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ABSTRACT

The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric
models, and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption
coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing
the reordered spectrum into of order 10 quadrature points per major gas, and performing a pseudo-monochromatic
radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, suffi-
cient accuracy for most applications can be achieved without the need for bands: reordering may be performed
on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly
fewer pseudo-monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first
demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which
it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the
number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around
0.015 K d−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The
spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corre-
sponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes,
each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer
than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions
for each quadrature point are optimized such they minimize a cost function expressing the deviation of the heating
rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This
approach is validated for atmospheres containing water vapor, carbon dioxide and ozone, in which it is found that
in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K d−1 can be achieved using
a total of 23 quadrature points, decreasing to less than 0.1 K d−1 for 32 quadrature points. It would be relatively
straightforward to extend the method to include other gases. (See also Hogan, R. J., 2010, J. Atmos. Sci., 67,
2086–2100.)

1. Introduction

A prerequisite for reliable modeling of the climate sys-
tem is the ability to calculate accurate heating rate profiles
and surface fluxes, including the effects of small changes
to the concentrations of greenhouse gases. However, the
longwave gaseous absorption spectrum exhibits signifi-
cant structure over spectral intervals a millionth of the
range over which terrestrial emission is significant, im-
plying that of order 106 monochromatic calculations are
required. Ambartzumian (1936) was the first to pro-
pose that for vertically homogeneous atmospheres, the
gaseous mass absorption coefficients, k, can be “sorted”
into a monotonic function that is much more conducive
to efficient numerical integration. This was extended to
vertically inhomogeneous atmospheres by Lacis et al.
(1979), and the resulting “correlated k-distribution” (CKD)
method now forms the basis of most radiative transfer
schemes in General Circulation Models (GCMs). It takes
advantage of the fact that in the terrestrial atmosphere,
the ordering of the spectrum is highly correlated in the
vertical, despite large changes in absorber abundance
and the effect of changes to the spectral lines through
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pressure and Doppler broadening.
Even though CKD methods are so much more effi-

cient than line-by-line calculations, they can still constitute
a significant fraction of the computational cost of a GCM.
High spectral accuracy is therefore usually achieved at
the expense of poor temporal resolution, with the radia-
tion scheme often called only every 3 h, which can lead
to errors in the diurnal cycle (Yang and Slingo 2001) and
can change the climate sensitivity of the model (Mor-
crette 2000). The computational time spent resolving the
spectrum is also not matched by time resolving the spa-
tial structure of clouds within a gridbox, leading to sub-
stantial radiative biases (Cahalan et al. 1994; Shonk and
Hogan 2008). Moreover, while it is necessary to repre-
sent trace gases individually for climate forecasts and re-
analysis projects, the accuracy of day-to-day numerical
weather forecasts is largely insensitive to errors in their
representation; Curry et al. (2006) showed that assuming
trace gases to be vertically well mixed led to a tempera-
ture error of less than 0.2 K below 30 km, rising to 1 K
above 50 km. It is therefore highly desirable to explore
ways to treat gaseous absorption more efficiently.

Most current longwave CKD models divide the spec-
trum into bands and then reorder the spectrum within
each band. The number of bands can vary consider-
ably. The model presented by Lacis and Oinas (1991)

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


used narrow 10-cm−1 spectral intervals and 36 quadra-
ture points within each, resulting in a total of around 104

quadrature points. The RRTM model of Mlawer et al.
(1997) employs 16 bands in the longwave with a total of
256 quadrature points (reduced to 140 in its implemen-
tation in the model of the European Centre for Medium
Range Weather Forecasts; Morcrette et al. 2008), while
Fu and Liou (1992) demonstrated that sufficient accuracy
could be achieved with 67 points in 12 bands. Fomin
(2004) reported a CKD model employing only 23 points in
4 bands, although the heating rate errors up to 0.9 K d−1

in the stratosphere are probably too large for this model
to be considered for operational use.

So what determines the number of bands into which it
is necessary to divide the spectrum? The following con-
siderations have been cited previously:

1. The need for the band to be narrow enough that the
Planck function does not vary significantly across it
(Fu and Liou 1992).

2. The need to minimize the number of active gases
within each band due to the computational expense
of treating overlapping gases (Mlawer et al. 1997).
Moreover, some techniques for treating gaseous
overlap, such as fast exponential sum fitting of trans-
missivities (FESFT; Ritter and Geleyn 1992, Ed-
wards 1996), assume that the overlap is random,
which is not valid over very wide spectral intervals.

3. The need to resolve the spectral variation of cloud
and aerosol absorption and scattering, which varies
much more slowly than gaseous absorption (Ritter
and Geleyn 1992).

A recent proposal for the rapid computation of radiative
transfer within combusting gases is the full-spectrum cor-
related k (FSCK) method, in which the entire spectrum is
reordered as a single band (Modest and Zhang 2002),
and the continuous distribution of gaseous absorption
is discretized into a smaller total number of quadrature
points than is required with bands. They tackled consider-
ation 1 above by weighting each of the quadrature points
by the integral of the Planck function at some reference
temperature of each part of the spectrum contributing to
that point. Other temperatures were treated using look-
up tables to relate the absorption between different tem-
peratures. FSCK was been applied to the shortwave by
Pawlak et al. (2004). With the absence of internal emis-
sion, Pawlak et al. (2004) were able simply to weight each
quadrature point by the intensity of solar radiation con-
tributing to it (although this is also done in many CKD
models using narrower bands, e.g. Fu and Liou 1992).
For representing clouds, they found it necessary to divide
the shortwave region into two bands on either side of a
wavelength of 0.68 µm; at shorter wavelengths than this
clouds have virtual zero absorption, while at longer wave-
lengths absorption becomes significant.

In the longwave, a method essentially the same as
FSCK has been applied in the Goddard Institute for
Space Studies (GISS) GCM (A. Lacis, personal commu-
nication) for many years. The original version was the one

used by Hansen et al. (1983) and Lacis and Oinas (1991)
and employed 25 quadrature points. The current GISS
radiation scheme uses a total of 33 quadrature points (13
for H2O, 12 for CO2 and 8 for O3), and its first reported use
was by Oinas et al. (2001). The cloud optical properties
are merged with the gaseous correlated k-distributions.
However, none of these papers discuss in any detail how
optimal selection of these bands is performed or how the
tricky problem of the spectral overlap of gases is tackled
across the full spectrum. Furthermore, it is the author’s
experience that many radiation experts are unaware that
it is possible to apply the CKD method to the full spec-
trum.

