
Predicting Huntington’s Disease:
Extreme Learning Machine with Missing Values

Emil Eirola1?, Anton Akusok1, Kaj-Mikael Björk2, Hans Johnson3, and
Amaury Lendasse4

1 Arcada University of Applied Sciences, Helsinki, Finland
2 Risklab at Arcada University of Applied Sciences, Helsinki, Finland

3 Department of Electrical Engineering, The University of Iowa, Iowa City, USA
4 Department of Mechanical and Industrial Engineering and

The Iowa Informatics Initiative, The University of Iowa, Iowa City, USA

Abstract. Problems with incomplete data and missing values are com-
mon and important in real-world machine learning scenarios, yet of-
ten underrepresented in the research field. Particularly data related to
healthcare tends to feature missing values which must be handled prop-
erly, and ignoring any incomplete samples is not an acceptable solution.
The Extreme Learning Machine has demonstrated excellent performance
in a variety of machine learning tasks, including situations with missing
values. In this paper, we present an application to predict the onset of
Huntington’s disease several years in advance based on data from MRI
brain scans. Experimental results show that such prediction is indeed re-
alistic with reasonable accuracy, provided the missing values are handled
with care. In particular, Multiple Imputation ELM achieves exceptional
prediction accuracy.

Keywords: Extreme learning machine, missing values, multiple impu-
tation, Huntington’s disease, prediction

1 Introduction

The prevalence of machine learning has been steadily increasing in the current
information age. Engineering advances in processor performance and storage ca-
pacities have provided an opportunity to make practical use of computational
statistics on a large scale. Simultaneously, the research community has con-
tributed by devising new clever algorithms to maximize the amount of relevant
information that can be extracted from data. While data sets are large at times,
the more common situation is that the number of samples is limited by practi-
cal issues, meaning that all of the available data must be used as efficiently as
possible in order to achieve the desired results.

One pertinent issue is incomplete data sets, where some samples have missing
information [1]. Most methods in machine learning are based on the assumption
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that data is available as a fixed set of measurements for each sample. How-
ever, this is not always true in practice, as several samples may have incomplete
records for any of a number of reasons. These could include measurement error,
device malfunction, operator failure, non-response in a survey, etc. Simply dis-
carding the samples or variables which have missing components often means
throwing out a large part of data that could be useful for the model. It is relevant
to look for better ways of dealing with missing values in such cases.

If the fraction of missing data is sufficiently small, a common pre-processing
step is to perform imputation to fill in the missing values and proceed with
conventional methods for further processing. Any errors introduced by inaccurate
imputation may be considered insignificant in terms of the entire processing
chain. With a larger proportion of measurements being missing, errors caused
by the imputation are increasingly relevant as errors propagate in non-obvious
ways, and the missing value imputation cannot be considered a separate step.
Instead, the task should be seen from a holistic perspective, and the statistical
properties of the missing data should be considered more carefully [2].

A particularly important area where incomplete data is commonplace is in
healthcare, where varying procedures and equipment affect which data is avail-
able. Studies generally include a limited number of subjects, and often requires
expensive equipment and highly trained professionals, meaning that discarding
data samples with a few unknown values would not be cost-effective, and all the
data must be used to its maximal potential.

Recently, significant results in machine learning have been achieved with
methods based on the Extreme Learning Machine (ELM) [3]. Several modified
approaches have been published with the goal of using datasets with missing
values [4–8]. In this paper, we describe an application of ELM with multiple
imputation [5] to predict the onset of Huntington’s disease from early brain
scans.

The structure of this paper is as follows: Section 2 describes the application
scenario and data used. The modelling procedure is detailed in Section 3, and
results are presented in Section 4.

