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Abstract. Following a previous report of proton transport in a channel-free molecular solid 

possessing a complex set of water wires, the mechanisms implied by the available neutron 

diffraction measurements are further developed. Three specific proton transfer pathways along 

an experimentally observed water wire are proposed. The first is proton transfer involving two 

aqua ligands coordinated to the same Mn(II) unit and one free water acting as a shuttle. The 

second mechanism consists of proton transfer between coordinated aqua ligands of distinct 

molecules, with no shuttle. The third mechanism involves a component of vehicle transport, 

involving a water molecule that changes position during the process. Geometric parameters of 

the proposed mechanisms are given. 

1.  Introduction 

Many biological and technological processes (e.g., Adenosine triphosphate (ATP) synthesis in the 

former case or hydrogen fuel cells for the latter), require the presence of protons. Acid-base, redox and 

enzymatic reactions are based on proton transfer from one reagent to another. Proton mobility in bulk 

water is much higher, about 4.5 times greater than the mobility of other cations in different solvents, 

including water. Greater insight into the mechanism through which protons are transferred in bulk water 

can facilitate the understanding and development of other processes involving ionic movement.1 

It has been observed in biological systems that the presence of a one dimensional H-bonded water 

chain (or "water wire" or "proton wire") facilitates proton transport through membranes. The associated 

transport mechanism, commonly called the Grotthuss mechanism,2 is based on concepts put forward by 

Grotthuss in 1806 in the context of electrolysis. The mechanism, as conceived for proton transport, 

consists of the movement of an excess proton along the H-bonded water chain while the oxygen atoms 

of the water molecules remain in place.  Materials showing this behaviour are known as proton 

conductors. Specific proposals involving Eigen and Zundel cations have been put forward for this 

process,3 although there is still debate on the details.   

A two-stage process is generally accepted as the basis of the Grotthuss mechanism of proton transport 

in liquid electrolytes and solids.4 The process begins with the transfer of a proton from one molecule of 

water to an adjacent one, with both molecules being links in a water wire. This proton jump involves 

the rupture and formation of several covalent and hydrogen bonds in the neighbourhood of the molecules 

involved. Figure S1 represents the approach of a proton to the terminal water molecule of a chain (a). 
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The water molecule that binds the newly incorporated proton shares one of its H atoms with an adjacent 

water molecule, forming a Zundel dimer (b). As this shared proton becomes fully bonded to the O atom 

of the neighbouring water molecule, the latter in turn loses one of its original H atoms to the next water 

molecule along the chain (c). This process is repeated along the water chain and finally an H+ exits the 

chain (b-d). This process inverts the dipole moments of the water molecules, and the original state is 

restored by reorientation of the molecules (e). Once the conformation of the water molecules is identical 

to that of the original state, the system can host a new proton jump (f).  

Another feasible mechanism, the “vehicle mechanism,” entails protons traveling on a host molecule. 

A host molecule, the carrier, is a species that can interact with protons, such as H2O or NH3, so the 

transfer takes places as an H3O+ or an NH4
+, instead of as an H+. The substance behaves as a Brønsted 

base and its diffusion coefficients are the limiting factors in proton conduction.  The main difference 

here is that an H-bonded chain is not required and stronger basic species such as NH3 can be used, which 

has helped for example in the preparation of new materials based on zeolites showing proton 

conductivity.5 

2.  Experimental   

Full details of the measurements on which this discussion is based are given in Reference 6a and its 

accompanying Supporting Information. 

3.  Discussion 

Compound 1 has been described in detail.6 It is a 1-D coordination polymer that crystallizes in the 

monoclinic system, space group P21/n. The structural building block of the polymer is an 

[Mn4(citrate)4]8- cubane, which together with bridging [Mn(H2O)4]2
+ units, forms a chain that is 

propagated along a crystallographic n-glide plane. Balancing the negative charge of the polymer are one 

pendant [Mn(H2O)5]2+ unit coordinated to the periphery of each cubane and two freestanding 

[Mn(H2O)6]2+ units between the polymer chains. In addition, there are nine free water sites per 

asymmetric unit, two of which are half-occupied. There are thus a total of 21 coordinated water 

molecules and, stoichiometrically, eight crystallization water molecules per unit of the polymer. The 

crystal is not porous and presents no channels in its structure. Nevertheless, when it is exposed to the 

atmosphere it undergoes a reversible dehydration in which three molecules of water (occupying four 

crystallographic sites) are lost, but with preservation of the crystallinity of the sample (compound 2). 