The purpose of this paper is to demonstrate the ap-
plication of the FSCK method to atmospheric longwave
radiative transfer, focusing particularly on how to optimize
the selection of quadrature points and the treatment of the
spectral overlap of multiple gases. To treat consideration
1 above, we take a different, simpler approach to that of
Modest and Zhang (2002), and replace occurrences of
the Planck function in the equations of radiative transfer
by an effective Planck function, which represents the in-
tegral of the Planck function over those parts of the spec-
trum contributing to a particular quadrature point (which
may be from opposite ends of the spectrum). In sec-
tion 2 we outline mathematically the origin of the FSCK
approach, and demonstrate that the use of an effective
Planck function is exact, subject to the ordering of ab-
sorption spectra being perfectly correlated along a path.
In section 3, the numerical convergence of the method
is tested by comparison with line-by-line calculations for
an atmosphere containing only a single gas (H2O, CO2 or
O3), quantifying the effect of imperfect correlation in the
vertical due to broadening of the spectral lines. In section
4, a method to treat the spectral overlap of many gases
across the spectrum is presented, which is then tested
on atmospheres containing H2O, CO2 and O3 in section
5. It should be stressed that the purpose of this paper is
not to present a finalized radiative transfer model that is
ready to be implemented in climate models, but rather to
demonstrate the promise of the technique; in section 6,
we discuss the remaining work to be done before such a
model could be written.

2. Theoretical background

To facilitate the discussion of the correlated k method
and its full-spectrum counterpart, it is convenient to sim-
plify the equations of longwave radiative transfer. If the
atmosphere is discretized vertically into nz layers then the
heating rate of layer i may be written as

Ṫi =

∫ ηmax

ηmin

nz
∑

j=0

Wji (η)Bj (η)dη, (1)

where Bj(η) is the Planck function [in W m−2 (cm−1)−1]
at wavenumber η for the temperature of layer j . Wji (η) is
a weighting matrix (in units of K m2 J−1) that accounts for
all aspects of the transmission between layer j and layer
i at wavenumber η, integrated over angle, but multiplied
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by additional factors to convert from irradiance to heat-
ing rate. In the case that j = 0, the factor W0i(η) should
be thought of as the transmission from the surface [with
blackbody emission B0(η)] to layer i, while in the case of
j = i, the factor Wii (η) represents the ability of the layer
to lose thermal energy by emission.

In the appendix it is shown how Wji may be calculated
explicitly, including how to include the effects of scatter-
ing from other layers in the transit of radiation from layer j
to layer i. Thus, the

∑nz

j=0 Wji (η)Bj(η) term simply repre-
sents a monochromatic radiative transfer calculation us-
ing the two-stream or other appropriate method. The
key point to note from (1) is that even when scattering
is present, the longwave heating rate of a layer can still
be considered as the linear sum of the Planck function
of all layers of the atmosphere, weighted appropriately.
Equation 1 is similar to the formulation of longwave ra-
diative transfer in terms of net exchange matrices (Green
1967; Eymet et al. 2004). However, it is more general
in the sense that we could write equations for the fluxes
at any point in the atmosphere in exactly the same form:
the linear sum of weighted contributions from the Planck
function at every point in the atmosphere.

The integral in (1) is performed over the wavenum-
ber range of the entire longwave spectrum from ηmin ∼
100 cm−1 to ηmax ∼ 2500cm−1. Throughout this section
we use summations to indicate when fewer than around
100 elements are being summed, but employ integrals
when more than around 104 quadrature points would be
required for a numerical integration.

a. The correlated k method

The rapid spectral variation of gaseous absorption,
and hence the rapid variation of Wji with η, means that
of order 106 monochromatic radiative transfer calcula-
tions would be required to evaluate the integral in (1).
Such “line-by-line” calculations are essential to provide
accurate benchmarks, but are too expensive for use in
a GCM. The correlated k-distribution method is a widely
used approximation to make the spectral integration more
efficient. The spectrum is split up into nη̄ bands, within
which the Planck function may be assumed constant with
wavenumber, although many CKD models do have some
account for the variation of the Planck function within a
band. Within each band, the spectrum is reordered in
terms of the mass absorption coefficient k, such that a
rapidly varying function of η is replaced with a monotoni-
cally increasing function of the “normalized rank” g, which
varies from 0 for the least absorbing part of the band to 1
for the most absorbing part. Therefore, within each band
a summation is performed in g space, and (1) becomes

Ṫi =

nη̄
∑

m=1

ng
∑

l=1

nz
∑

j=0

Wji (glm)Bj(η̄)∆glm∆η̄m, (2)

where ng separate pseudo-monochromatic calculations
are performed in each band, each weighted by their width
in g-space, ∆glm. Since the absorption varies slowly with
g, far fewer points need to be used in the integration (typ-
ically between 2 and 16).

b. The full-spectrum correlated k (FSCK) method

We now consider the basis behind the full-spectrum
correlated k method. Rather than splitting the spectrum
up into bands, we order the entire longwave spectrum by
absorption coefficient such that the value of g now indi-
cates the rank with respect to all other values in the spec-
trum. Thus g(η) represents a non-differentiable function
relating wavenumber to normalized rank, and η(g) is its
inverse. The first step is a change of variables in the inte-
gration from η to g such that (1) becomes

Ṫi =

∫ 1

0

nz
∑

j=0

Wji (g)Bj [η(g)]dg. (3)

The main difference is that in (1), Wji is a rapidly vary-
ing function of the variable of integration η, while Bj is a
smooth function of η. Conversely, in (3), Wji is a smoothly
varying function of the variable of integration g whereas Bj

varies rapidly with g. The integral over g presents a small
conceptual problem, since one could argue that there are
many wavenumbers corresponding to a given g. How-
ever, if the integral is thought of as a discrete summation
of arbitrarily fine resolution, then each g in the summation
corresponds to a unique wavenumber and the concep-
tual problem is overcome. We retain the integral sign in
(3) to stress that a very high resolution summation would
be required to evaluate it.