2 Application: Predicting Onset of Huntington’s Disease

Huntington’s disease (HD) is an inherited condition caused by a genetic disor-
der. It affects muscle coordination and leads to mental decline and behavioral
symptoms, and ultimately death. All patients with a sufficiently severe form of
the disorder will eventually get the disease. Physical symptoms can begin at any
age, but usually begin between 35 and 44 years of age. No cure is known, but
therapy can considerably mitigate symptoms, especially if started at an early
stage

While identifying the disease can be achieved early by testing for the genetic
disorder, it is more difficult to predict how quickly symptoms will manifest, as
the progression of the disease is not fully understood in detail [9–12]. It has been
observed that subtle changes in brain structure can be identified several years
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before diagnosis [9].The main research question here is to study how well MRI
data allows to predict when symptoms will appear, up to 10 years in advance.

The data consists of a number of measurements related to the patients. Each
sample corresponds to one session with a patient. For many patients, measure-
ments (sessions) are available before and after they have been diagnosed with
the disease, and this is crucial for studying the progression in detail. As most pa-
tients attended several sessions, it is important to consider that several samples
are associated to the same patient. The sessions were planned to be conducted
approximately once every two years, but in reality the data is available at very
irregular intervals, differing for each patient.

There are a total of 3729 sessions and 1370 patients. There is a control group
of 288 patients, which do not have the genetic disorder, and as such do not
contract the disease.

The measurements (variables) consist of key metrics derived from an MRI
scan, e.g., volume or length of specific structures. There are 561 variables in
total. In addition, the data contains a target variable representing whether the
physician diagnosed the patient with Huntington’s disease or not.

The data has been collected at several different locations, by different people,
on a variety of equipment. The varying procedures and equipment mean that
many values are missing for a large number of patients. For each session, the
number of available measurements varies from 95 to 561, and only 10% of sessions
have no missing values. No measurement available for all sessions. Overall, 45%
of values are missing in the data.

3 Model

The goal of the model is to predict the progression of the disease several years
in advance. However, the data directly includes only the diagnosis at the time
of the measurement session. Fortunately, the majority of the patients return for
follow-up sessions, meaning that some information about the progression can be
inferred.

Ideally, the output variable Y should contain the state of the patient up to
10 years in the future, but this information is not fully available. For example,
consider the sample related to a visit in 2001, at which the patient does not show
symptoms. Say the other available sessions for this patient are as follows:

– 2005 (not diagnosed)
– 2008 (diagnosed)
– 2009 (diagnosed)

By assuming the progression is monotonic (i.e., once diagnosed, a patient will
never return to a non-diagnosed state), we can conclude that for the years 2001–
2005 (0–4 years in the future) the patient should be considered as not diagnosed,
and 2008→ (7+ years in the future) should be considered diagnosed. Information
for 5–6 years is however still not available. We construct a prediction trajectory,
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Yi = [0 0 0 0 0 ? ? 1 1 1 1]

Fig. 1. Constructing the output as a prediction trajectory for a sample patient with
data from three future sessions available. Filled points represent available data, and
non-filled points inferred information. The state at 5 and 6 years remains unknown.

such that the output is 0 for years with no diagnosis, 1 for years with diagnosis,
and missing values when the state is unknown (see Figure 1).

As such, the output is an 11-dimensional vector, and there are missing values
in both input and output variables of the data. Note that several other types of
particular situations occur in the data:

Diagnosed at current visit Yi = [ 1 1 1 1 1 1 1 1 1 1 1 ]
Infrequent visits Yi = [ 0 ? ? ? ? ? ? 1 1 1 1 ]
Single visit, not diagnosed Yi = [ 0 ? ? ? ? ? ? ? ? ? ? ]
Not diagnosed after several visits Yi = [ 0 0 0 0 0 ? ? ? ? ? ? ]
Control group subject Yi = [ 0 0 0 0 0 0 0 0 0 0 0 ]

3.1 Extreme Learning Machine

The prediction model is realised using the Extreme Learning Machine (ELM) [3],
which is a single hidden-layer feed-forward neural network where only the output
weights βk are optimised, and all the weights wkj between the input and hidden
layer are assigned randomly. With input vectors xi and the targets collected as
a vector y, it can be written as

Hβ = y where Hik = h
(
wT

k xi

)
. (1)

