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The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration
through the biological pump. In the current study, two large-scale blooms observed in 2012 during a
cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary
productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlor-
ophyll a –specific photosynthesis was more efficient in the bloom closer to the island of South Georgia
(39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence
for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m�2 developed
despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas,
potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas
despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W
compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control
onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward
the declining phase of the blooms.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Oceanic phytoplankton account for about half of the global
primary production, thereby providing the basis of marine food
webs and exerting a major control on biogeochemical cycles and
global climate (Falkowski et al., 1998; Field et al., 1998). The supply
of nutrients such as nitrate, phosphate and silicate to the photic
zone (i.e. ‘new’ nutrients) constrains the biologically-mediated
export of organic carbon to the deep ocean (Dugdale and Goering,
1967; Eppley and Peterson, 1979; Longhurst and Harrison, 1989).
The strength of this biological carbon pump can be estimated from
the degree to which these nutrients are consumed as well as the
carbon to nutrient ratios in the organic matter sinking to depth.
Ltd. This is an open access article u
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One area with great potential for an increase in both new and
recycled production is the Antarctic Circumpolar Current (ACC). As
concentrations of nitrate and phosphate are high, primary production
is limited by other controlling factors (Priddle et al., 1992; Moore et al.,
2000). More specifically, productivity in the ACC region is thought to
be controlled by interactions between light availability (Mitchell and
Holm-Hansen, 1991; Nelson and Smith, 1991), iron supply (Martin,
1990; de Baar et al., 1995), silicate limitation (Brzezinski et al., 2003),
and the effect of grazing (Dubischar and Bathmann, 1997; Atkinson et
al., 2001). More recent studies suggest that iron is the primary limiting
factor in these open ocean areas (Smetacek et al., 2012). Phyto-
plankton blooms in the ACC tend to occur downstream of land masses
and have been associated with fronts, islands and bathymetric fea-
tures, which increase the input of iron and other trace metals into the
surface waters (Moore et al., 1999; Blain et al., 2001; Borrione and
Schlitzer, 2013). In the Atlantic sector of the ACC, high phytoplankton
standings stocks and production rates have been observed in the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Antarctic Polar Frontal Zone (APFZ; Bathmann et al., 1997; Bracher et
al., 1999; Moore and Abbott, 2000; Tremblay et al., 2002). In this
particular region, an alleviation of light limitation through upper
water column stratification in spring was proposed as a trigger for the
development of phytoplankton blooms. Finally, the termination of
blooms is often caused by a combination of grazing pressure as well as
iron and silicate limitation (Abbott et al., 2000; Tremblay et al., 2002).

Attempts to disentangle the effects of potential factors controlling
bloom dynamics are complicated by the fact that these different fac-
tors tend to co-vary and also interact with each other (e.g. iron lim-
itation decreases photoadaptive capabilities, thereby affecting light
limitation; Sunda and Huntsman, 1997; Petrou et al., 2014). The aim of
the present study was, therefore, to understand how different envir-
onmental factors influence the biomass, primary productivity, nutrient
usage and the potential for carbon sequestration in two large-scale
phytoplankton blooms with a putatively different iron supply.
2. Material and methods

2.1. Cruise track and sampling locations

Sampling was conducted in the framework of the ‘Eddy-Pump’
project during the ANT-XXVIII/3 expedition on-board the German
Fig. 1. Satellite-based Chl a maps – Mean Chl a concentrations (mg m�3) during Februa
locations during the ANT-XXVIII/3 cruise. Detailed view on the 39 °W bloom north of S
where Chl a concentrations were measured in-situ; red circle indicates the time-series
research vessel Polarstern (Wolf-Gladrow, 2013) between January
and March 2012 in two survey areas. In addition to physical
properties, nutrient and chlorophyll concentrations as well as
primary productivity were determined at 10 stations in a land-
remote bloom at 50–52 °S and 13.5–11.5 °W (hereafter 12 °W
bloom) and at 9 stations in a bloom downstream of South Georgia
at 48–52 °S and 37–39 °W (hereafter 39 °W bloom; Fig. 1). Water
samples for all measured parameters except iron (see below), were
obtained at discrete depths (10, 20, 40, 60, 80 and 100 m) from
Niskin bottles attached to a Conductivity Temperature Depth
(CTD) rosette. The mixed layer depth (MLD) was defined as a
change of density of 0.02 kg m�3 relative to the uppermost value
of each CTD vertical profile (Cisewski et al., 2005, Strass et al.,
2017). It should be noted that at station PS79/085 (the out-station
in the 12 °Warea), chlorophyll biomass was evenly distributed to a
deeper pycnocline at a depth of 82 m even though the MLD
determined was 30 m only.

2.2. Macronutrient measurements and nutrient deficit calculations

Macronutrients were measured colorimetrically using a Techni-
con TRAACS 800 auto-analyzer (Seal Analytical) on board the ship.
Orthophosphate (PO4

3�) was measured at 880 nm after the for-
mation of molybdophosphate-complexes (Murphy and Riley, 1962).
ry 2012 derived from the satellite MERIS Polymer product. Stars indicate sampling
outh Georgia (B) and the 12 °W bloom (C) with circles indicating station positions
station.
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Orthosilicate (Si(OH)4) was measured at 820 nm after formation of
silica-molybdenum complexes with oxalic acid being added to
prevent the formation of phosphate-molybdenum (Strickland and
Parsons, 1968). After nitrate reduction through a copperized cad-
mium coil, nitrate plus nitrite NO�

3 þNO�
2

� �
was measured at

550 nm after complexation with sulphanylamide and naphtylethy-
lenediamine (Grasshoff et al., 1999). Complex formationwithout the
reduction step was used to determine nitrite concentrations. Nitrate
is calculated by subtracting the nitrite value from the
‘NO3�þNO2� ’ value (Grasshoff et al., 1999).