We now discretize the g distribution into ng intervals
(where ng is again of order 10) such that interval l is
bounded by the values gl−1/2 and gl+1/2, and within the
interval the weighting factor Wji (gl ) is constant. Thus (3)
becomes

Ṫi =

ng
∑

l=1

∫ gl+1/2

gl−1/2

nz
∑

j=0

Wji (gl )Bj [η(g)]dg. (4)

We are still left with the problem that a particular narrow
range of g now includes disparate parts of the spectrum,
and therefore it is not valid to choose a representative
wavenumber η̄ for calculating the Planck function, as was
the case within a band in the formulation of (2). The ap-
proach taken by Modest and Zhang (2002) was indeed to
use an integrated Planck function for the entire wavenum-
ber range ηmin–ηmax in the pseudo-monochromatic radia-
tive transfer calculations, but to weight the transmittances
(Wji in our terminology) by the Planck function at the parts
of the spectrum that contribute to the range of g un-
der consideration at an arbitrary reference temperature.
Look-up tables were then required to try to account for
variations of the weighting at different temperatures along
the path. However, a simpler approach is possible.

c. FSCK with an effective Planck function

In (4) it can be seen that Wji (gl ) is constant over the
range of g represented in the integration, and hence the
integral can be applied directly to the Planck function as
follows:

Ṫi =

ng
∑

l=1

nz
∑

j=0

Wi j (gl )

∫ gl+1/2

gl−1/2

Bj [η(g)]dg
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F IG. 1: Heating rate in the mid-latitude summer atmosphere in
which water vapor is the only absorbing gas. Results are shown
for a benchmark calculation using a spectral resolution of 0.0025
cm−1 (thick gray line) and using the full-spectrum correlated k
method (FSCK) with three different numbers of quadrature points
ng (thin black lines). The ng values of 10, 13 and 17 were gen-
erated by assigning error tolerances σmax for each g interval of
0.05, 0.03 and 0.02 K d−1, respectively.

=

ng
∑

l=1

nz
∑

j=0

Wi j (gl )B
′
j(gl ). (5)

In (5), we have introduced an effective Planck function
B′

j(gl ), which is simply the integral of the Planck func-
tion over the wavenumbers that contribute to absorption
in a particular range of g. Comparing (5) to (1), we see
that integration over g is identical to integration over η
except that we have only ng pseudo-monochromatic ra-
diative transfer calculations to perform, (where ng is far
smaller than the ∼106 required to resolve the spectrum),
and we must use the effective Planck function in place
of the conventional Planck function wherever it appears
in the radiative transfer calculation. The effective Planck
function is straightforward to implement as a lookup table
versus temperature for each of the ng quadrature points.

To summarize, what has been shown in this section
is that different parts of the spectrum with similar absorp-
tion properties may be treated together in a single radia-
tive transfer calculation, provided that occurrences of the
Planck function in the calculation are replaced by the in-
tegral of the Planck function over those parts of the spec-
trum being considered. This approach is already taken
over limited parts of the spectrum in some CKD models
(e.g. RRTM), but it has been shown here to be equally
valid over the entire longwave spectrum.

3. Results for a single absorbing gas

We first test the validity of (5) using the standard
mid-latitude summer (MLS) atmosphere of McClatchey
et al. (1972) but containing only a single absorbing
gas. Absorption spectra of water vapor, carbon diox-

ide and ozone have been calculated at a resolution
of 0.0025 cm−1 using the high-resolution transmission
molecular absorption database HITRAN (Rothman et al.
2004) coupled to the line-by-line model of Mitsel et al.
(1995) assuming Voigt line shapes. The MT-CKD wa-
ter vapor continuum of Mlawer et al. (2003) is included.
Spectra have been calculated at reference pressures of
0.01, 0.1, 1, 10, 30, 100, 500 and 1013 hPa, for temper-
ature and humidity conditions similar to the MLS atmo-
sphere.

A benchmark radiative transfer calculation with a
spectral resolution of 0.0025 cm−1 is first performed for
the case in which water vapor is the only absorbing gas.
The atmosphere is represented with a resolution of 1 km
below 25 km, and 5 km above, up to the highest model
level at 100 km. Mass absorption coefficients are in-
terpolated logarithmically in logarithmic pressure space
from the reference spectra. The two-stream approxima-
tion in the absence of scattering is employed, in which for
each wavenumber interval a single upwelling and a sin-
gle downwelling path is followed through the atmosphere
at zenith angles of ±52◦ (e.g. Fu et al. 1997), and emis-
sion and absorption are treated within each layer assum-
ing the Planck function to vary linearly with optical depth.
The surface emissivity is taken to be unity. Although the
accuracy of the two-stream approximation is not com-
mensurate with the spectral accuracy of a line-by-line cal-
culation, the FSCK parameterization that will be devel-
oped would invariably be used with a two-stream radia-
tion scheme and therefore should be compared against
a benchmark that uses the same approximation. The
benchmark heating rate profile is shown by the thick gray
line in Fig. 1, and covers the longwave spectral range of
100–2500 cm−1 (4–100 µm).

We next describe the derivation of the parameters of
the FSCK model. The first task is to reorder the entire
water vapor spectrum by k. The best way to do this is
not immediately obvious since the optimum sorting is a
function of pressure (and to a lesser extent temperature),
and it is found that sorting just by the k at one pressure
can lead to significant heating rate errors at other pres-
sures. For example, sorting by the zenith optical depth
weights the lower troposphere too much and results in
large errors in the stratosphere. This problem is likely to
be more severe for FSCK than CKD, since a wider range
of absorptions are being sorted simultaneously. To solve
this problem, we perform a high spectral resolution radia-
tive transfer calculation for an atmosphere with gas con-
centration from the MLS atmosphere but with a linearly
decreasing temperature from the surface to an altitude
of 100 km. The spectrum is then sorted by the height
at which the peak cooling rate occurs. This has the ad-
vantage that it provides optimal sorting at the pressure
where each part of the spectrum is most important. Us-
ing a linearly decreasing temperature ensures that this
method is not affected by the location of changes in the
sign of the temperature gradient that are present in the
real atmosphere. The method fails for optically thin parts
of the spectrum, so when the zenith optical depth δ is less
than unity, the sorting is simply performed by δ instead.
Thus we arrive at a normalized rank g(η) for the entire
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F IG. 2: (a) The normalized ranks of the spectra of water vapor, carbon dioxide and ozone (gH2O, gCO2 and gO3). Note that the scale for
ozone is shown on the right, and the absorption coefficient of ozone outside the range 500–1295 cm−1 has been set to zero due to the
dominance of the other two gases at other wavenumbers, and hence gO3 is only shown above 0.68. (b) The gray vertical lines indicate
the parts of the water vapor spectrum for which the normalized rank lies in the fourth interval in Table 1, i.e. 0.461< gH2O ≤ 0.534. The
black line shows the corresponding cumulative frequency.

spectrum. The black line in Fig. 2a displays this function
for water vapor (the other two gases will be discussed
shortly).

