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Texture advection on discontinuous flows

Angel Rodŕıguez-Cerro · Ignacio Garćıa-Fernández · Rafael J.

Mart́ınez-Durá · Marta Pla-Castells

Abstract Texture advection techniques, which trans-

port textures using a velocity field, are used to visualize

the dynamics of a flow on a triangle mesh. Some flow

phenomena lead to velocity fields with discontinuities

that cause the deformation of the texture which is not

properly controlled by these techniques. We propose a

method to detect and visualize discontinuities on a flow,

keeping consistent texture advection at both sides of

the discontinuity. The method handles the possibility

that the discontinuity travels across the domain of the

flow with arbitrary velocity, estimating its speed with

least squares approximation. The technique is tested

with different sample scenarios and with two avalanche

scenes, showing that it can run at interactive rates.

Keywords Flow visualization · Texture advection ·
Discontinuity · Computer animation

1 Introduction

Simulation and visualization of fluids are present in

videogames, visual effects in feature films and computer

animation. Computational fluid dynamics has become

a common tool in the industry with growing level of

realism and control [9,16]. In interactive applications,

A. Rodŕıguez-Cerro · R.J. Mart́ınez-Durá
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however, computation time is a key issue and high reso-

lution fluid simulations are not always an option. When

interactive frame rates are required, such as in virtual

environments, the visualization of flow often relies on

texture based approaches.

Texture advection techniques transport textures on

a triangle mesh according to the velocity field of a flow.

These techniques have been used to visualize a dynamic

appearance on the surface of objects and specifically to

visualize surface flow in substances such as water, lava,

sand or fire. Nevertheless, as the texture coordinates

are advected, the original texture appearance is lost due

to its deformation. For this reason, different strategies

have been proposed to control the level of texture defor-

mation. In these techniques the vector field is supposed

to be differentiable (or at least continuous).

However, some flow phenomena such as avalanches,

some multiphase flows or even dense crowds of people,

can show significant discontinuities in the velocity field.

In these situations, two vertexes that are linked by an

edge of the mesh but are separated by the discontinuity

will have very different velocities. This shall cause an

undesirable texture deformation, which is not properly

handled by texture advection techniques that assume

differentiability in the flow [17,18,27,28]. Figure 1, left,

shows an example of the situation described; a texture

is advected using the method described in [18] along

a vector field that contains a horizontal discontinuity,

undergoing noticeable deformation.

In this paper we present a technique that enables

the visualization of flows with discontinuities in the spa-

tial domain avoiding the distortion of the texture that

appears in such regions. As inputs, our method takes

a velocity vector field defined on an arbitrary triangle

mesh and a texture, to produce an animation of the

flow.

http://dx.doi.org/10.1007/s00371-015-1118-7
http://dx.doi.org/10.1007/s00371-015-1118-7
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Fig. 1 Texture advection along a vector field with a dis-
continuity. Large velocity differences in near vertexes lead to
texture deformation (left). With our technique the discontinu-
ity is detected and remeshed to prevent texture deformation
(right).

The main contribution of our paper is a technique

for detecting and visualizing discontinuities in veloc-

ity fields. We are able of visualizing discontinuities that

travel across the flow with arbitrary velocities (not nec-

essarily advected with the flow). Our technique starts

with the detection of a discontinuity by means of the

evaluation of the vector field at the mesh vertexes. Fol-

lowing, we build an estimation of the region affected

and we track its displacement. Then, in this region we

modify the mesh in order to visualize the frontier that

separates the regions with different velocities. Finally,

we advect textures consistently at each side of the dis-

continuity by extrapolating texture coordinates. Fig-

ure 1, right, shows an example of the application of our

technique to avoid the deformation observed in the left

image.

The rest of this paper is structured as follows. In

Section 2 we present an overview of other works related

to flow visualization and deformation control. In Sec-

tion 3 we present our approach to build a representation

of a discontinuity in the vector field and how we deter-

mine its evolution. The remeshing process and the tex-

ture advection modification are described in Section 4.

Section 5 presents the results of our work, including an

analysis of several tests. Finally, Section 6 gives con-

cluding remarks and future work.

