
Universitat de Valéncia

Escuela Técnica Superior de Ingenieŕıa

Programa de Doctorado en Ingenieŕıa Electrónica

TESIS DOCTORAL

Spiking Neural Networks models

targeted for implementation on

Reconfigurable Hardware.

Autor: Taras Iakymchuk

Director: Alfredo Rosado Muñoz

Mayo 2017

Declaration of Authorship

I, Taras Iakymchuk, declare that this thesis titled, ’Spiking Neural Networks models

targeted for implementation on Reconfigurable Hardware’ and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

UNIVERSITY OF VALENCIA

Abstract

Departamento de Ingenieŕıa Electrónica

Escuela Téchnica Superior de Ingenieŕıa

Doctor of Philosophy

Spiking Neural Networks models targeted for implementation on

Reconfigurable Hardware.

by

This thesis describes a novel architecture of the Spiking Neural Networks implemented

in hardware using Field-Programmable Gate Arrays. By starting from the state of the

art theoretical and practical works, a new approach to the problem is proposed. The

presented work is dealing with both software and hardware topics such as:

• Spiking neural models with focus on their performance and feasibility in hardware.

A novel simplified neuron model is created and tested.

• Learning of SNNs in software and hardware. The well-known learning algorithms

are implemented and tested with the simplified neuron model.

• Data representation and conversion in spiking neural systems. A new version of

Address-Event Representation protocol is proposed, effectively allowing the finite

automata approach to the SNN implementation. A novel hardware architecture

to encode images is presented.

• Hardware platforms’ resources and their usability for SNN implementation. The

latest commercial FPGA devices are evaluated as the prospective platform for

large-scale SNN implementation.

• Spiking perceptron and spiking Restricted Boltzmann machine implementation.

Two popular network models are implemented and tested, utilizing the proposed

neuronal model.

• Neural network learning in hardware. The previously studied algorithms are im-

plemented in the hardware.

The aforementioned material was partially published in two journal and five conference

papers. The system has been fully developed and tested using public domain datasets.

iii

http://www.uv.es
http://www.uv.es/uvweb/departamento_ingenieria_electronica/es/departamento-ingenieria-electronica-1285859443270.html
http://www.uv.es/etse

Contents iv

Acknowledgements

This thesis would be never finished without many people, helping me on my journey. I

owe all of you.

I am very grateful to prof. Bernabé Linares-Barranco and prof. Giacomo Indiveri for

inviting me to visit their fantastic insitutions.

The guy from UV who was making a seminar about ELMs in 2014. I don’t remem-

ber your name but while trying to solve your problem I came to a vectored architecture.

If you read this, thank you!

Karolina Zuniga gave me motivation to finish this work when I was ready to give up.

I will be forever indebted to Alfredo, for taking me into this wonderful journey and

patience to my horrible bureaucratic paperwork skills.

My parents and my sister, thank you for your support and understanding. I know,

it took me quite a time.

Contents

Declaration of Authorship ii

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables xiii

Abbreviations xv

Resumen de la tesis doctoral 1

0.1 Caṕıtulo 2 . 4

0.2 Caṕıtulo 3 . 5

0.3 Caṕıtulo 4 . 5

0.4 Caṕıtulo 5 . 6

0.5 Caṕıtulo 6 . 8

0.6 Caṕıtulo 7 . 8

1 Introduction 9

1.1 Goals and aims of this thesis . 9

1.2 Structure of this thesis . 10

2 Neural networks and models: a brief overview 13

2.1 Biological neurons and neural models . 14

2.2 Neural plasticity . 17

2.3 Neural models . 18

2.3.1 Biological spiking neuron . 19

2.3.2 Hodgkin-Huxley Model . 21

2.3.3 Leaky Integrate and Fire (LIF) model 23

2.3.4 Simplified Spiking Neural model 25

2.4 Long-term plasticity . 27

2.5 Neural networks types . 29

2.5.1 Multilayer Perceptron . 29

2.6 Restricted Boltzmann Machine . 32

v

Contents vi

3 Neural encoding 35

3.1 Rate-based encoding . 35

3.2 Position coding . 36

3.3 Visual receptive fields . 38

3.3.1 Receptive field neuron response . 39

3.3.2 Gabor filters . 40

3.4 Address-Event Representation . 40

3.4.1 Variable timeslot length AER (VTSAER) 43

3.4.2 Online event encoding into VTSAER 45

4 Evaluation of the simplified model 51

4.1 Image encoding . 51

4.2 Network architecture . 53

4.3 Results . 53

4.4 Evaluation of the RBM based on the simplified model 57

5 Spiking neuron as a finite automaton and its hardware implementation 63

5.1 FPGA in scope of the neuromorphic hardware 63

5.1.1 Block RAM . 64

5.1.2 DSP48 block . 65

5.1.3 Fixed-point arithmetic and accuracy in FPGA 66

5.2 VTSAER as a basis for neuron architecture 67

5.2.1 Binary shift-based LIF and multiplication-based LIF neurons . . . 69

5.3 STDP on-chip learning for the Automata neuron 70

5.4 FPGA implementation of the Automata neuron 72

5.4.1 Neuron functional blocks description. 77

5.4.2 Simulation of Automata neuron functioning 81

5.5 Composing a layer of Automata Neurons. Multi-layered networks 82

5.6 The limitations of the fixed-point models 84

5.7 Complete neuromorphic data processing system design with the vectored
architecture . 86

6 Receptive field encoding and spike train generation 89

6.1 Frobenius inner product calculation implementation 92

6.2 Hardware occupation and speed of fully parallel FIP implementation . . . 93

6.3 Vectored FIP computation . 94

6.4 On numerical accuracy of RF computation and spiking response. 96

6.5 Comparison of fully parallel and vectored FIP implementation. 97

7 Final remarks and conclusions 99

7.1 Comparison with the state of the art hardware implementations 99

7.2 Conclusions . 101

Bibliography 103

List of Figures

2.1 Mark I perceptron, the first neural network device. Note the amount and
complexity of wiring. The connectionist problem (number of connections
per node) remains an important issue even now, in 2017. 15

2.2 First generation McCulloch-Pitts perceptron schematic. 15

2.3 Sigmoid function neuron schematic. Image courtesy: Tom M. Mitchell.
Machine Learning.McGraw Hill. 1997. [7] 16

2.4 Spiking neuron model. The output sequence of spikes is computed as a
function of input X and time t. 16

2.5 Plausibility-complexity comparison. FLOPS scale is for digital implemen-
tations [14]. 19

2.6 The most common neuron types and their structure. Image courtesy of
[15]. 20

2.7 Biological synapse structure. Image courtesy of [16]. 21

2.8 Hodgkin-Huxley model circuit. Left: simplified synapse membrane schemat-
ics with K-Na ion distribution. Right: equivalent electric circuit. 22

2.9 Hodgkin-Huxley axon action potential vs time in the presence of constant
stimulus. 22

2.10 Hodgkin-Huxley spiking model. A: Sequence of spikes caused by constant
stimulation. B: Intensity-frequency plot. 23

2.11 Leaky integrate-and-fire (LIF) model. 24

2.12 Leaky integrate-and-fire model dynamics of the neuron driven by irregu-
lar current so the membrane positive charge change and leakage can be
observed. Injected current is on the bottom plot, membrane potential is
on the top plot. When the driving current is negative, the membrane
potential decreases. 25

2.13 Membrane potential dynamics of a single neuron with simplified mem-
brane model. After several incoming spikes, the membrane potential sur-
passes threshold and neuron fires a postsynaptic spike. For better visi-
bility, neuron potential is increased three times for one TU after spiking.
During refractory period, neuron does not change its potential. Presy-
naptic spikes are shown with colored dots. 27

2.14 STDP curve used for learning. This type of curve has stronger depression
value than potentiation, increasing specificity. A+ = 0.6, A− = 0.3, τ+ =
8, τ− = 5. 29

2.15 Multilayer perceptron schematic. 30

2.16 Restricted Boltzmann Machine network. 32

vii

List of Figures viii

2.17 Event-based CD algorithm. The RBM is unrolled into Monte-Carlo Markov
Chain. The correlation between visible and hidden layer causes weight
potentiation; the correlation between reconstruction of layers causes de-
pression Source: [31]. 33

3.1 Rate-based coding of analog stimulus (plot B) into a spike train (plot A).
Image source: [13]. 36

3.2 Average spike density coding of analog stimulus. Image source: [13]. . . . 36

3.3 GRF encoding of the [0...10] range with 5 fields (5 spike trains). The
black vertical line denotes one analog input, and the points of crossing
with Gaussian curves give the corresponding spiking frequency normalized
in [0..1] range. 37

3.4 Average amount of spikes per sample for Iris dataset. First 50 samples
are for the Setosa, samples from 51 to 100 are for Versicolor and the last
50 samples are the Virginica species. Note that the variation of the spike
density is less than 20% between the classes. 37

3.5 Off-centered and on-centered neural receptive field and corresponding
spike trains. Source: [41]. 38

3.6 Different types of Gabor RF. 39

3.7 Sample monochromatic image of a car. 41

3.8 Sample image, converted with 4 different receptive fields with orientation
of 0◦ ,45◦ , 90◦ and 135◦. 41

3.9 Sample spike raster plot of 15 neurons spiking over 5000 ms. 42

3.10 Asynchronous AER data communication. The transmitter sets the data
on the AER bus, raises the request signal REQ high and waits for the
acknowledge signal ACK from the receiver. After this, REQ goes low,
driving ACK low. The cycle can be repeated. 42

3.11 Sample of a 6-spike raster plot from inputs A1,A2,A3 and its corre-
sponding asynchronous AER and VTSAER streams. Asynchronous AER
stream is shown from the perspective of the synchronous receiver. 44

3.12 Schematic of asynchronous AER to VTSAER converter. Priority mul-
tiplexer reads the privileged (red) channel first, while the AER source
stream is passing through the 1-element FIFO to avoid data loss. 44

3.13 Block schematic of the VTSAER data flow through the single-layer SNN.
Orange arrows show the VTSAER paths, black arrows correspond to
binary real-time output. Red arrow corresponds to the ”timestep neuron”
output. 46

3.14 Hardware architecture of the VTSAER encoder. Spike train, generated
by the neuron cores, is converted into the AER stream. 47

3.15 VTSAER encoder operation. The neurons 8,9,1,2 and 3 generate spikes
that are served by the encoder and neuron addresses (208,201,202,203,209)
are put on the bus AEROUT. DATA VALID signal is connected to the
last REQOUT output and is used to push the valid event addresses into
the FIFO. Note that the neurons are served in priority order from low
numbers to high. 48

3.16 VTSAER merger operation. TSE events are shown in light blue, non-
TSE events shown in other colors. Two streams from FIFOs are merged
into one stream. 49

List of Figures ix

4.1 Patterns for network training of 10 handwritten digits (Semeion dataset). 51

4.2 Image to spike train encoding dataflow. Input image A is processed with
RFs of encoding neurons B, and the result C is received by encoding neu-
rons, generating the spike trains D where spike frequency is proportional
to the intensity of the corresponding pixel and its surroundings. 52

4.3 Three receptive fields in a 10x10 input space. Blue field corresponds to
the neuron A (3,3 in input matrix). Green field corresponds to neuron
B (6,5) and orange corresponds to neuron C (10,10). Note that only the
active part or RF is shown. 52

4.4 Network structure used in the simulation. Input space of 10x10 is con-
verted into a spike train by a matrix of 10x10 input neurons with the 5x5
receptive field. The generated spike train is fed to the hidden layer of
16 simplified LIF neurons with training. Not all connections between the
input space and encoding layer are shown. 54

4.5 Membrane potentials of neurons during training. At the beginning, neu-
ronal reactions are chaotic. The training leads to sharp individual neu-
ronal reactions, and neurons become specific to one pattern. The most
intensive weight shaping occurs between 3000 and 4000 TUs. 55