The second task in deriving the FSCK model param-
eters is to choose optimal intervals in g-space, such that
each interval is associated with approximately the same
heating-rate error. This is achieved by choosing the re-
quired error tolerance σmax (e.g. 0.05 K d−1) and then
proceeding up through g-space. To calculate the param-
eters for interval 1, we set the lower boundary to g1/2 = 0
and test a particular value for the upper boundary g3/2.
Those parts of the high-resolution water vapor spectrum
that lie in the range g1/2 < g ≤ g3/2 are selected, and at
each height (plus the surface) the effective Planck func-
tion is calculated following (5). A first guess is then made
of the best k to use at each of the reference pressures
listed above, by calculating the Planck-function-weighted
mean of ln k for the same range of g. These are then
used to calculate a profile of absorption coefficient for
the MLS atmosphere. Radiative transfer calculations are
then performed using the same two-stream approxima-
tion as the benchmark calculations, for not only this first
guess of the absorption profile, but also the absorption
profiles scaled by several hundred different factors be-
tween 0.1 and 10. The resulting heating-rate profiles
ṪFSCK and fluxes are then compared to the benchmark
heating rate profile Ṫbench and fluxes for the g interval un-
der consideration, and a root-mean-squared error, σ, is
calculated for each scaling factor.

At this point it is worth discussing how the error is
weighted, since this can have significant consequences
for the resulting model parameters. If each layer of the at-
mosphere is weighted by the pressure difference across
it (i.e. its mass) then the troposphere will be weighted
around four times more than the rest of the atmosphere,
resulting in large errors being tolerated in the strato-
sphere. If each layer is weighted by its physical depth,
then the stratosphere will be weighted around four times
more than the troposphere, resulting in large tropospheric
errors. Therefore we weight each layer by the difference
in the square-root of the pressure p at the boundaries
of the layer, which results in the troposphere and strato-
sphere being weighted approximately equally. An addi-
tional term is added to penalize errors in the net fluxes
at the top-of-atmosphere, FTOA, and at the surface, Fsurf.
Thus the error variance (which can be thought of as a
cost function) is defined as

σ2 =

∑n′z
i=1

(

ṪFSCK
i − Ṫbench

i

)2
(p0.5

i−1/2 − p0.5
i+1/2)

p0.5
1/2 − p0.5

n′z+1/2

+ f
[

(

FFSCK
TOA − Fbench

TOA

)2
+
(

FFSCK
surf − Fbench

surf

)2
]

,

(6)

where n′
z is the index of the highest level that contributes

to the error. In this study we use a threshold pressure
of 0.1 hPa (67 km in the MLS atmosphere), which is the
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F IG. 3: Root-mean-squared heating-rate error (weighted by the
square-root of pressure, i.e. the first term on the right-hand-
side of Eq. 6) for the FSCK method applied to the mid-latitude
summer standard atmosphere, versus the number of quadrature
points used in the integration in g-space. The error is shown
for an atmosphere containing H2O only, CO2 only, and O3 only
(where for O3, only the absorption spectrum between wavenum-
bers of 500 and 1295 cm−1 is considered).

typical pressure of the highest model level in a GCM (e.g.
Météo-France has its highest level centred at 0.1 hPa, the
European Centre for Medium-Range Weather Forecasts
at 0.01 hPa, and the UK Met Office at 40 km). Further-
more, at pressures lower than 0.1 hPa the assumption of
local thermodynamic equilibrium starts to become ques-
tionable. Of course, if mesospheric heating rates were of
interest then n′

z could be increased. The factor f weights
the importance of the fluxes with respect to the heating
rates. It is found that a value of f = 0.02 (K d−1 W−1 m2)2

provides the best balance of ensuring the flux errors are
close to zero at the boundaries without compromising the
need to match the heating-rate profile.

Thus we acquire an error for each value of scaling fac-
tor between 0.1 and 10. The optimum absorption profile
is then simply the one with the lowest error, which in prac-
tice almost always lies between 0.5 and 2, and hence the
arbitrary bounds chosen for the range to search do not
have an impact on the result. This error is then compared
to the tolerance: if σ > σmax then a lower value of g3/2

is tried and the process is repeated, while if σ < 0.8σmax

then a larger value of g3/2 is tried. If 0.8σmax ≤ σ ≤ σmax

then g3/2 is accepted, and the optimum values of k at the
set of reference pressures are stored. The process is re-
peated to find the next g interval, and so on until g-space
is fully partitioned. Figure 2b illustrates how the contribu-
tions to a particular g interval are often from a wide range
of locations in the spectrum.

The resulting longwave heating-rate profiles for three
different tolerances are shown by the thin black lines in
Fig. 1. There appears to be rapid convergence with in-
creasing numbers of intervals ng. To quantify this more
rigorously, the solid black line in Fig. 3 shows the root-
mean-squared error (calculated using Eq. 6 but this time

TABLE 1: Optimum boundaries in g space to achieve an error
of less than σmax = 0.03 K d−1 in each interval. The resulting
32-point model is discussed in the text.

g boundary H2O CO2 O3

0.5 0 0 0
1.5 0.300 0.784 0.905
2.5 0.405 0.871 0.982
3.5 0.461 0.888 0.995
4.5 0.534 0.913 0.9986
5.5 0.622 0.936 0.99978
6.5 0.721 0.964 1
7.5 0.844 0.986
8.5 0.925 0.9931
9.5 0.974 0.9955
10.5 0.9939 0.9966
11.5 0.9983 0.9976
12.5 0.99943 0.9984
13.5 1 0.9989
14.5 0.99947
15.5 1

on the total heating rate rather than for just one range of
g, and neglecting the second term on the right-hand-side
for fluxes) versus ng. Between ng = 2 and ng = 20, ap-
proximately second-order convergence is achieved, i.e.
the error is approximately proportional to n−2

g . For ng >

20, the error flattens out at around 0.015 K d−1. This is
believed to be due to imperfect rank correlation of the k
values at one pressure with those at another.

