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Summary
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations

including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc

(Zn) content of rice endosperm by overexpressing different metal transporters have therefore led

unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike

other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the

mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control

of the maize ubiquitin1 promoter and comparing the mobilization and loading of different

metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root-to-shoot

translocation, seed accumulation and endosperm loading, but without any change in the uptake

and root-to-shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The

concentrations of Zn and Mn in the endosperm did not differ significantly between the wild-type

and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of

Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root-to-shoot

translocation and accumulation in the seeds. The underlying mechanism of metal uptake and

translocation reflects the down-regulation of promiscuous endogenous metal transporters

revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the

preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.

Introduction

Iron (Fe) is an important micronutrient for all living organisms

(Winterbourn, 1995). Plants acquire Fe from the soil andmobilize it

from the roots to the aerial organs to support essential processes

such as photosynthesis, electron transport and respiration (Morris-

sey and Guerinot, 2009). Fe is also loaded into the seed endosperm

to support germination (Lanquar et al., 2005) and thus becomes

available as a micronutrient for humans. Rice is an important staple

food crop, particularly in the developing world, but rice grains do

not accumulate high levels of Fe, leading to severe Fe deficiency in

populations that rely mostly on rice for their nutritional needs

(G�omez-Galera et al., 2010; P�erez-Massot et al., 2013).

Metal acquisition and mobilization in plants are controlled by

several families of membrane-bound metal transporters (Hall and

Williams, 2003; Vert et al., 2002) including the Fe-regulated

transporter (IRT), natural resistance-associated macrophage pro-

tein (NRAMP), cation diffusion facilitator (CDF), yellow stripe-like

(YSL) and heavy metal ATPase (HMA) transporter families, as well

as other Fe transporters in the chloroplast and vacuolar mem-

branes (Duy et al., 2007; Hall and Williams, 2003; Vert et al.,

2002; Zhang et al., 2012). Iron acquisition in rice involves

different strategies for Fe2+ and Fe3+ (Ishimaru et al., 2006;

Kobayashi and Nishizawa, 2012; Sperotto et al., 2012). In

strategy I, Fe2+ ions are taken up into the root epidermis by

OsIRT1/OsIRT2 in the plasma membrane (Ishimaru et al., 2006;

Lee and An, 2009; Vert et al., 2002) and are then transported via

the phloem and xylem to accumulate in the seeds (Ishimaru et al.,

2010; Takahashi et al., 2011). Phloem transport involves the Fe2+

chelator nicotianamine (NA) and the YSL family transporters YSL2

and YSL16, whereas xylem transport involves NRAMP1 (Ishimaru

et al., 2010; Takahashi et al., 2011) and the citrate efflux

transporter FRD3 (Durrett et al., 2007). In strategy II, phy-

tosiderophores (PS) such as mugineic acid (MA) and deoxymu-

genic acid (DMA) are secreted to the rhizosphere (Ma et al.,

1999) where they solubilize Fe3+ by forming DMA-Fe3+ com-

plexes (Ma et al., 1999). The complex is taken up into the roots

by YSL15 in the plasma membrane (Inoue et al., 2009). The

DMA-Fe3+ complex is transported through the phloem by YSL18

and accumulates in the seeds in the same form (Ayoma et al.,

2009), whereas translocation through the xylem is also mediated

by the citrate efflux transporter FRDL1 (Yokosho et al., 2009).

Rice, which is adapted for growing in anaerobic soils where Fe is

more soluble, produces much less PS than barley, which is

adapted to alkaline soils. In fact, rice is the only cereal species that

combines components of strategy I plants (OsIRT1 and OsIRT2;

Ishimaru et al., 2006) with PS production and Fe-PS uptake

(OsYSL15; Inoue et al., 2009).

Although Fe is abundant in the soil, rice has only a limited

ability to acquire and mobilize Fe and load it into the endosperm
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(Lee and An, 2009; Lee et al., 2009) most likely due to the weak

expression of Fe transporters in the root (Inoue et al., 2009; Lee

and An, 2009; Lee et al., 2009; Tan et al., 2015). Previous efforts

to increase the uptake of Fe into rice plants have therefore

focused on the overexpression of metal transporters (Bashir et al.,

2013). However, most transporters are promiscuous and those

responsible for the mobilization of Fe may also transport Zn

(another important micronutrient) and other metals such as Cu,

Mn, Ni and Cd, some of which are toxic even at low levels (Hall

and Williams, 2003; Ishimaru et al., 2010; Takahashi et al., 2011;

Thomine and Vert, 2013; Vert et al., 2002). The overexpression of

OsIRT1, OsIRT2, MxIRT1, AtIRT1, OsYSL15 and OsYSL2 in rice

therefore increased the levels of Zn, Cu, Mn, Cd and Ni mobilized

from the soil and this was shown to be detrimental to plant health

(Lee and An, 2009; Nishida et al., 2011; Tan et al., 2015;

Uraguchi and Fujiwara, 2012).

One approach that can address this challenge is the overex-

pression of heterologous metal transporters that are selective for

Fe, with no affinity for other divalent cations (Clemens et al.,

2013; Slamet-Loedin et al., 2015). The barley (Hordeum vulgare)

YS1 protein (HvYS1) is an Fe-selective metal transporter expressed

in the root epidermal cells (Murata et al., 2006, 2008, 2015).

HvYS1 expression is induced by Fe deficiency but not by the

depletion of other metals (Ueno et al., 2009). Yeast complemen-

tation studies have shown that HvYS1 is a strict DMA-Fe3+

transporter that does not interact with Zn, Cu, Mn or Cd

complexed with DMA or metals complexed with NA (Murata

et al., 2006). Hence, this selectivity is attributed to an Fe-specific

outer membrane loop between the sixth and seventh transmem-

brane domains (Murata et al., 2008).

Here, we investigated the mechanism by which HvYS1

promotes the selective transport of Fe using rice as a model.

The heterologous expression of HvYS1 improved Fe uptake and

root-to-shoot translocation, and achieved a moderate increase in

Fe seed loading, without increasing the uptake and root-to-shoot

translocation of Zn, Cu or Mn. The concentrations of Zn and Mn

in the seed were unaffected by HvYS1 expression, whereas the

concentration of Cu declined. Cadmium uptake, root-to-shoot

translocation and seed loading were also inhibited in these plants.