4.6 Spike rate per sample before and after training. Blue bars are spike rate
before training and red ones represent the spike rate after the training.
Neurons 8,10,13,14,15,16 did not learn any pattern. 55

4.7 Neurons weights representation after STDP training. Ten out of sixteen
neurons learned to discriminate all ten numbers in the SEMEION dataset. 56

4.8 MSE for single pattern during learning. Red line represents the simplified
model, blue represents classic LIF. It can be seen that, after 5000 TU,
neuron becomes overtrained for both models and MSE is similar. 56

4.9 evtCD RBM with classic LIF neuron learning curve and confusion matrix. 58

4.10 Final learned weights for the evtCD RBM with LIF neuron. The weights
are similar to weights learned by a classic RBM or autoencoder. 59

4.11 evtCD RBM with LIF neuron learning curve for different learning rates. . 60

4.12 evtCD RBM with LIF neuron learning curve for different STDP length. . 61

4.13 evtCD RBM with LIF neuron learning curve for different membrane decay
constant. 61

4.14 evtCD RBM with simplified LIF neuron learning curve for different mem-
brane decay constant. 62

4.15 Learning curve for evtCD RBM trained with classic LIF and evaluated
with the simplified model. 62

5.1 DSP48E1 block schematic.Source: [57]. 66

5.2 Simple neuron block schematic. 68

5.3 Neuron with shift-based decay block schematic. D is a constant value
controlling the membrane potential decay 2−D. 70

5.4 Interleaved VTSAER stream. 71

5.5 The conversion of STDP function for IVA , with only positive values of ∆t. 72

5.6 Block schematic of STDP. Note that STDP is a function of counter
REF CNT and delayed/normal stream flag DTM. 72

List of Figures x

5.7 FPGA implementation of linear decay neuron. The STDP block and
DTM (Delayed Timeslot Marker) input are not used in a version without
learning. The untitled top block is the weight memory (containing 0 as
null event weight and TSE membrane leakage weight). The saturated
arithmetic ALU is in the center. 73

5.8 FPGA implementation of shift-based nonlinear decay neuron. The TRB
is detecting TSEs, switching the multiplexer on ALU port B and changes
the ALU opcode from P = P +A to P = P −B operation. Block on the
bottom is a binary shifter. 75

5.9 Comparison of decay curves for various membrane potential decay al-
gorithms. The reference curve is the green one, computed with 64-bit
floating point. All other algorithms were using Q6.12 fixed-point arith-
metic. 76

5.10 Comparison of decay curves and absolute error for subtraction-multiplication
based decay algorithms. 77

5.11 Threshold and Refractory Block schematic (TRB). It consists of a com-
parator, pattern detector, a counter and a 2NAND gate to generate a WE
signal for the STDP weight update. 78

5.12 STDP generation block structure. STDP values are held in ROM, with
positive values in the upper half and the negative in the lower half of
the memory. ROM address is composed with the halved output of the
TSE counter and DTM as the most significant address bit. With such
configuration, ROM can be treated as two-bank memory, where DSM is
the bank select bit. 79

5.13 The simulation of single STDP series. The spike, marked as red A, causes
the potentiation of the weights #7,8,9,10. The addresses and values are
highlighted by a red rectangle, marked as B. 81

5.14 Simulation of multiple STDP series. Memory values are at the bottom.
In the depression phase, marked with blue A (posneg signal is high), the
weights #1 to 5 are depressed (blue rectangle). In the potentiation phase,
marked with red B, the weights #5 to 10 are potentiated (red rectangle).
Note that the weight #5 is both depressed and potentiated during one
refractory period. 82

5.15 3-3-2 network schematic. Hidden layer weights are stored in the upper
memory bank, and output layer weights are stored in the lower memory
bank. All signals beside SPIKE and WUPDATE are common for all
neurons. 83

5.16 Neuromorphic real-time processing system layout. The non-spiking input
is encoded into spikes with the vectored RF architecture described in 6.
The result is encoded into VTSAER using mapper block, and the encoded
VTSAER stream is processed by the dedicated SNN core. 86

5.17 Neuromorphic processing system layout with one universal core. The
similarity in the RF encoding and SNN architectures make the combined
vectored core possible. The core is encoding the input sample first and
the resulting spike train is encoded into the VTSAER stream and stored
in FIFO. After that, the VTSAER is read from the FIFO and processed
in the universal core in the SNN mode. 87

5.18 Possible SoC schematic utilizing the proposed core. 87

List of Figures xi

6.1 Implemented system schematic. 90

6.2 Poissonian spike generation with the PRNG and comparator. 91

6.3 Integrate-and-Fire neuron for deterministic and stochastic spike train gen-
eration. 92

6.4 Frobenius inner product module. 93

6.5 Vectored implementation of RF neuron. 95

6.6 Hardware simulation of a neuron. Easy to notice how ISI is changing
from the infinity (no spikes, response is below threshold) to 4 and then
to 3 clock cycles. 96

List of Tables

3.1 Truth table for the single neuron VTSAER encoder. STATE is the in-
ternal variable of the encoder, SPIKEIN and REQ are inputs, REQOUT
and OVERDUE are outputs. 47

3.2 Hardware occupation of the VTSAER encoder without FIFO. The syn-
thesis was made for Virtex 7 xc7vx485t device. 48

4.1 Simulation speed of classic LIF and simplified LIF model networks. All
data are obtained on synthetic datasets taking the mean values of 5 runs. 57

5.1 Hardware occupation of single automata neuron. 80

5.2 Hardware occupation of layers of different size. 83

5.3 Hardware occupation of layers of different size. 84

5.4 Hardware components of 1000-neuron layer and a single neuron. Neurons
implemented are linear decay simplified LIF. The numbers are from the
RTL logical synthesis, not from the actual FPGA placement. FPGA Place
and Route numbers are in tables 5.2 and 5.3. 84

5.5 LIF neuron parameters of the selected implementations. 85

5.6 General comparison of the described neurons. Sub-mul neuron uses one
additional register. Memory usage refers only to the memory necessary
to implement the selected PSP function. 88

6.1 Implementation Results for the proposed blocks: Integrate&Fire neuron,
a neuron layer of 1024 units and three different Frobenius Inner Product
(FIP) encoding block implementations . 93

6.2 Hardware occupation of single RF Integrate-and-fire neuron. 95

6.3 Accuracy and maximal error for different RF size and fractional part width. 97

7.1 Comparison of the selected fine-grained spiking neuron hardware imple-
mentations. 100

xiii

Abbreviations

AER Address-Event Representation

ANN Artificial Neural Network

CD Contrastive Divergence

CLB Common Logic Block

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GRF Gaussian Receptive Field

IVA Interleaved VTSAER

LFSR Linear Feedback Shift Register

LIF Leaky Integrate and Fire

MLP Multi-Layer Perceptron

MSE Mean Squared Error

PSP PostSynaptic Potential

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RF Receptive Field

SNN Spiking Neural Network

SRM Spike Response Model

STDP Spike Time Dependent Plasticity

TSE TimeStep Event

TU Time Unit

VTSAER Variable TimeSlot length AER

xv

Resumen 1

Resumen de la tesis doctoral
”Spiking Neural Networks models targeted for implementa-

tion on Reconfigurable Hardware – Modelos de redes neu-

ronales de espigas para implementación en hardware recon-

figurable”

Autor: Taras Iakymchuk

La tesis presentada se centra en la denominada tercera generación de redes neuronales

artificiales, las Redes Neuronales Spiking (SNN) también llamadas ‘de espigas’ o ‘de

eventos’. Este campo de investigación se convirtió en un tema popular e importante

en la última década debido al progreso de la neurociencia computacional. Las Redes

Neuronales Spiking, que tienen no sólo la plasticidad espacial sino también temporal,

ofrecen una alternativa prometedora a las redes neuronales artificiales clásicas (ANN) y

están más cerca de la operación real de las neuronas biológicas ya que la información se

codifica y transmite usando múltiples espigas o eventos en forma de trenes de pulsos.

Este campo ha ido creciendo en los últimos años y ampliado el área de ingenieŕıa neu-

romórfica cuya principal área de trabajo es el uso de VLSI analógicos, digitales, mixtos

analógico/digital y software que implementa modelos de sistemas neuronales spiking.

Esta tesis analiza las Redes Neuronales Spiking desde la perspectiva de Aprendizaje Au-

tomático, donde la plausibilidad biológica no es el objetivo principal, pero la capacidad

de crear algoritmos de inteligencia artificial basados en SNN es uno de los objetivos prin-

cipales, junto con su viabilidad de implementación de hardware. Con el fin de cumplir

con los objetivos, varios modelos neuronales y topoloǵıas de red son revisados y com-

parados. La codificación de picos o la representación de datos con los picos también se

discute en este trabajo.

El desarrollo de topoloǵıas SNN y algoritmos capaces de proporcionar capacidades de

inteligencia artificial basadas en espigas de entrada al sistema es uno de los principales

temas de esta tesis. Sin embargo, se hace también hincapié en su implementación hard-

ware ya que existen modelos complejos para SNN que en muchos casos no son viables

para sistemas en tiempo real y requieren de sistemas de alta capacidad computacional

para ser ejecutados.

El tema principal de la investigación en este trabajo es la evaluación de algoritmos

Resumen 2

existentes y el desarrollo de nuevos algoritmos, estructuras de datos y métodos de cod-

ificación para la implementación hardware de las redes neuronales de spiking, especial-

mente dirigidas a FPGA (Field-Programmable Gate Arrays). Los dispositivos FPGA

son elegidos debido a sus excelentes capacidades de cálculo paralelo masivo, bajo con-

sumo de enerǵıa, baja latencia y versatilidad. En los últimos años, las FPGA se con-

virtieron en una popular plataforma para tareas clásicas de aprendizaje de máquinas,

tales como reconocimiento de imágenes, control automático, predicción de series tem-

porales, robótica, etc. Aśı, la tesis investiga todas las cuestiones relacionadas con el

despliegue de un sistema completo de hardware basado en espigas, desde la codificación

de información externa como entradas hasta la salida final de un sistema de inteligencia

artificial basado en SNN, incluida la optimización en la transmisión de datos, y todo

ello implementado en arquitecturas hardware que optimizan el rendimiento y permiten

la implementación de redes spiking de un elevado número de neuronas.

Se propone una nueva arquitectura simplificada de neuronas de tipo LIF (Leaky Integrate-

and-Fire). La neurona se evalúa para redes de tipo Perceptron y Restricted Boltzmann

Machine (RBM) para probar su rendimiento. Además, las capacidades de aprendizaje

de las redes propuestas se desarrollan mediante la definición de un procedimiento opti-

mizado para el aprendizaje de STDP (Spike Time Dependent Plasticity). Las propuestas

de optimización en software son completadas por nuevas arquitecturas de hardware, es-

pecialmente diseñadas para la implementación de FPGA.

En lo que se refiere a las arquitecturas de hardware, esta tesis define la llamada ”neu-

rona autómata”, basada en un formato de representación de espigas novedoso también

y definido en esta tesis, llamado ‘Variable Timeslot Length Address-Event Representa-

tion’ (VTSAER). Este formato tiene una mayor versatilidad que anteriores propuestas

de AER, eliminando la necesidad de marcas de tiempo y permitiendo un verdadero sin-

cronismo de cualquier número arbitrario de eventos. La estructura del VTSAER permite

procesar la información en las neuronas de espigas como un autómata finito alimentado

por eventos. Este nuevo enfoque ayuda a separar el estado del sistema de la tasa de

entrada de datos y reducir el número de canales de entrada/salida.

Otra novedad propuesta en esta tesis es una arquitectura vectorizada de capas de las

redes neuronales. Esta arquitectura permite calcular el estado de cualquier número ar-

bitrario de capas reutilizando los mismos bloques neuronales de hardware varias veces.