There is a reduction of about 250 Å3 in the volume of the unit cell, but the crystal still belongs to the 

monoclinic space group P21/n. When a crystal of 2 is left inside a closed vial, with a humid atmosphere 

created using moist cotton (among other methods), the initial derivative is fully restored (compound 1'). 

This reversible process was characterized using single crystal X-ray and neutron diffraction (Figure S2). 

As described previously,6 when the rehydration is carried out using D2O instead of H2O, the structure 

of 1' shows deuteration not only at the four crystallographic sites from which water egress takes place, 

but also at all of the remaining 26 water sites, including the 21 that are coordinated to Mn centers. This 

fact was definitively established using neutron diffraction, whose H/D isotope contrast provides 

irrefutable experimental characterization of the affected sites. 

It is the purpose of the following discussion to expand on the mechanism that was proposed in 

Reference 6a, with more detail of the proton transport pathways that can operate in this crystal. 

In compound 1, as characterized by neutron diffraction, a significant H-atom disorder is observed for 

a number of the water molecules, with the 58 H atoms of the asymmetric unit occupying 72 

crystallographic sites. The key to a cogent description of the mechanism through which such massive 

H/D substitution can take place in a non-porous molecular crystal, without loss of crystallinity, is the 

presence of an extensive H-bonded water structure: Several continuous motifs traverse a complete unit 

cell, with O...O distances of between 2.5 and 3.3Å. (Figure S3). As mentioned above, such a proton 

wire, or water wire, is a characteristic feature of proton conductors, and it is along such pathways that 

proton transport can take place.  
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Our original report6a described an H-bonded chain of water molecules presenting two different types 

of disorder (Figure S4). The first disorder pattern is present in eight of the 30 water fragments and 

consists of an oxygen atom [Ox (s.o.f. 1; s.o.f. = total site occupancy factor)] surrounded by three H 

atoms, one fully occupied [Hxa (s.o.f. 1)] and the remaining two with half occupancy each [Hxb and 

Hxc (s.o.f. 0.5)]. This can be split into two congeners with good geometry for a water fragment, Hxa-

Ox-Hxb and Hxa-Ox-Hxc. The second type of disorder, found for two of the 30 sites, presents an oxygen 

atom attached to four half-occupied H sites [Hxa, Hxb, Hxc and Hxd (s.o.f. 0.5)]. This pattern can be 

split into two congeners, each with appropriate H-O distances and H-O-H angle for a water fragment, 

Hxa-Ox-Hxc and Hxb-Ox-Hxd. Each of the two congeners would be present half of the time. Proton 

movement along this 1-D chain is explained in terms of the Grotthuss mechanism. The proposed 

mechanism accounts for the splitting of each water site into two congeners as described above. One of 

these congeners, a, would be present in the first step, when the excess proton enters the chain (Figure 

S1). Note that the sites occupied by the hydrogen atoms in the b congeners are vacancies when congener 

a is present. The excess proton jumps from one water molecule to a second one, occupying a vacancy. 

This transfer is coordinated with the exit of one proton from the second water molecule; this proton is 

transferred to the next water molecule in the chain. Once protons have traversed the H-bonded water 

chain, the extra hydrogen leaves the chain. At this point, the dipole moment of the water molecules is 

inverted with respect to the starting state of the chain (b congeners). In order to restore the original 

situation and enable a new proton jump, a simple rotation and reorientation of the water molecules is 

needed.  

Based on neutron diffraction results of the initial derivative, it was possible to identify three pathways 

through which protons were transferred from one molecule of water to an adjacent one. For these three 

situations, the experimental disorder observed for the H atoms matches the proposed mechanism, and a 

full description of the proton interchange can be given on the basis of the split of the disordered 

molecules into two congeners. All of the H-atom sites described in the following mechanisms were 

observed in the neutron diffraction analysis of compound 1. 