The preferential mobilization of Fe at the expense of other metals

reflects the inhibition of heavy metal seed loading due to the

selective transport of Fe by HvYS1.

Results

The constitutive overexpression of HvYS1 in rice
improves Fe uptake, translocation and seed loading

We co-transformed 7-day-old mature seed-derived zygotic rice

embryos with a plasmid containing HvYS1 driven by the consti-

tutive maize ubiquitin 1 (ubi-1) promoter and another plasmid

carrying the selectable marker hpt driven by the CaMV35S

promoter and regenerated transgenic plants under hygromycin

selection. HvYS1 expression in 15 independent transgenic lines

was confirmed by RNA blot analysis (Figure 1). These lines and

corresponding wild-type plants were grown to maturity and T1
seeds were collected. The five transgenic lines with the highest

levels of HvYS1 expression were bred to homozygosity for

detailed analysis.

We hypothesized that constitutive HvYS1 expression might

improve Fe uptake, root-to-shoot translocation and seed loading

in the transgenic lines because HvYS1 is a specific Fe transporter

in barley expressed in root epidermal cells and achieves Fe (III)-PS

translocation when expressed in yeast (Murata et al., 2006),

X. laevis oocytes (Murata et al., 2008) and petunia (Murata et al.,

2015). Accordingly, the T2 HvYS1 transgenic lines contained up to

1.6-fold more Fe in the roots than wild-type controls, that is

566 � 38 vs 345 � 10 lg Fe/g dry weight (DW) (Figure 2a). This

in turn enhanced the root-to-shoot translocation of Fe in the

transgenic lines, resulting in up to 2.2-fold more Fe in the leaves,

that is 231 � 10 vs 104 � 5 lg Fe/g DW (Figure 2b). This

increase in Fe uptake and root-to-shoot translocation also had an

impact on Fe seed loading. The husks of the transgenic seeds

contained up to 2.1-fold more Fe than wild-type seeds: 216 � 3

vs 102 � 4 lg Fe/g DW (Figure 2c). The unpolished transgenic

seeds contained up to 1.6-fold more Fe than wild-type seeds:

24.0 � 0.5 vs 15.4 � 0.4 lg Fe/g DW (Figure 2d), whereas the

polished transgenic seeds (the endosperm) contained 2.1-fold

more Fe than wild-type endosperm: 8.7 � 0.3 vs 4.0 � 0.1 lg/g
DW Fe (Figure 2e). These results suggest that HvYS1 expression in

the transgenic lines improved Fe mobilization from the soil to the

roots, root-to-shoot translocation and seed loading, with loading

of Fe occurred preferentially into the endosperm rather than into

the bran.

DMA synthesis and accumulation are enhanced in the
HvYS1 transgenic plants

Rice produces DMA (Araki et al., 2015), and HvYS1 transports

Fe3+ as a complex with DMA and MA with the same efficiency

(Murata et al., 2008). We therefore hypothesized that the higher

levels of Fe in the transgenic lines should be accompanied by

higher levels of DMA. We measured the amount of DMA in the

roots, leaves and seeds of selected T2 HvYS1 transgenic lines and

observed significantly higher levels of DMA in all three tissues

compared to wild-type plants (Figure 3a, b, c). These data

confirm that the increased mobilization of Fe in the transgenic

plants coincides with higher levels of DMA, indicating that the

additional Fe is likely to be mobilized as an Fe3+-DMA complex.

We then measured the levels of NA in the tissues where we

measured DMA to investigate whether the expression of HvYS1

followed by Fe3+-DMA transport influences NA levels. Although

the quantification of NA was not possible in roots as the levels

were below the detection limit, transgenic lines did not differ

significantly from wild type for NA levels in leaves and seeds

(Figure 3d, e, f). The data indicate that endogenous NA synthesis

and accumulation were not influenced due to Fe3+-DMA trans-

port by HvYS1.

The selective mobilization of Fe by HvYS1 does not
affect the uptake or root-to-shoot translocation of
Zn, Cu and Mn

As many Fe transporters can also transport Zn, Cu and Mn (Lee

et al., 2009), we investigated the distribution of these threemetals

in the HvYS1 transgenic lines to confirm the specificity of the

transporter in its heterologous environment. We found no

difference in the distribution of these three metals when compar-

ing transgenic and wild-type roots (Figure 4a) and leaves (Fig-

ure 4b) suggesting that HvYS1 achieves the selective uptake and

root-to-shoot translocation of Fe and excludes Zn, Cu and Mn.

The selective mobilization of Fe by HvYS1 does not
affect seed loading with Mn but influences the
distribution of Zn in the husk and Cu in the endosperm

In contrast to the straightforward metal distribution profile in the

vegetative tissues, the impact of HvYS1 on metal distribution in
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the seeds was more complex. We compared the distribution of

metals in the husk (Figure 4c), unpolished (Figure 4d) and

polished seeds (Figure 4e). We found no difference between

the transgenic and wild-type seeds in terms of Mn loading,

suggesting the distribution of Mn among the different seed

tissues was unaffected by the moderate increase in Fe loading

caused by the expression of HvYS1. However, Zn was specifically

displaced from the husk in the transgenic lines, resulting in a 1.7-

fold depletion, from 45 � 1 down to 26 � 2 lg Zn/g DW

(Figure 4c), although there was no significant difference in Zn

levels when we compared the unpolished or polished transgenic

and wild-type seed. In contrast to the situation for Mn and Zn, we

found that Cu was depleted in all three seed tissues in the

transgenic lines. The transgenic husk contained 7.8 � 0.3 lg Cu/g

DW compared to 20 � 0.6 lg Cu/g DW in the wild-type husk,

reflecting a 2.5-fold decrease in Cu (Figure 4c). The unpolished

transgenic seed contained 3.03 � 0.1 lg Cu/g DW, 3.7-fold

lower than the wild-type level of 11.5 � 0.1 lg Cu/g DW

(Figure 4d). Finally, the polished transgenic seed contained

2.5 � 0.1 lg/g DW Cu, 3.8-fold lower than the wild-type level

of 9 � 0.1 lg Cu/g DW (Figure 4e). The lower levels of Zn and

Cu in the transgenic seeds suggest that the increase in the

delivery of Fe selectively suppresses Zn accumulation in the husk

and Cu accumulation in all seed tissues, with the effect being

particularly intense in the endosperm.