Este concepto de procesamiento vectorial de datos se puede aplicar no sólo en las re-

des neuronales de espigas, sino también en redes neuronales clásicas no-spiking de tipo

Resumen 3

ANN y otros algoritmos de aprendizaje automático. Con la arquitectura vectorizada y

la neurona autómata, el factor limitante para el tamaño de la red es sólo la cantidad de

memoria en el FPGA, lo que es una mejora significativa a las implementaciones anteri-

ores. En cuanto a los algoritmos de aprendizaje para SNN, esta tesis describe una nueva

aplicación del algoritmo de aprendizaje de Spike Timing Dependent Plasticity. STDP

sigue siendo el algoritmo de aprendizaje más popular para las redes neuronales spiking,

derivado de las observaciones de los fenómenos biológicos. Implementaciones de hard-

ware digital de la STDP rara vez se encuentran dado que el algoritmo está utilizando

causalidad de sincronización hacia atrás que requiere un empleo significativo de recursos

de hardware. La nueva implementación propuesta en esta tesis está resolviendo el prob-

lema de causalidad con una sobrecarga de hardware muy pequeña. La versión mejorada

de STDP se puede utilizar en redes de número arbitrario de neuronas. El proceso de

actualización de pesos es independiente para cada neurona y no afecta al flujo global de

entrada de espigas.

La implementación FPGA de algoritmos de codificación visual también se cubre en esta

tesis. Se describe la codificación de campos receptivos visuales tipo Gabor y se presen-

tan dos implementaciones de hardware. El método de codificación de campo receptivo

es muy similar a la operación de convolución utilizada en redes neuronales no-spiking.

Los campos espećıficos de orientación de Gabor son importantes en el procesamiento

de imágenes, ya que son fenómenos bien estudiados observados en la corteza visual de

mamı́feros y se desempeñan bien en el procesamiento de imágenes y en las tareas de cod-

ificación de espigas. Las dos propuestas de implementación en FPGA son arquitectura

paralela y vectorizada. La comparación se realiza utilizando tamaños de campo recep-

tivo t́ıpicamente usados en tareas prácticas que muestran las posibilidades de aplicación

para cada una de las propuestas de implementación.

Además, la implementación del hardware digital de algoritmos requiere la adaptación

de la aritmética, ya que la aritmética de punto fijo se utiliza para evitar la complejidad

adicional dada por los cálculos de coma flotante. Por lo tanto, se realiza un extenso

estudio de la aritmética de punto fijo en el hardware de codificación y procesamiento

de spikes para probar que el punto fijo es capaz de proporcionar la exactitud y pre-

cisión requeridas a un menor costo computacional y de recursos. Todos los algoritmos y

arquitecturas propuestos se prueban resolviendo problemas clásicos con bases de datos

abiertos (open source) para poder hacer una comparación con otros autores: los con-

juntos de datos SEMEION e Iris se utilizan en este caso. Con respecto a los resultados

Resumen 4

de hardware, las arquitecturas digitales propuestas permiten una alta frecuencia de op-

eración de reloj, cercana al máximo permitido por el dispositivo FPGA (alcanza hasta

387MHz). Los algoritmos y arquitecturas propuestos también permiten SNN de tamaño

arbitrario, limitándose sólo a la capacidad del dispositivo.

Todas las cuestiones antes mencionadas forman una compleja solución novedosa para

la implementación de redes neuronales de espigas en hardware FPGA con velocidad

de procesamiento varios cientos de veces más rápido que las simulaciones de software

y una precisión comparable. Los bloques de hardware propuestos son versátiles, ca-

paces de implementar una amplia gama de modificaciones de los algoritmos descritos y

adaptar múltiples topoloǵıas SNN con diferentes números de entradas, número de capas,

número de neuronas por capa, número de salidas, longitud de bits y, en general, aquellos

parámetros que permiten implementar múltiples formas de SNN.

En total, utilizando los bloques de hardware desarrollados en esta tesis, es posible con-

struir un sistema neuromórfico masivo autosuficiente con un ciclo de procesamiento

completo hecho dentro de un chip. De este modo, los sistemas neuromórficos podŕıan

ser implementados a un costo menor en términos de desarrollo y tiempo de diseño, junto

con placas de hardware más simples.

Esta tesis doctoral, además del primer caṕıtulo introductorio, está estructurada en varios

caṕıtulos.

0.1 Caṕıtulo 2

Se realiza una descripción general de las redes neuronales comenzando por las clásicas

redes neuronales artificiales para continuar por los modelos de redes neuronales pulsantes

o ‘spiking’, sus topoloǵıas y las metodoloǵıas de aprendizaje, haciendo especial énfasis en

las técnicas de aprendizaje basadas en la plasticidad. Se describen los modelos biológicos

aśı como los modelo simplificados de Hodgkin-Huxley, Izikevich, LIF (Leaky-Integrate

and Fire) y su generalización denominada Spike Response Model (SRM) que define un

potencial interno de la neurona (Post Synaptic Potential – PSP) basado en los est́ımulos

recibidos en el transcurso de un tiempo y, si el potencial supera un determinado umbral,

la neurona genera un est́ımulo de salida.

Resumen 5

Tras la descripción de los modelos generalmente empleados, esta tesis propone un mod-

elo simplificado de neurona que facilita el cálculo del potencial con vistas a su imple-

mentación hardware, reduciendo el uso de recursos lógicos y optimizando la velocidad de

operación del sistema. Finalmente, se describen las redes neuronales pulsantes de tipo

Multiplayer Perceptron y Restricted Boltzmann Machine (RBM) incluyendo los modelos

de aprendizaje STDP y evtCD, que serán utilizadas en caṕıtulos posteriores.

0.2 Caṕıtulo 3

Los sistemas de codificación de la información en est́ımulos (también llamados pulsos,

o eventos) resultan de gran importancia para el posterior análisis de los mismos y un

correcto diseño de las redes neuronales que los analizan. Se describen los modelos de

codificación en frecuencia, Gaussian Receptive Fileds (GRF) y campos de recepción

visuales. Por otra parte, dado el alto número de datos que se generan, se describen

modelos de transmisión de la información como Address Event Representation (AER).

En este sentido se propone una variante que se ha denominado ‘Variable Time Slot

Length AER’ (VTSAER) que optimiza y mejora la recepción de los eventos por parte

de las neuronas, especialmente a la hora de tratar los eventos recibidos para el cálculo

del potencial interno. Como parte final del caṕıtulo, se describe el proceso desarrollado

para poder codificar los est́ımulos en el formato VTSAER propuesto.

0.3 Caṕıtulo 4

Esta parte de la tesis evalúa el comportamiento de los nuevos modelos propuestos me-

diante la aplicación de diferentes conjuntos de datos de entrada y su comparación con

otros modelos. Para ello, se toma el conjunto de imágenes de d́ıgitos manuscritos, se

le aplica la codificación de campos receptivos de 5x5 en una capa de 256 neuronas de

codificación y posteriormente se utiliza una capa de 16 neuronas LIF. Posteriormente,

se realiza un entrenamiento STDP con estrategia ‘winner depresses all’ en lugar de la

comúnmente empleada de ‘winner takes all’. Tras el entrenamiento, se observa que 10 de

las 16 neuronas de la capa LIF son capaces de generar una frecuencia de salida de pulsos

Resumen 6

espećıficamente asociada a cada uno de los d́ıgitos (0 al 9). En comparación con otros

modelos con el mismo resultado, el tiempo de ejecución es mucho menor para el modelo

propuesto (del orden de 15 a 20 veces menor, en función del número de neuronas).

Como segunda comprobación, se plantea una red de tipo Boltzmann (Restricted Boltz-

mann Machine, RBM) con aprendizaje de tipo evtCD para resolver la clasificación del

conjunto de datos MNIST consistente en imágenes de tamaño 28x28 ṕıxeles. Por tanto,

se tiene una capa de entrada de codificación de eventos de 784 neuronas. Se plantea una

segunda capa de 100 neuronas LIF. En comparación con otros modelos LIF, el modelo

simplificado propuesto en este trabajo presenta un porcentaje más bajo que el modelo

no simplificado (71% y 80%, respectivamente). En cambio, se observa que los resulta-

dos en fase de validación son similares en ambos modelos, lo que plantea la opción de

realizar el entrenamiento con un modelo no simplificado para posteriormente aplicar los

pesos obtenidos a las neuronas simplificadas; esta posibilidad es factible en numerosas

aplicaciones donde se realiza un entrenamiento ’off-chip’ para posteriormente realizar la

ejecución del modelo en aplicaciones de tiempo real ‘on chip’ con el modelo simplificado.

0.4 Caṕıtulo 5

Dado que los nuevos modelos propuestos están orientados a su utilización en sistemas

hardware de tiempo real, este caṕıtulo detalla las arquitecturas hardware planteadas

para su implementación eficiente. Los actuales dispositivos FPGA contienen, además de

recursos configurables, unidades de cálculo tipo ALU (denominadas bloques DSP) y blo-

ques de memoria RAM distribuida internamente (BRAM). Por ello, la implementación

de los modelos neuronales propuestos tienen en cuenta el uso intensivo de estos recursos

para optimizar la arquitectura hardware completa, reduciendo el uso de recursos lógicos

a emplear y aumentando la velocidad de operación del hardware. En primer lugar, se

asume que la entrada de las neuronas estará codificada según el algoritmo VTSAER, de

modo que para todas las neuronas de una misma capa, la misma entrada es aplicada a

todas ellas en un instante determinado, procesándose las entradas de modo serie (una

tras otra). Por otra parte, cada neurona se puede considerar un autómata de estados

finitos donde el estado de la neurona depende del estado en el instante anterior y de

la entrada, existiendo una evolución de los estados para generar un est́ımulo de salida

Resumen 7

en caso de que el potencial interno de la neurona supere el umbral definido. Para la

arquitectura interna de la neurona, se proponen dos modelos: ‘binary shift-based LIF’

y ‘multiplication-based LIF’. La diferencia entre estos modelos radica en el modo de

cálculo del potencial de neurona dado que, en un caso, el cambio de potencial ante la

recepción de est́ımulos se realiza en base al desplazamiento de un valor potencia de dos

(equivalente a una multiplicación) y en el otro caso, se utiliza directamente la multipli-

cación, siendo más preciso el cálculo del potencial, pero requiriendo del multiplicador.

Este caṕıtulo describe también la implementación del algoritmo de aprendizaje STDP

para las neuronas de est́ımulos, raramente implementado en hardware debido a la com-

plejidad en el cálculo de tiempos entre la aparición de est́ımulos de entrada y salida,

haciendo necesario el empleo de un hardware complejo. Esta tesis propone en cambio

un sistema de entrenamiento STDP con el empleo de un bajo número de recursos y asum-

iendo, como en el caso de las neuronas LIF simplificadas, el uso de entradas neuronales

codificadas mediante VTSAER con una señal de marcación (interleaved VTSAER) para

indicar la llegada de entradas retardadas, o bien actuales, permitiendo la obtención de

tiempos entre est́ımulos de modo más directo y realizando el entrenamiento mediante

un procedimiento realmente sencillo. La implementación hardware de una neurona de

este tipo se realiza de modo que es posible optar por su implementación incluyendo

aprendizaje o bien sólo cálculo de entradas, pesos, potencial y generación de salida.

Recordemos que numerosas aplicaciones no requieren de entrenamiento ‘on-chip’, con

lo que resulta conveniente que la neurona lo permita, pero se pueda configurar antes

de implementar el sistema, con el consiguiente ahorro de recursos lógicos. La neurona

está basada en el empleo de un bloque interno de memoria BRAM para almacenamiento

de pesos de cada entrada de la neurona, una ALU que contiene un bloque DSP para

cómputo aritmético del potencial. Se plantean cuatro variantes: función de potencial

lineal, función de potencial con desplazamiento, función de potencial con multiplicación,

y función de potencial con multiplicación optimizada en base a la combinación resta-

multiplicación. Además, se realiza un análisis del tipo de curva de potencial obtenido

para cada una de las versiones.