The procedure is now repeated but with the only ab-
sorbing gas being carbon dioxide or ozone. Ozone ab-
sorption outside the wavenumber range 500–1295 cm−1

is negligible compared to absorption by water vapor and
carbon dioxide, and therefore its absorption here is set
to zero so that g intervals are selected only in the im-
portant region. Then the ozone absorption in regions
with gO3 < 0.9 is set to zero for the same reason. Note
that when mixtures of different gases are tested, they are
compared against high spectral resolution calculations in
which the full ozone spectrum has been included. A well-
mixed carbon dioxide profile is assumed with a concentra-
tion of 350 ppmv, while the ozone profile is taken from the
MLS standard atmosphere. The results are shown in Fig.
3, where it can be seen that these two gases achieve a
comparable order of convergence to water vapor, but flat-
tening out at a larger error of around 0.03 K d−1. This is
believed to be due to the fact that the peak heating rates
of carbon dioxide and ozone occur in the stratosphere
and here they span a wider range of pressures than for
water vapor. Thus the error due to imperfect rank corre-
lations at different pressures is larger. Ozone requires a
smaller number of quadrature points than the other two
gases to achieve the same accuracy simply because it is
important over a much narrower range of the spectrum
and over a smaller height range. Table 1 lists the bound-
aries of the g intervals for each of the three gases in the
case when the tolerance is set as σmax = 0.03 K d−1.
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F IG. 4: Scatterplot of the entire longwave spectrum (100–
2500 cm−1) where each point corresponds to a 0.0025-cm−1

interval, plotted as the normalized rank of the carbon dioxide ab-
sorption spectrum at that point, gCO2 , versus the normalized rank
of the water vapor spectrum, gH2O. The rectangles show the re-
gions that the spectrum that are treated together in the 32-point
model discussed in the text.

4. Results for more than one absorbing gas

Figure 3 confirms that the FSCK method with an ef-
fective Planck function works well in the case of a single
absorbing gas, but in the real atmosphere we must con-
tend with the problem of spectrally overlapping gases.
The issue is easiest to visualize by plotting the normal-
ized rank of one gas versus that of another, as shown
for water vapor and carbon dioxide in Fig. 4. The “brute
force” approach would be to use the intervals of g ob-
tained for each gas in the previous spectrum, divide the
space up into nH2O

g × nCO2
g rectangles, and perform a

pseudo-monochromatic radiative transfer calculation for
each. Clearly with any more than two gases, the number
of pseudo-monochromatic calculations becomes many
more than would be required in an ordinary CKD calcula-
tion and the potential efficiency gains of FSCK would be
lost.

Several techniques for reducing the number of
pseudo-monochromatic calculations have been proposed
for overlapping gases. For example, FESFT (Ritter and
Geleyn 1992; Edwards 1996) assumes that the spectra
of the various gases are randomly overlapped, enabling
each gas to be treated separately (akin to the one-gas
calculations in the previous section) followed by the trans-
missivities of each gas being multiplied together. The
number of pseudo-monochromatic calculations required
is then one plus the sum of the number required for each
individual gas. However, this method is very inaccurate
in an FSCK context because over the full spectrum the
spectral overlap is not perfectly random, and also be-

cause of the significant variation of the Planck function.
We therefore take a different approach. Examination

of Fig. 4 reveals that the regions of highest water vapor
absorption correspond to low carbon dioxide absorption;
in particular, the bottom-right of the figure is a combina-
tion of the vibration-rotation water vapor band centered at
6.7 µm and the pure rotation band at wavelengths longer
than around 20 µm. Similarly, regions of highest carbon
dioxide absorption correspond to low or medium water
vapor absorption; in particular, the concentration of points
at the top-left and top-center of the figure correspond to
the carbon dioxide bands at 4.3 and 15 µm, respectively.
In these regions there is no need to resolve the varia-
tion in absorption of the weaker of the two absorbers,
since the fluxes and heating rates will be dominated by
the stronger absorber.

Our procedure to partition g-space is as follows, con-
sidering first the case of two gases. The intention is gen-
erally to select regions in order of the height at which
they are most important for the heating rate. The first
region is defined to contain normalized ranks for the two
gases (gH2O and gCO2) such that 0 < gH2O ≤ gH2O

3/2 and

0 < gCO2 ≤ gCO2
3/2 . This is shown as the rectangle in the

lower-left of Fig. 4 (note that the rectangle boundaries in
this figure correspond to a tolerance of σmax = 0.03K d−1,
resulting in nH2O

g = 13 and nCO2
g = 15). To define the

boundaries of the second region, the water-vapor rank
is advanced such that the second region lies just to the
right of the first in Fig. 4, bounded by gH2O

3/2 < gH2O ≤ gH2O
5/2

and 0 < gCO2 ≤ gCO2
3/2 . Next the carbon-dioxide rank is

increased resulting in a third region above the other two.
This is continued until the entire two-dimensional space is
allocated. At each step, the gas chosen for advancement
is the one that results in the lowest-altitude peak cooling
rate in the next region. In this way the regions are in order
of the height at which they have their peak cooling.

A possible concern about the way g-space is allocated
here is that it is based on the abundance of two gases in
one particular atmosphere, and when applied to a profile
in which the relative abundances are changed, the allo-
cation would not necessarily still be appropriate. There
are several points to make here. First, the g intervals for
each individual gas typically represent a difference of a
factor 5 in k. Hence the relative abundance of gases has
to be very substantially changed to result in a significant
difference in the optimum order in which regions are al-
located. Second, in the case of water vapor and carbon
dioxide, a change in the order in which the ranks of the
two gases are incremented would mainly change the re-
gions to which parts of the spectrum are allocated in the
upper-right of Fig. 4, where very little of the spectrum ac-
tually lies. Note that the first region in the lower left of this
figure always has the same configuration, being bounded
by 0 < gH2O ≤ gH2O

3/2 and 0 < gCO2 ≤ gCO2
3/2 . Third, it would

be a simple matter to split one or two of these regions
into two or more subregions if they turned out to be par-
ticularly critical to the accuracy of the result when rela-
tive abundance was changed over a realistic range. In
practice for present-day terrestrial atmospheres and un-
der doubled CO2, this turns out not to be necessary.
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F IG. 5: Illustration of how three-dimensional g-space (for the
gases H2O, CO2 and O3) is divided up in the case of the 32-
point model discussed in the text. Note that the upper surface
shows the same divisions between H2O and CO2 as were shown
in Fig. 4, except that here the axes have been scaled to reveal
the regions confined to g values very near 1.