The selective mobilization of Fe in the transgenic lines
suppresses the mobilization of Cd at all steps along the
translocation pathway

Many Fe transporters not only transport other divalent cations

such as Zn, Mn and Cu, but also toxic metals such as Cd (Lee

et al., 2009; Takahashi et al., 2011). We therefore compared the

distribution of Fe and Cd in the transgenic lines and wild-type

controls when Cd was added to the soil to gain more insight into

the selective mobilization of different metals by HvYS1 in its

heterologous environment. Unlike Zn, Mn and Cu, whose

distribution in vegetative tissues was unaffected, we found that

the transgenic lines contained significantly lower levels of Cd than

wild-type plants in the roots and leaves as well as the seeds

(Figure 5). When compared to the wild type, the transgenic lines

Figure 3 Concentration of 20-deoxymugenic

acid (DMA) and nicotianamine (NA) (lg/g FW) in

roots, leaves and polished seeds of wild-type (WT)

and two selected T2 generation transgenic lines

expressing HvYS1 (lines 1, 2). Asterisks indicate a

statistically significant difference between wild-

type and transgenic plants as determined by

Student’s t-test (P < 0.05; n = 3). NA levels in the

roots were below the detection limit. FW: fresh

weight.

Figure 2 Concentrations of Fe (lg/g DW) in

roots (a), leaves (b), husks (c), unpolished seeds (d)

and polished seeds (e) of wild-type (WT) and T2
generation transgenic lines expressing HvYS1

(lines 1, 2, 3, 4, 5). Asterisks indicate a statistically

significant difference between wild-type and

transgenic plants as determined by Student’s t-

test (P < 0.05; n = 6). DW: dry weight. Iron

measurements in husk were taken from two

representative transgenic lines.

Figure 1 RNA blot analysis showing transgene expression in the leaf tissue of wild-type (WT) and transgenic lines expressing HvYS1. rRNA: ribosomal RNA;

HvYS1: barley yellow stripe 1 transporter.
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accumulated 2.3-fold less Cd in roots (Figure 5a), fivefold less Cd

in leaves (Figure 5b) and 2.4-fold less Cd in unpolished seeds

(Figure 5c). In contrast, when compared to the wild type, the

transgenic lines contained 2.4-fold more Fe in roots (Figure 5d),

1.8-fold more Fe in leaves (Figure 5e) and 1.9-fold more Fe in

seeds (Figure 5f). These data suggest that Fe mobilized by HvYS1

in the roots and shoots suppresses the uptake and translocation

of Cd and that Fe delivery to the seeds also prevents seed loading

with Cd and/or displaces Cd that is already in situ.

Homeostasis mechanisms limit Fe seed loading in the
transgenic lines

The selective mobilization of Fe by HvYS1 in the transgenic lines

leads to a moderate increase in Fe levels in the seeds. A possible

explanation for the modest increase in Fe levels in transgenic lines

is that an Fe homeostasis mechanism imposes limitations on Fe

accumulation. Fe homeostasis in rice involves a number of genes

controlling uptake, root-to-shoot translocation, remobilization

from the flag leaf and deposition in seeds (Table S1) suggesting

that these endogenous genes may be modulated by the

heterologous expression of HvYS1. To investigate the influence

of HvYS1 on the expression of endogenous Fe homeostasis

genes, we measured the expression of genes controlling Fe

uptake (OsIRT1, OsYSL15 and OsNRAMP5), long-distance trans-

port (OsFRDL1, OsYSL2, OsYSL16, OsYSL18 and OsNRAMP1),

vacuolar sequestration (OsVIT1), storage (OsFERRITIN1), endoge-

nous phytosiderophore synthesis pathway (OsSAMS1, OsNAS2,

OsNAS3, OsNAAT1, OsDMAS1) and transcription factor (OsI-

DEF1) in the roots, leaves and seeds of the HvYS1 transgenic lines

and wild-type controls (Table S1).

In the roots, OsIRT1 and OsYSL15 (controlling Fe uptake) were

down-regulated by 3-fold and 2.2-fold, respectively, in the

transgenic lines (Table 1; Figure S1). Furthermore, the Fe2+-NA

transporter OsYSL16 was down-regulated by 3.7-fold, the Fe3+-

citrate transporter OsFRDL1 was down-regulated by 5.1-fold, the

vacuolar transporter OsVIT1 was down-regulated by 7.7-fold, iron

storage OsFERRITIN1 was down-regulated by 5.6-fold, and the

transcription factor regulating metal homeostasis OsIDEF1 was

down-regulated by 3-fold (Table 1; Figure S1). Our results

suggest that endogenous Fe uptake and root-to-shoot transloca-

tion are down-regulated by HvYS1 expression. The expression of

OsNRAMP5 and OsNRAMP1 was up-regulated by 3.2-fold and

4.4-fold, respectively, in the transgenic lines compared to wild-

type controls (Table 1; Figure S1). This suggests that these genes

Figure 4 Concentrations of Zn (left), Mn

(middle) and Cu (right), all in lg metal per g DW,

in roots (a), leaves (b), husks (c), unpolished seeds

(d) and polished seeds (e) of wild-type (WT) and

two selected T2 generation transgenic lines

expressing HvYS1 (lines 1, 2). Asterisks indicate a

statistically significant difference between wild-

type and transgenic plants as determined by

Student’s t-test (P < 0.05; n = 6). DW: dry

weight.

Figure 5 Concentrations of Cd (top row) and Fe

(bottom row), both in lg/g DW, in (a and d) roots,

(b and e) leaves and (c and f) unpolished seeds of

wild-type (WT) and T3 generation transgenic lines

expressing HvYS1 (lines 1, 2, 3) supplied with

10 lM CdCl2. Asterisks indicate a statistically

significant difference between wild-type and

transgenic plants as determined by Student’s t-

test (P < 0.05; n = 6). DW: dry weight.
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were up-regulated to balance Fe uptake and translocation.