2 Related work

Texture advection methods produce a visualization of a

velocity field by means of the displacement of textures

on a triangle mesh. These methods are used to animate

flow by advecting either the texture coordinates on a

fixed mesh or the triangle primitives. Laramee et al.[13]

present an overview of flow visualization that reviews

texture advection together with other methods.

van Wijk [26] proposes an Image Based Flow Visual-

ization that advects dye in the texture space. Laramee

et al. [14] address flow visualization of unsteady flow

on surfaces. They use image space to overcome the

problems that appear when working in physical space

or in the surface parametrization space. Weiskopf and

Ertl [25] combine image space and object space advec-

tion to visualize flow on arbitrary curved surfaces em-

bedded in a three dimensional space.

Jobard et al. [10] add a particle system to the Eu-

lerian advection to build a hybrid texture advection

system. While the particle system is updated in a La-

grangian scheme, some of the particles’ properties are

updated in an Eulerian step using a texture. Rasmussen

et al. [21] also use particle advection computed during

the fluid simulation to determine the advection of ren-

dering properties, including textures.

Yu et al. [27], use a Lagrangian approach to advect

a particle system and incorporate a sprite texture on

every particle. After blending the sprites, they achieve

a river flow visualization with different physically based

effects. The method is capable of showing discontinu-

ities in the river sides which are defined at the beginning

of the simulation as part of the input data. They later

extend their method to improve conservation of texture

properties by using a deformable grid that is carried by

each particle [28].

The work by Kwatra et al. [12] advects a system of

oriented elements for coherent texture synthesis. They

visualize free surface flow generating the mesh and ad-

vecting fluid properties to synthesize the texture, based

on sample texture images. They are able to handle

avalanche like situations, such as a lava flow, but their

method is aimed to offline rendering and is too expen-

sive for interactive simulations. In a similar fashion,

Bargteil et al. [1] generate a mesh that is tracked along

time, allowing feature preservation.

In general, texture synthesis methods can be ade-

quate for texture advection, as the synthesis can take

into account time evolution [2,15]. In contrast, our ap-

proach focuses on visualization based on a predefined

texture, but once discontinuity has been detected in the

flow, it could be mapped into the texture generation

process to obtain equivalent results without remeshing.

One of the main concerns when using techniques

that advect an image along a vector field is the control

of the texture deformation, and several authors have

faced this problem. Max and Becker [17] derive a dif-

ferentiable model for advection of texture coordinates,

with a resetting strategy to avoid large texture defor-

mations. They also propose transporting the triangle
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vertexes and a method to add or remove triangles in

the domain boundaries when the flow causes the mesh

to degenerate. Neyret [18] addresses deformation con-

trol by using a blend of several layers of texture. Using

a different lifetime for every layer, he chooses the most

appropriate layer according to a desired deformation

level, defined by the user.

The different techniques that are applied to control

texture deformation rely on the premise that flow is

governed by a differentiable law and, thus, that the ve-

locity field is continuous. For this reason they fail to

keep texture deformation at low rates when discontinu-

ities appear in the flow. In the next sections we address

this situation and propose an strategy to visualize flows

that are not continuous in certain regions of the domain.

Our technique is based on Eulerian texture advec-

tion strategies, based on a triangle mesh, as in the works

by [17,18]. In the evaluation of our method we use

Neyret’s algorithm [18] for deformation control outside

the discontinuities.

3 Detection and evolution of a discontinuity

We consider a vector field representing the velocity field

of a flow, v(x) in a two dimensional domain. We use a

visualization of the flow based on a texturized trian-

gle mesh that covers its domain. We also assume that

the texture is advected on that mesh following the ve-

locity field using one of the texture advection methods

described in the previous section.

We consider that the vector field contains a discon-

tinuity and we assume that the points of discontinuity
are the image of a differentiable curve on the flow do-

main. We shall work under the premise that we do not

have an analytical description either of the shape of

the discontinuity or of its evolution during the simula-

tion. Moreover, the velocity of the discontinuity does

not need to have any relationship with the vector field.

For every vertex, i, we shall consider its location, xi,

and its texture coordinates, ci = (ui, vi). Let i, j be the

indexes of two vertexes in the triangle mesh connected

by an edge, xij = xj − xi will be the vector that con-

nects them. In addition, for every vertex we have the

value of the velocity field at its location, vi = v(xi).

