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PURPOSE. Stochastic eye models are a method to generate random biometry data with the
variability found in the general population for use in optical calculations. This work improves
the accuracy of a previous model by including the higher-order shape parameters of the
cornea.

METHODS. The right eye biometry of 312 subjects (40.8 6 11.0 years of age) were measured
with an autorefractometer, a Scheimpflug camera, an optical biometer, and a ray tracing
aberrometer. The corneal shape parameters, exported as Zernike coefficients, were converted
to eigenvectors for dimensional reduction. The remaining 18 parameters were modeled as a
sum of two multivariate Gaussians, from which an unlimited number of synthetic data sets
(SyntEyes) were generated. After conversion back to Zernike coefficients, the data were
introduced into ray tracing software.

RESULTS. The mean values of nearly all SyntEyes parameters were statistically equal to those of
the original data (two one-sided t-test, P > 0.05/109, Bonferroni correction). The variability of
the SyntEyes parameters was similar to the original data for most important shape parameters
and intraocular distances (F-test, P < 0.05/109), but significantly lower for the higher-order
shape parameters (F-test, P > 0.05/109). The same was seen for the correlations between
higher-order shape parameters. After applying simulated cataract or refractive surgery to the
SyntEyes model, a very close resemblance to previously published clinical outcome data was
seen.

CONCLUSIONS. The SyntEyes model produces synthetic biometry that closely resembles
clinically measured data, including the normal biological variations in the general population.
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When making any kind of refractive calculations in
physiological optics, it is essential to start from a realistic

set of biometric dimensions and curvatures that represent the
optical structure of the eye. In a clinical setting, most of these
parameters are readily available through standard biometric
methods, such as Scheimpflug tomography and partial coher-
ence interferometry. Many non–hospital-affiliated researchers,
however, have only limited access to real biometry data, which
compels them to use eye models instead. These models
represent a fixed, nearly emmetropic biometry set based on a
population average, such as the works of Gullstrand,1 Navarro
and colleagues,2,3 and Liou and Brennan,4 that have played an
essential role in many great scientific developments of the last
century. However, despite these contributions, such generic
eye models do not take the wide variety in ocular biometry into
account that was observed in epidemiologic biometry studies.
For example, assuming a tolerance of 60.25 diopters (D) in
keratometry and 60.10 mm in axial length, the Gullstrand eye
model would correspond with only 0.51% of the 1178 Western
European eyes in our previous work on the epidemiology of
ocular biometry.5 Similarly, the more recent Navarro and Liou
and Brennan models both correspond with 1.02% of the same
cohort. To study eyes that deviate from these average values,

these generic models are often customized, for example, by
inserting measured biometry values into a chosen eye model
while keeping other unmeasured (or unmeasurable) values
unaltered.6–8 Alternatively, customization can also be achieved
by considering the unmeasured parameters as free variables in
an optimization process until, for example, the ocular wave-
front of the individual eye model matches the measured
values.9,10 Although this approach leads to a data set much
closer to the patient’s actual biometry, one has to make sure
that the inserted biometry parameters are very complete to
avoid introducing systematic errors resulting from a lack of
correlation between the measured data and the unaltered
parameters of the original eye model. Moreover, access to
measured data is still required for customized modeling.

Another approach is to use stochastic modeling, which
produces an unlimited amount of synthetic biometry data sets
(SyntEyes) that has statistical properties identical to that of the
original data it is based on. Apart from the initial data needed to
define the model, this concept requires no biometry measure-
ments from the end user, making it an interesting tool for vision
scientists, as well as for simulating clinical procedures. This
statistical eye model was developed by our team several years
ago,11 based on ideas proposed earlier by Sorsby et al.,12 Thibos
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et al.,13 and Zhao.14 However, although this model successfully
reproduced the distributions of the ocular biometry in West
European subjects, it was restricted to producing only lower
orders of wavefront aberrations, thus limiting its applications.

The purpose of the current work is therefore to improve
the accuracy of the earlier model by including a Zernike
description of the corneal shape. Furthermore, a number of
technical improvements will be introduced to enhance its
performance, such as principal component analysis to reduce
the number of parameters,15 more accurate methods to
estimate the crystalline lens shape16 and power,17 and a linear
combination of multivariate Gaussians5 instead of refractive
filtering. After verification of the model, examples will be given
of possible applications.