Among the endogenous PS synthesis genes, expression of

OsSAMS1 (6.4-fold), OsDMAS1 (2-fold) was up-regulated,

whereas the expression of OsNAS2 (17-fold), OsNAS3 (1.7-fold)

and OsNAAT1 (2.5-fold) was down-regulated. This suggests that

the expression of HvYS1 modulates expression of genes for the

conversion of L-methionine to S-adenosyl methionine (OsSAMS1)

and 30-keto intermediate to DMA (OsDMAS1) but such an

alteration in endogenous PS pathway suppresses the expression

of genes for the conversion of S-adenosyl methionine to NA

(OsNAS2, OsNAS3) and NA to 30-keto intermediate (OsNAAT1).

In the leaves, OsIRT1, OsNRAMP5, OsYSL16, OsYSL18,

OsFERRITIN1 and OsIDEF1 were all up-regulated in the transgenic

lines by between 1.8-fold and 3.1-fold (Table 1; Figure S1),

indicating that Fe remobilization from leaves and storage was

enhanced in the transgenic lines. Similarly, expression of OsNAS2,

OsNAS3, OsNAAT1 and OsDMAS1 was up-regulated by 3.2-, 9-,

2.2- and 2.2-fold, respectively, in the transgenic lines compared

to the wild type (Table 1; Figure S1). In contrast, expression of

OsSAMS1 was down-regulated by 2.2-fold in the transgenic lines

compared to wild type (Table 1; Figure S1). These results suggest

that generally the expression of endogenous PS pathway genes

was modulated to enhance Fe mobilization. In the seeds, OsIRT1,

OsYSL15, OsYSL2, OsYSL18, OsFRDL1, OsVIT1 and OsIDEF1 were

down-regulated by 2.8-fold, 7.2-fold, 3.4-fold, 7.5-fold, 2.7-fold,

ninefold and 2.5-fold, respectively (Table 1; Figure S1), suggest-

ing that endogenous genes that promote Fe accumulation are

down-regulated to limit Fe accumulation in the seeds. In contrast

to the general down-regulation of metal transporters, the

expression of OsNAS2 and OsNAS3 was up-regulated by 1.8-

and 3.4-fold, respectively, whereas OsNAAT1 and OsDMAS1

expressions were down-regulated by 2.1- and 2.5-fold, respec-

tively (Table 1; Figure S1). These results suggest that the

conversion of NA to the 30-keto intermediate (by OsNAAT1)

followed by the latter’s conversion to DMA (by OsDMAS1) was

down-regulated to limit Fe accumulation in seeds.

Discussion

Rice plants secrete DMA from the root surface (Suzuki et al.,

2008), which chelates Fe3+ in the soil allowing the resulting Fe3+-

DMA complex to be taken up by Fe3+-DMA transporters. The

complexes are translocated internally and ultimately accumulate

in the seeds (Inoue et al., 2009). One strategy to enhance Fe

uptake, translocation and accumulation is therefore to overex-

press appropriate metal transporters. However, by and large

metal transporters are promiscuous and they can transport toxic

metals such as Cd, along with metals that are essential nutrients.

The broad impact of heterologous metal transporter overexpres-

sion on metal accumulation in seeds, and the expression of

endogenous genes involved in metal homeostasis, is thus still

unclear because the mechanisms of metal homeostasis in plants

are complex and they depend on many different factors.

To address these issues in more detail, we generated transgenic

rice plants overexpressing the barley Fe3+-DMA transporter

HvYS1, which is strictly specific for Fe and therefore allows

studying the impact on Fe levels. The constitutive expression of

HvYS1 increased Fe uptake from the soil, root-to-shoot translo-

cation and seed loading, resulting in concentration increases of

1.6-, 2.2- and 2.1-fold, respectively, in the roots, leaves and

endosperm of the T2 transgenic plants. The transgenic lines also

accumulated significantly higher levels of DMA in the roots,

leaves and seeds. Similar results were reported by others when

the Fe2+ transporter genes OsIRT1, MxIRT1 and AtIRT1 were

expressed in rice, as well as the Fe3+-DMA transporter gene

OsYSL15 and the promiscuous metal transporter gene OsN-

RAMP5 (whose product can transfer Fe, Mn and Cd), but the

increase in endosperm Fe levels was more moderate, leading to

concentration increases of 1.2- to 1.3-fold when compared to

wild-type seeds (Boonyaves et al., 2016; Ishimaru et al., 2012;

Lee and An, 2009; Lee et al., 2009; Tan et al., 2015). This

suggests that the overexpression of HvYS1 enhances Fe3+-DMA

uptake, root-to-shoot translocation and seed loading more

efficiently than the other genes, resulting in a 2.1-fold increase

in Fe levels in the endosperm (i.e. from 4 lg Fe/g DW in wild-type

plants to 8.7 lg Fe/g DW in the transgenic lines). Compared to

other cereals, barley is highly tolerant to Fe deficiency and the

presence of the efficient Fe transporter YS1 in the plasma

membrane may explain this phenomenon (Murata et al., 2006,

2008).