Here h(·) is a non-linear activation function applied elementwise. Training this
model is simple, as the optimal output weights βk can be calculated by ordinary
least squares. The method relies on the idea of random projection: mapping the
data randomly into a sufficiently high-dimensional space means that a linear
model is likely to be relatively accurate. As such, the number of hidden-layer
neurons needed for achieving equivalent accuracy is often much higher than
in a multilayer perceptron trained by back-propagation, but the computational
burden for training the model is still considerably lower.
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The optimal weights β can be calculated as the least squares solution to
Eq. (1), or formulated by using the Moore–Penrose pseudoinvorse as follows:

β = H+y (2)

A high number of neurons in the hidden layer introduces concerns of overfitting,
and regularised versions of the ELM have been developed to remedy this issue.
These include the optimally pruned ELM (OP-ELM) [13], and its Tikhonov-
regularised variant TROP-ELM [14]. In the current case, Tikhonov regularisa-
tion is applied when solving the least square problem in Eq. (1). The value of
the regularisation parameter is selected by minimising the leave-one-out error
(efficiently calculated via the PRESS statistic [14]) by a MATLAB minimisation
procedure5.

3.2 Multiple Imputation ELM for incomplete data

To handle the missing value problem, Multiple Imputation ELM (MI ELM) [5] is
used. The method is based on the established procedure of multiple imputation
[15], which is a principled approach to modelling incomplete data sets while
avoiding any additional bias.

For ELM, the multiple imputation procedure is as follows. First generate
a set of M imputations of the data X, denote these as Xk, for 1 ≤ k ≤ M .
The imputations should be randomly drawn from a distribution representing the
data. In this case, we fit a Gaussian distribution to the data set by using the EM
algorithm [16,17]. Having the distribution allows us to generate imputed versions
of the data by drawing random samples from the conditional distribution of each
missing value.

For each imputed version of the data, calculate the corresponding hidden
layer representation Hk = h

(
WTXk

)
, using the same set of hidden layer weights

W. Then solve for the output weights βk = H+
k y.

When applying the model to a new set of (testing) data Xt, in principle
each trained ELM is used to generate a separate prediction ŷk = βkHt, where
Ht = h

(
WTXt

)
, and these are then averaged to produce the final result:

ŷ =
1

M

∑
k

ŷk (3)

However, the equivalent result can be obtained more efficiently by first aver-
aging the weights as

β =
1

M

∑
k

βk (4)

and then applying the model

ŷ = βHt (5)

5 fminsearch: https://www.mathworks.com/help/matlab/ref/fminsearch.html
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In particular, the average weight in Eq. (4) can be calculated during the training
phase, without having access to the testing data. The trained model consists only
of the random weight matrix W and the (average) output layer weight vector β,
just as in the conventional ELM. The multiple imputation approach is only used
in the training phase to more accurately find β in the presence of missing values.
The number of multiple imputations can be dynamically chosen in accordance
with available resources, the guiding principle being that a larger number of
imputations leads to a more accurate model.

If the data in the test set also have missing values, as in the current case,
these can also be handled by multiple imputation. I.e., generate several imputed
copies, calculate predictions for each copy, and average the results. Note that
the multiple imputation procedure for training and testing can be conducted
entirely separately from each other, and the number of imputations need not be
the same.

3.3 Variable Selection

As the data is high dimensional, and contains redundant information, a variable
selection procedure is applied to condense the problem. First, variables which
are highly correlated (correlation coefficient with other variables above 0.99) are
discarded. However, this only reduces the dimensionality from 561 to 483, and
further reductions are needed.

While many methods for variable selection have been developed, only a few
of them can be applied when the data contains missing values. One which is
applicable is the Delta test [18, 19], which only requires identifying the nearest
neighbor of each sample. This can be accomplished by first estimating distances
with another method, filling in missing values and accounting for the uncertainty
[2]. By again applying the previously calculated Gaussian distribution of the
data, the conditional mean and variance can be calculated for each missing
value. Replacing each missing value by its conditional mean produces an imputed
version of the data, denoted by X̃. Let the conditional variance for each missing
sample be notated as σ2

i,d = Var(xi,d), with σ2
i,d = 0 if xi,d is known. Then the

expected (squared) distance between two samples xi and xj is

E
[
‖xi − xj‖2

]
= ‖x̃i − x̃j‖2 +

∑
d

σ2
i,d +

∑
d

σ2
j,d (6)

These distances can then be used to identify nearest neighbours and calculate
the Delta test. As the candidate space is too large for an exhaustive search,
optimising the Delta test is done by applying genetic algorithms [20]. The end
result is a set of 29 selected variables, and these are used for the remainder of
the experiments.