Prior to analysis, all samples and standards were brought to
22 °C in about 2 h. Concentrations were recorded in mmol m�3 at
this temperature. Calibration standards were diluted from stock
solutions of the different nutrients in 0.2 μm filtered low nutrient
seawater. During every run, a freshly diluted mixed nutrient
standard, containing silicate, phosphate and nitrate, the so-called
‘NIOZ nutrient cocktail’, was measured in triplicate. Every 2 weeks,
a sterilised ‘Reference Material Nutrient Sample’ (JRMNS, Kanso
Technos, Japan) containing known concentrations of silicate,
phosphate, nitrate and nitrite in Pacific Ocean water was analysed
in triplicate. The cocktail and the JRMNS were both used to
monitor the performance of the analyser. Finally, the NIOZ nutri-
ent cocktail was used to adjust all data by multiplying with the
offset factor derived from the differences between assigned and
measured nutrient concentrations. The average standard devia-
tions of the NIOZ nutrient cocktail measurements were
0.02 mmol m�3 for phosphate, 0.59 mmol m�3 for silicate and
0.13 mmol m�3 for nitrate (n¼113).

Surface nutrient concentrations were calculated as the weigh-
ted average of the measured values for sampling depths 10–60 m,
accounting for differences in sampling frequency with increasing
depth. Nutrient deficits were calculated at each station as the
differences between the nutrient concentration in remnant Ant-
arctic Winter Water (AWW) in the layer below the seasonal pyc-
nocline and the average concentrations above that (Jennings et al.,
Fig. 2. Average nutrient profiles – Concentrations of nitrate (A), nitrite (B), phosphate (C
39 °W bloom north of South Georgia (filled symbols).
1984; Hoppema et al., 2000). The nutrient deficit per m3 at each
station was averaged over the different depths, while the deficit
per m2 was calculated by integrating the deficits from 10 to 120 m
data for the water column of 0–120 m. It should be noted that
nutrient deficits are suitable estimates for annual net community
production only if vertical and lateral mixing in both the tem-
perature minimum and the surface layer are small (Jennings et al.,
1984; Hoppema et al., 2000; Hoppema et al., 2007). The deficits
thus represent a somewhat larger area than just the station loca-
tion. The AWW layer, which was characterised by a well-defined
potential temperature minimum (Ztmin) in the CTD profiles, was
situated at 150715 m water depth during this cruise. AWW
nutrient concentrations were similar in both bloom areas
(2.170.1 mmol m�3 for phosphate, 30.176.1 mmol m�3 for sili-
cate and 30.671.4 mmol m�3 for nitrate; n¼113; Fig. 2). Deficit
ratios (i.e. Si(OH)4:NO3 and NO3:PO4) were calculated after aver-
aging the nutrient deficits from the different depths at each
station.

2.3. Iron sampling and measurements

Samples for total dissolved iron (TDFe) measurements were col-
lected from the upper 300 m of the water column in metal free
GOFLO bottles attached to a Kevlar line. Samples were immediately
online filtered through trace-metal clean 0.22 mm sterile capsules
(Sartobran 300, Sartorius) and subsequently collected in low-density
polyethylene bottles. TDFe was determined on-board by voltam-
metry following the protocol described by Laglera et al. (2013).

2.4. Irradiance estimates

Solar irradiance was measured continuously at one-minute
intervals using a RAMSES hyperspectral radiometer (TriOS
GmbH, Germany) placed on the uppermost deck of the ship to
avoid shading. The sensor measured downwelling incident
) and silicate (D) in the top 500 m from the 12 °W bloom (open symbols) and the
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sunlight from 350 to 950 nm with a spectral resolution of 3.3 nm.
Plane photosynthetically active radiation (PAR) was calculated as
the integral of irradiances from 400 to 700 nm. Daily PAR values
[mol photons m�2 d�1] were then calculated by integrating the
PAR values from the start to the end of each incubation (�24 h).

2.5. Chlorophyll a

Chlorophyll a (Chl a) concentrations were determined by two
methods: fluorometry (Chl aFLUO) and high performance liquid
chromatography (HPLC; Chl aHPLC). Except for stations PS79/160
and PS79/175, where Chl aFLUO data were used, Chl a estimates are
based on Chl aHPLC data. The two Chl a datasets produced similar
results, showing a significant correlation and only minimal dif-
ferences (r2¼0.97, po0.001, n¼104, Chl aFLUO¼0.990* Chl
aHPLCþ0.0837).