This procedure outlined above is straightforward to
implement for more than two gases; if we have m gases
then at each step we have a choice of m different ways
in which the advancement can take place. This may be
done by testing the altitude of the peak cooling rate in the
new region in the case of advancement of each gas sep-
arately and choosing the one with the lowest altitude, or
by some other method. Figure 5 illustrates the allocation
of three-dimensional g space for the overlapping of water
vapor, carbon dioxide and ozone. In the case of ozone,
the number of g intervals necessary to achieve a toler-
ance of σmax = 0.03 K d−1 was nO3

g = 6 (see Table 1).
Thus it can be seen that for the total number of regions
required for m gases is

ng = 1− m+

m
∑

i=1

ni
g, (7)

where ni
g is the number of g intervals required for the ith

gas in isolation. For the remainder of this paper we use
the term “g interval” to indicate an interval for one partic-
ular gas (as shown in Table 1), but “g region” for a cuboid
in three-dimensional g-space (as shown in Fig. 5).

After all regions have been allocated, the most rep-
resentative k value must be selected for each active gas
within each region, as a function of pressure. As in sec-
tion 3, a first guess of the appropriate k value for each
region, gas and reference pressure is calculated as the
Planck-function-weighted mean of the high resolution val-
ues of ln k within that region. The Planck function used
is from the MLS standard atmosphere. We then use
the framework of optimal estimation theory and define a
“state vector” x containing the natural logarithm of m× ng

scaling factors, i.e. one for each gas and region, which will
scale the k values at all pressures. The objective is to find
the vector x that minimizes the difference in broad-band
heating rates and fluxes between the FSCK calculations
and benchmark line-by-line calculations for np “training”
profiles, in a least-squares sense. This is achieved by
minimizing the following cost function

J = hxTx +

np
∑

i=1

σ2
i , (8)

where σ2
i is the error variance of training profile i, as

defined in (6) but for broad-band variables, and quan-
tifies the error in both the broad-band heating rate pro-
file and the broad-band fluxes at the surface and top-of-
atmosphere. The first term in (8) is present to ensure a
stable and unique solution. It represents the squared de-
viation of the logarithm of the scaling factors away from
zero, and penalizes large deviations in the scaled k val-
ues from from the first guesses derived above. A small
value for the weight h, somewhere between 10−6 and
10−5 leads to the best fit to the training profiles. The cost
function is minimized using the Levenberg-Marquardt al-
gorithm, a modification of the Gauss-Newton algorithm;
both are described in detail by Rodgers (2000). This pro-
cedure requires calculation of the Jacobian matrix, which
represents the partial derivative of all the heating rates
and fluxes required to calculate σ2 with respect to all the
elements of x. This is done numerically, i.e. by perturb-
ing in turn each of the m × ng values of x by a small
amount, calculating the perturbed k profile for that par-
ticular region, and running a pseudo-monochromatic ra-
diative transfer calculation for each of the np profiles. For
ng = 32, m = 3 and np = 4, this whole minimization pro-
cess can be computed in much less than a minute on
a typical workstation, even when many iterations are re-
quired.

The extension to other gases such as methane and
nitrous oxide should be straightforward using a similar
method: by adding further dimensions to the cube shown
in Fig. 5 and partitioning the resulting “hypercube” in the
same way. Further work will be needed to confirm that the
sensitivity to trace-gas concentrations can be calculated
accurately. Note that for weather forecasting, it is gener-
ally not necessary to represent changes to trace gases
during the simulation and so one may combine all well-
mixed gases with carbon dioxide into a “composite” gas
(e.g. Ritter and Geleyn 1992). Curry et al. (2006) showed
that the global-mean temperature error resulting from as-
suming methane and nitrous oxide to be well mixed is
less than 0.2 K below 30 km, rising to 1 K above 50 km,
while the error due to treating CFC11 and CFC12 as well
mixed is less than 0.1 K everywhere below 50 km. These
small errors will have no detectable impact on the accu-
racy of weather forecasts. For the comparisons in the
remainder of this paper we therefore use primarily the
three-gas model described in this section, which utilizes
the g-intervals listed in Table 1 and requires a total of 32
quadrature points. Comparisons are also performed with
a faster but less accurate model consisting of 23 quadra-
ture points, obtained by using a heating-rate tolerance for
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TABLE 2: Benchmark calculations of the outgoing longwave ra-
diation and the associated error in the equivalent calculation of
the 23- and 32-point FSCK models (all in W m−2) for a CO2
concentration of 350 ppmv. Five McClatchey et al. (1972) stan-
dard atmospheres have been used: mid-latitude summer (MLS),
sub-arctic winter (SAW), Tropics, mid-latitude winter (MLW) and
sub-arctic summer(SAS). The last two were not part of the train-
ing dataset and the results of the FSCK models for these are
shown in bold.

Profile Benchmark 23-pt error 32-pt error
MLS 281.75 −0.18 −0.03
SAW 196.69 +0.41 +0.19
Tropics 291.89 +0.09 +0.04
MLW 228.21 +0.17 +0.08
SAS 262.43 −0.48 −0.16

the individual gases of σmax = 0.05 K d−1, which results in
nH2O

g = 10, nCO2
g = 10 and nO3

g = 5.
The range of applicability of an FSCK radiation

scheme (and indeed most CKD schemes) is entirely de-
pendent on the range of temperature and gas concen-
trations in the training profiles. Therefore, for paleo-
climate simulations or the atmospheres of other plan-
ets, a different set of training profiles would need to be
used. In general, the wider the intended applicability of
the scheme, the more regions into which it is likely to
be necessary to partition g-space to achieve the same
accuracy. Conversely, for short-term terrestrial weather
forecasts where carbon dioxide and trace gas concentra-
tions may be held fixed, there is no need to bear the ex-
tra computational cost of using a climate-quality scheme
that allocates many g-points to ensure the correct climate
sensitivity to changes in each gas.

5. Evaluation using different atmospheres

In this section the 23-point and 32-point FSCK mod-
els developed in the previous section are evaluated by
comparing them to line-by-line calculations. The optimum
settings for these models are derived using four training
profiles, and then tested on four other profiles. Clearly for
an operational radiation scheme one would need to use a
wider range of training profiles. For simplicity, we use the
same mass absorption spectra for the set of reference
pressures discussed in section 3, with the assumption
that in an operational version of the model, the additional
dependence of k on temperature and water vapor mix-
ing ratio could be represented accurately either paramet-
rically (e.g. Fu and Liou 1992), or as a multi-dimensional
look-up table (e.g. Mlawer et al. 1997).