METHODS

Subjects and Measurements

The biometric data were taken from 312 healthy right eyes of
312 Western European Caucasian subjects recruited from the
personnel of the Antwerp University Hospital and people of
the nearby suburban area of Edegem for the purpose of this
study. The cohort consisted of 42.9% men and 57.1% women,
with an average age of 40.8 6 11.0 years (range, 20.2–59.6
years). Exclusion criteria were prior ocular pathology or
surgery, an intraocular pressure higher than 22 mm Hg, and
wearing rigid gas permeable (RGP) contact lenses less than 1
month before testing. Subjects were not dilated for their
investigations, which could have had some minor influence on
the biometric readings in younger subjects.

For all subjects, the shape and dimensions of the cornea and
anterior chamber were determined using a Scheimpflug
camera (Oculus Pentacam, Wetzlar, Germany), lens thickness
T and axial length L were measured with a noncontact optical
biometer (Haag-Streit Lenstar, Koenitz, Switserland), and the
ocular wavefront was determined using a ray tracing aberr-
ometer (Tracey iTrace, Houston, TX, USA). Furthermore, the
refraction was determined using an autorefractometer (Nidek
ARK 700, Nidek, Gamagori, Japan) and the intraocular pressure
with a pneumotonometer (Reichert ORA, Depew, NY, USA). A

detailed overview of the parameters used in the modeling is
given in Table 1.

Modeling of the Eye

The present model is loosely based on the Navarro eye model,2

from which the basic structure and some of the clinically
inaccessible parameters are taken. It comprises two Zernike
surfaces representing the cornea, two aspherical surfaces
representing the crystalline lens, a stop at the pupil plane, and
a spherical retina (Table 2). The anterior lens surface also
contains an additional Zernike phase correction to account for
wavefront aberrations of noncorneal origins, such as the
intrinsic aberrations of the crystalline lens and those resulting
from the lenticular alignment relative to the cornea.

Cornea. Both the anterior and posterior corneal surfaces
are represented by means of eighth-order Zernike polynomials
(45 parameters) with a diameter of 6.50 mm. Together with the
central corneal thickness CCT, this forms a complete descrip-
tion of the corneal shape. As the large number of parameters
involved could cause dimensionality problems during the
Gaussian modeling, we used principal component analysis to
compress the number of dimensions from 91 corneal
parameters to 12 eigenvectors (eigencorneas [ECs]) while
retaining 99.5% of the original variability.15 The remaining 0.5%
of variability lies mostly in the higher-order aberrations and is
of no real consequence to the model (Supplementary Material
A). These eigencorneas are used during the stochastic process
and converted back to Zernike coefficients and CCT afterward.

Crystalline Lens. As most lens parameters are not yet
measurable by means of routine clinical equipment, alternative
methods have to be used to obtain realistic estimations. The
lens power PL is calculated from the ocular biometry using the
Bennett equation with optimized parameters,17,18 and the lens
radii rLa and rlp are derived from regressions based on lens
power PL and lens thickness T.16 Similarly, a regression was
used to estimate missing lens thickness values in eyes where it
is missing.16 Once lens power and radii are available, the
equivalent refractive index of the lens may be derived using
equation 3 in Reference 16. Finally, the asphericity of both lens
surfaces is taken from the Navarro model.2

TABLE 1. Overview of the Parameters Used

Parameter Unit Determined by Description

SE D Autorefractometer Spherical equivalent refraction at spectacle plane

J0, J45 D Autorefractometer Jackson cylinders at spectacle plane

Zn
m (WF) lm iTrace Zernike coefficient of ocular wavefront

Zn
m (CA) mm Pentacam Zernike coefficient of anterior corneal surface elevation

Zn
m (CP) mm Pentacam Zernike coefficient of posterior corneal surface elevation

CCT lm Pentacam Central corneal thickness

ECi lm Reference 15 Eigencornea

ACD mm Pentacam Anterior chamber depth (corneal epithelium to lens)

T mm Lenstar Lens thickness

L mm Lenstar þ 0.200 mm Axial length (including 0.2-mm retinal thickness)