In this section we describe how to detect the exis-

tence of the discontinuity by inspection of the vector

field at the mesh vertexes and how to track its evolu-

tion. First we detect discontinuities associated to edges

by comparing the velocity of adjacent vertexes. As an

starting guess, we assume that the discontinuity does

not travel across the domain. If, later, we detect that

the discontinuity has left the initial edge and has moved

to a neighbour one, we estimate the travel speed of the

discontinuity and compute its evolution.

3.1 Description of the discontinuity

In order to build a representation of the discontinuity,

we shall need to detect the points where it intersects

the edges of the triangle mesh. We consider that a dis-

continuity of the vector field crosses edge ij if the direc-

tional derivative of v(x) along the edge xij , estimated

by the first order difference, is higher than a user de-

fined threshold M

∇xij
vi =

vj − vi
‖xij‖

≥M. (1)

In that case, we add a discontinuity point Dij to the

list of intersections between the discontinuity and the

triangle mesh.

For every discontinuity point we shall store infor-

mation about its location and about its velocity. The

intersection location will be described with a parameter

fij ∈ [0, 1] that indicates the normalized distance from

vertex xi to the intersection along the edge, so that the

intersection is located at point dij as

dij = xi + fijxij .

We assume that the discontinuity can travel along

the flow domain and that a discontinuity pointDij has a

velocity wij . This velocity does not need to have any re-

lationship with the velocity field defined on the domain.

Indeed, the fact that there is a discontinuity makes that

the velocity field is not defined at that point. We want

to approximate the velocity of the discontinuity point,

dij , along the edge xij . To do this, we linearize the

curve at dij , approximating it by its tangent. We are

interested on the velocity of the discontinuity only on

the direction orthogonal to the curve, as the velocity

in the tangential direction will not change the location

of the intersection. Abusing of notation we will call the

orthogonal velocity of the curve wij .

Under the previous assumptions, we define the ve-

locity of the intersection along the direction of the edge,

wij , as follows. Let sij = ‖wij‖ be the modulus of the

velocity, and let sij =
wij

sij
and uij =

xij

‖xij‖ be unitary

vectors in the direction of the velocity and of the edge

respectively. Then, the projection of vector wijuij onto

the direction of sij has to be sij . That is

wijuij · sij = sij (2)

Figure 2 shows the variables that are used to de-

scribe a discontinuity point. In addition to this informa-

tion, the time at which the discontinuity was created,
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xj
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wij

xi vi

dij

wij

Actual discontinuity
Estimated discontinuity

Fig. 2 Description of a discontinuity point and the variables
involved.

tij , is also registered, and will be used later to update

the estimation of wij .

All the variables related to Dij have been defined

considering that the edge is oriented, going from vertex

i to vertex j. If we consider the inverse situation (go-

ing from vertex j to vertex i), then the corresponding

quantities are fij = 1− fji and wij = −wji.

3.2 Evolution of discontinuity points

Next we describe our approach to track the displace-

ment of a discontinuity point Dij due to its velocity wij .

We need to determine the evolution of the variables fij
and wij . When we detect a discontinuity point Dij , we

store all its data while it remains active, that is, while

condition (1) holds for the pair (i, j). During this time,

we consider that wij is constant. Thus, every frame we

update the location of the discontinuity point as

f t+∆tij = f tij + wij∆t

where superscript indicates time and ∆t is the time

between to consecutive frames.

If the discontinuity is actually moving with velocity

wij 6= 0 along the direction uij , then it will eventually

reach one of the vertexes, say vertex j. When this hap-

pens, both vertexes i and j will be at the same side

of the discontinuity and Dij will no longer exist. This

situation will be detected because equation (1) will not

be met.

Moreover, the discontinuity will potentially inter-

sect other edges (j, β), β = k1, . . . , kr that incide on

vertex j. If this is the case, and some new discontinu-

ities appear, then we need to estimate the velocity of

the discontinuity when it crossed vertex j in order to

compute the different wjβ . Figure 3 shows a possible

transition of two discontinuity points into a new one

across a vertex.

i1 i2

j
wi2j

wi1j

i1

k

i2

ji1
i2

j

wj

wjk
wjk

(a)

(b)

(c)

k

k

Fig. 3 Evolution of a discontinuity across a vertex. If a dis-
continuity has constant velocity, the associated points will
eventually reach the end of their edges (a). Then, the old dis-
continuity points disappear (b), and new ones appear in the
edges across the vertex (c).