Para concluir el caṕıtulo, se describe la arquitectura completa de una red neuronal con

varias capas, mostrando implementaciones de hasta mil neuronas por capa, siendo im-

portante remarcar que el uso de varias capas supone únicamente un incremento en la

memoria empleada para el almacenamiento de los pesos ya que el resto del hardware se

reutiliza. Se realiza además un análisis de las limitaciones del uso de sistemas de punto

8 ABBREVIATIONS

fijo como es el caso y de los errores producidos en base al tamaño de bits empleado.

Con todos los bloques de implementación descritos en este caṕıtulo, resulta posible el

desarrollo completo de un sistema neuromórfico capaz de procesar las entradas y generar

a un flujo de datos de salida de tipo VTSAER tras su procesado por parte de una red

neuronal.

0.5 Caṕıtulo 6

Para los casos en los que las entradas al sistema no sean de tipo ‘spike’, este caṕıtulo

ofrece el sistema hardware que permite la codificación en pulsos según los algoritmos de-

scritos en el caṕıtulo 3, mediante neuronas de codificación. Se proponen cuatro posibles

arquitecturas de neuronas de codificación: neurona IF (‘integrate and fire’), y neurona

con campo receptivo 8x8 Frobenius Inner Product (FIP) implementada de tres formas

diferentes (con módulo DSP, con bloques lógicos CLB y con bloques CLB sin posibil-

idad de reparametrización. Para el cómputo completo de una capa de neuronas de

codificación, se describen dos tipos de arquitecturas hardware, una de tipo vectorial y

otra de tipo paralelo comparando los resultados a nivel de eficiencia y de precisión de

cálculo en función del número de bits empleados.

0.6 Caṕıtulo 7

Este caṕıtulo presenta las conclusiones del trabajo y realiza una comparativa con los

resultados obtenidos por otros autores, mostrando los tipos de trabajos presentados

hasta el momento en este campo y las posibilidades que la implementación de sistemas

neuromórficos ofrece en el futuro, mediante el uso de plataformas hardware adapta-

bles a múltiples tipos de redes neuronales, topoloǵıas de interconexión, configuración

y entrenamiento para los pesos de las conexiones, etc. En general, se abre el camino

para la implementación de sistemas neuromórficos con un alto número de neuronas en

dispositivos FPGA de bajo consumo y alta velocidad de operación.

Chapter 1

Introduction

1.1 Goals and aims of this thesis

In this thesis, I studied the feasibility of implementing Spiking Neural Networks (SNNs)

in reconfigurable hardware. The main research is focused on efficient computation mod-

els for the SNNs and the hardware architecture that will boost the performance of those

models. The stress was put on the practical applications of the SNNs, rather than on

a biological plausibility. The targeted platform are the widespread Field-Programmable

Gate Array (FPGA) devices.

In the recent years, the field of Spiking Neural Networks and Neuromorphic Hardware

is the area of special interest. The advantages of this approach: low power, low la-

tency combined with the outstanding cognitive capabilities of the spiking networks are

attracting more and more researchers. Neuromorphic hardware finds the way to the

commercial market, with the companies like IBM developing TrueNorth spike-operating

neuroprocessor and Qualcomm with Zeroth neuroprocessor. However, a number of top-

ics in the hardware implementation of a spike-based system still needs to be researched.

The dramatic difference between spiking computation paradigm and the classic ones

requires novel approach for maximum utilization of its benefits.

To develop the proposed architectures, an extensive study of existing neuronal and net-

works models was performed. As the data representation plays important role in the

properties and performance of the network models, various types of data conversion and

representation were studied. Extra effort was dedicated to Address-Event Representa-

tion (AER) protocol, as this data representation is widely used in the existing spiking

9

10 Chapter 1 Introduction

hardware. In addition, several learning algorithms for SNNs were evaluated from the

perspective of their implementation in hardware, since the existing computing models

and algorithms are not suited for direct implementation in reconfigurable hardware. The

conducted research deals with the hardware implementation problem globally: neural

coding, neural models, network topology, computer arithmetic and network connectivity

protocols. A novel neuron model is proposed, optimized for the fixed-point arithmetic.

The new type of vector architecture, based on the given neuron model, is created and

tested to prove its feasibility. A novel version of Address-Event Representation protocol

is proposed to be used for this implementation, this new version has several advantages

over the existing realizations. The proposed hardware and software components can be

used to build massive parallel SNNs on a single chip. Networks with several thousands

of neurons are possible to implement within one modern FPGA. The developed system

is a full neuromophic processing system: from raw data encoding to the classified values

output.

1.2 Structure of this thesis

The current thesis is structured as follows:

• Chapter 2 gives a brief overview of the neural networks field, starting from classic

ANNs. Spiking neural models, plasticity and neural network topologies are dis-

cussed. This chapter introduces the novel linear simplified spiking model, proposed

in this thesis.

• Chapter 3 describes the spike encoding, data representation types for spiking neu-

ral networks. A large part of this chapter describes the encoding of graphical

information since image recognition tasks are one of the most used applications

for neural networks. The Address-Event Representation (AER) format is dis-

cussed and a novel variation, called Variable Time Slot length AER (VTSAER) is

described.

• Chapter 4 contains the evaluation of the simplified neural model in software. Two

types of spiking networks, a feedforward perceptron with Gabor-like Receptive

Fields encoding and a Restricted Boltzmann Machine are trained and evaluated.

Chapter 1 Introduction 11

• Chapter 5 describes the hardware implementation of the proposed neural model

and data representation. This chapter describes several novel models of spiking

neurons, a vectored large-scale neural architecture and a new implementation of the

STDP learning algorithm in hardware. The developed components are analyzed

from the perspective of speed, occupation, and accuracy in comparison to software-

implemented models. The benefits and the limitations of the contemporary FPGA

devices and fixed-point arithmetic are discussed.

• Chapter 6 is dealing with the hardware implementation of Gaussian Receptive

Field (GRF) encoding, described in Chapter 3. Two approaches, parallel and

vectored, are implemented, tested and compared.

• Chapter 7 contains the summary of the thesis and comparison with the state-of-

the-art implementations.

Chapter 2

Neural networks and models: a

brief overview

In the middle of 20th century, a combination of biological studies with the mathematical

approach to the theory of control created a new scientific discipline: artificial neural

networks. An artificial neural network is generally defined as a mathematical model,

loosely based on the behavior of the animal neural systems. Such models usually consist

of computation units (neurons), connected by data paths (synapses) and are able to

solve the vast variety of recognition, control, and system identification problems. The

pioneering work in this discipline was made by Warren McCulloch and Walter Pitts [1].

They succeeded in creating a mathematical description of an integrating neural element

and the model of connections in the networks of such elements. In their work, they

demonstrated that a network of simple non-linear integrators can successfully approxi-

mate a number of functions. However, the algorithm to design such networks remained

unclear until 1949, when Donald Hebb discovered the learning rule, named after him.

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic changes take place in one or

both cells such that A’s efficiency as one of the cells firing B, is increased” Hebb, D.O.

(1949), “The organization of behavior”, New York: Wiley, p.62 [2]

“When one cell repeatedly assists in firing another, the axon of the first cell develops

synaptic knobs (or enlarges them if they already exist) in contact with the soma of the

second cell.” Hebb, D.O. (1949), “The organization of behavior”, New York: Wiley, p.63

13

14 Chapter 2 Neural networks and models: a brief overview

“The general idea is an old one, that any two cells or systems of cells that are repeatedly

active at the same time will tend to become ‘associated’, so that activity in one facilitates

activity in the other.” Hebb, D.O. (1949), “The organization of behavior”, New York:

Wiley, p.70

The first self-learning artificial neural network was the Mark 1 Perceptron machine,

created in 1958 by Frank Rosenblatt [3]. It featured two layers (input and output, no

hidden layer) of McCulloch-Pitts neurons with binary function and was able to learn the

linearly separable classes. The early success of relatively simple hardware and mathe-

matical models draw interest into the neural networks field, but it quickly went down

in 1969 after a publication of Minsky and Papert, who described the limitations of the

perceptron model and its learning rule. The influence of this book was so strong, that

very little research was done for the next 20 years, and several important works in this

field were unnoticed, including the backpropagation algorithm. Note the complexity

of wiring of the Perceptron hardware, shown in Figure 2.1. The connectivity problem

(number of connections grows exponentially with the number of neurons) remains an

important problem even now, 60 years later. The architecture described in this thesis

is created to avoid this problem by taking the vectored approach to the computations

necessary.

The backpropagation algorithm was rediscovered in 1986, and the application of this

method for the neural network training by Rumelhart, Hinton, and Williams ([4]) al-

lowed to successfully train multilayer perceptrons, capable of solving complex nonlinear

problems. From the 90s, the neural networks field became active again, what lead to

the development of a broad diversity of topologies, learning algorithms, coding methods,

and applications.

2.1 Biological neurons and neural models

Wolfgang Maass [5] proposed the three-generation classification scheme for the neural

networks. The first generation of neural networks works only with binary [0,1] signals

and uses a step function to provide a binarized [0,1] output. The perceptrons belong to

the first generation. A perceptron computation unit consists of an adder and a threshold

Chapter 2 Neural networks and models: a brief overview 15

Figure 2.1: Mark I perceptron, the first neural network device. Note the amount and
complexity of wiring. The connectionist problem (number of connections per node)

remains an important issue even now, in 2017.

Figure 2.2: First generation McCulloch-Pitts perceptron schematic.

comparator, as shown in Figure 2.2. If the sum of weighed binary values is greater than

the selected threshold, the output switches to 1.

The second generation works with continuous analog values, usually scaled to the small

numeric range and uses a non-linear activation function evaluator. The computing unit,

or neuron, is similar to the McCulloch-Pitts neuron. It consists of a multiply-accumulate

unit computing the weighted sum of the inputs and the non-linear, usually sigmoid ac-

tivation function. The output of the sigmoid function is usually bound between [0..1]

for the logistic function or [-1..1] for the hyperbolic tangent. In recent years, a novel

16 Chapter 2 Neural networks and models: a brief overview

Figure 2.3: Sigmoid function neuron schematic. Image courtesy: Tom M. Mitchell.
Machine Learning.McGraw Hill. 1997. [7]

Figure 2.4: Spiking neuron model. The output sequence of spikes is computed as a
function of input X and time t.

simplified Rectified Linear Unit (ReLU) activation function became popular [6]. The

ReLU neurons are computationally simpler and provide a resulting accuracy compara-

ble or even better than traditional sigmoid ones.The schematic of the generic second

generation neuron is shown in Figure 2.3.

This work is focused on the third generation of the neural networks, the spiking neural

networks [5]. The concept of a spiking neuron is more complex compared to second

generation artificial neuron, as the output of the neuron is not only the function of its

input (spatial dependency) but also the time. The spiking neuron, shown in Figure 2.4

can change its state even in absence of input stimuli. As the spiking network has both

spatial and temporal dependency, its computing capabilities now can include complex

processes and transitions. In the spiking neural network, the data are encoded in the

series of short pulses, or spikes, transmitted along the data lines, called synapses. The

neuron can generate a spike under certain conditions, and these conditions are described

by its mathematical model.

The neuron model has a number of tunable parameters, which are important to its func-

tioning. We can change the synaptic weights, transmission delays, stimulation threshold

and post-spike response, as well as a number of other parameters. The proper choice

Chapter 2 Neural networks and models: a brief overview 17

of all mentioned variables is crucial for the proper network functionality. The neural

models used in this work are described in section 2.3.

2.2 Neural plasticity

There would be a little use of neural networks if they would not have the ability to

learn new things by tuning their parameters. The process of adaptation of the network

parameters in such form that improves the network response to a given stimuli is called

learning. The neural network learning is quite different from the colloquial meaning of

this word. S.Haykin [8] defines it as: Learning is a process by which the free parameters

of a neural network are adapted through a process of stimulation by the environment in

which the network is embedded. The type of learning is determined by the manner in

which the parameter changes take place. Generally speaking, neural network learning

algorithm can be described by the following cycle:

1. The network is given the input, containing the sample of the signal.

2. The network generates an output.

3. The network output is evaluated using some kind to metrics to determine the

current fitness of the network.