Figures 6a and 6d show the benchmark heating rate
and net upward flux profile for the four training profiles,
as calculated using a line-by-line model with a spectral
resolution of 0.0025 cm−1. Corresponding values of out-
going longwave radiation are given in Table 2. The bench-
mark heating rate and net flux profiles are very similar to
those shown in other studies, although comparing to the
line-by-line model of Mlawer et al. (1997) it can be seen
that our TOA net flux is less by around 1.5 W m−2. This

TABLE 3: Benchmark calculations of the change to the outgo-
ing longwave radiation associated with doubling CO2 concentra-
tions for three of the atmospheres used in Table 2, together with
the percentage error in the 23- and 32-point FSCK calculations
of this change. In the case of the sub-arctic winter (SAW) and
Tropical profiles, the doubled CO2 benchmarks were not used as
training profiles, and so these percentages are shown in bold to
indicate that they are a less constrained test of the method.

Profile Benchmark 23-pt error 32-pt error
MLS 2.87 W m−2 −17% −8%
SAW 1.82 W m−2 −29% −12%
Tropics 3.31 W m−2 −20% −10%

is likely to be related to the absence of other absorbing
gases (particularly methane) in our simulations, and the
fact that Mlawer et al. (1997) performed calculations in the
range 10–3000 cm−1 while we limited our calculations to
the range 100–2500 cm−1. They also used a different
absorption database.

Figures 6b and 6e depict the heating-rate and net-
flux errors for the 23-point FSCK model. The root-mean-
squared heating-rate error of this model over all four pro-
files is 0.1 K d−1 when weighted by the square-root of
pressure as in (6). Figure 6b shows that this is made up of
a smaller error in the troposphere and lower stratosphere,
but an error up to 0.4 K d−1 at the stratopause for two of
the profiles. Of course, the magnitude of the heating rate
is substantially larger here, and in percentage terms this
error is only 4%. The corresponding errors in outgoing
longwave radiation are listed in Table 2. These errors are
considerably less than the 23-point CKD model of Fomin
(2004).

Figures 6c and 6f show the errors for the 32-point
model. This time the root-mean-squared heating-rate er-
ror is only 0.04 K d−1, and Fig. 6f shows that the net flux is
accurate to better than 1 W m−1 at all heights. The errors
are generally a little smaller than those of the 256-point
RRTM model (Mlawer et al. 1997).

A fairer test of the two FSCK models is given in Fig. 7,
which uses four profiles not amongst the set of four train-
ing profiles. This time the heating rate errors below 50 km
are largely unchanged, although the errors at 60 km are
larger for both models. Errors in the flux profiles are also
increased, but still less than around 1 W m−2 at all heights
for the 32-point model and with errors in outgoing long-
wave radiation less than 0.5 W m−2. The errors in outgo-
ing longwave radiation for the two new profiles with 20th
century CO2 levels are given in bold in Table 2. The ability
of the 32-point model to reliably simulate profiles with very
different gas abundances indicates that the order in which
the three different gases were selected in the partitioning
of g-space in section 4 is not critical for the performance.

Lastly we consider an important scenario for climate
change forecasts, in which the mixing ratio of carbon diox-
ide is doubled to 700 ppmv. Figures 7b and 7c reveal that
the profiles with doubled CO2 tend to have larger heating-
rate errors at the stratopause. Table 3 shows the reduc-
tion in outgoing longwave radiation due to doubled CO2
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F IG. 6: Evaluation of the 23- and 32-point FSCK models described in the text on four different McClatchey et al. (1972) standard
atmospheres (indicated by the legend in panel d, where MLS is the mid-latitude summer atmosphere and SAW is the sub-arctic winter
atmosphere) containing only H2O, CO2 and O3. These profiles were used as the training dataset to derive the two FSCK models. (a)
Longwave heating rate calculated at full spectral resolution, (b) the error in heating rate of the 23-point FSCK model, (c) the error in
heating rate of the 32-point FSCK model, and (d)–(f) the same but for net longwave flux (upwelling minus downwelling).

calculated using the highest spectral resolution for three
of the profiles, together with the percentage error in the
two FSCK models. In the case of the mid-latitude summer
atmosphere, both the standard and double CO2 profiles
were part of the training set, and the 32-point model is
able to capture the change with only an 8% error. This
rises by a few percent for the sub-arctic winter and tropi-
cal profiles, which represent a more objective test of the
model since only the standard CO2 concentrations were
used in the training datasets. The errors are considerably
larger for the 23-point model suggesting that, without fur-
ther refinement at least, the lower resolution model would
not be reliable for use in a climate model although would
be satisfactory for weather forecasts.

6. Conclusions

This paper has investigated the possibility of substan-
tially increasing the speed of the longwave part of radi-
ation schemes used in GCMs by abandoning the prac-
tice of splitting the spectrum up into bands, and rather
performing the correlated k method across the full spec-
trum. In section 1, three reasons were cited as to why the
longwave spectrum ought to be divided up into bands.
The first of these, that the Planck function should vary

little across a band, was overcome in section 2c by the
use of an effective Planck function, and demonstrated in
practice in section 3. In an operational radiation code,
the effective Planck function would be precomputed ver-
sus temperature for each of the ng quadrature points, and
then implemented efficiently as a temperature-dependent
lookup table.

The second motivation for bands concerned the need
to minimize the number of active gases per band, and
(for some schemes) to assume random overlap of the
different spectra. In sections 4 and 5 it was shown that
this obstacle could be overcome without a large compu-
tational cost by partitioning multi-dimensional g space as
illustrated in Fig. 5. It has been shown that a total of
around 32 quadrature points is sufficiently accurate for
most applications (in clear-sky conditions with the three
dominant absorbing gases).

The third consideration was the need to represent the
spectrally varying properties of clouds and aerosols. This
issue has not been tackled in this paper, yet is a po-
tential concern since each pseudo-monochromatic radia-
tion calculation can represent widely spaced parts of the
spectrum, and therefore be unable to resolve the slow
but significant spectral variation of the optical properties
of atmospheric particles. For low clouds, the impact of
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F IG. 7: As Fig. 6, but for four profiles not used to train the two models: the McClatchey et al. (1972) sub-arctic summer (SAS) and
mid-latitude winter (MLW) atmospheres and two of the profiles from Fig. 6 but with doubled CO2 concentrations.

the clouds on fluxes and heating rates is concentrated al-
most exclusively in the atmospheric infrared window (8–
13 µm), and so only the modest spectral variation across
this range will play a role. Moreover, preliminary calcula-
tions with layers of optically thick cloud indicate that fewer
than half of the 32 individual g regions are sensitive to
clouds, and in almost all of those, the heating rate is dom-
inated by the contribution from less than 250 cm−1 of the
spectrum. Therefore, for each region it may be possible to
calculate the effective particulate scattering properties by
averaging them over the parts of the spectrum that con-
tribute to that region, but weighting each by the expected
contribution to the heating rate in a selection of represen-
tative cloudy profiles. Clearly further work is required to
verify this. For improved efficiency in a GCM, these ideas
could be coupled to the method of Manners et al. (2009),
in which those bands that are insensitive to clouds are
computed much less frequently than the fewer number of
cloud-sensitive bands.