Thus, let us consider the situation in which we had

a set of n discontinuity points Dαj , α = i1, . . . , in that

converge in vertex j at an instant of time t. The first

step to estimate the velocity of the discontinuity when

it crossed vertex j is to correct the values of wαj by

computing the actual average velocities as

w̄αj =
‖xαj‖
t− tαj

(3)

where tαj is the time at which Dαj was created.

After the longitudinal velocities have been updated,

the velocity of the discontinuity, wj = sjsj , is estimated

by least squares approximation. In order to state the

least squares problem, we use equation (2), that defines

the relationship between wj and the different w̄αj ,

w̄αjuαj · sj = sj , α = i1, . . . , in, (4)

where sj and sj are the unknowns. If we divide (4) by

sj , and write rj = sj/sj then

w̄αjuαj · rj = 1, α = i1, . . . , in, (5)
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We can write the system of equations (5) in matrix

form as W · rj = 1 where

W =

 wi1jui1j...

winjuinj

 ; 1 =

1
...

1

 (6)

If n > 2, that is, more than two discontinuity points

converge in vertex j, then the system is overdetermined

and we need to solve a least squares problem, as it has

been stated earlier. If n = 2, then (5) is a 2 × 2 sys-

tem of equations. Finally, if n = 1, then we do not

have enough information to decide the direction and

magnitude of wj . In that case we pick wj = w̄i1jui1j ,

which accomplishes (5) trivially and is consistent with

the information we have from the vanishing disconti-

nuity point. Figure 4 represents the vectors involved in

the least squares problem.

i1 i3

j

wi2j

wi1j

i2

wi3j

wj

ui3jwi3j ui1jwi1j

ui2jwi2j

Fig. 4 When discontinuities cross a vertex, the new velocity
is computed using the information of their previous estimated
velocities by least squares approximation.

Once we have determined the value of wj from (5)

we initialize the velocity of all the edges (j, β) that have

a discontinuity. Using (2) and the definition of rj we set

wjβ =
1

rj · xjβ
, β = k1, . . . , kr. (7)

The procedure proposed to update wjk depends on

the existence of a prior discontinuity (i, j) that extin-

guishes when (j, k) appears. However, when a disconti-

nuity point Djk is detected for the first time by checking

equation (1), we have no previous information about

the exact intersection point or the velocity of the dis-

continuity. As an starting guess, we consider that the

point is in the middle of the edge between vertexes j

and k, and that it has zero velocity, by taking fjk = 1/2

and wjk = 0.

3.3 Issues on velocity estimation

The estimation of wij has been considered to be con-

stant in the time lapse while the discontinuity remains

in edge (i, j). Next we discuss how this assumption af-

fects the estimation of the discontinuity.

If, in average, the actual velocity of the discontinuity

pointDij is higher than the estimated velocity wij , then

the estimated location dij will not reach xj . Before this

happens, the actual discontinuity will cross the vertex

and the discontinuity of edge (i, j) will disappear. This

situation causes an undesired jump of the location dij .

This problem, however, is not difficult to overcome. The

old discontinuity can be kept active until dij = xj . The

velocity would be increased by a factor to reduce the

error.

If, on the contrary, the actual velocity of the discon-

tinuity point Dij is smaller than wij , then the location

dij will reach xj before the actual discontinuity. When

this happens the discontinuity point is retained at ver-

tex xj until the discontinuity actually reaches it. Then,

the velocity is corrected applying equation (3).

A particular case of the previous situation is when-

ever the discontinuity stops before reaching vertex. In

this case, the location of the estimated discontinuity

would not be exact, but the visualization would not suf-

fer from inconsistencies and the qualitative behaviour

would be correct.

The last possibility that has not been considered

so far is whenever the actual discontinuity changes its

direction and exits the edge through the same vertex it

entered. Visually, this is similar to the case when the

actual velocity is higher than the estimated; it leads to

a jump of dij , which goes back to xi when it is half

way to the opposite vertex. Again, the issue can be

overcome with the same strategy proposed above. But

this case needs an additional consideration. If we apply

equation (3) directly then we have w̄ij = 0, which might

underestimate again the right value leading to a new

jump in the next vertex. Our proposal is to consider

that the point has moved under a constant negative

acceleration. In this case, the exit velocity would be

w̄ij = −wij . (8)

4 Remeshing of the triangles affected by the

discontinuity

Using the list of discontinuity points built in the pre-

vious section, we now proceed to modify the mesh in

order to avoid the texture deformation in the trian-

gles affected by the discontinuity. During the process

of rendering the triangle mesh, we check every triangle.
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Then, if it has a discontinuity crossing any of its sides,

the triangle is split into several subtriangles.

