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ABSTRACT 

In order to relieve stresses from cold drawing and to regain ductility, 

steel wires are annealed in furnaces under prolonged exposure to an appropriate 

temperature termed as ‘soaking’. This ensures the attainment of the required 

product quality. Literature suggests that the annealing processes are still 

determined by trial and error approach due to a lack of standards and also due to 

the proprietary nature of furnace designs.  This paper investigates the heat 

transfer mechanism in a 12-metre long tube furnace filled with an inert gas and 

through which a cold-rolled steel wire travels at a specified speed. The length of 

the furnace is divided into three regions i.e. heating zone, soaking zone and 

cooling zone of which the heating and the cooling zones are given special 

attention. 

The methodology involves the use of Computational Fluid Dynamics by 

coupling both solid (steel wire) and gaseous zones (Hydrogen or Nitrogen). 

Radiation has been incorporated via a suitable model and convection taken care 

of by considering laminar flow of gases. The results suggest that the time needed 

in the heating zone is influenced by the choices of the surrounding atmosphere, 

speeds of gas and of the wire.  These factors have an impact on the wire drawing 

speed and eventually on the overall productivity.  It is also implied that the 

proposed numerical method may be used to shorten the ‘soaking’ time and hence 

to reduce energy consumption. The work demonstrates the usefulness of CFD in 

understanding and optimisation of the transfer process as well as highlights the 

challenges associated with numerical results.  
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1.  INTRODUCTION 

To relieve stresses from cold drawing and to regain ductility, steel wires 

are annealed in furnaces at appropriate temperatures. The process of annealing is 

usually accomplished by two methods, either by allowing big coils of steel wires 

to ‘soak’ in a controlled furnace environment known as batch annealing or by 

continuously feeding the cold-rolled wire through tube furnaces at a controlled 

speed. Prolonged exposure at high temperature accelerates the stress relief and 

crystal alignment processes such that the final product regains the correct 

properties for further rolling or for delivery to the customer. In order to ensure a 

good surface quality, the environment inside the heated furnace is maintained by 

various non-oxidising gases such as hydrogen or nitrogen [3]. In the case of a 
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tube furnace, which is the main concern in this work, the steel wires are fed 

through a fairly long heated tube maintained at a specified temperature as shown 

in Fig. 1. Typically there will be there will be three zones of wire inside the  

 

 

 

 

 

Fig. 1 Schematic of tube furnace annealing of steel wire 

furnace as far as the wire temperature is concerned: the heating zone (increasing 

temperature), ‘soaking zone’ (constant temperature) and cooling zone (decreasing 

temperature). In order for the metal crystals to align and for the steel wire to 

regain the expected yield strength, the soaking zone should be of sufficient 

duration. When the wire comes out of the tube furnace, a small sample of the 

wire is checked for tensile strength and hardness. If the required strengths are not 

met, then the wires are passed through additional annealing operations making 

the process less efficient and more expensive. A typical wire drawing is 

completed in several steps of alternate cold drawing and annealing processes in a 

series and is very time consuming.  Clearly, a faulty annealing disrupts the flow 

of material and means extra work to set new annealing parameters. The net effect 

means a loss of productivity. The process of tube furnace annealing has evolved 

essentially by trial and error and rigorous scientific literature on this type of 

furnace is very limited. On the other hand, batch annealing is suitable for very 

large production rate, and a considerable attention has been given to these 

processes and as such a rich volume of literature exists [6, 7]. To highlight the 

focus of the present work, few relevant issues that came out of the literature is 

briefly discussed in the next paragraph   

The process of annealing is dependent on the heat transfer mechanism 

from the furnace wall to the core of the wire by radiation and convection through 

the gases. In the case of batch annealing of steel wire coils, conduction is also 

very significant [6]. The fact that the wires are wound in layers, the heat transfer 

process is further complicated due to thermal contact resistance and air voids. 

Zuo et al [12] have reported work on the heat transfer for High Performance 

Hydrogen Bell type furnace. They have highlighted the importance of surface 

heat transfer coefficient and determined an ‘equivalent’ radial thermal 

conductivity similar to Zhang et al [11]. Useful data on heat transfer coefficient 

for H2 and N2 gases for steel and aluminium have also been reported in this work. 