4. The parameters of the network are tuned with regard of the metrics output from

the previous step.

5. The steps 1-4 are repeated until the desired fitness is reached.

There are several types, or paradigms, of learning methods: supervised, unsupervised

and reinforced. The most well-known method is the supervised learning. During

the supervised learning, the network gets input stimuli paired with the desired output

response. Knowing the output necessary to be produced, the network can adapt its

parameters to fulfill it. Usually, the process of the adaptation is done iteratively, in a

number of small steps. The classic example of this type of learning is the previously

mentioned backpropagation algorithm applied for the multilayer perceptrons, or Hebbian

learning. There are several works regarding the implementation of supervised learning

in spiking neural networks (Ponulak and Kasinski, 2011 [9]).

18 Chapter 2 Neural networks and models: a brief overview

The unsupervised learning is done by giving the network only the input stimuli and

defining some kind of metrics to estimate the network performance. Such metrics can

be the fidelity of the sample reconstruction from the current network state, commonly

used for Autoencoder networks, or Restricted Boltzmann Machines. The most common

spiking learning rule, the Spike-Time Dependent Plasticity (STDP) is an unsupervised

learning algorithm as well [10, 11]. STDP will be further discussed in details.

The reinforcement learning requires providing a discrete signal, to inform the network

about its performance. The proper outcome of the network is positively reinforced, or

rewarded, and the erroneous is punished. The difference between reinforcement and

supervised learning is that the network doesn’t know the expected outcome, it changes

its parameters only in a “reward-punishment” scale. As the neural network has multiple

parameters, the learning can be represented as a high-dimensional optimization task.

Usually, the learning algorithms are tuning the neuronal weights; however, some of

them modify the neuronal thresholds (Diehl et al. [12]). The changes of the neural

topology are usually done by eliminating the neurons with the weakest response. This

technique is called pruning and is optimizing the network performance as well as its

computational complexity.

2.3 Neural models

Due to a very high complexity of living neural cell, spiking neural nets are rarely im-

plemented with high-precision biological models. The most important parts such as

potential dynamics, signal propagation, and weight plasticity can be successfully mod-

eled by more simple mathematical descriptions. Multiple spiking neural models exist,

but only selected ones are presented in this chapter. The descriptions included here

are mostly based on the book Spiking neuron models: Single neurons, populations and

plasticity by Gerstner and Kistler [13].

The selection of the proper model is a compromise between the degree of biological

plausibility and the available computation resources. Classic biological models are fo-

cused on the plausibility of the described phenomena and the feasibility of the model to

predict the behavior of the model components. Computational neuroscientists are more

interested in the model plasticity and large-scale simulation capabilities. In the neuro-

morphic engineering field, the choice is also limited by the intended hardware platforms

Chapter 2 Neural networks and models: a brief overview 19

Figure 2.5: Plausibility-complexity comparison. FLOPS scale is for digital imple-
mentations [14].

as some models with complex behavior can be efficiently modeled only by software. The

selected hardware also implies additional limitations: some models are easy to model in

analog hardware but have prohibitively high resource occupation for the digital imple-

mentation. A plausibility-complexity comparison was made by Izhikevitch [14] and is

shown on Figure 2.5. Note that the ”biological plausibility” is describing only neuronal

behavior, not the internal structure. For example, Izhikevich model, while showing dy-

namics very close to biological neurons, remains a purely mathematical concept.

This work is treating the spiking neuron as a computing primitive, prioritizing the hard-

ware complexity and learning properties.

2.3.1 Biological spiking neuron

The biological neural cell is a complex dynamic system able to process information

delivered by chemicals and electric potential gradient. The complexity of the mammal

neural system is overwhelming: the average human body contains around 86 billions

of neurons connected by 1.5 ∗ 1014 synapses. The human brain itself contains between

19 and 23 billions of neurons. The neurons differ by their functions, connectivity type,

shape, size and other parameters; however, they all are sharing the same main elements:

soma, dendrites, and axon [13], as shown in Figure 2.6.

The soma is the main part of the neuron. It contains the cell nucleus as other organelles

and is considered the main signal electro-chemical processing unit. Soma is responsible

20 Chapter 2 Neural networks and models: a brief overview

Figure 2.6: The most common neuron types and their structure. Image courtesy of
[15].

for performing the basic cell functions necessary for the neuron well-being.

The dendrites are the extensions of the soma and form together a dendritic tree. The

dendrites are attached to the adjacent neural cells via small junctions, called synapses.

The dendrites provide inputs to the soma.

The long fine fiber of conductive tissue is called the axon. The neuron has only one

axon, so it can give only one output at the time. The axon endings can be split into

multiple terminals with synapses so that one neuron can be connected via the axon to

multiple neighbors. The signal propagation is performed by changing the polarization

of the cellular membrane along the axon. The increase of the neurons electric potential

opens the Na+ ion channels in the membrane, changing the polarity of the charges on

the membrane surface. The area of the oppositely polarized membrane travels along the

axon. The saturation of the Na+ ion channels opens the K+ ion channels that restore

the membrane to normal, or resting potential. The axon is usually covered by myelin

sheath to boost the propagation speed of the signal. The maximum observed signal

propagation velocity is 120 m/s in a human neural system.

The synapse, shown in Figure 2.7, is the special zone where the communication between

the neurons happens. The axon terminal contains molecules of neurotransmitters held

by protein membranes, called vesicles. The depolarization of the axon membrane opens

voltage-gated Ca+ channels, allowing calcium ions to enter the terminal. This opens

the vesicles and neurotransmitters are released into the space between the terminal and

the dendrite of the adjacent cell (called postsynaptic cell). The dendrite membranes

Chapter 2 Neural networks and models: a brief overview 21

Figure 2.7: Biological synapse structure. Image courtesy of [16].

contain the compounds known as neurotransmitter receptors that capture the released

neurotransmitters, what changes the chemical equilibrium of the postsynaptic cell. The

information is propagated from one cell to another.

The described process, while complex, is very repetitive. As the sodium-potassium chan-

nels can be opened only by certain membrane threshold potential, the change of voltage

during this event is the same regardless of the frequency of it. This short transition of

the membrane potential is called an action potential. As the concentration of ions can-

not be restored immediately, the neuron can produce the action potential only once per

certain period of time, being irresponsive for the short period after the depolarization-

polarization cycle. The rapid change of the potential is also called a spike.

To be able to model the described behavior, a mathematical model of the processes is

necessary. There are multiple models with a different approach to the biological plausi-

bility and accuracy. As in this work, the main focus is not on the biological plausibility

only the selected models, important for further understanding will be described. The

presented models are commonly used in neuromorphic hardware, having a good com-

promise between computational complexity and performance.

2.3.2 Hodgkin-Huxley Model

Hodgkin and Huxley were the biologists conducting experiments on the giant squid axon.

Based on the observations, they created the first electrical model of the neuron that can

be expressed mathematically (Hodgkin and Huxley, 1952 [17]).

22 Chapter 2 Neural networks and models: a brief overview

Figure 2.8: Hodgkin-Huxley model circuit. Left: simplified synapse membrane
schematics with K-Na ion distribution. Right: equivalent electric circuit.

Figure 2.9: Hodgkin-Huxley axon action potential vs time in the presence of constant
stimulus.

They treated the cell membrane as an electric circuit, where input current I is charging

the capacitor C and is leaking through resistors representing the membrane channels.

The equation 2.1 has three leakage resistors: a potassium channel, sodium channel and

non-specified general leakage.

I(t) = IC(t) +
3∑

k=1

Ik(t) (2.1)

The current flowing through the membrane includes all channels. From the equation 2.1

we can obtain the potential change from the equation 2.2. This equation is describing

the general potential dynamic in presence of stimulus.

C
du

dt
= −

3∑
k=1

Ik(t) + IC(t) (2.2)

Now we know the rule how the membrane potential is changing in time under stimulation.

Chapter 2 Neural networks and models: a brief overview 23

Figure 2.10: Hodgkin-Huxley spiking model. A: Sequence of spikes caused by con-
stant stimulation. B: Intensity-frequency plot.

The plot of the du/dt graph is in Figure 2.9. On this plot, the sufficient input current

creates a rapid increase in potential up to the threshold level and a rapid discharge after.

The time immediately after is called the refractory period. In Figure 2.10 we can see the

spike train obtained from the constant stimulus and intensity-frequency plot. The firing

rate in the Hodgkin-Huxley model is defined by the pulse duration and the refractory

period. These parameters are chosen based on the real biological neuron behavior. The

typical membrane potentials are within -80-40 mV range and synaptic currents have

1-20 nA, and the average firing rate range in 1-200 Hz [18].

Hodgkin-Huxley model, being a compromise between biological plausibility and compu-

tational complexity is a useful tool for simple neuronal simulations.

2.3.3 Leaky Integrate and Fire (LIF) model

The leaky integrate and fire model is behavioral: it is modeling not the neuron structure,

but its behavior [13]. Its relative simplicity makes the LIF a popular choice for the

machine learning-oriented SNN simulators, even while it is not biologically plausible.

The schematic of the LIF model is presented in Figure 2.11. It consists of an RC

integrator (shown in the circle on the right part of the diagram), a threshold switch and

a low-pass filter that controls the discharge process.

The input current I(t) is charging the RC circuit. The voltage u(t) on the capacitor

is compared with the threshold υ by the threshold gate. If u(t) ≥ υ, a gate opens,

generating an output pulse δ(t−t(f)
i), which passes through the low-pass filter, generating

current α(t − tfj). The input driving current I(t) is split into IR and IC components.

The IR component corresponds to the current passing through the resistor R. It can

be calculated from the Ohm’s law as IR = u/R where u is the voltage across the

24 Chapter 2 Neural networks and models: a brief overview

Figure 2.11: Leaky integrate-and-fire (LIF) model.

resistor. The IC component charges the capacitor C. The voltage u is the same on both

components. From the capacity equation C = q/u, where q is the charge, the capacitive

current is equal to IC = C
du

dt
. The resulting driving current equals to Equation 2.3.

I(t) =
u(t)

R
+ C

du

dt
(2.3)

Parameters R and C are constant, we can introduce a time constant τm = RC and yield

a general LIF neuron equation 2.4

τm
du

dt
= −u(t) +RI(t) (2.4)

Voltage u is the membrane potential and τm is the membrane time constant of the

neuron.

The spike concept in the LIF is a short current pulse created when a membrane potential

reaches the threshold. Immediately after it, the membrane potential is reset to the rest-

ing potential and remains unchanged during the refractory period. The main parameters

of the LIF model are the threshold υ, membrane time constant τm and the refractory

period duration Tref . As the LIF model is described by a system of simple linear equa-

tions, it is easy to model it numerically or implement in analog hardware. While the

model is developed for continuous stimulation (injected) currents, it works with spikes

also. The spikes incoming to the neuron are called presynaptic, and the outgoing spikes

are considered postsynaptic. We can see in the Figure 2.12 how the membrane poten-

tial is changed with stimuli. While LIF model does not describe cellular membrane

Chapter 2 Neural networks and models: a brief overview 25

Figure 2.12: Leaky integrate-and-fire model dynamics of the neuron driven by ir-
regular current so the membrane positive charge change and leakage can be observed.
Injected current is on the bottom plot, membrane potential is on the top plot. When

the driving current is negative, the membrane potential decreases.

biophysics with ion channels, LIF model is similar to Hodgkin-Huxley by its time dy-

namics. Both models do not have the capabilities to express all types of spiking behavior

encountered in real neurons but are widely used because of their simplicity. Both mod-

els do not have long-term plasticity, and it is usually described as a separate phenomena.