RT mm 0.200 Thickness of retinal layers

V mm L � CCT � ACD � T � RT Vitreous depth

PL D Reference 17 Lens power using Bennett method

rLa mm Reference 16 Anterior radius of curvature of lens

rLp mm Reference 16 Posterior radius of curvature of lens

Zn
m (int) mm Calibration Zernike coefficient of internal refractive components

LTx, LTy 8 – Lens tilt

LSx, LSy mm – Lens shift

nc – 1.376 Refractive index of cornea

n – 1.336 Refractive index of aqueous and vitreous humors

nL – Reference 16 Refractive index of crystalline lens
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Besides an aspherical surface, the anterior lens also includes
a set of constant Zernike coefficients up to the fifth order
(Zn

m[int]; diameter, 5.50 mm) to account for the aberrations of
noncorneal origins, which is equivalent to including a Zernike
phase plate at the iris as both the anterior lens apex and the
pupil lie in the same plane. These constant coefficients were
determined by matching the wavefront calculated using the
measured biometry of the original subjects with the measured
wavefront.

Finally, as the crystalline lens tilt (LTx, LTy) and shift (LSx,

LSy) could not be determined in the eye of the original
subjects, these parameters are not included in the multivariate
Gaussian model. Instead these are generated independently
based on mean and standard deviation (SD) values found in the
literature.19,20

Axial Length and Vitreous Depth. The Lenstar measures
the ocular axial length from the corneal vertex until the retinal
pigment epithelium, after which a fixed value of 0.200 mm is
subtracted to bring it back to the inner limiting membrane in
accordance with ultrasound measurements. Because the retinal
image should be sharp on the photoreceptor layer rather than
the internal limiting membrane, we followed the recent
suggestion of Li et al.21 to add a fixed value for retinal
thickness RT of 0.200 mm to the measured axial length L prior
to any calculations. Vitreous depth V is then calculated as V¼ L

� T�ACD � CCT� RT.

Multivariate Gaussian Model

Based on the considerations above, the model consists of 12
eigencorneas, anterior chamber depth ACD, axial length L, lens
power PL, anterior lens radius rLa, posterior lens radius rLp, and
lens thickness T. These parameters form an 18-dimensional
point cloud that may be fitted with a linear combination of
multivariate Gaussian functions,5 which forms the core of the
stochastic model. The fit was performed in Matlab 2011b (The
Mathworks, Natick, MA, USA) using an expectation-maximiza-
tion (EM) algorithm using the procedures described in
References 5 and 11. Early trials indicated that a fit of two
multivariate Gaussians gave a good fit accuracy, which could
not be improved significantly by increasing the number of
Gaussians.

Once a reliable fit is obtained, the Matlab program can use it
to generate an unlimited number of random data points with a
distribution that is very close to that of the original data. After
conversion from eigencorneas to corneal Zernike coefficients,
and determining the equivalent refractive index of the lens,
these synthetic data points (or SyntEyes) may be used for
further calculations. In this work, the model output is inserted

into a custom Matlab ray tracing module to confirm the validity
of the synthetic data with respect to the measured refraction
and wavefront data. The refraction of the SyntEyes was
calculated using the equations by Salmon and Thibos.22 During
the development of both the ray tracing module and the
statistical model, the ray tracing results were verified against
results obtained with commercial software (Zemax, Zemax
LLC, Kirkland, WA, USA) to ensure compatibility.

For the reader’s convenience, the Matlab program, along
with a sample output file containing 1000 SyntEyes generated
by the model, is provided as Supplementary Material B and C.

Statistics

The statistics in this work are mostly aimed at demonstrating
the equality of the distributions of the original and the
synthetic data. For this purpose, the two one-sided t-test
(TOST) is used, which defines certain thresholds of equiva-
lence between which the average of both sets may be
considered equal.23,24 Although some of the parameters
involved may not be normally distributed, one can still use
parametric testing such as t-tests, provided the populations
involved are sufficiently large. Lumley et al.25 stated that in
most cases this threshold lies below 100 cases for a mild degree
on nonnormality and below 500 for extremely high non-
normality. Given that the worst distributions in this work are
only moderately nonnormal (as verified with Kolmogorov-
Smirnov tests), this approach is warranted by the standards set
by Lumley et al. All tests are performed at a confidence level of
0.05, adjusted with a Bonferroni correction in case of multiple
simultaneous comparisons (indicated by 0.05/N, with N the
number of comparisons performed).