Depending on the number of sides of the triangle

that are affected by a discontinuity we propose three

different remeshing schemes, which are shown in Fig-

ure 5. The situation where a triangle involves three dis-

continuities is unlikely if we have a single discontinuity

without intersections. However, this situation can hap-

pen when two discontinuities cross inside a triangle.

0

1

2
3

4

Mesh edges and vertexes

Discontinuity

New edge for remeshing

New vertex for remeshing

Fig. 5 When a triangle has edges with discontinuities it is
remeshed. Depending on the number of discontinuities de-
tected, we use one of the schemes of the figure. In the vertex
that belong to the frontier we need to add double and triple
vertexes to assign different texture coordinates to the same
vertex in different triangles.

In all the discontinuity locations, dij , two vertexes

are introduced. By doing this, the triangle that includes

the subedge from xi to dij should have a different tex-

ture coordinate than the triangle that includes the sub-

edge from dij to xj . In Figure 5 the points that contain

a double vertex are indicated with a double dot. As

an example, in the scheme for a single discontinuity we

subdivide the original triangle in the three subtriangles

012, 023 and 034. Notice that the second triangle is de-

generate and helps creating the visual discontinuity in

the texture.

We need to assign a texture coordinate value to

the new vertexes located at the discontinuity points,

depending on their side of the discontinuity. However,

texture coordinate is not defined in such points, as it

is only stored on the vertexes of the original mesh. For

this reason we need to estimate a value of the texture

coordinate.

We propose to use linear extrapolation using the Ja-

cobian of the texture coordinate at the vertexes of the

triangle [4], estimated with the adjacent vertexes not

affected by a discontinuity. Let ci = (ui, vi) be the tex-

ture coordinates at vertex i. We develop the estimation

for texture coordinate u and the development for co-

ordinate v is completely analogous. If we consider the

texture coordinate as a differentiable function of loca-

tion then, by its Taylor expansion at xi, we have that

the texture coordinate for a point di can be approxi-

mated as

u(di) ' u(xi) +∇xu(xi) · (di − xi). (9)

In order to estimate ∇xu(xi) we apply (9) to any

vertex adjacent to xi that is not separate by a discon-

tinuity. That is, given xk1 , . . . ,xkr vertexes neighbour

to xi such that the edge (i, kl) is not intersected by a

discontinuity (i.e., it does not accomplish (1)), we have

u(xkl) = u(xi) +∇xu(xi) · xkli, l = 1, . . . , r (10)

which defines a system of linear equations on the un-

known ∇xu(xi). Again, we use least squares approxi-

mation if the system is overdetermined.

It can happen that we have no neighbour vertexes

available to estimate the gradient. In this case, the ver-

tex is completely isolated by discontinuities. If we have

an estimation of the gradient from a prior step we keep

it. On the contrary we use a precomputed gradient that

uses the undeformed texture coordinates.

If we are using a texture advection technique that

involves blending of several texture layers, such as the

method by Neyret [18], then we need to extrapolate the

value for each layer. However the gradient only needs

to be computed once, as textures of different layers are

typically shifted a fixed amount.

5 Results

We have implemented a series of test scenarios with

different discontinuity configurations and different ve-

locity fields for the flow. The first two scenarios include

two opposed velocity fields. In the first one a horizontal

discontinuity separates both flows and in the second one

the opposed flows are separated by a diagonal disconti-

nuity that moves with varying velocity. A third scenario

is composed by four vector fields pointing in the four

main directions; up, down, left and right. Two disconti-

nuities cross in the center of the domain, creating four

quadrants that host the four velocity fields. The discon-

tinuities spin around the cross, forming a pinwheel.