2.3.4 Simplified Spiking Neural model

The classic Leaky Integrate-and-Fire (LIF) model and its generalized form, Spike Re-

sponse Model [19], are widely used in computational neuroscience. However, LIF spiking

neuron models are computationally complex since non-linear equations are used to model

the membrane potential. However certain simplifications might be defined in order to

reduce computational complexity by proposing a simplified membrane model. The com-

mon implementation of the non-linear SRM discards the complex PSP in favor of instant

26 Chapter 2 Neural networks and models: a brief overview

potential change as in Equation 2.5. This work proposes a linear simplified model with

similar behavior but more efficient in a digital hardware implementation.

Pt =

Pt−1 +

K∑
i=1

WiSi − ηPt−1, if Pt−1 < Pthreshold

Prefract, if Pt−1 > Pthreshold

(2.5)

To avoid confusion with circuit-based models, electrical terms like current and voltage

are replaced with mathematical abstract definitions. Let us describe the membrane

potential Pt as a function of time and incoming spikes. Time units are counted in

discrete time form as the model is intended to be used in digital circuits. For an n-input

SNN, during the non-refractory period each incoming spike Si, i = [1..K] increases the

membrane potential Pt by a value of a synapse weight Wi. In addition, the membrane

potential is decreasing by a constant value D, every time instant. This process can be

described by Equation 2.6, which corresponds to a simplified version of Equation 2.3 in

a LIF model. As the membrane potential is decreased by the constant value, a lower

boundary condition has to be included.

Pt =

Pt−1 +

k∑
i=1

WiSi −D, if Pmin < Pt−1 < Pthreshold

Prefract, if Pt−1 > Pthreshold

Rp, if Pt−1 < Pmin

(2.6)

At each time instant t, if membrane potential Pt is bigger than the resting potential Rp =

0, it degrades by a fixed value Pt = Pt−1−D. The resulting postsynaptic potential(PSP)

function will be a saw-like linear function, which is easily implemented by a register

and a counter, contrary to classic non-linear PSP models based on look-up tables or

RAM/ROM for non-linear equations. The value of constant D is chosen relevant to the

maximum presynaptic spike rate and the number of inputs. An example of membrane

potential dynamics of the proposed model is shown in Figure 2.13. When Pt > Pthreshold,

the neuron fires a spike lasting one minimal time unit, the membrane potential becomes

Pt = Prefract (resting potential) and a refractory period counter starts. Instead of a slow

repolarization of the membrane after the spike, the neuron is blocking its inputs for time

Trefract, and holds membrane potential at a Prefract level during this time. To avoid

Chapter 2 Neural networks and models: a brief overview 27

strong negative polarization of membrane, its potential is limited by Pmin. Despite

the model of the neuron is linear, the network can produce a non-linear response by

tuning the weights of previous layer inputs, similar to the way ReLU function is used in

non-spiking networks. The output spike frequency is bound within given range [20].

600 620 640 660 680 700 720

Time Units

0

2

4

6

8

10

12

14

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l

Refractory

period

Postsynaptic

spike

Presynaptic

spikes

Figure 2.13: Membrane potential dynamics of a single neuron with simplified mem-
brane model. After several incoming spikes, the membrane potential surpasses threshold
and neuron fires a postsynaptic spike. For better visibility, neuron potential is increased
three times for one TU after spiking. During refractory period, neuron does not change

its potential. Presynaptic spikes are shown with colored dots.

2.4 Long-term plasticity

In the SNN scope, the long-term plasticity is defined as the ability of synapses to

strengthen or weaken over time depending on increases or decreases in their activity

[21]. In the simplified phenomenological models described earlier, this corresponds to

the changes of the synaptic weights. Thus, the learning in the spiking networks is com-

monly referred as long-term plasticity.

The most widespread algorithm is called Spike-Time Dependent Plasticity (STDP).

STDP was observed in biological neurons and is considered to be a nature’s equivalent to

Hebbian learning rule. The STDP was formally described by Markram in 1997 [22] based

28 Chapter 2 Neural networks and models: a brief overview

on previous observations. The main idea of STDP is that the causality of neural spikes

determines the importance of the repeating inputs to discriminate the given pattern. If

the presynaptic spike occurred before postsynaptic, its synaptic weight increases, and

if the presynaptic spike happens after the postsynaptic, the weight is decreased. This

means that a neuron can become reactive to the specific spiking input, or pattern if

the presynaptic spikes have good conformity. This multiple coincidence detection and

facilitation mechanism is believed to be the universal biologically plausible learning al-

gorithm.

The strength of the weight change is a function of time between presynaptic and post-

synaptic spike events. The function used for STDP learning, shown in Figure 2.14,

is a synthetic curve-fitted and does not describe any biochemical process. The classic

asymmetric reinforcement curve is shown in Figure 2.14. The function shown is tak-

ing arbitrary Time Units (TUs) as an argument. The learning function is described in

Equation 2.7 where A− and A+ are constants for negative and positive values of time

difference ∆t between presynaptic and postsynaptic spikes, determining the maximum

excitation and inhibition values: τ−, τ+ are constants characterizing the steepness of

the function.

STDP (∆t) = ∆w =

A− exp∗(∆t

τ−), if ∆t ≤ −2

0, if − 2 ≥ ∆t ≤ 2

A+ exp∗(∆t
τ+

), if ∆t ≥ 2

(2.7)

The learning rule (weight change) is described by Equation 2.8. The desired distance

between presynaptic and postsynaptic spike is unity when the postsynaptic spike occurs

one time unit after the given pattern of postsynaptic spikes arrived. The weight change

rate σ controls the weight adaptation speed.

wnew =

wold + σ∆w, if ∆w ≥ 0

wold + σ∆w, if ∆w ≤ 0

(2.8)

In computational neuroscience, STDP-type learning describes a broad range of weight

update rules where the value of the weight update is determined by the causality of the

Chapter 2 Neural networks and models: a brief overview 29

Figure 2.14: STDP curve used for learning. This type of curve has stronger depression
value than potentiation, increasing specificity. A+ = 0.6, A− = 0.3, τ+ = 8, τ− = 5.

presynaptic and postsynaptic events. The represented function is describing only one

type of the STDP learning.

2.5 Neural networks types

In this section, two types of neural networks are presented, used with classic and spiking

neurons as well. Multi-layer Perceptron and Restricted Boltzmann Machine are examples

of different network topologies and have different learning algorithms. They belong

to one of the most well-known types of the networks and are widely used in various

Machine Learning (ML) tasks. These topologies are widely used in the classic and

spiking variations.

2.5.1 Multilayer Perceptron

The multilayer perceptron neural network is undoubtedly the oldest and the most well-

studied type of neural networks. The concept can hardly be credited to only one person

or team, but MLPs became common after the Rumelhart, Hinton and Williams work

[4], after they presented an efficient algorithm for learning them.

Mathematically, MLP is a feedforward neural network with fully connected one or two

hidden layers (the layers that are not input or output ones) of neurons with non-linear

30 Chapter 2 Neural networks and models: a brief overview

Figure 2.15: Multilayer perceptron schematic.

activation functions. The topology of the MLP is presented in Figure 2.15. The main

features of the MLP architecture are:

1. No connections exist among the units in the same layer.

2. The output of a layer is a function of the previous layer inputs and a bias.

3. All units in a layer share the same activation function and can be computed in-

dependently. Different layers can have different activation functions or it can be

skipped as for the last layer.

Every neuron in one the hidden layers of MLP is performing the function described by

Equation2.9:

Y = F (
∑

(~W ∗ ~X) + b) (2.9)

Where ~W is a vector of weights of the neuron, ~X is an input vector and b is a bias value.

Note that multiplication is performed elementwise. The F is a non-linear activation

function of the neuron.

The whole network can be described as a massively parallel computation of Equation

2.9 for each neuron in the network. The difference for each unit lies in the inputs and

weight values, which are those shown in Equation 2.10 where ~Yj is the computed layer

output obtained from the previous layer (~Yj−1) outputs or input layer ~X; Wj and ~bj are

Chapter 2 Neural networks and models: a brief overview 31

the weight matrix and bias vector of a given layer j, respectively. The total number of

layers is i, and the activation function is F .

~Y0 = ~X

Y11 = F (
∑
j

(W 1
1j ∗ Y0j) + b11)

Y12 = F (
∑
j

(W 1
2j ∗ Y0j) + b12)

...

Yi1 = F (
∑
j

(W i
1j ∗ Y(i−1)j) + bi1)

Yi2 = F (
∑
j

(W i
2j ∗ Y(i−1)j) + bi2)

(2.10)

The activation function F serves as a nonlinear regularizer, limiting the information

passed between the layers. The traditionally used hyperbolic tangent and logistic sig-

moid functions are now often replaced by Rectified Linear Unit (ReLU) activation func-

tion [6] due to the less computational complexity and good learning properties.

The classic MLP learning algorithm is a backpropagation; however other methods do

exist as well.

Spiking feed-forward networks, such as perceptrons or autoencoders are the most popu-

lar types of the SNNs. However, the number of layers is usually much less compared to

classic MLPs, as the efficiency of known spike training algorithms is much less for deep

networks. The existing implementations of spiking perceptrons can be split into three

groups: the networks that use biologically plausible iterative learning (such as STDP)

[10, 11, 23, 24], SNNs that are trained using mathematical methods (backpropagation,

evolutionary algorithms, etc) [9] and the networks that are a product of conversion

from classic ANN into SNN[12, 25]. Very often, SNNs that are trained through itera-

tive algorithms, while having feedforward signal propagation, also feature lateral neural

inhibition, i.e. a negative weight connection between all neurons in a layer. Due to

the nature of spiking learning algorithms, the addition of inhibitive connections makes

the training more efficient. It is implemented either as negative weights, or an array

of mirroring inhibitory neurons (every excitatory neuron in the layer has its inhibitory

counterpart). The addition of purely inhibitory neurons is a biologically plausible well-

known mechanism [26].

32 Chapter 2 Neural networks and models: a brief overview

2.6 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a stochastic neural network, invented by

Paul Smolensky in 1986 [27], but it gained the popularity only after the classic Hinton

and Salakhutdinov paper on efficient training algorithm for RBMs [6, 28]. The RBM is

a generative model, which means that the network tries to recreate the input state from

the superposition of hidden layer activations.

Figure 2.16: Restricted Boltzmann Machine network.

Classic RBM consists of two layers: visible v (input) and hidden (output) h, connected

by bilateral synapses. It means that the weight matrix W is shared for both layers, and

the state of the input layer can be recreated from the state of the hidden one. Hinton

[28] proved that the probabilistic RBMs have better performance and are more robust.

In the probabilistic RBM, the output of the neuron is computed by the formula 2.11

P (hj = 1|v) = σ(bj +
∑m

i=1wi,jvi)

P (vi = 1|h) = σ(aj +
∑n

j=1wi,jhj)
(2.11)

In this equation, the P (hj = 1|v) is the probability that the j-th neuron in the hidden

layer h will have the state of 1, given the input vector v. σ is the logistic sigmoid func-

tion, and m is the size of vector v. The P (vi = 1|h) is the probability that the i-th

neuron in the visible layer v will have the state of 1, given the h as the input vector.

The size of the hidden vector is n, a and b are the bias vectors for the visible and hidden

layers.

The training of RBM is a process to find the matrix W that provides the best recon-

struction of visible vectors from the given dataset. The networks are usually designed

such that n < m, thus the reconstruction is performed from the smaller vector. Thus, an

RBM can serve as linear dimensionality reductor, outperforming many traditional meth-

ods [29, 30]. The most popular method of training RBMs is the Contrastive Divergence.

The basic version of the algorithm is the following:

Chapter 2 Neural networks and models: a brief overview 33

Figure 2.17: Event-based CD algorithm. The RBM is unrolled into Monte-Carlo
Markov Chain. The correlation between visible and hidden layer causes weight po-
tentiation; the correlation between reconstruction of layers causes depression Source:

[31].

