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Abstract: Analysis of multicellular patterns is required to
understand tissue organizational processes. By using a
multi-scale object oriented image processing method, the
spatial information of cells can be extracted automati-
cally. Instead of manual segmentation or indirect mea-
surements, such as general distribution of contrast or
flow, the orientation and distribution of individual cells
is extracted for quantitative analysis. Relevant objects are
identified by feature queries and no low-level knowledge
of image processing is required.
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1 Introduction
Spatial organization of tissue and multicellular pattern
formation are crucial biological processes indevelopment,
wound repair, and maintenance of tissue [1]. Understand-
ing the underlying mechanism is of general interest and
may be helpful for generation of organoid cultures or in
tissue engineering. Tissue organizational processes are
considered to be regulated by various physical and chem-
ical factors, such as differently diffusive morphogens,
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cell–cell contacts, microenvironments and cell mechanics
[2]. Accordingly, various theoretical models, often based
on reaction-diffusion models, try to explain underlying
principles.

In most tissues cells are emended in a complex
extracellular matrix, a mesh of fibrous polymers attached
to each other and to cells by a series of complex molecu-
lar links. The cells organize the geometrical and physical
topography as well as the mechanical properties of the
matrix, and are in turn responsive to these properties. It is
commonly believed that the sensitivity of cells to the me-
chanical properties of their environment depends on their
ability to exert contractile forces into their surroundings
[3]. Indeed, many cell types including fibroblasts generate
contractile forces via the actin cytoskeleton. The resulting
matrix deformations generated by the cells may be felt by
other cells at long distances and thus may lead to elastic
interactions of cells [4, 5]. An interesting consequence of
these interactions can be a spontaneous alignment and
pattering of cells. Despite the implications of this orga-
nizing principle the pattering phenomenon has not been
extensively studied in cell mechanics experiments. Inter-
estingly, patterning phenomena can also be observed in
simple 2D in vitro cultures (Figure 1), a fact well known
by cell biologists. In order to investigate systematically
howmechanical interactions of cellsmay govern their self-
organization in a soft elastic environment we developed
compliant elastomer substrates for in-vitro studies. On
such functionalized surfaces we studied temporal aspects
of pattern formation observed by long-term microscopy
(phase contrast). However, the analysis of cell position
and alignment direction requires either manual analy-
sis or the application of specifically automated image
analysis.

In our approach the overall pattern is analyzed based
on the individual orientation of single cells. The required
explicit identification andmeasurement of biomedical ob-
jects must respect heterogeneous representations of char-
acteristic features such as shape or texture of a single
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Figure 1: A culture of dermal fibroblasts on a collagen-coated
compliant (70 kPa) PDMS-substrate at two different time points.
On the left image (day 2 of culture) cells are at a low density and no
apparent order is visible. On the right image (day 7 of culture), cells
are in full confluence arrange in a pattern with high orientational
order.

type of object. In addition, automated processing of large
series of images must also cope with technical limitations
and artifacts such as inhomogeneous densities of objects
or illumination within single exposures as well as in the
series of images. In this approach a three-step multi-scale
object oriented approach is proposed to extract visually
plausible regions, identify relevant objects and measure
the orientation and center of mass. This ensures a com-
prehensible, reproducible and therefore quantitatively as-
sessable automation.

2 Cell experiments

2.1 Material and methods

We studied how the elastic properties of an in-vitro cell
culture substrate and the density of cells affects the
spontaneous and collective alignment of the cells. To
elucidate the contribution of elastic interactions to the
ordering phenomena, experiments with soft substrates in
the regime of a few kPa (Young’s modulus) are required.
In our experiments we used poly(dimethylsiloxane)
(PDMS) Sylgard 184 (Dow Corning Corporation) – a
commercially available 2 component elastomer. By
varying the base to crosslinker ratio we achieved
elastomers with elastic moduli from 10 kPa to 70 kPa.
Due to the high hydrophobicity of PDMS and in order
to promote cell adhesion and proliferation, surface
modifications of the substrates were necessary. These
modifications were performed through introduction of
ECM proteins such as human fibronectin and bovine
collagen I onto the substrate. Cellular pattern formation
was observed over 7–9 days period using phase contrast
microscopy. The cells were cultured at standard cell
culture conditions.