Next, we investigated the impact of heterologous HvYS1

expression on Zn, Mn and Cu uptake, root-to-shoot translocation

and seed accumulation. The HvYS1 lines did not differ signifi-

cantly from wild-type plants in terms of the concentration of Zn,

Mn and Cu in the roots and leaves. Similarly, HvYS1 expression in

Xenopus laevis oocytes revealed that HvYS1 has the ability to

transport Fe3+-MA complexes but not complexes with other

metals (Murata et al., 2006, 2008). In contrast, genes encoding

the promiscuous metal transporters OsIRT1, MxIRT1, OsNRAMP5,

OsHMA3 and AtIRT1 increased the levels of Zn, Mn and Cu,

respectively, by 1.3-, 1.2- and 1.4-fold in rice roots, and by 1.4-,

1.2- and 1.3-fold in rice leaves (Boonyaves et al., 2016; Ishimaru

et al., 2012; Lee and An, 2009; Lee et al., 2009; Tan et al., 2015;

Ueno et al., 2010). There was no difference in the distribution of

Zn and Mn in the unpolished and polished seeds of the transgenic

Table 1 Fold change in the relative expression level of OsIRT1,

OsYSL15, OsNRAMP5, OsVIT1, OsYSL2, OsYSL16, OsFRDL1,

OsYSL18, OsNRAMP1, OsFERRITIN1, OsSAMS1, OsNAS2, OsNAS3,

OsNAAT1, OsDMAS1 and OsIDEF1 in roots (left), flag leaf (centre) and

seeds (right) at grain filling stage in wild-type (WT) and T2 generation

transgenic lines expressing HvYS1 (Line 1 and Line 2). Arrows show

up-regulation and down-regulation. Gene-specific primers are listed

in Table S2. NC, no change; ND, not determined

Genes Roots Flag leaf Seeds

Metal uptake OsIRT1 ↓3 1.8↑ 2.8↓

OsYSL15 ↓2.2 ND 7.2↓↓

OsNRAMP5 ↑3.2 2.6↑ NC

Vacuolar sequestration OsVIT1 ↓↓7.7 NC 9↓↓

Long-distance transport OsYSL2 NC NC 3.4↓

OsYSL16 ↓3.7 3↑ NC

OsFRDL1 ↓↓5.1 NC 2.7↓

OsYSL18 NC 2.2↑ 7.5↓↓

OsNRAMP1 ↑4.4 NC NC

Iron storage OsFERRITIN1 ↓5.6 3.1↑ NC

Endogenous

phytosiderophore

synthesis pathway

OsSAMS1 6.4↑ 2.2↓ NC

OsNAS2 17↓↓↓↓ 3.2↑ 1.8↑

OsNAS3 1.7↓ 9↑↑ 3.4↑

OsNAAT1 2.5↓ 2.2↑ 2.1↓

OsDMAS1 2↑ 2.2↑ 2.5↓

Transcription factor OsIDEF1 3↓ 1.8↑ 2.5↓
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lines compared to wild-type seeds, but the concentration of Cu

was 3.8-fold lower in the transgenic seeds. The overexpression of

OsIRT1, MxIRT1, OsHMA3, OsNRAMP5 and AtIRT1 increased the

concentrations of Zn, Mn and Cu in rice seeds by 1.5-, 1.3- and

1.6-fold, respectively (Boonyaves et al., 2016; Ishimaru et al.,

2012; Lee and An, 2009; Lee et al., 2009; Tan et al., 2015; Ueno

et al., 2010). The promiscuous transporters increase seed loading

with Zn, Mn and Cu by directly transporting these metals into the

seed, whereas the specificity of HvYS1 means that only Fe is

loaded and any differences in other metals must be attributed to

passive effects, that is Cu being passively displaced by Fe in the

HvYS1 transgenic rice plants. Zinc is nutritionally important for

human health, whereas Mn and Cu are toxic even at moderate

levels (Alimba et al., 2016). The selective loading of Fe into

the endosperm of the HvYS1 lines is therefore advantageous over

the general increase in metal levels previously achieved by the

overexpression of promiscuous transporters (Boonyaves et al.,

2016; Ishimaru et al., 2012; Lee and An, 2009; Lee et al., 2009;

Tan et al., 2015; Ueno et al., 2010).

The expression of HvYS1 doubled the concentration of Fe in the

transgenic seeds compared to wild-type seeds, an effect similar to

those achieved by expressing OsIRT1, AtIRT1, MxIRT1, OsYSL15 or

OsNRAMP5 (Boonyaves et al., 2016; Ishimaru et al., 2012; Lee and

An, 2009; Lee et al., 2009; Slamet-Loedin et al., 2015; Tan et al.,

2015; Ueno et al., 2010). This suggests there may be a limit to the

amount of Fe that can be deposited in the seed, because metal

homeostasis mechanisms are tightly regulated and do not allow Fe

accumulation beyond certain limits (Sperotto et al., 2012; Wang

et al., 2013). Hence, we investigated the impact of HvYS1 on the

expression of endogenous genes controlling Fe mobilization,

including the Fe-regulated metal uptake transporters encoded by

OsIRT1 (Fe-Zn-Mn),OsYSL15 (Fe3+-DMA) andOsNRAMP5 (Fe-Mn);

the vacuolar Fe-Zn transporter encoded by OsVIT1; long-distance

transporters encoded by OsYSL2 (Fe-Mn), OsYSL16 (Fe), OsN-

RAMP1 (Fe), OsFRDL1 (Fe3+-citrate) and OsYSL18 (Fe3+-DMA), Fe

storage protein ferritin encoded byOsFERRITIN1, genes involved in

PS synthesis such as OsSAMS1, OsNAS2, OsNAS3, OsNAAT1,

OsDMAS1 and finally OsIDEF1 a transcription factor regulating Fe

homeostasis. This allowed us to unravel facets of the mechanism

through which Fe accumulation in the seeds is regulated and how

the homeostasismechanismoperating in different tissues regulates

Fe accumulation in roots, leaves and seeds.

In the roots of the HvYS1 transgenic lines, OsIRT1 and OsYSL15

were slightly down-regulated. These encode Fe-regulated trans-

porters and the corresponding genes are induced by Fe deficiency

and repressed when Fe levels are sufficient (Inoue et al., 2009; Lee

andAn, 2009). Therefore, the higher Fe levels in the transgenic lines

appear to create an Fe-sufficient environment causing these two

genes to be suppressed. OsIRT1 carries Zn andMn in addition to Fe,

so the down-regulation ofOsIRT1may trigger the expression of the

Fe-Mn transporter OsNRAMP5 to increase the uptake of Mn. Iron

mobilization from the roots through the xylem promotes Fe seed

loading (Yoneyama et al., 2015). The transporter OsNRAMP1 loads

the xylem with Fe (Takahashi et al., 2011), and OsNRAMP5

promotes both Fe uptake and xylem loading (Yang et al., 2014).