1. Assign the input vector values to the visible vector ~v.

2. Compute the states of the hidden vector based on current values of v.

3. Compute the outer product pos of vectors ~v and ~h. ~pos = ~v ~hT

4. Compute the reconstruction of the visible vector v′ from the current values of h.

5. Compute the reconstruction of the hidden vector h′ from the current values of v′.

neg = v′h′T .

6. Compute the outer product neg of the vectors ~v′ and ~h′.

7. Update the weight matrix W with ∆W = η(pos− neg). η is the learning rate.

8. Update the biases to visible and hidden layers: ∆a = η(v − v′),∆b = η(h− h′).

The use of binarized states of the layers makes the RBM similar to spiking neural

networks, and the weight update rule is somehow similar to the STDP: the weight is

facilitated when both visible and hidden neurons are activated, and depressed when their

reconstructions are both activated. This fact is used for creating the Spiking RBMs.

The similarity between RBM binarized data processing and spike network naturally

lead to use the RBM topology and learning methods for the spike-represented data.

Two implementations are important to be mentioned in this work. First spiking RBM

implementation with STDP-derived learning rule was presented by Neftci et al. in 2013

[31]. The main idea of his algorithm, called event-based CD (evtCD) is presented in

Figure 2.17. This work uses LIF neurons with sigmoid transfer function organized in

separate layers for data-driven input and for the reconstruction, so topologically the

network becomes feedforward. For weight update the symmetric STDP-derived rule is

34 Chapter 2 Neural networks and models: a brief overview

used, when simultaneous (within certain time window) firings of visible and hidden layer

cause potentiation and simultaneous firings in the reconstruction layers cause depression.

With such rule, the authors were able to obtain up to 92% accuracy on MNIST dataset.

Another STDP-based approach to the RBM learning was proposed by Daniel Neil in his

thesis [32]. He also unrolled RBM into 4-layer feedforward network with shared weights

and used LIF neurons for it. The weight update rule has fixed potentiation/depression

step as shown in Equation2.12.

∆W+
ij =

η, ifhi = 1, vj = 1

0, otherwise

∆W−ij =

−η, ifh′i = 1, v′j = 1

0, otherwise

(2.12)

These implementations show that the RBM is a viable topology for spike networks and

can be used for practical classification tasks.

Chapter 3

Neural encoding

The discrete or analog information needs to be converted into sequences of spikes to be

processed with the SNN. A number of sensors with spike-generating output exist [33–35],

and only such sensors can be directly used with the neuromorphic hardware. The most

popular types of such sensors are retinas, cochleas, and physical position sensors. Usu-

ally, such sensors combine the rate-based coding with the Address-Event Representation

(AER) protocol. This approach is the de-facto standard for the neuromorphic sensory

hardware and allows seamless data fusion within one network. For example, the work of

[36] is combining the visual information with sound as a proof of concept of a multimedia

cognitive system. However, such sensors are still not very common yet and the problem

of converting data into spikes is very important. The neural encoding defines not only

the way the which information is stored, but also influences the processing algorithm

and the hardware implementation possibilities.

3.1 Rate-based encoding

The traditional coding scheme directly encodes analog values into spike trains with the

intensity proportional to the analog value, as shown in Figure 3.1. Such encoding can

be encountered in biological systems [37], but it has limited usability in the machine

learning field, because of the disparity of intensity between classes. SNNs naturally fa-

vor more spike-intense signals, thus, the normalization of the input is important. It can

be successfully used in different applications as [38].

35

36 Chapter 3 Neural encoding

Figure 3.1: Rate-based coding of analog stimulus (plot B) into a spike train (plot A).
Image source: [13].

Figure 3.2: Average spike density coding of analog stimulus. Image source: [13].

In order to improve the spike response and robustness to noise in large neuronal popu-

lations, a more complex average rate-based encoding is used. It can be considered as an

averaged merging of several stochastic spike trains over the same stimulus. The example

of such encoding is shown in Figure 3.2. The resulting spike train represents the average

spike density over time for given stimulus.

3.2 Position coding

In the position coding, every input value is encoded into several spike trains, providing

not only frequency but also a spatial distribution of the spikes. Sometimes it is called

Gaussian Receptive Fields coding (GRF), because of the widespread usage of Gaussian

spike distribution. A set of points ~x is evenly distributed within the stimuli input range

[Min..Max]. Every point corresponds to a separate spike train. The spike frequency for

the specific spike train is selected by the Gaussian normal distribution function described

by the Equation 3.1), where a is the maximum spiking frequency, x0 is the nth point

within the input range and σ is the Gaussian kernel width. This type of coding is shown

in Figure 3.3. Five overlapping GRFs are generating five spike trains with the firing

rate proportional to the distance between the current input and the corresponding GRF

Chapter 3 Neural encoding 37

0 1 2 3 4 5 6 7 8 9 10

GRF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ir
in

g
 r

a
te

 (
1

=
m

a
x
)

Figure 3.3: GRF encoding of the [0...10] range with 5 fields (5 spike trains). The
black vertical line denotes one analog input, and the points of crossing with Gaussian

curves give the corresponding spiking frequency normalized in [0..1] range.

Figure 3.4: Average amount of spikes per sample for Iris dataset. First 50 samples
are for the Setosa, samples from 51 to 100 are for Versicolor and the last 50 samples
are the Virginica species. Note that the variation of the spike density is less than 20%

between the classes.

center. The wider fields are, the more spike trains are generated by a single input value.

f(x) = a exp−(
x− x0

2σ
)2 (3.1)

This coding provides the average spike density roughly equal for all dataset regardless

of the input values, what is important for the training. For example, the average spike

frequency for the samples from the Iris dataset [39] is shown in Figure 3.4.

38 Chapter 3 Neural encoding

Figure 3.5: Off-centered and on-centered neural receptive field and corresponding
spike trains. Source: [41].

3.3 Visual receptive fields

The visual information is more complex to encode, as it is usually represented in 2D with

several input channels per pixel (color, luminosity). With the bio-inspired algorithms,

it is possible to get more efficient spike encoding than with basic rate-based models.

The visual neural cortex is one of the best studied parts of the brain. The receptive

field (RF) of a visual neuron is the specified part of the image affecting the neural input.

The size and shape of receptive fields vary heavily depending on neuron position and

purpose. By modifying the receptive field one can make a neuron sensitive to an object

position, orientation, and shape. On each subsequent layer of visual cortex, receptive

fields of the neurons cover bigger and bigger regions, convoluting the outputs of the

previous layer.

Mammalian retinal ganglion cells located at the center of vision, in the fovea, have

the smallest receptive fields and those located in the visual periphery have the largest

receptive fields [40]. The large receptive field size of neurons in the visual periphery

explains the poor spatial resolution of our vision outside the point of fixation (other

factors are photoreceptor density and optical aberrations). Only a few cortical receptive

fields resemble the structure of thalamic receptive fields, while others have elongated

subregions that respond to either dark or light spots, others respond similarly to light

and dark spots through the entire receptive field and others do not respond to spots at

all.

Chapter 3 Neural encoding 39

Figure 3.6: Different types of Gabor RF.

3.3.1 Receptive field neuron response

The neurons in the receptive or sensory layer generate a response defined by Equation

3.2.

RRF =
∑

Iij ∗Wij (3.2)

Iij defines input intensity and the matrix Wij defines a receptive field of the neuron,

where i is X-axis resolution and j is Y-axis resolution. The field can be off-centered or

on-centered as it was shown in Figure 3.5, or it can describe a Gabor-like filter, shown in

Figure 3.6. These RFs can be used as line detectors, small shape detectors, performing

feature extraction for higher layers. Simple classification tasks (i.e. the inclination of the

line, circle or non-circle object) can be performed by single-layer receptive field neurons.

Having normalized input and weights, the maximum excitation will be achieved when

the input exactly matches the weight matrix.

Sensory layer neurons generate spikes at a frequency proportional to their excitation.

As the neuron firing frequency can not be infinite, the maximum firing rate is limited,

and thus, the membrane potential is normalized. The spiking response firing rate for

the nth spiking input (FRn) is described by Equation 3.3, where Rn is the receptive

field response, RPmax is the defined minimum refractory period and max(R) is the

maximum possible value of membrane potential.

40 Chapter 3 Neural encoding

FRn =
1

RPmax ∗ Rn
max(R)

(3.3)

3.3.2 Gabor filters

Gabor filter, named after Dennis Gabor, is a band-pass filter widely used in digital

signal processing in its time domain form and in image analysis in its space domain

form. A family of two-dimensional Gabor functions was proposed by Daugman [42] as

the mathematical models of simple receptive fields in visual cortex cells [43]. These

functions are described by Equation 3.4

gλ,Θ,φ,σ,γ(x, y) = exp(−x
′2 + γ2y′2

2σ2
)cos(2π

x′

λ
+ φ)

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

(3.4)

The shape and orientation of such receptive field can be selected by modifying the

parameters of Equation 3.4. Standard deviation σ of the Gaussian determines the linear

size of the receptive field. γ determines the spatial aspect ratio, i.e. the ellipticity of

the RF. λ is the wavelength and by modifying σ/λ ratio one can modify the number of

inhibitory and excitatory zones in the RF. φ responds for the symmetry of the RF and

θ specifies the orientation of the RF. x′ and y′ are imaginary components of the filter

response along the XY axis.

Gabor fields have good orientation selection properties and are widely used for image

decomposition. For example, the image of a car in Figure 3.7 is converted by 4 Gabor

field filters with orientations of 45◦, 135◦, 0◦, and 90◦. It is clearly seen in Figure 3.8

that the lines in the direction corresponding to the receptive field are promoted, while

other lines are depressed.

3.4 Address-Event Representation

The spike trains, regardless of its encoding, have to be stored in some format under-

standable by the software or hardware it will be using. The most simple way is using a

2D array, usually called spike raster plot (Figure 3.9). The traditional wide raster plot

Chapter 3 Neural encoding 41

Figure 3.7: Sample monochromatic image of a car.

Figure 3.8: Sample image, converted with 4 different receptive fields with orientation
of 0◦ ,45◦ , 90◦ and 135◦.

representation is quite bulky, the memory occupation is static and is determined by a

number of neurons and the spike train length regardless of the number of spikes in the

plot. In the hardware, the closest representation of the raster plot will be a parallel bus

accepting spikes in real time, what is impractical for a high number of inputs.

In 1992, Misha Mahowald in her PhD thesis described a novel interface tailored to the

hardware needs [44]. The AER interface became a de-facto standard in the neuromorphic

hardware field, having numerous uses [33, 34, 45, 46]. There are several variations of the

AER. In the original AER every spike is encoded as the address of its source, so the spike

train is converted into a sequence of log2(N)-bit words, where N is the number of event

sources (neurons) in the system [47]. Every spike occupies a single time ”slot” and the

absence of spikes is not signaled on the line. Such encoding does not allow for true spike

synchronicity (two spikes cannot share one time slot) and being asynchronous protocol,

requires additional data lines to ensure data integrity (usually REQ/ACK handshake).

Original AER communication scheme is shown in Figure 3.10. The transmitter raises

the REQ signal when the data on the bus is ready, and waits for the high ACK signal,

raised by the receiver. Receiving the acknowledge releases REQ back to low, and this

is driving ACK low too. This ends the asynchronous data transfer.

42 Chapter 3 Neural encoding

Figure 3.9: Sample spike raster plot of 15 neurons spiking over 5000 ms.

AER A1 A2

REQ

ACK

a c

b d

Figure 3.10: Asynchronous AER data communication. The transmitter sets the data
on the AER bus, raises the request signal REQ high and waits for the acknowledge
signal ACK from the receiver. After this, REQ goes low, driving ACK low. The cycle

can be repeated.