Mechanism 1: Proton transfer involving three water molecules, two coordinated to the same Mn(II) 

unit and one free water acting as a shuttle (Figure 1). This process involves O14w, attached to Mn(II) 

and surrounded by four half-occupied H sites; O30w, a crystallization water molecule; and the 

coordinated aqua O10wi, both of the latter two having three H-atom sites, one fully occupied and the 

remaining two with half occupancies. In the initial arrangement, the congeners present are those formed 

by H14b-O14w-H14d, H30a(sof 1)-O30w-H30c(sof 0.5) and H10ai(sof 1)-O10wi-H10ci(sof 0.5). The 

process starts with transfer of the half-occupied H14d to the H30b site bonded to O30w, a distance of 

1.39(4) Å, Table S1. The distance H14d...O30w, 1.93(3) Å, is within the range considered acceptable 

for the Grotthuss mechanism. Concomitant with this proton jump, H30c hops to the site of H10bi 

[distance: 0.73(3) Å] attached to O10wi [H30c...O10wi 1.74(4) Å]. At the same time H10ci is transferred 

to another water molecule as will be described presently.  

The loss of H14d at O14w is compensated by an incoming H atom that occupies the vacant H14c 

site. In the Grotthuss mechanism, proper geometry is maintained about O14w through rotation of this 

aqua ligand about the vicinal Mn7-O14w bond, which moves H14b to the H14a site.  

To restore the initial situation and enable a new proton jump, some readjustments are needed. A 

rotation around the Mn7-O14w bond of about 90° would place H14a at the site of H14d, and of 104° 

will transform H14c into H14b. In a similar way, rotation of 109° around the H30a-O30w axis restores 

the initial H30a-O30w-H30c congener. Finally, a rotation of 110° around the H10ai-O10wi axis would 

move H10bi to the site of H10ci. This concerted set of rotations is the second step of the Grotthuss 

mechanism. 
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Mechanism 2: Proton transfer between two water fragments coordinated to different Mn(II) units, 

with no intermediary. Figure 2 shows the disorder at the water sites involved in the transfer. This process, 

beginning with the H10ai-O10wi-H10ci and H10aii-O10wii-H10bii congeners present, involves transfer 

of H10ci to O10wii concomitant with the arrival of H10bi as described for Mechanism 1 above. The 

aqua-complexes between which the proton jump occurs are related by a crystallographic inversion 

center. The H10ci hopping distance to H10cii is 0.94(4) Å. As a consequence, H10bii exits O10wii, whose 

proton component now consists of H10aii and H10cii. After the proton jump, rotations around the H10a-

O10w axes of the water molecules involved would restore the initial situation, moving H10bi to the 

H10ci site and H10cii at H10bii. A more complex development of this mechanism is possible, accounting 

for the bi-directionality implied by a crystallographic inversion center.  

 
Mechanism 3: Proton transfer between different Mn(II) units through an external water molecule 

acting as a shuttle. In this process the free water molecule, O28w, plays a crucial role. It is one of the 

water molecules that exit the sample when it is exposed to the air. Figure 3 shows the disorder in this 

region of the structure. O28wii is half occupied and is related by a crystallographic center of inversion 

a) b) 

Figure 1. First pathway: proton transfer between two water fragments coordinated to the 

same Mn(II) unit mediated by a free water molecule.  a) Complete disorder observed 

around the water molecules. Atoms represented as solid spheres are present in the initial 

configuration. b) Final situation after the proton transfer.  

a) b) 

Figure 2. Second pathway: direct transfer between two water fragments coordinated to 

different Mn(II) units.  a) Initial situation, only the congeners present before the proton 

jump are represented for O10w. b) Final situation after the proton jump between O10wi 

and O10wii. i: -x, 1-y, -z; ii: 1+x, y, z.   
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at (1,1/2,0) with its congener O28wiii at a distance of 1.94(3) Å. Several options can be considered to 

explain the observed disorder at the site of O28w. It could be that occupation of the two sites is randomly 

distributed throughout the solid; or it may be that the separate dispositions are required for proton 

movement in opposite directions in different regions of the crystal. Another possibility is that O28w 

changes its disposition in concert with the proton movement. This would impute the second mechanism 

for proton transport described in the Introduction, known as the vehicle mechanism.7  

The proton movement observed in this third pathway is necessarily coordinated with the proton 

movements described in the first two mechanisms. First, at O14wii, H14cii jumps to O28wiii [1.94(3) Å], 

coincident with the arrival of H30biii at the H14dii site on O14wii (Mechanism 1), as H14aii rotates to the 

H14bii site (H14bii and H14dii are semi-transparent in Figure 3a). Then, H28aiii jumps to O14wiii, 

occupying the site of H14ciii. This second transfer is coordinated with the jump of H14diii to O30w, and 

the subsequent rotation of H14biii to the site of H14aiii, with the final configuration at O14wiii consisting 

of H14aiii and H14ciii atoms.  