The up-regulation of these two transporters in the HvYS1 lines

therefore suggests an increase in Fe xylem loading and root-to-

shoot translocation. DMA plays a major role in uptake and root-to-

shoot translocation of Fe in rice (Bashir et al., 2014). Synthesis of S-

adenosyl methionine (SAM) from L-methionine is carried out by

OsSAMS1, and NA is synthesized from SAM through expression of

OsNAS2 and OsNAS3. NA is then converted to a 30-keto

intermediate by OsNAAT1, and finally, OsDMAS1 catalyses the

formation of DMA through the 30-keto intermediate precursor

molecule (Bashir et al., 2014). In HvYS1 lines, expression of

OsSAMS1 and OsDMAS1 was up-regulated, whereas expression

of OsNAS2, OsNAS3 and OsNAAT1 was down-regulated. Expres-

sion ofOsSAMS1,OsNAS2,OsNAS3,OsNAAT1 andOsDMAS1was

up-regulated in roots under Fe deficiency, while the reverse was

true under Fe sufficiency conditions (Bashir and Nishizawa, 2006;

Bashir et al., 2014; Inoue et al., 2003, 2008). Therefore, in HvYS1

lines, up-regulation of OsDMAS1 increased DMA levels due to

increased Fe levels in roots. The down-regulation of OsNAS2,

OsNAS3 and OsNAAT1 indicates that the Fe homeostasis mecha-

nism operates to restrict Fe uptake and root-to-shoot translocation

by limiting the synthesis of NA and its conversion into DMA.

The remobilization of Fe from the flag leaf through the phloem is

important for seed loading (Curie et al., 2009; Yoneyama et al.,

2015), and this is facilitated by the transporters encoded by

OsYSL16 (Kakei et al., 2012) and OsYSL18 (Ayoma et al., 2009).

OsYSL16 and OsYSL18 were up-regulated in the transgenic lines,

suggesting an increase in phloem loading with Fe, resulting in

higher Fe levels in the seeds. Similar to its role in uptake and root-to-

shoot translocation of Fe, DMA is also important in the remobi-

lization of Fe from flag leaf to seeds (Ayoma et al., 2009; Masuda

et al., 2009). OsNAS2, OsNAS3, OsNAAT1 and OsDMAS1 were

up-regulated in HvYS1 lines. The up-regulation of OsNAS2,

OsNAS3, OsNAAT1 and OsDMAS1 suggests increased synthesis

and accumulation of DMA in flag leaf leading to enhanced Fe

remobilization from flag leaf in transgenic lines compared to wild

type. The Fe storage protein ferritin is also regulated by the amount

of Fe present in the cell (Jain and Connolly, 2013). The induction of

OsFERRITIN1 in the flag leaf suggests that Fe in the flag leaf was not

freely available for remobilization through the phloembecause Fe is

diverted to the chloroplast (Long et al., 2008). Iron storage as a

complex with ferritin therefore appears to act as a buffer to control

the remobilization of Fe through the phloem (Long et al., 2008).

OsIRT1, OsYSL15, OsFRDL1 and OsYSL18 were down-regulated in

the transgenic seeds, which was surprising because all four

corresponding proteins are known to contribute to Fe seed

loading. Indeed, the suppression of OsYSL15 and OsFRDL1

expressions resulted in 1.5-fold and 1.3-fold lower levels of Fe in

rice seeds, respectively (Lee et al., 2009; Yokosho et al., 2009),

whereas the overexpression of OsIRT1 increased Fe levels in the

seed by 1.3-fold, with OsYSL18 proposed to facilitate Fe loading

into the phloem (Ayoma et al., 2009; Lee and An, 2009). Similar to

themetal transporters, expression ofOsNAAT1 andOsDMAS1was

down-regulated in the transgenic lines. DMA is important for Fe

seed loading (Masuda et al., 2009). Therefore, limited loading of Fe

in the transgenic seeds suggests that homeostasis is triggered once

a certain threshold is reached, which involves the down-regulation

of genes encoding endogenous transporters and DMA synthesis

responsible for the mobilization of Fe. This mechanism operates in

the roots, flag leaf and seeds. Similarly, rice engineered to produce

higher levels of phytosiderophores increased only fourfold thewild-

type level of Fe in the seeds, due to the modulation of genes

controlling metal uptake, translocation and seed loading (Wang

et al., 2013; Banakar et al. under review).

Increasing the loading of seeds with Fe decreased the seed

concentrations of Cd. Previous reports have shown that Fe-

specific transporters limit the uptake of Cd in yeast (Lee et al.,

2009; Murata et al., 2006, 2008), but this is the first time that a

Cd decrease has been observed directly in the seeds of plants

exposed to high levels of Cd in the environment. We investigated
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Cd uptake, translocation and seed loading in HvYS1 lines with Cd

supplied in the soil. The expression of HvYS1 reduced Cd levels by

2.3-fold in roots, 5-fold in leaves and 2.3-fold in seeds. The

decrease in Cd seed concentration is particularly important given

the simultaneous 2-fold increase in Fe levels, because such an

approach would simultaneously address the issues of Fe defi-

ciency and Cd toxicity in rice fields with low-Fe/high-Cd soils

(Clemens et al., 2013; Slamet-Loedin et al., 2015). Our results

show that plants can take up more Fe in the presence of Cd, and

Fe acquisition in the presence of Cd may thus act as a defence

mechanism to mitigate Cd-induced stress (Astolfi et al., 2014;

Meda et al., 2007). Similarly, overexpression of the plastid Fe

transporter gene NtPIC1 in tobacco boosted the Fe/Cd ratio in

leaves and improved Cd tolerance (Gong et al., 2015), and rice

expressing HvNAS1 and OsNAS1 + HvNAATb also accumulated

more Fe but less Cd in the seeds compared to wild-type plants

(Masuda et al., 2012; Banakar et al., under review). In contrast,

rice plants exposed to Fe deficiency in the presence of excess Cd

accumulated more Cd in the seeds (Nakanishi et al., 2006). The

specific uptake, translocation and seed loading of Fe by the

HvYS1 transgenic plants therefore appear to inhibit the uptake,

translocation and loading of Cd.