2.2 Results

A typical example of an ordered pattern formation is
presented inFigure 1. The cells –humandermal fibroblasts
– have initially no particular positional order at low cell
densities and a diverse cell shape. At higher cell densities
they elongate their cell shape and align along each other
creating a spatial pattern with far-reaching orientation
order. Similar collective arrangements can be observed
with self-propelled organisms, biological polymers or syn-
thetic particles. The observed patterns in the 2D cell lay-
ers show a remarkable similarity with nematic phases in
liquid crystals previously observed with other cell types
[6]. At high cell densities, the cells interact with other
cells in the surrounding, and get increasingly oriented in
a nematic state.

A very similar observation can be made in our ex-
periments. The cells in this example show no apparent
order at low densities, but with increasing cell number,
they form ordered patches, and finally arranging in long-
range orientational order. We propose that spontaneous
cellular alignmentmay be detectable at specific cell densi-
ties. Elastic interactions may arise from the cell-generated
deformations of the substrate and may lead to the ordered
cell alignment.

Due to the different image sceneries (single isolated
cells and cells in confluent layers) a thorough quantitative
analysis requires the application of robust image analysis
algorithms.

3 Automated multi-scale object
analysis

Cells are identified in three steps in digitized micrographs
(Figure 2) [7]. At first an image is partitioned on different
scales by a causal morphological scale space analysis,
where the edges represent the zeroes of the second deriva-
tives (Figure 3). This corresponds to human visual percep-
tion and is independent of local variations in illumination.
In the second step the hierarchical structure of the regions
is transferred into a tree where each node holds a set of
attributes describing the region formally such as mean
grey value, size, curvature, texture, etc. (Figure 4). In the
third step regions that represent cells are extracted from
the tree by application of a task specific top-down query
on the attributes of the tree nodes.

The task specific query is generated by heuristic anal-
ysis of few images and then applied to the entire series
(Figure 5, Rules 1, and 2). On the extracted regions the
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Figure 2: A multi-scale representation of how an image (left) is transferred into an attributed tree representing the region hierarchy
(middle). Relevant regions are extracted by specific attribute queries (right).

Figure 3:Multiscale partitioning of a phase contrast micrograph of
800 × 600 pixels (top left) with scale 1 (top right) scale 3 (bottom
left) scale 5 (bottom right), where scale corresponds to a spherical
template with radius 1, 3 and 5 pixels, respectively.

major axis angle and the centre of mass describe the re-
gions position and orientation (Figure 6). By considering
the ratio of minor/major axis the general elongation is
characterized. The process is reproducibly applicable to
arbitrary series of images.

By inspection of some regions representing cells
in the sample image (Figure 4) the following sim-
ple query has been composed in the domain spe-
cific language (DSL) of the multiscale analysis software
(www.morphoscope.com).

Rule 1
DECLS:
conv := (4 * area * 3.14176)/(pow((perimeter),2.0));
#DECLS
RULES:
TD:
(meangrey< 90) && (area< 5500) && (area> 500) &&
(conv<0.2)
#RULES

In this case meangrey denotes the mean grey value
of the corresponding region between 0 and 255, area is
the absolute number of pixels and conv represents the
roundness which is computed on-the-fly by the ratio of the
regions squared outline in pixels (perimeter) and the area
proportionally to pi. The declaration of conv is also given
in the DSL (DECLS: Section). The extraction rule is defined
in the RULES: section and applied in a top-down scheme
(TD:).

Since the rule is based on heuristic and arbitrary anal-
ysis of single regions it is not a single and sound solution.
For instance the following rule yields the same result as
Rule 1 on the sample image (Figure 5).

Rule 2
RULES:
TD:
(meangrey< 90) (area> 1000) && (greyentropy>0.80)
#RULES

Here the attribute greyentropy denotes the entropy of
the grey value histogram of the region. The similar results
of two different rules indicate a certain degree of stability
of the heuristic approach yet they underline the arbitrari-
ness of the rule based object extraction. However, the
blobs of identified regions showavisually comprehensible
representation of the orientation distribution of the single
cells (Figure 6).

Besides the five attributes for representation of the
blobs any set of region features may be defined in the
DSL and provided for further analysis such as orientation
distribution.