For the Chl aFLUO determination, samples were filtered onto
25 mm diameter GF/F filters (Whatman; 0.7 mm nominal pore size)
at a vacuum of o100 mmHg. Filters were immediately transferred
into centrifuge tubes containing 10 mL of 90% acetone and 1 cm3

of glass beads. The tubes were sealed and stored at �20 °C for at
least 30 min and up to 24 h. Chl aFLUO was extracted by placing the
centrifuge tubes in a grinder for 3 min followed by centrifugation
at 0 °C. The supernatant was poured into quartz tubes and the Chl
aFLUO content was quantified in a 10-AU fluorometer (Turner).
Calibration of the fluorometer was carried out at the beginning
and at the end of the cruise, diverging by 2%. Chl aFLUO content was
calculated using the equation given in Knap et al. (1996) and the
average parameter values from the two calibrations.

For the Chl aHPLC determinations, samples were filtered onto
25 mm diameter GF/F filters (Whatman) at a vacuum of
o100 mmHg. Filters were shock-frozen in liquid nitrogen and
stored at �80 °C until analysis in the home laboratory following the
method described by Hoffmann et al. (2006) as detailed in Cheah
et al. (2017). For calculating Chl aHPLC the sum of concentrations of
monovinyl-, divinylchlorophyll a and chlorophyllide a was taken
(divinyl chlorophyll a was not detected in our samples).

Vertical plankton net samples were used to qualitatively
determine the dominant phytoplankton functional types by means
of light microscopy.

2.6. Particulate organic carbon and nitrogen

Samples for particulate organic carbon (POC) and nitrogen
(PON) were filtered onto pre-combusted (15 h, 500 °C) glass fibre
filters (GF/F, Whatman). Filters were stored at �20 °C and pro-
cessed according to Lorrain et al. (2003). Analyses were performed
using a CHNS-O elemental analyser (Euro EA 3000, HEKAtech).

2.7. Primary productivity

Net primary production rates (NPP) were determined in
duplicates by the incubation of 20 mL seawater sample spiked
with 20 mCi NaH14CO3 (53.1 mCi mmol�1; Perkin Elmer) in a
20 mL glass scintillation vial for 24 h in a seawater cooled on-deck
incubator. Seawater samples from 6 depths (10, 20, 40, 60, 80 and
100 m) were incubated at different irradiances, which were
achieved with neutral density filters decreasing incoming light to
25%, 12.5%, 6.3%, 3.1%, 1.6% and 0.8% of downwelling PAR above the
ocean surface.

After the addition of the NaH14CO3 spike, 0.1 mL aliquots were
immediately removed and mixed with 10 mL of scintillation
cocktail (Ultima Gold AB, PerkinElmer). After 2 h, these samples
were counted with a liquid scintillation counter (Tri-Carb 2900TR,
PerkinElmer) to determine the total amount of added NaH14CO3

(100%). For blank determination, one additional replicate per
sample was immediately acidified with 0.5 ml 6 N HCl. After the
outdoor incubation of the samples over 24 h, 14C incorporation
was stopped by adding 0.5 mL 6 N HCl to each vial. The vials were
then left to degas overnight, thereafter 15 ml of scintillation
cocktail (Ultima Gold AB) were added and samples were measured
after 2 h with the same liquid scintillation counter. NPP rates
[mg C m�3 d�1] at each sample depth were calculated as follows:

NPP mg C m�3 d�1
h i

¼ DIC � DPMsample � DPMblank
� � � 1:05� �

= DPM100% � tð Þ ð1Þ
where DIC is the concentration of dissolved inorganic carbon
[mmol kg�1], t is the incubation time [h] and 1.05 is the factor
describing the discrimination between incorporation of 14C and
12C. DPMblank, DPMsample and DPM100% are the disintegration per
minute measured by the scintillation counter for the blank, the
sample and the determination of the total amount of added
NaH14CO3, respectively. Chl a-specific carbon fixation (NPPChl a

[mg C [mg Chl a]�1 d�1]) was calculated by dividing the depth-
specific NPP value by the depth-specific Chl a concentrations.
Column-integrated NPPChl a and primary productivity (NPP
[mg C m�2 d�1]) were derived by integrating values for
100 m depth.

2.8. Satellite Chl a maps

Weekly satellite maps of Chl a were used to study the devel-
opment of the blooms. The comparison of satellite derived Chl a
concentrations with the in-situ values measured at the two bloom
locations was based on daily maps. The Chl a maps were derived
using the POLYMER level-3 product of the Medium Resolution
Imaging Spectrometer (MERIS) at a 0.02° spatial resolution
(Steinmetz et al. 2011). POLYMER is an improved atmospheric
correction algorithm for pixels contaminated by sun glint, thin
clouds or heavy aerosol plumes. MERIS Polymer products improve
the spatial coverage by almost a factor of two and have been
proven successful for retrieving MERIS Ocean Colour products
(Müller et al. 2015). The Chl a concentrations are retrieved using
the standard OC4Me algorithm (Morel et al. 2007).
3. Results

3.1. Temporal and spatial development of the blooms

During austral summer (January–March) 2012, two large-scale
phytoplankton blooms were observed in the APFZ (Fig. 1A). A com-
parison of all surface Chl a concentrations (o10 m) derived by HPLC
measurements with daily MERIS Polymer Chl a within the respective
satellite pixel (Fig. 1B and C) revealed a reasonable correlation coef-
ficient (r2¼0.67), low bias (0.17 mg m�3) and low percentage error
(33%) between the two approaches. Estimates of Chl a standing
stocks from in-situ measurements and satellite-based products are
thus in good agreement, showing a nearly perfect match for the
bloom situated at 12 °W (Fig. 1C). A reasonable agreement was
observed for the 39 °Wbloom north of South Georgia, where satellite
data tended to underestimate Chl a concentrations, particularly in
the higher range of the measured values (Fig. 1B). Both blooms were
dominated by diatoms (Klaas, unpubl. results; also indicated by sili-
cate depletion in the surface waters, Fig. 2).