Our findings can be summarized in the mechanistic model

presented in Figure 6, which shows that the constitutive expres-

sion of HvYS1 in rice selectively increases the uptake of Fe leading

to higher levels of Fe in the roots, followed by selective root-to-

shoot translocation increasing the Fe concentration in the leaves,

promoting the remobilization of Fe from flag leaves and

ultimately causing the selective accumulation of Fe in seeds. Iron

homeostasis in the roots, leaves and seeds imposes a limit on the

concentration of Fe in the seeds (2-fold when compared with the

wild-type level) through the modulation of endogenous metal

transporters, PS synthesis and the Fe storage protein ferritin. The

selective mobilization of Fe by HvYS1 has no impact on Zn, Mn

and Cu in most tissues, but displaces Cu and Cd from the seeds

and Cd from other tissues, providing a strategy for the selective

modulation of different metal ions.

In conclusion, we have shown that the heterologous expression

of HvYS1 in rice increases Fe uptake, translocation and seed

loading without affecting the uptake, translocation or seed

loading of Zn and Mn, without affecting the uptake and

translocation of Cu but nevertheless displacing this metal from

the endosperm. The concentration of Fe in the seeds of the

HvYS1 transgenic plants is limited to double the normal level,

reflecting feedback from the endogenous Fe homeostasis

machinery as demonstrated by the modulation of genes control-

ling endogenous metal transporters and the Fe storage protein

ferritin. In contrast to Zn, Mn and Cu, all of which are

micronutrients required for the biological activity of certain

enzymes and other proteins, Cd is robustly excluded in the

transgenic plants during uptake, translocation and seed loading.

Our data provide insight into the molecular basis of ion-selective

metal mobilization in plants, which may have evolved to reduce

the impact of stress caused by exposure to toxic heavy metals.

Materials and methods

Gene cloning and transformation vectors

The HvYS1 cDNA (GenBank ID AB214183.1) was cloned from the

roots of 2-week-old barley plants (Hordeum vulgare L. cv. Ordalie)

growing in vitro on MS medium without Fe (Murashige and

Skoog, 1962). Total RNA was extracted using the RNeasy Plant

Mini Kit (Qiagen, Hilden, Germany) and 1 mg of total RNA was

reverse-transcribed using the Omniscript RT Kit (Qiagen). The full-

size cDNA (2037 bp) was amplified by PCR using forward primer

HvYS1-BamHI-FOR (50-AGG ATC CAT GGA CAT CGT CGC CCC

GGA CCG CA-30) and reverse primer HvYS1-HindIII-REV (50-AAA
GCT TTT AGG CAG CAG GTA GAA ACTTCA TG-30). The product

was transferred to the pGEM�-T Easy vector (Promega, Madison,

WI) for sequencing and verification. The HvYS1 cDNA was then

subcloned using the BamHI and HindIII sites and inserted into the

Figure 6 The mechanistic basis of selective Fe

transport by HvYS1. Heterologous expression of

HvYS1 results in the selective uptake,

translocation, remobilization and seed loading of

Fe. Endogenous Fe homeostasis limits Fe

accumulation in seeds to rather modest levels (i.e.

twofold) by modulating the expression of

endogenous genes controlling Fe uptake (1),

remobilization (2) and seed loading (3), but this is

sufficient to displace the toxic heavy metals Cd

and Cu from the endosperm (4).
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expression vector pAL76 (Christensen and Quail, 1996), which

contains the maize ubiquitin-1 (ubi-1) promoter and first intron,

and an Agrobacterium tumefaciens nos transcriptional termina-

tor. The hygromycin phosphotransferase selectable marker gene

was controlled by the CamV35S promoter and carried a nos

terminator for transcriptional termination.

Rice transformation

Mature rice seed-derived embryos (Oryza sativa L. cv EYI 105)

were cultured and excised as previously described (Sudhakar

et al., 1998; Valdez et al., 1998). After 7 days, the embryos were

bombarded with gold particles carrying the HvYS1 transgene and

hpt selectable marker on separate vectors, with a 3 : 1 molar

ratio (Christou et al., 1991). The rice embryos were incubated on

high-osmoticum medium (0.2 M mannitol, 0.2 M sorbitol) for 4 h

prior to bombardment. Bombarded embryos were selected on MS

medium supplemented with 30 mg/L hygromycin, and callus

pieces were transferred sequentially to shooting and rooting

medium containing hygromycin as above. Regenerated plantlets

were transferred to pots containing Traysubstract soil (Klasmann-

Deilmann GmbH, Geeste, Germany) and were grown under

flooded conditions in a chamber at 26 � 2 °C, with a 12-h

photoperiod (900 lmol/m2/s photosynthetically active radiation)

and 80% relative humidity. Plants were irrigated with a solution

of 100 lM Fe provided as Fe (III)-EDDHA in the form of

Sequestrene 138 Fe G-100 (Syngenta Agro SA, Madrid, Spain).

RNA blot analysis

Total leaf RNA was isolated using the RNeasy Plant Mini Kit

(Qiagen) and 20-lg aliquots were fractionated on a denaturing

1.2% agarose gel containing formaldehyde before blotting. The

membranes were probed with digoxigenin-labelled partial HvYS1

cDNA at 50 °C overnight using DIG Easy Hyb (Roche Diagnostics,

Mannheim, Germany). After washing and immunological detec-

tion with anti-DIG-AP (Roche Diagnostics) according to the

manufacturer’s instructions, CSPD chemiluminescence (Roche

Diagnostics) was detected on Kodak BioMax light film (Sigma-

Aldrich, St Louis, MO).

Cadmium uptake studies

Seeds from three representative transgenic rice lines (1, 2 and 3)

were germinated on ½ MS medium supplemented with 50 mg/L

hygromycin, and wild-type seeds were germinated on ½ MS

medium without hygromycin. After 7 days, 15 uniform seedlings

from wild-type and transgenic lines were transferred to nutrient

solution (Kobayashi et al., 2005) containing 10 lM CdCl2. The pH

of the solution was adjusted to 5.3 with 0.1 M KOH and the

plants were maintained as above until seed maturity. Roots,

leaves and seeds were harvested from all plants and metal

concentrations were quantified by inductively coupled plasma

mass spectrometry (ICP-MS).