3.4 Entire procedure

The complete training procedure can be summarised as follows:
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1. Pre-processing

(a) Standardise input variables to zero mean and unit variance
(b) Discard too highly correlated variables
(c) Construct outputs yi for each sample (prediction trajectory)

2. Fit Gaussian distribution to the incomplete data set using the EM algorithm
3. Variable selection:

(a) Generate imputed data with uncertainties, and calculate distances
(b) Use Genetic Algorithm to select variables which minimise the Delta test

4. Multiple imputation ELM

(a) Generate weights using a fixed value of 1000 neurons
(b) Generate multiple imputed copies by drawing from the conditional Gaus-

sian distribution
(c) Select regularisation parameter by minimising the leave-one-out error
(d) For each copy, train ELM using selected variables
(e) Average the weights to get one model

4 Experiments

Five methods are compared in the accuracy of predicting the diagnosis 0–10
years ahead:

– ELM with multiple imputation
– ELM with missing values imputed with the conditional mean (using the

Gaussian distribution)
– ELM using only samples for which all variables are known
– Support Vectors Machines (SVM) [21] using only samples for which all vari-

ables are known
– Nearest neighbor classifier (1-NN) with imputation

Each method evaluated on a test set of 30% of the patients, while the remaining
data is used for training the models. The experiment is repeated 250 times to
obtain more reliable measures of expected performance. Since the output also
contains missing values, the training and testing for each prediction horizon is
conducted only on those samples where the output is known.

4.1 Results

Overall classification accuracy for 0–10 years from the date of the session is
presented in Figure 2. The imputation-based ELM variants both consistently
achieve accuracies above 90%, whereas the other models have poorer perfor-
mance. However, with unbalanced classes and different costs for false positives
and false negatives, it is crucial to study precision and recall separately, and
these are shown in Figure 3. Alternatively, models can be compared by their
F-score, which gives a more balanced assessment of the performance than the
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Fig. 2. Results in terms of average classification accuracy for each method for 0–10
years ahead.

overall classification accuracy [22]. The F-score, or F1 measure, can be defined
through the precision and recall as

F1 = 2 · precision · recall

precision + recall
(7)

The results as measured by the F-score are shown in Figure 4. The same values
are presented in Table 1, along with standard deviations. A statistical significance
analysis is also done to determine which differences in accuracy can be considered
significant.

It can be seen that the Multiple Imputation ELM procedure gives the best
results for 1–9 years ahead, and notably is significantly better than ELM with
(single) imputation. For 0 and 10 years ahead, the accuracies between the two
methods are not statistically distinguishable. In all cases, the two methods per-
form clearly better than the other three methods (1-NN, SVM, and ELM when
ignoring samples with missing values).

5 Conclusions

In this paper we study how well variants of the Extreme Learning Machine can be
used to predict the diagnosis of Huntington’s disease from early MRI scans. The
results clearly show that informative predictions are possible with satisfactory
accuracy, and predicting onset of symptoms 10 years in advance is realistic.

The Extreme Learning Machine is able to model the scenario accurately.
The best results are achieved by applying the principled multiple imputation
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Fig. 3. Results in terms of average precision and recall for each method for 0–10 years
ahead.

procedure. Indeed, properly accounting for the missing values is crucial for the
machine learning task to perform reliably.

Further investigation is still required to more precisely analyse which vari-
ables (or combinations of variables) are the most informative in enabling the
early prediction, and whether further refinements to the modelling procedure
could lead to even more accurate predictions.
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