The rotations of H14bii and H14dii (Figure 3b) to the H14aii and H14cii positions (Figure 3a) and of 

H14aiii and H14ciii to the H14biii and H14diii sites leave O14wiii ready to host a new hydrogen atom at 

the H14ciii site and H14cii ready to jump in a subsequent cycle.  

 
The H...H jump distances for these proposed mechanisms are collected in Table S1, together with 

the distances from the initial H positions to the respective O atoms to which the protons are transferred. 

The jump distances range from 0.73(3) to 1.55(4) Å, with the larger distances corresponding to the 

pathway that involves O-atom motion. 

4.  Conclusions 

Neutron diffraction reveals several pathways through which protons can be transferred between water 

fragments in compound 1. The complexity of the mechanisms presents a challenge for constructing a 

fully detailed explanation of the proton movements and their coordination. What can be stated with 

certainty is that all water-bound H atoms, including those present on immobile waters bonded to Mn 

a) 

b) 

Figure 3. Third pathway: Proton jump between two water molecules coordinated to 

different Mn(II) units. a) Experimentally observed disorder of the water molecules is 

shown. The atoms represented as solid spheres are present in the initial arrangement. b) 

Final disposition of the water molecules after the proton transfer. The two congeners of 

O28w are represented. i: -x, 1-y, -z; ii: 1+x, y, z; iii: 1-x, 1-y, -z .   
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atoms, are substituted by deuterium in this non-porous molecular crystal. The presence of a complex 

system of H-bonded water wires provides an entry point to a description of possible proton-transfer 

mechanisms. The further presence of H-atom disorder, revealed accurately by neutron diffraction and 

compatible with the expected proton positions in a putative Grotthuss mechanism, permits a more 

detailed mechanistic description compatible with the experimental results and with a proposed proton 

transport protocol. 

We propose mobile protons as the fundamental feature of this system, so it is important to emphasize 

that in experimental terms, with the diffraction measurements conducted at a temperature of 20 K, the 

protons are assumed to have occupied minimum-energy positions that permit this snapshot of what we 

conclude are stopping points in the Grotthuss mechanism. 
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e)  

Figure S1. Schematic representation of a proton jump along an H-bonded water chain through the 

Grotthuss Mechanism. Extracted from reference 6b.  
 

a)  

b)  

c)  

d)  

f)  
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Figure S3. Different H-bonded water pathways traversing the unit cell of 1. a) 1D chain and b) 

cyclic motif. i: -x, 1-y, -z, ii: 1+x, y, z, iii: 1-x, 1-y, -z.     
 

a)  b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure S2. A complete cubane attached to a bridging and a pendant Mn(II) unit and two 

[Mn(H2O)6]2+ as counterions and free water molecules for compounds 1 and 1'. Single crystal X-

ray diffraction data. Displacement ellipsoids: 50% 
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Figure S4. Experimental disorder found around water oxygen atoms. Occupancies are in brackets. 

i: -x, 1-y, -z.   
 

a)  b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Distances and angles between the atomic sites 

involved in the mechanisms detailed in the text. Symmetry 

operations: i: -x, 1-y, -z; ii: 1+x, y, z; iii: 1-x, 1-y, -z. 

  

Atom A ... Atom B Distance (Å) 

H14d ... O30w 1.93 (3) 

H14d ... H30b 1.39 (4) 

H30c ... O10wi 1.74 (4) 

H30c ... H10b 0.73 (3) 

H10ci ... O10wii 1.88 (2) 

H10ci ... H10cii 0.94 (4) 

H14cii ... O28wiii 1.94 (3) 

H28aiii ... O14wiii 2.18 (3) 

H28aiii ... H14ciii 1.55 (4) 

O28wiii ... O28wii 1.94 (3) 
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