Measurement of metal concentrations by ICP-MS

Roots and leaves were collected in plastic containers prewashed

with 6.5% HNO3 to avoid metal contamination. Metals were also

removed from the surface of each sample by washing three times

in double-deionized water followed by 100 lM Na2EDTA, and

EDTA was then removed with two further washes in double-

deionized water. To avoid metal contamination during polishing,

dehusked wild-type and transgenic seeds were polished using a

noncontaminating polisher (Kett, Villa Park, CA) and ground

using a mortar and pestle prewashed with 6.5% HNO3. Roots,

leaves and seeds were dried at 70 °C for 2 days and 300-mg

portions were digested with 4.4 M HNO3, 6.5 M H2O2 and double-

deionized water (3 : 2 : 2) for 20 min at 230 °C using a

MarsXpress oven (CEM Corp, Matthews, NC). Metal concentra-

tions were determined in diluted samples by ICP-MS using an

Agilent 7700X instrument (Agilent Technologies, Santa Clara,

CA).

Quantitation of NA and DMA

NA (98% purity) was obtained from Hasegawa Co. Ltd.

(Kawasaki, Japan), and DMA (98% purity) was obtained from

Toronto Research Chemicals Inc. (Toronto, Canada). Nicotyl-lysine

was synthesized as described by Wada et al. (2007). Stock

solutions were prepared at concentrations of 1–10 mM and

stored in darkness at �80 °C. Working solutions were prepared

by diluting the stock solutions with double-deionized water. Each

5-lL standard solution was diluted with 5 lL of 50 mM EDTA,

5 lL nicotyl-lysine and 30 lL of a 1 : 9 ratio mixture of 10 mM

ammonium acetate and acetonitrile (pH 7.3), and the mixture

was filtered through polyvinylidene fluoride (Durapore� PVDF)

0.45-lm ultrafree-MC centrifugal filter devices (Merck KGaA,

Darmstadt, Germany) before injection into the HPLC-ESI-TOF-MS

system (see below). Fresh root and leaf tissues were extracted as

described by Schmidt et al. (2011) with some modifications.

Samples stored as 200-mg aliquots at �80 °C prior to extraction

were homogenized in 200 lL (roots) or 400 lL (leaves) double-

deionized water containing 36 lL 1 mM nicotyl-lysine. The

homogenate was vortexed for 30 s, sonicated for 5 min and

centrifuged at 15 000 g for 10 min at 4 °C before the super-

natant was passed through a 3-kDa centrifugal filter (cellulose

Amicon� Ultra filter units, Merck KGaA). The filtrate was

centrifuged as above for 30 min and dried under vacuum. Seeds

were ground to a fine powder under liquid N2 and extracted three

times as described by Wada et al. (2007) with some modifica-

tions. Aliquots of 50 mg seed powder were extracted in 300 lL
double-deionized water containing 18 lL of 1 mM nicotyl-lysine.

The supernatant was recovered by centrifugation at 15 000 g for

15 min at 4 °C and stored at �20 °C, and the pellet was

extracted twice as above. The three supernatant fractions were

pooled and the total extract was passed through the centrifugal

filter, centrifuged again and concentrated under vacuum as

described above. The dry residues from the leaf/root and seed

extracts were dissolved in 20 and 10 lL of type I water,

respectively. Then, 5-lL aliquots of extracts were diluted with

10 lL of 50 mM EDTA, 15 lL type I water and 30 lL of a 1 : 9

ratio mixture of 10 mM ammonium acetate and acetonitrile (pH

7.3), and the mixture was filtered through 0.45-lm polyvinyli-

dene fluoride (PVDF) ultrafree-MC centrifugal filter devices

(Merck KGaA, Darmstadt, Germany) before analysis.

NA and DMA levels were determined by high-performance

liquid chromatography electrospray ionization time-of-flight mass

spectrometry (HPLC-ESI-TOF-MS) as described by Xuan et al.

(2006), with modifications. Details of HPLC conditions are

described in SI Materials and Methods, and the details of TOF-

MS operating conditions are listed in Table S2.

Quantitation of endogenous gene expression

Quantitative real-time RT-PCR was carried out to measure steady

state mRNA levels in roots, flag leaf and immature seeds,

representing the endogenous genes listed in Table S1. Due to its

stable expression, actin is a reliable reference gene for qRT-PCR

studies (Cheng et al., 2007; Lee et al., 2011). Hence, OsActin1
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was used as a reference gene (details of PCR conditions are

described in SI Materials and Methods).
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Additional Supporting Information may be found online in the

supporting information tab for this article:

Figure S1 Quantitative real-time PCR analysis of OsIRT1,

OsYSL15, OsNRAMP5, OsVIT1, OsYSL2, OsYSL16, OsFRDL1,

OsYSL18, OsNRAMP1, OsFERRITIN1, OsSAMS1, OsNAS2,

OsNAS3, OsNAAT1, OsDMAS1 and OsIDEF1 in roots (left), flag

leaf (centre) and seeds (right) at grain filling stage in wild-type

(WT) and T2 generation transgenic lines expressing HvYS1 (Line 1

and Line 2). Each value is the average of three independent

experiments. Transcript levels are represented by the ratio

between mRNA levels of OsIRT1, OsYSL15, OsNRAMP5, OsVIT1,

OsYSL2, OsYSL16, OsFRDL1, OsYSL18, OsNRAMP1, OsFERRITIN1,

OsSAMS1, OsNAS2, OsNAS3, OsNAAT1, OsDMAS1 and OsIDEF1

and those of OsACTIN1. Asterisks indicate a statistically significant

difference between wild-type and transgenic plants as deter-

mined by Student’s t-test (P < 0.05; n = 3). Gene-specific primers

are listed in Table S1.

Table S1 Genes and primers used for quantitative real-time

RT-PCR analysis.

Table S2 Operating conditions of the time-of-flight (TOF) mass

spectrometer (MS) used for NA and DMA determinations.

Data S1 Materials and Methods.
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