RESULTS

Verification of the Methods Used

Before the data produced by the proposed model may be
considered as equivalent to the originally measured data, all
aspects of this claim must be rigorously verified. One such
aspect is the performance of the ray tracing module and
eigencornea compression to reproduce the measured refraction
and wavefront of the subjects based on their biometry. For
spherical equivalent (Fig. 1a) and J45 (Fig. 1c), the histogram
shows a very good match with those of the autorefractometer
and wavefront measurements, whereas for J0 (Fig. 1b), the
distributions were a bit flatter, with a slightly higher occurrence
of with-the-rule astigmatism in the calculated wavefronts
compared with the measured wavefronts. The average Zernike

TABLE 2. List of Parameter Values Used in the Eye Model

Parameter

Cornea

Pupil

Crystalline Lens

RetinaAnterior Posterior Anterior Posterior

Surface type Zernike Zernike Spherical Aspherical þ Zernike* Aspherical Spherical

Diameter, mm 6.50 6.50 5.00 5.50 5.50 6.00

Radius, mm EC EC ‘ rLa rLp �12.00

Asphericity EC EC – �3.1316 �1 –

Thickness EC ACD – T V –

Refractive index 1.376 1.336 1.336 nL 1.336 –

Shift, mm EC EC LS† LS† LS† –

Tilt, 8 EC EC LT† LT† LT† –

EC, parameters derived from eigencorneas; LS, lens shift; LT, lens tilt.
* Anterior lens surface includes a phase correction to account for the noncorneal wavefront.
† Randomly generated based on values from the literature.18,19
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coefficients presented in Figure 1d are all significantly equal to
each other (TOST, P > 0.05/45, Bonferroni correction for 45
repeated comparisons), but in many of their SDs, significant
differences are seen (F-test, P < 0.05/45; Fig. 1e). For the
wavefront calculated based on the full corneal elevation, the SD
is often significantly larger than that of the measured wavefront,
whereas for the eigencornea compressed data, the SD is often
significantly smaller (F-test, P < 0.05/45). Only for the second-
order aberrations were the SDs similar to those of the measured
wavefronts. Although this variability could be improved by
including more than 12 eigencorneas, such a measure would
also increase the dimensionality of the model, thus increasing
the risk of overfitting the original data. We therefore opted to
accept this as a limitation of the proposed model. More
information on how well different numbers of eigencorneas
reproduce the variability of the original wavefront can be found
in Supplementary Material A.

Verification of the SyntEyes

All 18 parameters used by the statistical model are normally
distributed within the 312 eyes of the original data (Kolmogor-
ov-Smirnov test, P > 0.05/109; Table 3). Using the statistical
eye model to generate 1000 SyntEyes and comparing their

mean parameter values to those of the original data, both are
significantly equal (TOST, P > 0.05/109). For the SD of the 18
parameters used by the eye model, no significant differences
are seen between SyntEyes and the original data (F-test P >
0.05/109), but for most corneal Zernike coefficients Zn

m (CA)
and Zn

m (CP), the SDs are significantly lower than those of the
original data (P < 0.05/109). This is most likely the result of the
eigencornea compression. A complete version of Table 3 is
available in Supplementary Material D.

The distribution of the ocular surface positions of the
SyntEyes also agrees well with those of the original data (Fig. 2).

Note that very similar results are found if a smaller group of
312 SyntEyes (i.e., the same number of eyes as the original
data) is used, suggesting an invariance of the distribution
against the number of generated SyntEyes.

In most cases, the Zernike coefficients of the wavefront and
the autorefraction of the original data are nonnormal (Kolmo-
gorov-Smirnov test, P < 0.05/48; Table 4). Often this is due to
the presence of several outliers, but for SE, Z0

0 (WF), and Z2
0

(WF), the distributions were obviously leptokurtic and skewed
(Fig. 3). Based on the criteria by Lumley et al.,25 our population
size is sufficiently large for parametric statistics, however, so
the TOST and F-test could be performed for these parameters.