This approach of region extraction by separation of
image analysis and content description allows for rapid
verification of different extraction queries without the
need of parameterization of low-level image processing
techniques, or low level development of new algorithms.
The knowledge of the biomedical expert is represented by
the query rules.
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(175 x 239) (63, 63, 63)

Tree file index 1918
Region label 1918
Age: 8
Ahead: 364
Ambiguity: 0
Area: 2780
Birth: 8
Decompentropy: 0.014972
Greyentropy: 0.905045
Left: 83
Meangrey: 64
Perimeter: 566
Right:57
Sons: 2
Stddev: 18.100986
Volume: 97389
Maxwidth: 213
Minwidth: 2
Variance: 327.645683
CentroidX: 516.000000
CentroidY: 206.000000
CentroidXn: 0.645000
CentroidYn: 0.343333
Orientation: –1.518541
Paxisn: 0.098000
Aaxisn: 0.008000
Paxis: 98
Aaxis: 8
Minx: 502
Maxx: 534
Miny: 112
Maxy: 313
Meangreyn: 0.155556
Mingrey: 34
Maxgrey: 240
Border: 0
Node: 1918
Conv: 0.137536

Figure 4: In the hierarchy browser the attributes of single regions representing cells (left) can be inspected manually (right).

Figure 5: Application of Rule 1 and Rule 2 yield the same result when
applied to the sample image.

In the image (Figures 3–6) 96 regions were identi-
fied by Rule 1. 5 Regions were background (false posi-
tive) in 3 cases a single cell was split into two regions.
However, a systematic validation of the results found
by the algorithm against a manually generated ground-
truth is needed, to estimate error rates of automated high-
throughput screenings.

4 Manual object analysis
Formanual phase contrast image analysis ImageJ, a public
domain, Java based image processing program was used

Figure 6: Visual representation of attributes: major-axis, minor-
axis, center-of-mass-x, center-of-mass-y and angle-of-major-axis,
as ellipsoids (blobs) for all regions from Figure 5 (left). Euclidean
distance of the mean values for the attributes of all blobs is
smallest to the single values of the indicated region (right).

(http://imagej.nih.gov/ij/docs/intro.html). Where neces-
sary, the contrast and brightness of the images was
adjusted.

For the low cell density images the cells bodies were
manually outlined. By fitting an ellipse to the selected
region, the angle between the primary axis of the ellipse
and a line parallel to the X-axis of the image was com-
puted, hence providing us with the single cells orientation
(Figure 7). The average cell orientation was determined by
averaging all the angles obtained from one image.

The high cell density images were not possible to
analyse using the manual delineation method since in
such images it is very difficult to distinguish individual cell
bodies. For that purposes the cell orientationwas obtained
by using an ImageJ macro, which was initially written for
evaluation of F-actin orientation inside the cells. Shortly,
the contrast of the images was enhanced and the cell
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Figure 7: (Left) Manual analysis of single cell orientation using
ImageJ. (Right) Application of the Fast Fourier Transformation
analysis to the sample image. The red lines represent the average
orientation of each 48 × 48 pixel square. The inaccuracies in
the analysis, shown with the green arrows, could be explained by
insuflcient contrast in phase contrast image between the cells and
the background.

orientation was extracted by 48 × 48 pixel sliding square
analysis. Fast Fourier Transformation (FFT) performed in
each square was followed with shape analysis of the FFT
image by fitting the ellipse to the Fourier spectra and
calculating the angle of the major axis of the fitted ellipse.
Rotation by 90 degrees yielded the mean orientation of
the analysed region. To visually ensure the accuracy of the
data, obtained angle values were used to draw lines above
the images (Figure 7). The average cell orientation was
obtainedbyaveraging the results obtained from individual
analysed squares. The inaccuracies present in this anal-
ysis could be explained by insufficient contrast between
the cells and the background in the phase contrast images.
The obtained results of the regions with falsely com-
puted orientation were disregarded in the quantitative
analysis.

5 Discussion
The disadvantage of the manual image analysis is that
it is subjective, hardly reproducible and extremely time

consuming. It requires two separate methods to identify
the cell orientation at low and high cell densities. In
contrast to the explicit extraction of visually perceivable
objects the analysis of uniformly distributed tiles yields
incomprehensible artifacts and results since the orienta-
tions cannot be compared directly to an objective ground
truth.

In the next step the automated and the manual
approach will be quantitatively evaluated against an
appropriate ground-truth with respect to accuracy (preci-
sion, recall) and coverage of single cell area segmentation
and overall extraction rate.
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