The general findings from these and other papers such as Herring [3] suggest that 

the use of hydrogen is more efficient due to its higher thermal conductivity than 

nitrogen. However, hydrogen is more hazardous and hence the installations are 

likely to be more expensive. An important difference between batch annealing 

and tube furnace annealing is that the latter has a much higher gas flow rate. 

According to Herring [3], the number of gas changes for batch annealing is only 
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5, whereas it is about 10 times more for tube furnace annealing. This also 

highlights the importance of the fluid dynamics involved in the process. 

From design considerations, the items of significance are the diameter of 

the tube, type of gaseous atmosphere, flow rate of gas used, speed of wire and 

temperature of the heating surface etc. Since the designs are essentially evolved 

by trial and error, the fundamental thermo-fluidic mechanism is not very well 

understood. For example, although the heat transfer is known to be largely by 

radiation, the relative contribution by radiation and convection are not unclear. 

Another important aspect is the temperature variation within the wire during the 

heating and cooling lengths. To ensure sufficient ‘soaking’ length (i.e., where the 

wire temperature is kept constant to ensure stress relief and re-crystallisation), the 

exact lengths need to be ascertained. Too short ‘soaking’ length may lead to 

incomplete annealing, whereas too long length means lower productivity. The 

rate of heating and cooling may also prove to be useful from metallurgical 

considerations. Additional aspect that needs to be considered is that the 

heating/cooling processes at the two ends are essentially transient. The low value 

of the thermal conductivity of steel may represent a time lag for the core 

temperature to reach that of the surface temperature. So, in reality the actual 

‘soaking zone time’ is shortened further due to the above reasons. Detailed 

analysis of the heating process can provide sufficient information so that a well 

understood and scientifically sound decision can be made while optimising such 

processes.  

In light of the previous discussion, the objective of this work has been set 

to investigate the thermo-fluidic transfer process with particular attention to the 

heating and cooling zones. The proven tool of Computational Fluid Dynamics 

which has shown great promise for similar situations [10] has been used. The 

work is also intended to highlight the challenges associated with the numerical 

prediction of such situations so that care may be taken to interpret numerical data 

with confidence and to give direction to experimental data acquisition. 

2.  METHODOLOGY 

Calculations were carried out using the commercial CFD software 

FLUENT available within ANSYS 13.0 [1]. The methodology involves domain 

specification, suitable grid generation, boundary condition specification, flow 

solution and post-processing. The steady state governing Navier-Stokes equations 

along with a scalar energy equation were solved simultaneously until a converged 

solution was obtained. A systematic grid refinement was followed with non-

uniform grid distribution in areas of large gradients to ensure faster convergence 

but better accuracy. After several trial runs, grid independent results were 

obtained. Higher order differencing schemes were used for all equations [8]. A 

number of simplifications were made regarding boundary conditions and the 

important points are mentioned below. To highlight the transient nature of heat 

flow within the wire, some speculative calculations based on Heisler charts [4] 

were attempted and shown later in the paper.  

2.1  Domain Specification 

The wire being quite long will have some amount of sag. However, 

evidence from industry suggests that the wire does not touch the heating surface 

of the tube furnace. Given that the inside  pipe diameter is only 42 mm against its 



length of 12 m, suggests that the angular deviation from the axis is very small ( 

maximum of 0.003 deg) and hence the assumption of axisymmetric geometry has 

been considered. Also, as will be shown later in the results, the lengths of the 

heating and cooling zones where the temperatures are varying most, are fractions 

of the total length and hence the deviation from axisymmetry is even less. The 

soaking zone represents a constant and stable section where the axial gradients 

are negligible and is a further vindication of concentrating on the 2D domain. 

 

2.2  Boundary Conditions 

For the sake of this analysis, the boundary conditions are kept simple but 

realistic. The tube wall temperature is fixed and the speed of steel wire is 

specified. The inlet and exit boundary conditions for the fluid and solid zones 

(i.e., steel wire) are opposite to each (Fig. 2) and are specified below.  