In the 12 °W bloom area (Fig. 1A and C), satellite Chl a maps
indicated that a bloom developed from mid-December 2011
onwards and peaked in the first two weeks of January 2012 with
Chl a concentrations of around 3 mg m�3. Our in-situ sampling
took place between January 26th and February 15th, i.e. in the
declining phase of the bloom. Within these three weeks, a central
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station (at 12 °60W, 51 °20S) was re-visited six times to investigate
the temporal development of the bloom. The satellite data indicated
that Chl a concentrations in the area quickly decreased within
5 days after the last sampling date to values lower than 1 mg m�3.

The phytoplankton bloom at 39 °W (Fig. 1A and B) was located
in the Georgia Basin, north of the island of South Georgia.
Satellite Chl a maps indicated that the 39 °W bloom had already
developed during mid-October and peaked in mid-December
with surface Chl a concentrations reaching values higher than
3 mg m�3. In-situ sampling took place between February 16th
and March 3rd, in the declining phase of the bloom. Satellite data
indicated that Chl a concentrations above 0.5 mg m�3 persisted
at least until mid-March.

3.2. Phytoplankton standing stocks and primary productivity

In the 12 °W area, average MLD was 71714 m. The depth-
integrated Chl a concentrations in the bloom ranged from 50 to
180 mg Chl a m�2 (Table 1) and were on average 120741 mg Chl
am�2. Values were as low as 9 mgm�2 outside the bloom area
(Table 2). NPP ranged from 800 to 2820 mg C m�2 d�1 (Table 1) and
was on average 17507750 mg C m�2 d�1 (Table 2) in the bloom,
and thus significantly higher than values outside the bloom area
(160 mg C m�2 d�1). Chl a-specific carbon fixation NPPChl a, a mea-
sure of photosynthetic efficiency, varied between 10.1 and 17.3 mg C
[mg Chl a]�1 d�1 (on average 14.472.6 mg C [mg Chl a]�1 d�1) in
the 12 °W bloom (Tables 1 and 2). The average depth-integrated
molar POC:PON ratios in this area were 6.370.6 (Table 2). Average
daily PAR during primary production measurements in the 12 °W
bloom was 12.375.1 mol photons m�2 d�1 (Table 2).

In the 39 °W bloom north of South Georgia, average MLD was
35713 m. In-situ Chl a standing stocks ranged from 25 to 130 mg
Chl am�2 (Table 1), with an average of 60730 mg Chl am�2

(Table 2). NPP (Table 1) in this region varied between 570 and
3020 mg Cm�2 d�1 (on average 13707830 mg Cm�2 d�1). NPPChl a
varied between 14.4 and 30.3 mg C [mg Chl a] �1 d�1 (average of
19.475.5 mg C [mg Chl a]�1 d�1). In the 39 °W bloom, average
depth-integrated molar POC:PON ratios (Table 2) were 5.970.5.
Average daily PAR during primary production measurements in this
bloom was 15.776.1 mol photons m�2 d�1 (Table 2).

Light profiles in the surface ocean were measured at 6 stations in
the 12 °Wbloom area (with an average depth of the euphotic zone, Zeu
[0.8%], of 29.6 77.6 m) and only one station in the 39 °W bloom area
(Zeu [0.8%]¼21.5 m), indicating similar euphotic depths in both
blooms.

3.3. Nutrient concentrations and deficits

In the 12 °W bloom area, average surface nutrient concentrations
(10 m depth) were 19.770.3 mmol NO3 m�3, 1.370.1 mmol
PO4 m�3, and 4.173.1 mmol Si(OH)4 m�3 (Fig. 2). The average
nutrient concentrations in the euphotic zone (10–60m) were
20.670.5 mmol NO3 m�3, 1.470.1 mmol PO4 m�3, and 6.672.7
mmol Si(OH)4 m�3 (Table 2). Average integrated nutrient deficits in
this area were 10907110mmol NO3 m�2, 7577mmol PO4 m�2,
and 27107300 mmol Si(OH)4 m�2 (Table 2) with a Si(OH)4:NO3

deficit ratio of 2.570.3 mol mol�1 and a NO3:PO4 deficit ratio of
1471mol mol�1 (Table 2, Fig. 3). Average total dissolved iron (TDFe)
concentrations in the upper 100 m of the water column were
0.1270.03 nM (Table 2, Fig. 4).

In the 39 °W bloom area, average surface nutrient concentrations
(10 m depth) were 14.971.8 mmol NO3 m�3, 1.070.1 mmol PO4

m�3, and 0.670.5 mmol Si(OH)4 m�3 (Fig. 2). Average nutrient con-
centrations of the euphotic zone (10–60m) were 16.371.8 mmol
NO3 m�3, 1.270.1 mmol PO4 m�3 and 2.271.3 mmol Si(OH)4 m�3

(Table 2). Resulting average integrated surface nutrient deficits in the



Table 2
Comparison of phytoplankton biomass, productivity and POC:PON ratios as well as average 10–60 m nutrient concentrations, nutrient deficits and average deficit con-
centrations as well as deficit ratios and 100 m depth-averaged TDFe concentrations for the two bloom areas investigated. Values denote average (71s.d.).

