein
isothiocyanate-conjugated anti-a-tubulin (0.1mg ml� 1). Cells were mounted on
Prolong Gold and analysed with a Leica SP5 confocal microscope (Leica) fitted

with a HCX PL APO � 63/1.40–0.6 oil objective and images were processed and
assembled using Image J software (http://rsbweb.nih.gov/ij/) and Photoshop soft-
ware. For quantification in individual ISs, we used a home-made plugin for Image J
software (http://rsbweb.nih.gov/ij/) called ‘Synapse Measures’. By comparing
fluorescence signals from multiple regions of the T cell, APC, IS and background
fluorescence, the programme yields accurate measurements of localized
immunofluorescence. A detailed description of Synapse Measures including the
algorithms used is described62.
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IP and MS and phosphorylation. For Lck IP assay, human lymphoblast pretreated
with MLN8237 (10mM) or vehicle (DMSO) for 30 min were activated with Raji
preloaded with SEE for 2 min at 37 �C. Next, cells were lysated for 40 min at 4 �C in
extraction buffer with 5 mM Tris-HCl pH 7.5 containing 0.5% NP40, 150 mM
NaCl, 2 mM EDTA, 1.5 mM MgCl2, and phosphatase and protease inhibitors.
Lysates were spun at 14,000 r.p.m. (4 �C, 10 min) to remove debris and nuclei. The
anti-Lck antibody was allowed to bind with Protein G-conjugated sepharose beads
(GE Healthcare) overnight at 4 �C and then mixed with the extracts. The mixture
was left in agitation at 4 �C for 2 h and then beads were washed ten times with the
same buffer used for lysate without detergents. As a control, we used beads
preincubated with the extracts. For Aurora A IP, V5-Aurora A WT- or
KD-transfected HEK293T cells were lysated with RIPA buffer, with 1% Triton
X-100, 0.5% deoxycholate (Sigma-Aldrich), 0.1% SDS in Tris buffer saline and
sonicated (3� 30 s pulses). The anti-V5 antibody was mixed with the extracts and
left in agitation at 4 �C for 2 h, and then Protein G-conjugated sepharose (GE
Healtcare) was added for 1 h in agitation at 4 �C. Beads were washed three times
with the buffer kinase with 20 mM Hepes pH 7.4 containing 150 mM KCl, 10 mM
MgCl2, 1 mM EGTA, 0.5 mM dithiothreitol, and phosphatase and protease
inhibitors, and once with buffer kinase plus NaCl 0.5 mM. Beads were incubated
with 0.5 mg of recombinant Lck in buffer kinase plus 10 mM ATP during 30 min at
30 �C. For proteomic analysis, the samples were trypsin-digested using the whole
proteome in-gel digestion protocol63. The peptides produced by digestion were
vacuum dried and redissolved in 1% trifluoroacetic acid for desalting in
reversed-phase C-18 extraction cartridges (Oasis, Waters Corporation, Milford,
MA, USA). High-resolution parallel reaction monitoring of phosphorylated
peptides was carried out on an Easy nLC 1000 nano-HPLC apparatus (Thermo
Scientific, San Jose, CA, USA) coupled to a hybrid linear ion trap-orbitrap
(Orbitrap Elite, Thermo Scientific). Peptides were suspended in 0.1% formic acid
and then loaded onto a C-18 reversed-phase nano-column (75 mm I.D., 50 cm) and
separated in a continuous gradient consisting of 8–30% B for 15 min and 30–90% B
for 2 min (B¼ 90% acetonitrile, 0.1% formic acid) at 200 nl min� 1. Peptides were
ionized using a Picotip emitter nanospray needle (New Objective, Woburn, MA,
USA). Each MS run consisted of enhanced FT-resolution spectra (30,000
resolution) in the 390–1,600 m/z range followed by data-independent MS/MS
spectra of 11 parent ions acquired along the chromatographic run. The AGC target
value in the Orbitrap for the survey scan was set to 1,000,000. Fragmentation in the
linear ion trap was performed at 35% normalized collision energy with a target
value of 10,000 ions and the dynamic exclusion was set to 0.5 min. Data analysis
was performed with Xcalibur 2.2 (Thermo Scientific).

Time-lapse confocal and TIRF movie microscopy. For cell conjugates, 3D
imaging was performed with CMAC-loaded Raji APCs (5� 105; SEE-pulsed
(Jurkat cells), SEB-pulsed (CH7C17 cells) or unpulsed) and were allowed to adhere
to fibronectin-coated coverslips in Attofluor open chambers (Molecular
Probes–Invitrogen) at 37 �C in a 5% CO2 atmosphere or in glass-bottom dishes
(No. 1.5 Mattek; Ashland, MA, USA). The cells were maintained in 1 ml HBSS
(1% fetal bovine serum and 25 mM HEPES). Cells were pretreated with the
MLN8237 inhibitor and maintained in its presence during imaging when needed.
T cells were added (1:1 ratio) and a series of fluorescence and differential
interference contrast or bright-field frames were captured using a TCS SP5 confocal
laser scanning unit attached to an inverted epifluorescence microscope (DMI6000)
fitted with an HCX PL APO � 63/1.40–0.6 oil objective. Images were acquired and
processed with the accompanying confocal software (LCS; Leica) and Image J
software (http://rsbweb.nih.gov/ij/). For 3D imaging of MT growing, cells were
allowed to settle onto glass-bottom dishes coated with anti-CD3 (10 mg ml� 1) and
anti-CD28 (3 mg ml� 1) monoclonal antibodies specific for human or mouse T cells
and XYZ series were captured with the resonant scanner of the TCS SP5 confocal
(8,000 Hz) each 1.2 s or 1.1 s. Cells were pretreated with the MLN8237 inhibitor
and maintained in its presence during imaging. For TIRF microscopy, T cells stably
expressing EB3-GFP or transfected with EB3-GFP and CD3x-mCherry were
allowed to settle onto glass-bottom dishes coated with anti-CD3 (10 mg ml� 1) and
anti-CD28 (3mg ml� 1). Cells were pretreated with the MLN8237 inhibitor and it
was maintained in the imaging medium during acquisition. Recording was initiated
3 min after cells were plated and cells were visualized with a Leica AM TIRF MC M
system mounted on a Leica DMI 6000B microscope coupled to an Andor-
DU8285_VP-4094 camera fitted with a HCX PL APO � 100.0, 1.46 oil objective.
For mCherry–b-actin-expressing T cells, recording was initiated on addition of
cells to the glass-bottom dishes. Images were processed with the accompanying
confocal software (LCS; Leica). The laser penetrance used was 150 or 200 nm for
both laser channels (488 and 561 nm), using the same objective angle. Time-lapse
settings were optimized for each type of experiment and are specified throughout
the text. Synchronization was performed with the accompanying Leica software
and images were processed with Leica software, Matlab and Image J software
(http://rsbweb.nih.gov/ij/).

Quantitative real-time PCR. Reverse transcriptase–PCR was performed with 1 mg
of RNA isolated with Trizol RNA reagent (Invitrogen) from CD4þ T cells
obtained from healthy donors. mRNA levels of IL-2, CD25 and CD69 were
determined in triplicate using the Power SYBR Green PCR master mix obtained
from Applied Biosystems (Warrington, UK). Expression levels were normalized to

the expression of glyceraldehyde-3-phosphate dehydrogenase. Primer sequences
are listed in Supplementary Table 2.
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