As all previous tests only consider straight disconti-

nuities, we have also included a test with a curved fron-

tier. The fourth test scenario is a circle moving around

the center of the flow domain. Inside the circle the veloc-

ity field corresponds to the velocity of the circle itself

and outside the circle the velocity field points down-

wards with constant velocity. Figure 6 shows the four

velocity fields.
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Fig. 6 The four test scenarios that have been used to eval-
uate the method proposed in this paper. The discontinuities
are represented by dashed lines.

We have used a checkerboard texture to show our

results. In all the tests, texture advection has been im-

plemented using the blending approach proposed by

Neyret [18]. For this reason, in the images the texture

appears blended with itself with different transparency

values. This blending is used to control texture defor-

mation in many texture advection works.

The first test has been already shown in Figure 1

with a texture of stones. This test is somehow ideal in

the sense that all the assumptions we take when the

discontinuity is detected are met; the discontinuity is a

straight line and it does not move. For this reason the

discontinuity is detected exactly. The result can be seen

in Figure 7.

Fig. 7 Texture advection on a domain with two opposed
vector fields separated by a horizontal discontinuity, without
discontinuity detection (left) and with our discontinuity de-
tection method (right).

In the second test we show that the remeshing al-

gorithm reproduces oblique lines properly. In this test

Fig. 8 Texture advection on a domain with two opposed
vector fields separated by a diagonal discontinuity, without
discontinuity detection (left) and with our discontinuity de-
tection method (right). The remeshing scheme is shown in
the bottom image, together with the estimated discontinuity
points.

the discontinuity is moving with a velocity that fol-

lows a sinus function. For this reason it is continuously

moving up and down, and changing its velocity. In this

test the discontinuity jumps described in Section 3.3

can be observed, since we have not implemented in the

tests any correction to prevent them. Such jumps are

most noticeable when the actual discontinuity stops and

changes the sign of its movement. The result, compared

to standard texture advection, can be seen in Figure 8.

In this Figure, a detail of the modified triangle mesh

with estimated discontinuity points has been also in-

cluded.

In the pinwheel test we can observe the behaviour

of the method in a location with two discontinuities

crossing (Figure 9). A remarkable property of this sce-

nario is the fact that the farther a discontinuity point

is from the center, the higher is its velocity. Moreover,

as the discontinuities rotate, they change the direction

of their velocity along time. These two properties make

the quality of the velocity estimation to depends on

the angle between an edge and the discontinuity. This

produces the appearance of small corners in the ap-

proximation of the frontier between the different flows.

This artifact, however, is corrected whenever the dis-

continuity reaches a vertex and is barely noticeable for

dense meshes. The method we have proposed assumes
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that the discontinuity can be approximated locally with

a single straight line. For this reason, the remeshing

around the center is not always consistent with the un-

derlying vector field. However, it is a very local effect

and the overall behavior is considered positive.

Fig. 9 Four vector fields divided by two crossing discontinu-
ities. The discontinuities spin around the crossing point. Left
image without discontinuity detection and righ image with
discontinuity detection.

The travelling circumference test poses a more chal-

lenging scenario for the edge detection step. In this test

the curvature of the discontinuity causes a larger es-

timation error in the local velocities. This makes more

noticeable the appearance of small peaks in the frontier,

already described in the pinwheel test. However, these

effects reduce as the mesh resolution increases. Another

cause for the appearance of this effect is a discontinu-

ity almost parallel to an edge, which could be missed

when crossing a relatively long edge. This situation can

be overcome if angles close to 180o are avoided in the

triangle mesh. Figure 10 shows the results of this test
with a resolution of 160 × 160 cells, where peaks are

barely noticeable. The texture in this demo has been

generated with Perlin noise.

Besides the test scenarios, we have also implemented

two demonstration examples to show the application

of our method to real flows; we have reproduced two

avalanche scenarios. Experimental studies show that

avalanches in granular systems happen when a thin

layer of rolling grains slide over a main body of static

material. This process can be represented as a vector

field defined on the surface of the granular system [8].

As avalanches usually affect bounded regions of a slope,

the boundary of the avalanche will show a discontinuity

in the vector field, which is zero outside that region [6,

5]. Avalanche animation an visualization has been ad-

dressed in the past [23,19,20,24] with some authors re-

porting the use of texture advection.