Parameter 12 °W bloom area 39 °W bloom

Chl a [mg Chl a m�2] 120 741 (n¼9) 63 729 (n¼9)
Net Primary Productivity [mg C m�2 d�1] 1751 7747 (n¼9) 1365 7832 (n¼10)
NPPChl a [mg C (mg Chl a)�1 d�1] 14 73 (n¼9) 19 75 (n¼8)
POC:PON [mol mol�1] 6.3 70.6 (n¼25) 5.9 70.5 (n¼24)
POC:Chl a [g:g] 0.03 70.01 (n¼8) 0.04 70.02 (n¼5)
PAR [mol photons m�2 d�1] 13 75 (n¼9) 15 76 (n¼9)
MLD [m] 71 714 (n¼10) 35 713 (n¼10)

NO3 [mmol m�3] 19.9 70.5 (n¼35) 16.3 71.8 (n¼26)
PO4 [mmol m�3] 1.3 70.1 (n¼35) 1.2 70.1 (n¼26)
Si(OH)4 [mmol m�3] 4.5 73.1 (n¼35) 2.2 71.3 (n¼26)
NO3 deficit concentration [mmol m�3] 9.1 70.9 (n¼35) 10.2 72.6 (n¼26)
PO4 deficit concentration [mmol m�3] 0.6 70.1 (n¼35) 0.6 70.2 (n¼26)
Si(OH)4 deficit concentration [mmol m�3] 22.6 72.5 (n¼35) 19.7 75.3 (n¼26)
NO3 deficit [mmol m�2] 1087 7108 (n¼35) 1219 7307 (n¼26)
PO4 deficit [mmol m�2] 75 77 (n¼35) 68 718 (n¼26)
Si(OH)4 deficit [mmol m�2] 2712 7303 (n¼35) 2359 7631 (n¼26)
NO3:PO4 deficit [mol mol�1] 14.4 70.9 (n¼35) 17.9 70.9 (n¼26)
Si(OH)4:NO3 deficit [mol mol�1] 2.5 70.3 (n¼35) 2.0 70.4 (n¼26)
TDFe [nM] 0.12 70.03 (n¼48) 0.14 70.03 (n¼11)

Fig. 3. Nutrient deficit ratios. Deficit ratios for Si(OH)4:NO3 versus NO3:PO4

[mol mol�1] for all stations in the 12 °W bloom (open symbols) and the 39 °W
bloom (filled symbols).

Fig. 4. Average total dissolved iron (TDFe) profiles for all stations sampled in the
12 °W bloom (n¼8; open symbols) and the 39 °W bloom (n¼2; filled symbols).
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39 °W bloom area were 12207310mmol NO3 m�2, 68718mmol
PO4 m�2 and 23607630mmol Si(OH)4 m�2 (Table 2), resulting in Si
(OH)4:NO3 deficit ratios of 2.070.4 mmol mmol�1 and NO3:PO4

deficit ratios of 1771mmol mmol�1 in this region (Table 2, Fig. 3).
100 m averaged TDFe concentrations in this area were 0.1470.03 nM
(Table 2, Fig. 4).

Due to the high variability within each bloom, no significant
differences in nutrient concentrations or deficits were detected
between the two study areas (Table 2). The ratios of Si(OH)4:NO3

deficits, however, were significantly lower in the 39 °W area
compared to the 12 °W bloom (t-test, t¼6.6, po0.001, n¼35þ26;
Table 2, Fig. 3), while the ratios of NO3:PO4 deficits were sig-
nificantly higher at 39 °W (t-test, t¼15.4, po0.001, n¼35þ26).
4. Discussion

4.1. High variability of primary productivity in the APFZ

Two large-scale diatom-dominated phytoplankton blooms in the
Atlantic sector of the ACC were observed (Fig. 1), both being located
between 50 °S and 52 °S in the Antarctic Polar Frontal Zone (APFZ).
Phytoplankton blooms are regularly observed in this region during
spring and summer (e.g. Laubscher et al., 1993; Bathmann et al.,
1997; Bracher et al., 1999; Tremblay et al., 2002). The occurrence of
blooms in SO frontal zones has been associated with oceanographic
frontal features such as jet streams, meanders and mesoscale
eddies, which can lead to increased iron and silicate supply by
mesoscale upwelling but also enhanced stratification due to cross-
frontal overlayering (de Jong et al., 1998; Bracher et al., 1999; Strass
et al., 2002a; Tremblay et al., 2002), thereby alleviating nutrient and
light limitation for phytoplankton growth. In the Georgia Basin,
bloom initialisation is thought to be mainly driven by iron input
from South Georgia, while further east more complex modes of iron
supply generate a larger degree of spatial and temporal variability in
productivity (Venables and Meredith, 2009).