 

 

Fig. 2 Schematic of the domain, coordinates and directions of flow (all 

dimensions are in mm) 

Fluid zone: Gas 

Inlet: Temperature is 293 K and velocity is fixed according to the case (10 m/min 

and 20 m/min) 

Outlet: Zero gradient condition specified for all variables 

 

Solid zone: Steel wire 

Temperature fixed at 293 K at both inlet and exit. Speed of steel wire is specified 

according to the particular case (e.g., 1 m/min to 20 m/min) 

These boundary conditions were assumed due to lack of experimental data.  

2.3  Specification of Property 

Since the gas Reynolds numbers of the flows are very small (about 20 for 

Hydrogen and 100 for Nitrogen based on mean properties and diameter of the 

tube furnace), the flow is considered to be laminar. The radiation heat transfer has 

been modelled by the Surface to Surface [1] radiation model due to geometrical 

simplicity. The gases are not considered as participating medium. The surface of 

the wire is considered to be shiny and hence the emissivity was taken to be  = 

0.066. In the absence of specific information, the emissivity of the inside surface 

of the tube was taken to be  = 0.2 which is similar to rough mild steel data.  



Temperature dependent gas properties [2] were specified using piecewise linear 

profile for property variation for both nitrogen and hydrogen. For gas mixtures, 

piecewise linear profiles have been used by linear interpolation based on gas 

concentration.  

 

3.  RESULTS AND DISCUSSION 

Computations were carried out for the whole length of the tube. The 

overall flow field is fairly simple where the velocity distribution of the gas attains 

a fully developed laminar profile along the axisymmetric slice. A typical 

temperature contour along the length of the tube is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

Fig. 3 Temperature distribution (N2, Vgas = 10 m/min; Vwire = 1 m/min) 

It can be seen that heating zone is much shorter than the cooling zone length. 

This is due to the counter flow arrangement of gas and wire motion (Fig. 2). The 

assumption of steady state solution can be seen from the temperature contours 

inside the steel wire. The detailed variations of temperature across the gas field 

are shown in Figs. 4a-b for the cooling and heating zones for two different gases. 

 

(a) N2      (b) H2 

Fig. 4a-b. Radial temperature distribution within the gases 
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The temperature profiles for both gases highlight the effect of convection in these 

two zones and clearly demonstrate how heat is transferred to or taken out of the 

wire material. As already mentioned in the literature, one very distinctive 

difference is the higher velocities of the gases compared with batch annealing and 

hence the fluid dynamic mechanism needs further scrutiny. The above profiles 

could also act as validation data locations for experiments. 

In line with this, the velocity profile in the soaking region is plotted in 

Fig. 5a. As expected a smooth parabolic profile representing fully developed 

laminar flow, can be seen with a fairly high maximum velocity due to rise in 

temperature in the furnace. An interesting feature can be seen near the r = 0.0025 

m, (which represents the surface of the steel wire) where a small amount of fluid 

can be seen to be flowing in the opposite direction i.e., along the direction of 

wire. 

 

 

 (a) Actual profile          (b) Exaggerated view 

Fig. 5 Velocity profile on the wire surface (N2) 

The adjacent sketch Fig. 5b shows this region on a highly exaggerated scale. 

Physically, this means that a ‘sheath’ of gas around the wire surface is moving 

with the same speed as that of the wire due to no-slip boundary condition [8] and 

hence the existence of a small (near) stagnating layer of fluid of thickness . This 

layer of fluid around the wire is found to vary significantly with the gaseous 

environment and is likely to be related to the viscosity difference (N2 = 0.9 mm ; 

N2 = 1.66 x 10
-5

; (H2 = 0.3 mm ; H2 = 0.84 x 10
-5

;). The heat transfer through 

this layer is likely to be dominated by conduction through the gas and supports 

the fact that H2 is a superior medium. However, further detailed analysis has to be 

carried out by reference to the thermal and hydrodynamic boundary layers to 

understand the influence, in particular, in the heating and cooling zones. 

3.1  Effect of gas mixture 

In addition to pure H2 and pure N2, computations have been carried out 

for gas mixtures of various proportions. Both the heating and cooling length data 

were extracted and analysed. For the sake of precise definition, heating and 

cooling lengths are defined as the length where the temperature of the steel wire 

reaches within 2 K of that in the soaking zone. While the lengths of the heating 

zone were rather small (about 14-18 cm) for both gases, the magnitude and 

variations of cooling lengths are markedly dependent on gas mixture as shown in 

Fig. 6.  