It should be stressed that the analysis performed in
this paper is very much in the form of a “proof of con-
cept”, and in order to build an operational FSCK long-
wave radiation scheme, the following further work would
be necessary:

• Use high-resolution absorption spectra over a wide
range of pressure, temperature and water vapor
mixing ratio to parameterize correctly the depen-

dence of the representative k value in each g region
on these parameters, including the contribution of
the water-vapor continuum.

• Add the contributions of the other active trace gases,
particularly methane, nitrous oxide, CFC11 and
CFC12. For weather forecasting these gases can
be considered vertically well mixed and so it is valid
to combine them with carbon dioxide into a single
composite gas (e.g. Ritter and Geleyn 1992). But
for climate applications and decade-long reanalysis
integrations they need to be represented explicitly.

• Implement FSCK in a fully scattering radiation code
with look-up tables for the effective Planck function
and the appropriately averaged cloud and aerosol
optical properties in each g region. It may be neces-
sary to split a few of the regions into two if particulate
scattering properties vary too much within a region.

Application of FSCK with an effective Planck function
is not limited to one-dimensional radiation schemes used
in GCMs. The formulation presented in section 2 applies
equally well in three dimensions, with the j index in the
various equations now indicating the summation over all
points in 3D space. The method is also applicable to ra-
diative transfer in other fields.

Acknowledgements. The high resolution absorption

11



spectra were calculated using the HITRAN database by
Igor Ptashnik. I thank him, Keith Shine and Graeme
Stephens for valuable discussions in the course of this
work.

Appendix: Formulation of the weighting matrix Wji

In this appendix it is shown how we may calculate the
elements of the weighting matrix Wji used in (1). Note
that the use of a weighting matrix in section 2 is simply
to facilitate the demonstration that the full-spectrum cor-
related k (FSCK) method is mathematically valid; it does
not mean that subsequent application of FSCK need in-
clude explicit calculation of Wji . Since section 2 deals with
the spectral integration, here we consider only a narrow
part of the spectrum, but for brevity the dependence of all
the terms on wavenumber η is not written.

The spectral heating rate [in K s−1 (cm−1)−1] at height
z may be written in terms of the vertical divergence of the
net upward spectral flux F = F↑−F↓ [in W m−2 (cm−1)−1]
as

Ṫ(z) = −
1

ρ(z)Cp

dF
dz

, (9)

where ρ(z) is the density of the air at height z and Cp is
the specific heat capacity at constant pressure. If we dis-
cretize the atmosphere into nz layers, each thin enough
that the Planck function can be considered to be verti-
cally constant within them, then the heating rate of layer i
with thickness ∆zi may be rewritten as

Ṫi =
F↑

i−1/2 − F↑

i+1/2 + F↓

i+1/2 − F↓

i−1/2

ρiCp∆zi
. (10)

The upwelling flux leaving the top of the layer is the sum
of the flux emitted from the layer and the transmitted frac-
tion of the upwelling flux entering the base of the layer,
and similarly for the downwelling flux leaving the base of
the layer:

F↑

i+1/2 = Biεi + τiF
↑

i−1/2;

F↓

i−1/2 = Biεi + τiF
↓

i+1/2, (11)

where Bi is the Planck function of layer i [in
W m−2 (cm−1)−1], εi is the emissivity of the layer and τi =
1−εi is its transmissivity. It was shown by Elsasser (1942)
and verified by Rodgers and Walshaw (1966), among oth-
ers, that the in the longwave part of the spectrum, the
emissivity may be approximated as εi = 1 − exp(−Dδi),
where D = 1.66 is known as the diffusivity factor and δi is
the absorption optical depth of the layer. Substitution of
(11) into (10) yields

ρiCp∆zi Ṫi = εi

(

F↑

i−1/2 + F↓

i+1/2 − 2Bi

)

. (12)

In a non-scattering atmosphere, the downwelling flux at
the layer top may be expressed as the sum of the emis-
sion from all the layers above:

F↓

i+1/2 =

nz
∑

j=i+1

ε jBj τi j , (13)

where τi j is the combined transmissivity of atmospheric
layers between i to j (but not including layers i and j
themselves), equal to the product of the individual layer
transmissivities, i.e. τi j =

∏ j−1
k=i+1 τk. Likewise, the up-

welling flux at the base of the layer may be expressed
in terms of the emission from all layers below it and the
emission from the surface:

F↑

i−1/2 = ε0B0τ0i +

i−1
∑

j=1

ε j Bjτ ji , (14)

where ε0B0 is the flux emitted from the surface, and for
the moment scattering from the surface is neglected. We
are now in a position to derive Wji in (1). It is defined for
source layers j ∈ {0, 1, · · · , nz} (including the surface at
j = 0) and target layers i ∈ {1, 2, · · · , nz}. Equating (1)
with (12)–(14) requires that

ρiCp∆ziWji =

{

ε jεiτ ji ; j < i,
−2εi ; j = i,
ε jεiτi j ; j > i.

(15)

This formulation for longwave radiative transfer may
be extended to scattering atmospheres, although it is a
little more cumbersome. Defining the albedo of layer i as
αi and redefining the transmissivity as τi = 1 − εi − αi ,
the effect of allowing a single scattering event between
emission at j and absorption at layer i may be calculated
by summing over all possible scattering layers k (with k =
0 corresponding to scattering from the surface). In the
case of j < i we may have scattering from layers above
layer i and below layer j (forward scattering by a layer
lying between i and j would be included in the definition
of the transmissivity). Thus the first condition of (15) is
redefined as

ρiCp∆ziWj<i = ε jεi

(

τ ji +

j−1
∑

k=0

αkτk jτki +

nz
∑

k=i+1

αkτ jkτik

)

(16)
and similarly for the other two conditions of (15). The two
transmissivities in each summation represent the trans-
missivity between the emission event and the scattering
event, and between the scattering event and the absorp-
tion event. Higher order scattering can be represented by
multiple summations.
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