FIGURE 1. Verification of the refractive and wavefront results provided by the ray tracing module applied to the actual corneal elevation and after
eigencornea (EC) compression for (a) spherical equivalent, (b) Jackson cylinder J0, (c) Jackson cylinder J45, (d) average, and (e) SD of the Zernike
coefficients (eighth order, [ 5 mm; only first 20 coefficients are shown; mean and SD of Z2

0 [nr 5] divided by 10 for better visualization).
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Both the calculated refraction and the calculated wavefront
are significantly equal to the measured values of the original
data (TOST, P > 0.05/48; Table 4), but the SDs of the SyntEyes
is in most cases significantly smaller than that of the original
data (F-test, P < 0.05/48). This is also illustrated in Figure 3,
where the histograms of the calculated Zernike coefficients up
to the fourth order are shown for 1000 SyntEyes (black lines)
and compared with the measured wavefronts of the original
data (gray bars). Overall, the agreement between both is good,
except for the trefoil coefficients (Z3

63), where the SyntEyes
display considerably less variation compared with the original
data. To a lesser degree, this is also seen for Z4

�4 and Z4
þ2. A

complete version of Table 4, as well as a comparison of the

wavefront metrics proposed by Marsack et al.,26 is available in

Supplementary Material D.

The correlation coefficients between the parameters of the

SyntEyes are close to those of the corresponding parameters of

the original data for the intraocular distances, eigencorneas,

and the Zernike elevation coefficients of piston (Z0
0), tilt

(Z1
61), defocus (Z2

0), astigmatism (Z2
62), coma (Z3

61), and

spherical aberration (Z4
0). For the other third- and fourth-order

Zernike coefficients, the correlations between the SyntEyes

parameters were higher than between the parameters of the

TABLE 3. Comparison of the Biometry of the SyntEyes (1000 Eyes) With the Biometry of the Original Data (312 Eyes)

Parameter Unit KS*

Average (SD)

TOST† F-Test*Original Data SyntEyes

EC0 lm 0.985 348.79 (31.69) 348.07 (31.86) Pass 0.921

EC1 lm 0.653 �0.89 (22.19) 0.03 (22.23) Pass 0.978

EC2 lm 0.546 0.59 (10.09) 0.32 (10.04) Pass 0.899

EC3 lm 0.420 �0.22 (6.93) �0.41 (6.88) Pass 0.899

EC4 lm 0.768 204.18 (4.55) 204.21 (4.48) Pass 0.802

EC5 lm 0.835 �2.10 (4.31) �1.98 (4.38) Pass 0.727

EC6 lm 0.937 �0.05 (2.95) �0.11 (2.93) Pass 0.854

EC7 lm 0.710 �0.26 (2.73) �0.13 (2.66) Pass 0.639

EC8 lm 0.939 0.25 (2.12) 0.25 (2.05) Pass 0.605

EC9 lm 0.128 0.04 (1.78) 0.04 (1.81) Pass 0.665

EC10 lm 0.961 �0.01 (1.31) �0.06 (1.33) Pass 0.778

EC11 lm 0.005 0.04 (1.18) 0.00 (1.16) Pass 0.713

ACD mm 0.701 2.89 (0.39) 2.90 (0.39) Pass 0.965

T mm 0.066 4.06 (0.38) 4.06 (0.38) Pass 0.830

L mm 0.338 24.04 (1.11) 24.04 (1.08) Pass 0.629

rLa mm 0.544 10.38 (1.21) 10.54 (1.19) Pass 0.823

rLp mm 0.547 �6.84 (0.76) �6.94 (0.75) Pass 0.826

PL D 0.516 23.39 (2.05) 22.55 (1.97) Pass 0.756

CCT‡ lm 0.989 549.09 (31.29) 548.39 (31.46) Pass 0.919

Zn
m (CA)‡ lm 2/45§ 0/45§ 38/45§

Zn
m (CP)‡ lm 0/45§ 0/45§ 35/45§

KS, Kolmogorov-Smirnov test for normality.
* P < 0.05/109¼ 4.59 3 10�4 (Bonferroni correction) indicates a significant difference (in bold).
† P > 0.05/109¼ 4.59 3 10�4 (Bonferroni correction) indicates a significant equality (in bold).
‡ Derived from eigencorneas EC0,. . .,EC11.
§ Number of comparisons with a significant difference.

FIGURE 2. Combined histogram showing the positions of the ocular surfaces in the original data (gray bars) and the SyntEyes (black line).
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original data, associated with the SyntEyes’ lower degree of

randomness (Fig. 4).