Being a relatively productive area within the otherwise HNLC
(high-nutrient low-chlorophyll) region, the APFZ has been the
destination of several research cruises (e.g. Bracher et al., 1999;
Strass et al., 2002c; Tremblay et al., 2002; Korb and Whitehouse,
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2004). Estimates of primary productivity in the APFZ vary between
100 and 6000 mg C m�2 d�1 (Mitchell and Holm-Hansen, 1991;
Bracher et al., 1999; Moore and Abbott, 2000; Strass et al., 2002b;
Tremblay et al., 2002; Hiscock et al., 2003; Vaillancourt et al.,
2003; Korb and Whitehouse, 2004; Park et al., 2010), with the
highest values being observed in the vicinity of land masses. The
values observed in the present study are highly variable (about
160–3020 mg C m�2 d�1; Table 1), but fall within the previously
reported range. Antarctic phytoplankton productivity in this
region has been reported to exhibit strong spatial (Veth et al.,
1992; Arrigo et al. 1998), seasonal (Smith et al., 2000; Hiscock
et al., 2003) and inter-annual variations (Clarke and Leakey, 1996;
Park et al., 2010). Sporadic and patchy sampling during research
cruises makes it therefore difficult to estimate the specific pro-
ductivity in this region. These sampling opportunities are none-
theless useful to investigate the variability of productivity.

During sampling in the 12 °W bloom, one station in the initial
centre of the bloom was investigated over a two-week period
(Fig. 1, Table 1). Primary productivity estimates at this central
sampling station varied between 1050 and 2820 mg C m�2 d�1

(Table 1). These values are in the same range as reported by Jochem
et al. (1995), but considerably higher than previous estimates for
this region (Bracher et al., 1999; Strass et al., 2002b; Tremblay et al.,
2002; Korb and Whitehouse, 2004). The observed temporal varia-
bility, which was somewhat lower than the spatial variability in the
12 °W region (800–2820 mg C m�2 d�1, Table 1), probably reflects
a combination of the changes in light availability due to cloud cover
(between 5 and 20 mol photons m�2 d�1; Table 1) as well as the
movement of water masses (Strass et al., 2017). The developmental
phase of the phytoplankton bloom was also an important factor as
primary production decreased over time (Table 1). During the
investigation of the 39 °W bloom, emphasis was put on the spatial
variability in productivity (Fig. 1, Table 1). In this bloom, primary
productivity varied slightly more compared to the first area (570–
3020 mg C m�2 d�1; Table 1). This may be due to the higher spatial
coverage, but also temporal aspects and the more dynamic currents
play a role in this area (Strass et al., 2017). Nonetheless, even at
three consecutive stations sampled on the same day (PS79/168-70)
and within half a degree distance to each other, primary pro-
ductivity varied between 790 and 2220 mg C m�2 d�1 (Table 1),
demonstrating significant small-scale variability in the 39 °W
bloom area (Leach et al., 2017).

The high spatial and temporal variability emphasises once more
the difficulties in estimating the productivity in this highly dynamic
region (Abbott et al., 2000). Even though satellite Chl a estimates
have drawbacks compared to in-situ measurements (Schlitzer,
2002; Korb and Whitehouse, 2004; Whitehouse et al., 2008), they
provide higher spatial and temporal coverage of phytoplankton
biomass at mesoscale resolution. The satellite Chl a from the MERIS
Polymer-Chl-product used in this study has been validated globally
and regionally within the current ESA Climate Change Initiative for
Ocean colour and was chosen as the best algorithm for MERIS data
processing (Müller et al., 2015). Also in the current study, the quality
of the satellite Chl a data (r2¼0.67, bias¼0.17 mg m�3 compared to
in-situ measurements) is sufficient to analyse the development of
the two phytoplankton blooms at the surface. As satellite Chl a data
only cover the ocean's first optical depth, estimates on primary
productivity can only be derived using a model that incorporates
satellite-based estimates of Chl a, sea surface temperature and PAR
to reconstruct productivity over the entire mixed layer (e.g. Antoine
and Morel, 1996). Shipboard Chl a and primary productivity data are
therefore necessary in order to verify the accuracy of satellite-
derived products and to give information on the layers below the
first optical depth. 14C-based estimates tend to overestimate pri-
mary productivity due to the exclusion of loss terms such as sinking
or grazing as well as biases in applied irradiances (e.g. Gall et al.,
2001). Nonetheless, this method can be used to investigate the
underlying mechanisms for the patterns observed in satellite-
derived maps.

4.2. Patterns in primary productivity do not correlate with MLDs

In the following, the two blooms are compared based on their
general characteristics rather than investigating differences between
single stations because relationships with the environmental con-
ditions have to be considered on a wider scale, especially in such a
highly dynamic region as the ACC.

In terms of depth-integrated primary productivity, no significant
differences between the two blooms were observed during our visit
(17507750 versus 13707830 mg C m�2 d�1, t-test: t¼1.0,
p¼0.315; Tables 1 and 2). Similar rates of primary productivity were
achieved even though MLDs were significantly deeper in the 12 °W
compared to the 39 °W bloom (71714 versus 35713 m, t-test:
t¼6.0, po0.001; Table 2). Hence, despite spending different
proportions of the day in the deep low-light environment, phyto-
plankton communities of both blooms established similar primary
productivity (Fig. 5A; linear regression: r2¼0.208, p¼0.05). This
finding is somewhat surprising, as earlier studies suggested that the
alleviation from light limitation through shoaling MLDs is a key
determinant of bloom development and productivity in the open
SO (Sambrotto and Mace, 2000; van Oijen et al., 2004; de Baar et al.,
2005). In the current study, depth-integrated Chl a concentrations
were positively correlated with MLD over the entire study area
(Fig. 5B). POC:Chl a ratios were similar in both blooms (Table 2),
indicating that Chl a as well as biomass build-up was not light lim-
ited in MLDs up to 90 m (Fig. 5A; linear regression: r2 0.568,
p¼0.0002). In fact, depth-integrated primary productivity was best
correlated with depth-integrated Chl a concentrations (Fig. 5C; linear
regression: r2¼0.718, po0.0001). Hence, phytoplankton cells were
overall able to acclimate to different light regimes and sustained
similar depth-integrated primary productivity at different MLDs.