We represent a landform with a regular triangle

mesh, and simulate the evolution of an avalanche with

the BCRE model [3]. This model uses a system of two

Fig. 10 A circle moving around the center of the domain,
visualized with a perlin noise texture. The velocity field in-
side the ball coincides with the velocity of the ball and the
velocity field in the background moves downwards. The top
image shows advection without discontinuity detection and
the bottom image with discontinuity detection.

partial differential equations to describe the evolution

of the layer of rolling material. The discretization of

the model on the mesh has been done using the Lax-

Friedrichs finite difference scheme [22]. The first avalanche

simulation is a landslide on an inclined plane. We cause

the avalanche by adding material and let it evolve down

the slope. The second scenario is a snow avalanche on a

valley. Figures 11 and 12 show several images obtained

during the simulation. In these scenarios we have in-

cluded a bump-mapping texture that has been also ad-

vected with the flow when necessary. The discontinuity

has been highlighted visually by shading some of the

added vertexes. This kind of enhancements can be done
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without an additional cost, as all the vertex properties

can be accessed during remeshing.

Fig. 11 Three images of the evolution of a landslide down a
slope.

The technique can be applied to other phenomena,

such as dense crowds [11]. In dense crowds, neighbour-

ing regions can host groups of people walking in oppo-

site directions. The method proposed here can be used

to visualize these situations, with an appropriate tex-

ture blending in the frontier. The advection of proper-

ties other than texture coordinates, such as a normal

map or a bump mapping texture, can also be used to

synthesize the flow of droplets on surfaces [7].

5.1 Parallel computation and performance

The technique we propose is aimed to the visualiza-

tion of flow in interactive environments, where perfor-

mance is relevant to achieve the necessary frame rates

Fig. 12 Two images of the evolution of a snow avalanche
down a valley.

for a good user experience. The methodology proposed

is split into several steps that can be easily implemented

for its execution in parallel and, more precisely, on the

GPU. In our implementation, the remeshing algorithm

has been implemented using a shader. This task is per-

formed independently for every triangle in the GPU.

The rest of the algorithm is computed on the CPU, in-

cluding the solution of the two least squares problems

proposed in Sections 3 and 4, but they could be com-

puted in parallel for every vertex.

During the tests we have registered the frame rates

achieved to show that the method proposed can run at

interactive rates. The different tests have been run on

an Intel R© CoreTMi7-3770K CPU @ 3.50GHz 3.90GHz,

with 16GB RAM and an NVidia GForce GTX 660. The

sample scenarios used to test the methodology have

been implemented and tested with grid sizes between

10 × 10 and 30 × 30 divisions on the grid. In all these

tests the frame rate was over 900fps.

The two avalanche scenarios have been computed

at higher resolutions. The landslide on the slope has

been simulated with a grid of 80 × 80 squares and it

ran at around 25fps. In this scenario, the solution of

the partial differential equation to get the velocity field

took about a 10% of the computation time every frame.

The snow avalanche has been simulated with a grid of

160 × 160 squares and it ran at 7fps. The solution of

the partial differential equation took about the 14% of

the computation time every frame. In this scenario, the
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computation of the new velocities and textures, includ-

ing the solution of the least squares problems, took be-

tween a 25% and a 50% of the computation time in the

frames when the avalanche is most active. Thus, a par-

allel execution of the discontinuity tracking process on

the GPU is very likely to yield better results.

6 Conclusion and future work

We have presented a method for texture advection vi-

sualization that addresses the problem of texture de-

formation in flow discontinuities. We have proposed an

algorithm to detect a discontinuity and track its evolu-

tion using only the information available at the vertexes

of the triangle mesh. When a discontinuity is detected,

the mesh is modified to provide a sharp representation

of the frontier with consistent texture advection. The

method has been derived considering that there is no

information about the flow outside the grid nodes. How-

ever, the remeshing scheme can be improved if the ve-

locity field is available in more locations, allowing fur-

ther remeshing of the areas affected by a discontinuity.

Some issues have been observed in the form of small

irregularities when the velocity of the frontier is not

constant. Although dense meshes overcome the prob-

lem, some effort needs to be done to make the repre-

sentation of the discontinuity more robust to these ar-

tifacts. There is still work in progress to extend paral-

lelism to parts that now are run in the CPU. Moreover,

a detailed study of the performance is yet to be done, in

order to analyse the cost of every part of the algorithm

and its growth when the number of vertexes increases.
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