Potential Applications of SyntEyes

One of the anticipated applications of SyntEyes is the

assessment of intraocular lens (IOL) design and IOL power

formulas in eyes with a large variety of biometry. This is

illustrated in Figure 5, showing the estimated refractive

outcomes for the same 1000 SyntEyes as before implanted

with a Morcher 89a ‘‘Bag in the Lens’’ IOL.27 As this IOL has a

0% rate for posterior capsular opacification27 and a very high

degree of postoperative centration and rotation stability,28,29 it

is an ideal lens to verify the optical performance of the

SyntEyes with clinical data. All lens powers were calculated

using the Sanders-Retzlaff-Kraff/Theoretical (SRK/T) formula,30

aiming at postoperative emmetropia. Information on the radii

TABLE 4. Comparison of the Calculated Refraction and Wavefront for 1000 SyntEyes With the Measured Values for the Original Data (312 Eyes)

Parameter Unit KS*

Average (SD)

TOST† F-Test*Original Data SyntEyes

SE D <0.001 �1.23 (2.29) �1.04 (2.68) Pass 0.001

J0 D 0.018 0.01 (0.35) 0.07 (0.38) Pass 0.152

J45 D 0.019 0.00 (0.21) 0.00 (0.18) Pass <0.001

Zn
m (WF) lm 22/45‡ 0/45‡ 40/45‡

Wavefront measurements available for 277 eyes. KS, Kolmogorov-Smirnov test for normality.
* P < 0.05/48¼ 1.042 3 10�3 (Bonferroni correction) indicates a significant difference (in bold).
† P > 0.05/48¼ 1.042 3 10�3 (Bonferroni correction) indicates a significant equality (in bold).
‡ Number of comparisons with a significant difference.

FIGURE 3. Histogram of the Zernike coefficients up to the fourth order for the original data (277 eyes; gray bars) and 1000 SyntEyes (black lines).
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of curvature and lens thickness were obtained directly from
the manufacturer (Morcher GmbH, Stuttgart, Germany).

These estimated outcome results are compared with the
refraction data of 320 eyes implanted with the Bag in the Lens
(320 patients; male/female: 42.2%/57.8%; age: 69.5 6 10.8
years; postoperative date: 10.1 6 7.2 months; no ocular
comorbidities) taken from Reference 27. As these are
subjective refraction data, recorded at least 5 weeks postop-
eratively, the patient’s pupil diameter at the time of measure-
ment is unknown. The refraction for the SyntEyes is therefore
calculated for a pupil diameter of 3, 4, and 5 mm and then
averaged over the three. As is seen in Figure 5, the resulting
distribution of the refraction in SyntEyes is very close to that
measured in the pseudophakic eyes. Moreover, the spherical
aberration Z4

0 (WF) of the pseudophakic SyntEyes lies close to
0.20 lm, which is in the range of the values reported in the
literature for spherical IOLs.

Similarly the model can be used to assess the outcome of
laser refractive surgery by applying a virtual laser correction to
the SyntEyes’ anterior corneal surface. For this purpose, the
outcome of the SyntEye model was compared with pre- and

postoperative wavefront data taken from 71 myopic eyes that
underwent laser epithelial keratomileusis (LASEK) collected in
a previous study31 (37 patients; male/female: 29.7%/70.3%;
age: 33.6 6 9.4 years; postoperative date: 6.2 6 4.5 months;
no ocular comorbidities; no cylinder correction >1 D). These
eyes were treated with an InPro GAUSS laser system (InPro
GmbH, Norderstedt, Germany), which delivers a broad
Gaussian laser beam with a diameter of 6.5 mm. This process
can be simulated by removing a similar profile from the
anterior cornea for all 365 SyntEyes with a myopia higher than
�1 D (taken from the same set of SyntEyes as before). The
amount of ablation required for emmetropia was determined
using the Munnerlyn algorithm for myopia.32 Assuming perfect
centration and a perfect beam profile, the postrefractive SE of
the SyntEyes is similar to what is found in the real post-LASEK
eyes (Fig. 6a), albeit with a sharper distribution. The Zernike
coefficients of both the pre- and postoperative wavefronts are
similar for both the real eyes and the SyntEyes (Figs. 6b, 6c),
apart from the preoperative astigmatism (Z2

þ2), which is
higher in the real eyes and two postoperative third-order
coefficients (Z3

�3, Z3
�1) that are more pronounced in the real

eyes as well. As before, the variability of the Zernike
coefficients is higher in the real eyes that in the SyntEyes
(not shown). The SyntEyes data for this example are included
in Supplementary Material C.