It should be kept in mind, however, that the controlling role of
light may be particularly important early in the growing season
when deep surface mixing occurs, light availability is limited, and
phytoplankton biomass is low (Bracher et al., 1999; Franck et al.,
2000; Smith et al., 2000; Landry et al., 2002; Llort et al., 2015). The
effects of light might explain the earlier onset of the 39 °W bloom
(e.g. by stratification of the upper mixed layer), while the constant
iron supply from South Georgia could have caused its longer
duration. The light regime at the beginning of the growing season
therefore may play an important role in modulating bloom
dynamics by changing the rate and duration of biomass accumu-
lation during the build-up phase of the bloom. Even though primary
productivity did not differ between blooms, the depth-integrated
photosynthetic efficiencies derived from Chl a-specific carbon
fixation (NPPChl a) were higher in the 39 °W bloom compared to the
12 °W bloom area (t-test, t¼2.5, p¼0.027). In the more deeply
mixed 12 °W bloom stations, lower NPPChl a-values indicate that
phytoplankton photosynthesis was less efficient (Behrenfeld et al.,
2008), possibly due to a combination of lower iron availability and
deeper mixing regimes. Integrated over the water column, however,
this did not lead to lower productivity than in the 39 °W bloom.

4.3. Nutrient deficits indicate differences in iron availability over the
growing season

During the growing season, phytoplankton take up and export
nutrients to a certain degree as part of particulate organic matter,
which can be expressed as nutrient deficits or depletions (Le Corre
and Minas, 1983; Jennings et al., 1984; Table 2). These proxies for
net community production as well as their ratios differed between
the two bloom areas (Fig. 3). While the ratios of Si(OH)4:NO3



Fig. 5. Relationships between net primary production, mixed layer depth and Chl a
– Depth-integrated NPP versus MLD (A), Chl a concentrations versus MLD (B) and
NPP versus Chl a concentrations (C) for all stations in the 12 °W bloom (open cir-
cles) and the 39 °W bloom (filled circles) as well as the outstation (triangle). Lines
indicate linear regression of all data.
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deficits were significantly higher in the 12 °W compared to the
39 °Wbloom area (t-test, t¼6.6, po0.001), the opposite trend was
observed with respect to the NO3:PO4 deficit ratios (t-test: t¼15.4,
po0.001). As phytoplankton need iron for the assimilation of
nitrate (and to a lesser degree of phosphate), the absence of iron
leads to lowered uptake capacities (de Baar et al., 1997; Hutchins
and Bruland, 1998). While more generally, also taxonomic differ-
ences (e.g. diatom vs. flagellate dominated phytoplankton assem-
blages) affect nutrient deficit ratios, no such differences were
observed in this study. And while shallow nitrification has been
shown to influence SO nitrate concentrations in winter, it does not
seem to influence nutrient concentrations and deficits in summer
(Smart et al., 2015, cf. nitrate profiles in Fig. 2). Our results
therefore indicate differences in the nutrient assimilation histories
of the two diatom-dominated phytoplankton assemblages, which
is likely due to differences in magnitude and dynamics of iron
supply in the two regions (i.e. higher iron input in the 39 °W
bloom area).

Drifter buoy trajectories indicate that water masses in the
39 °W sampling region, which originate from the South Georgia
shelf (Meredith et al., 2003) and most likely receives a higher and
steadier supply of iron and other trace metals (Korb and White-
house, 2004; Nielsdóttir et al., 2012; Borrione and Schlitzer, 2013;
Strass et al., 2017). In the area around 12 °W, however, trace metal
supply is thought to be restricted to deep-mixing during winter
(Venables and Meredith, 2009), even though lateral transport
could also play a role. During the time of sampling, iron mea-
surements in the upper 100 m of the water column yielded simi-
larly low dissolved (0.1–0.2 mmol m�3; Fig. 5) and leachable par-
ticulate iron concentrations (0.2–0.8 mmol m�3) in both areas
(Table 2; Laglera et al., 2013, Laglera, unpubl. results), indicating
iron depletion in both blooms. Given the development and
intensity of the blooms as inferred from satellite data, iron con-
centrations must have been much higher at the onset of the
blooms, yet they were already depleted by phytoplankton activity
and particle scavenging at the time of sampling. Despite poten-
tially large differences in iron availability and supply, surface sili-
cate concentrations were similarly low in both areas and could
potentially limit diatom growth (Fig. 2; Nelson et al., 2001). Fur-
thermore, nutrient deficits were also similar even though phyto-
plankton accumulation started earlier in the 39 °W area (this
study; Borrione and Schlitzer, 2013). These similarities of the two
blooms can partly be explained by the lower Si(OH)4:NO3 assim-
ilation ratios at 39 °W (Table 2), but may also suggest differences
in the intensity of nutrient cycling, export and grazing pressure
between the two systems.