0 

0.01 

0.02 

-1 -0.5 0 0.5 

r 
(m

) 

Axial velocity (m/s) 
Wire
e 

Hot tube 

δ 

Gas 



 

Fig. 6 Length of cooling zone for gas mixture (H10N90: H2 10% and N2 90%) 

The above curve demonstrates a monotonic nature with higher H2 concentration 

and the reason may be rooted to higher values of Cp (10 times more than N2). 

This may be interpreted from the viewpoint of heat transfer that a diluted H2 gas 

mixture may still provide the same environment given that the non-oxidising 

characteristics of the atmosphere is not compromised. Due to the ‘imposed’ 

boundary condition of fixed temperature at the outlet plane for the solid zone, the 

steel wire must lose enough heat to the cooler gases entering through this end. 

Since this is a rather artificial boundary condition, the exact numerical values of 

the cooling lengths must be interpreted with caution. In reality, the cooling rate 

will be a lot slower due to the fact that as the wire comes out of the furnace it will 

be carrying some heat with it and will continue to be cooled by natural 

convection. It is not exactly known what effect it might have on the cooling 

length and this issue is a future extension to the project. 

3.2  Effect of gas and wire speed and wall temperature on cooling length 

Various combinations of gas and wire velocity have been specified and 

the results analysed for all combinations. H2 gas did not show any significant 

effect due to gas velocity change from 10 to 20 m/min and wire velocity change 

from 1 to 10 m/min. However, significant effect on the cooling length and ‘rate 

of cooling’ has been observed for N2 gas as shown in Fig. 7.  
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Fig. 7 Effect of gas velocity on cooling rate 

The cooling length was found to increase from 1.1 m to 1.8 m, an increase of 

64%. This is possibly due to the fact that the faster moving fluid needs more time 

to extract heat from the wire and hence needs to readjust to the cooling process 

much earlier. Such information may be significant in optimisation of the various 

steps in the wire drawing process. 

Investigation has also been carried out by varying the wall temperature of 

the tube and the effect has been found to be negligible. Essentially, a 20 K rise in 

tube furnace temperature was found to increase the wire temperature by the same 

amount. The effects on the cooling and heating lengths were also found to be 

insensitive for such small temperature increases. 

 

3.3  Transient heat conduction in the wire 

Since conduction in a homogeneous metal follows the analytical 

equations, some typical curves were generated using the transient conduction 

equations available in the form of Heisler charts and related equations [4]. To 

appreciate the effect of the transient heating process, the steel wire has been 

considered to be an infinite cylinder exposed suddenly in a radiation-convection 

environment and the temperature variation with time at the core of the wire are 

shown in Fig. 8 for various values of surface heat transfer coefficient ‘h’. These 

‘h’ values may be interpreted as a combination of convection and radiation heat 

transfer coefficient. The convection components of these ‘h’ values are high 

where temperatures of the wire are low, whereas radiation component would be 

dominating near the soaking region.  
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Fig. 8 Typical transient conduction curves for various h values 

The net effect of the transient conduction within the wire is largely a shortening 

of the ‘soaking zone’ due to extension of the heating and cooling zones in the 

core region. However, the exact amounts can only be determined by doing a 

coupled analysis with CFD. 

4.  CONCLUSIONS AND FUTURE WORK 

The most important outcome of this work is that the CFD tools can be 

used to do parametric analyses of the thermo-fluidic transfer mechanism within a 

tube furnace. Such analysis may be very expensive to carry out using 

experimental methods as opposed to numerical approaches. 

The lengths of the cooling and heating zones have been identified for the 

chosen boundary conditions. The trends observed for various mixtures of H2 and 

N2 may be useful to the practitioners to make informed decisions.  

The existence of a stagnating gas sheath around the circumference of 

steel wire needs a thorough scrutiny and this may be particularly significant in the 

choice of ‘h’ values required for transient heat transfer calculations.  

The boundary conditions need further attention and work is currently 

underway to investigate this.  

Finally, the work highlights the importance of reliable experimental data 

to be gathered and highlights the locations where instrumentation should be 

placed for data collection. With a reliable data validation, the CFD results may be 

coupled with re-crystalisation [5, 9] models to make it a complete tool.  
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