DISCUSSION

The SyntEyes model presents a means to produce an unlimited
amount of synthetic biometric data, with mean values that are
statistically indistinguishable from the original data it is based
on. The variability of the most important biometric parameters
(i.e., the curvatures of the optical interfaces and the intraocular
distances) lies close to that of the original data, whereas for the
higher-order Zernike coefficients, the variations of the
SyntEyes are generally lower due to the eigencorneas. Overall,
this translates into a very powerful tool for researchers in
physiological optics and for simulations of cataract and
refractive treatments, as is demonstrated by the examples
above.

The SyntEyes model has the distinct advantages that it
provides the biological variability that is missing from the
classic, generic eye models and that it can be easily
implemented in ray tracing software for batch processing.
This means that the model has many potential applications,
such as the standardization of new IOL designs, including
tolerance analysis, or comparison of IOL power formulas over a
data set with a large biometric variation, rather than on a fixed
generic eye model. Helpful suggestions on how to set up such

FIGURE 4. Correlation coefficients of the SyntEyes compared with
those of the original data for the intraocular distances, eigencorneas,
and elevation Zernike coefficients of both corneal surfaces.

FIGURE 5. Distribution of the estimated refraction of 1000 SyntEyes implanted with a Morcher 89a ‘‘Bag in the Lens’’ IOL targeting emmetropia for
three pupil diameters compared with previously measured data of 320 pseudophakic eyes. The central three bins (�0.25, 0, and 0.25 D) are
combined for both the measured and the average SyntEyes data. (a) Spherical equivalent, (b) Jackson cylinder J0, and (c) Jackson cylinder J45.
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studies may be found in the protocols recently proposed by
Hoffer et al.33 Similarly, the effects of laser refractive surgery
can be simulated for a wide variety of biometry values, which
could potentially improve the postoperative outcome. Alter-
natively, one could simulate how the IOL power should be
calculated in postrefractive patients to identify combinations of
biometric parameters for which a surgical procedure could
lead to previously unexpected outcomes. Finally, the SyntEyes
model may be useful for governments or regulatory authorities
(e.g., Food and Drug Administration and European Medicines
Agency) to refine the indications for reimbursement of certain
therapies or improve laser safety thresholds.34,35

Provided sufficient appropriate data are available, similar
models may also be built for other healthy or pathological
populations. This could for example be done for eyes of young
children, non-Caucasian subjects, or subjects in nonindustrial-
ized regions where the prevalence of myopia is relatively low.
Other possible extensions could be the inclusion of ocular
aging,36–39 wide angle refraction,2,3,40–44 a gradient index
lens,4,36,44,45 accommodation,1,2,36,46,47 or corneal biomechan-
ics.48

However, the model also has several inherent limitations
that one must keep in mind, mostly associated with the fact it
takes its properties from the original data it is based on and is
therefore unable to increase the information content. Further-
more, the use of the eigencornea compression reduces the
variability and the correlation coefficients of the higher-order
corneal Zernike coefficients and, consequently, those of the
higher-order wavefront aberrations as well. However, the
validations with the original, the pseudophakic, and the
postrefractive data demonstrated that the variability of the
refraction and the most important Zernike coefficients in the
SyntEyes does not deviate too far from those found in the
measured data. We are therefore confident that this reduced
higher-order variability will not hamper the performance of the
model by any noticeable degree.

Finally, another limitation of the model is the fact that the
lens parameters were not measured, but estimated using
multiple linear regressions. Even though these regressions
perform quite satisfactorily in the description of lens curva-
tures in a population, they may still produce values that deviate
substantially from their actual amounts.16 Given the stochastic

nature of the SyntEyes model, which only requires the mean
and covariance values in order to produce plausible estimates
for the lens curvatures values, these parameters are probably
well integrated into the model. Nevertheless, once phakometry
equipment becomes available clinically, for example, based on
the crystalline lens topography,49 we will consider updating
the current model with these parameters to keep the current
model relevant.
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