4.4. From bottom-up towards top-down controls

Nutrient deficits can be used to estimate season-integrated net
community production and are thus a proxy for new production
on an annual basis (Jennings et al., 1984; Strass and Woods, 1991;
Hoppema et al., 2000; Whitehouse et al., 2012). Production rates
calculated from nutrient deficits, however, can potentially be
biased by altered nutrient concentrations due to vertical or lateral
mixing and advection, alternative nutrient sources (e.g. ammo-
nium), as well as changes in stoichiometry of organic matter
(Jennings et al., 1984; Hoppema et al., 2007; Whitehouse et al.,
2012). In agreement with Laubscher et al. (1993), slightly stronger
nutrient depletion in the 39 °W region co-occurred with higher
photosynthetic efficiencies compared to 12 °W (Table 2). This
could indicate a better acclimation to their environment in the
former bloom, potentially resulting from higher and steadier iron
supply as well as easier photoacclimation in shallower mixed
layers. The estimates of primary productivity and POC:PON as well
as POC:Chl a ratios (Tables 1 and 2), however, were in a similar
range for both blooms. Furthermore, nutrient deficits, though
somewhat lower in the 12 °W bloom region, were not remarkably
different between regions (Fig. 3, Table 2). This is surprising, par-
ticularly in view of the almost two months earlier onset of the
bloom in the Georgia Basin.

This apparent contradiction could have been caused by lower
export efficiencies in the 39 °W bloom. Shipboard carbonate
chemistry measurements, however, revealed higher deficits in
dissolved inorganic carbon (DIC) and a stronger CO2 uptake from
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the atmosphere in the 39 °W compared to the 12 °W bloom area
(Jones et al., 2017). Therefore, the mismatch between nutrient
deficits and bloom dynamics (as observed via satellites) was more
likely caused by the highly dynamic currents in the 39 °W area
(Strass et al., 2017), which may have led to an underestimation of
seasonal nutrient deficits due to higher lateral nutrient input
(Oschlies, 2002). Furthermore, net productivity may have been
overestimated to different degrees in both blooms because loss
terms such as grazing tend to be underestimated in 14C-based
measurements (e.g. Gall et al., 2001).

Recent field-, satellite- and model-based studies have high-
lighted the thus-far underestimated importance of top-down
control mechanisms for phytoplankton bloom dynamics (e.g.
Behrenfeld and Boss, 2014; Llort et al., 2015). As the average
zooplankton biomass in the South Georgia area is larger than
anywhere else in the Southern Ocean (Atkinson et al., 2001), we
speculate that during the time of sampling, top-down control was
more strongly developed in the 39 °W compared to the 12 °W
bloom area. Zooplankton sampling during our cruise showed that,
despite high spatial variability, the zooplankton community
around 39 °W was in a more progressed state of development
compared to the 12 °W bloom area. In the latter, the proportion of
small organisms and early developmental stages was higher
(Pakomov and Hunt, unpubl. data). A potentially lower grazing
pressure in the 12 °W bloom could also be explained by a lower
probability for predator–prey encounters in deeper MLDs (Beh-
renfeld, 2010). In fact, this dilution effect on grazing rates might
have contributed to the positive correlation between biomass and
MLD found throughout our study (Fig. 5B).

As the control of phytoplankton bloom dynamics in the ACC
can shift from bottom-up to mainly top-down within a few weeks
(Abbott et al., 2000; Llort et al., 2015), also a slightly earlier bloom
development at 39 °W could have led to our observations. Diatom-
dominated blooms, as observed in this study (Klaas, unpubl.
results), are mainly grazed by larger zooplankton. One can there-
fore assume that the usual time lag between bloom and grazer
development (Smetacek et al. 2004) was still allowing phyto-
plankton biomass build-up in the 12 °W area, while grazers
already imposed a strong control on the 39 °W bloom during the
Fig. 6. Schematic overview – Similarities of and differences between the 39 °W (A) and t
pCO2 as well as Chl a and zooplankton standing stocks.
time of sampling. Satellite Chl a maps of the two bloom areas
indeed show that the 39 °W bloom developed around 8 weeks
earlier than the 12 °W bloom. We thus conclude that, despite both
being in the apex phase, we visited the two areas at different
stages of the bloom development.
5. Conclusions and biogeochemical implications

The results of this study suggest that a combination of different
drivers strongly affect primary productivity in the SO. Bottom-up
processes control the rate of build-up of a bloom, while top-down
processes seem to be more important for determining the phyto-
plankton standing stock at the late bloom stage, i.e. when sam-
pling took place (Fig. 6). In contrast to earlier suggestions (van
Oijen et al., 2004; de Baar et al., 2005), we did not observe sig-
nificant light limitation of phytoplankton communities in two
highly productive open-ocean areas of the Atlantic sector of the
SO. Our results indeed indicate that, despite MLDs being deeper
than 90 m, this does not necessarily prevent the development of
phytoplankton blooms in the APFZ. Instead, iron supply seems to
be the bottom-up process playing a pivotal role, particularly for
determining bloom development and its potential duration, but
also by modulating the light-use efficiency of phytoplankton
(Smetacek et al., 2012; Behrenfeld and Milligan, 2013). Considering
the time scales of the individual measurements, we were thus able
to explain the observed patterns by differences in iron availability
and grazing pressure.
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