The lack of synchronicity is partially solved by timestamped AER [48]. In this version

of the protocol, every spike or event bears the emission timestamp. The timestamp can

be either absolute or relative, equal to the time passed from the previous event. Two

spikes from different sources with the same timestamps are considered to be simultane-

ous. Timestamped AER can efficiently transmit compressed streams as the timestamps

can be arbitrarily increased and there is no need to transmit null events. However, it

has its limitations: timestamps reduce bandwidth and have the continuity problem. For

the 2-byte timestamp where minimum time change ∆t is 1 ms, the timestamp will be

repeated after 16,635 s what can be incorrectly interpreted by the receiving hardware.

Increasing the timestamp field length reduces bandwidth even more. Not all systems

Chapter 3 Neural encoding 43

can process timestamped AER, especially when the events are sparse. Usually, the pro-

cessing is done in realtime or accelerated real time, when timestamped AER is used only

in the data transmission and storage protocols [45]. The methods of AER encoding and

decoding are extensively studied in [49].

In this work, an AER variation is developed to simplify the design of the efficient hard-

ware neural system.

3.4.1 Variable timeslot length AER (VTSAER)

This work describes the modification of the AER protocol to better fit hardware spike

processing systems. It consists of a non-timestamped protocol where a special Timeslot

Separator Event (TSE) word is denoted as the separator of the discrete time slots. The

spike stream is an uninterrupted sequence of events, and all spikes between two TSEs are

considered simultaneous. The TSE denotes the end of one timeslot and the beginning

of the next one. The absence of spikes will be encoded as two consecutive TSEs without

any events between them. An example of VTS AER is shown in Figure 3.11. The

events with address A1 and A2 are occurring simultaneously in time slot #3, in the

next time slot no spikes occur, event sources A2,A3 spike in time slot #6, followed by

the events A1 and A3 in time slot #8. The synchronous AER waveform demonstrates

how an asynchronous stream is sampled and perceived by the synchronous receiver with

the minimum acknowledge time is one clock cycle. By using a TSE, it is possible to

construct the spiking neuron as a finite automaton solely driven by the input, without

internal counters. This simplifies its hardware structure, as it will be shown in Chapter

5. Also, the VTSAER protocol can be expanded by introducing the null event, which is

equivalent to the NOP operation in processor. The null event is the event which synaptic

weight is zero; Such input does not change the neuronal state. As non-TSE events in the

VTSAER do not bear timing information, they are not triggering the membrane decay

also. With null event, it is possible to control the streaming speed to avoid system

congestion, how it will be explained in the next section 3.4.2.

For the spike train of N sources of length T with X active spikes, the VTS stream

has X + T data words of size log2(N), while parallel stream has fixed NxT bit size.

The processing of the VTSAER is simpler as there is no need to scan the spike stream

for spikes, every data word forces a change in membrane potential. It is very easy to

44 Chapter 3 Neural encoding

0 1 2 3 4 5 6 7 8 9 10

Time Unit

0

1

2

3

4

In
p

u
t

CLK

AER A1 A2 A3 A1 A3

REQ

ACK

VTSAER TSE TSE TSE A1 A2 TSE TSE TSE A2 A3 TSE TSE A1 A3 TSE TSE

DVALID

Figure 3.11: Sample of a 6-spike raster plot from inputs A1,A2,A3 and its correspond-
ing asynchronous AER and VTSAER streams. Asynchronous AER stream is shown

from the perspective of the synchronous receiver.

convert the asynchronous non-timestamped AER system into a VTSAER by adding a

timer AER source and merging streams, as shown in Figure 3.12. This schematic will

not harm the bandwidth of the data stream if the single event processing time of priority

multiplexer will be lower than single event generation time.

Figure 3.12: Schematic of asynchronous AER to VTSAER converter. Priority multi-
plexer reads the privileged (red) channel first, while the AER source stream is passing

through the 1-element FIFO to avoid data loss.

Chapter 3 Neural encoding 45

3.4.2 Online event encoding into VTSAER

The conversion of the pre-recorded spike stream into VTSAER is trivial. However, the

real-time hardware encoding of the network response into the VTSAER poses a chal-

lenge. The output of the network must be encoded in hard real time to avoid data loss.

This subsection describes the hardware structure of the encoder, developed for this task.

VTSAER, due to its compressed nature, sets high requirements for the input processing

time. When a new meaningful input is guaranteed to arrive every clock period, the

processing elements of the network have to process their internal states and communicate

the output spikes on the same rate. Of course, the throughput will have some limitations.

Consider a layer of N oversensitive neurons, with the refractory period of R. The synaptic

weights of the neurons are the same and are high enough to cause a postsynaptic spike

on any incoming event. Let the input VTSAER stream consists of a single event every

time slot. Then, for M incoming events, the layer will generate
NM

R
output events. It

is obvious, for N > R, that the output event stream has to be produced at a higher rate

than one event per clock. Of course, such scenario is very unrealistic, as real SNNs are

sparsely activated, with one postsynaptic spike occurring after a tens, if not hundreds,

presynaptic ones. However, depending on the method of the event collection from the

system, these limitations must be considered.

One of the solutions to the described problem is the input flow control. Flow control in

the VTSAER can be performed using Null events. If some event has the corresponding

weight equal to zero, it is not changing the state of the system, thus, an arbitrary number

of null events can be injected into the VTSAER stream. For a complex network, Input-

to-Output event ratio cannot be predicted and a dynamic flow control is necessary. If

the AER source cannot be paused (live stream), a FIFO of reasonable length has to be

added.

The proposed encoding method is shown on Figure 3.13. Output events are passed

to the encoder, where they are encoded at the rate of one event per clock cycle. The

output VTSAER should have the same timings as the input stream, thus TSEs are

passed through the layer in form of virtual ”timestep neuron” output. This output has

the highest priority and is encoded first. If the coder detects the event overflow, it raises

the PAUSE signal. Flow control block, after the detection of this signal, stops reading

46 Chapter 3 Neural encoding

the input VTSAER FIFO and starts sending Null events to the neurons, giving the

encoder necessary time to encode the rest of the active neuron outputs. After all the

neuronal outputs are encoded, the PAUSE signal goes low, and the input VTSAER is

processed.

Figure 3.13: Block schematic of the VTSAER data flow through the single-layer SNN.
Orange arrows show the VTSAER paths, black arrows correspond to binary real-time

output. Red arrow corresponds to the ”timestep neuron” output.

The problem of multiple spike handling can be treated as multiple interrupt service

problem. The polling approach, when all neuronal outputs are sampled sequentially has

fixed and guaranteed time of encoding but is very inefficient. A priority encoder is used

often as an interrupt controller, but due to the relative logical complexity, the signal

propagation time grows exponentially with the number of interrupt sources. This work

proposes a ”passing token” approach than can be described next:

• All neurons are connected in a daisy-chain manner through the line of AND gates

as shown in Figure 3.14. The neurons also are connected to a shared address bus.

• The encoder is running when the global READ ENABLE signal is high.

• When the neuron is not spiking, it is not driving the address bus and the internal

AND driving signal REQOUT is high, causing the gate to pass the unaltered REQ

signal.

• If the neuron generates a spike, it waits until the REQ input is high. After this,

the internal AND driving signal REQOUT goes low, preventing all neurons further

along the daisy-chain to drive the address bus.The neuron is placing its internally

stored neuron address on the address bus.

Chapter 3 Neural encoding 47

SPIKEIN REQ STATE STATE(t+1) REQOUT OVERDUE

0 0 0 0 1 0
1 X 0 1 0 0
1 1 1 0 1 0
0 0 1 1 0 1

Table 3.1: Truth table for the single neuron VTSAER encoder. STATE is the internal
variable of the encoder, SPIKEIN and REQ are inputs, REQOUT and OVERDUE are

outputs.

• The first block in the daisy-chain is the Time Step Event generator. It places the

TSE address on the bus when the TSE in the input data stream is detected.

• If the REQ signal is high on the end of the daisy-chain, it means that there are

no active neurons on the line. This blocks the writing of the address bus value in

the FIFO.

• If the neuron will not encounter REQ signal during its refractory period, it raises

the OVERDUE signal, which is a driver to the global PAUSE signal effectively

freezing the network state until all active neurons will not be served.

Figure 3.14: Hardware architecture of the VTSAER encoder. Spike train, generated
by the neuron cores, is converted into the AER stream.

Such architecture pushes the leftmost active neuron number into FIFO at the rate one

per clock cycle. TSE generator has the priority and is always served first. This causes

some spikes to be placed with the delay of one time window if the TSE occurs when

there are unserved spikes, but such error is negligible in practical applications.

The sample timing diagram of its work is shown in Figure 3.15. SPIKEIN input is held

high during the duration of the refractory period. Table 3.1 describes the logic states

48 Chapter 3 Neural encoding

Figure 3.15: VTSAER encoder operation. The neurons 8,9,1,2 and 3 generate spikes
that are served by the encoder and neuron addresses (208,201,202,203,209) are put on
the bus AEROUT. DATA VALID signal is connected to the last REQOUT output and
is used to push the valid event addresses into the FIFO. Note that the neurons are

served in priority order from low numbers to high.

20 neurons 100 neurons 200 neurons

Registers 81 400 800
LUTs 125 629 1120
Frequency, MHz 741.785 446.07 385.469

Table 3.2: Hardware occupation of the VTSAER encoder without FIFO. The syn-
thesis was made for Virtex 7 xc7vx485t device.

of the encoder. It has one internal memory element STATE that is latched high by

SPIKEIN rising edge and reset to low by the high state of the REQ input.

The weak point of this architecture is the long line of AND gates which propagation

time limits the maximum clock frequency. When the length of the daisy-chain line is

less than 200, the frequency of the encoder is higher than the frequency of the vectored

neural core and do not pose a bottleneck in the design. The hardware occupation and

the maximum frequency for the encoder are shown in Table 3.2.

To serve large networks efficiently, AER encoders can be cascaded. Several encoders can

be connected to one merger. The AER merger block executes the next algorithm:

1. Find the first FIFO with non-TSE address on the output.

2. Read out the addresses from that FIFO until TSE is found.

3. Find the next FIFO with non-TSE address on the output.

4. Repeat steps 2-3 until the last FIFO with non-TSE address is read.

Chapter 3 Neural encoding 49

Figure 3.16: VTSAER merger operation. TSE events are shown in light blue, non-
TSE events shown in other colors. Two streams from FIFOs are merged into one

stream.

5. Add TSE to the output VTSAER and start from the beginning.

Graphically this concept is represented in Figure 3.16. As the merger output can be

treated as an input to the next merging cascade, a network of an arbitrary number

of VTSAER sources can be built and efficiently served. It can be appreciated that

the merger can unite VTSAER streams from different sources if their timing references

match.

As a summary, VTSAER is a versatile event format suitable for storing and transmitting

spike trains from single and multiple sources as well. It can provide any timing resolu-

tion necessary, allows true event synchronicity and easy data management. Hardware

complexity of VTSAER encoders is low, they can be synthesized in low-cost FPGAs or

CPLDs.

Chapter 4

Evaluation of the simplified model

A subset of Semeion handwritten digit dataset [50] was used to test the new algorithms

and proof the validity of simplifications. Matlab software was used. The dataset consists

of 1593 samples of black and white images of handwritten digits 0-9 (160 samples per

digit), 16×16 pixels size as shown in Figure 4.1. The training set consisted of 20 samples

for each class (each digit) with 5% of uniform random noise added to every sample fed

into the SNN.

Figure 4.1: Patterns for network training of 10 handwritten digits (Semeion dataset).

4.1 Image encoding

In the described experiment, a 5x5 on-centered receptive field was used. This receptive

field was weighted in a [-0.5,..,1] range according to Manhattan distance to the center

of the field. A 16x16 black and white (binarized) pixel input is processed by a 16x16

51

52 Chapter 4 Evaluation of the simplified model

encoding neuron layer (256 neurons), obtaining a potential value for each input which

will be further converted into spikes. The 2D receptive field coding process, described

in section 3.3, using the 5x5 receptive field is shown in Figure 4.2 A and B. The neural

response, shown in Figure 4.2C is the membrane potential map, further converted into

spike trains whose spiking frequency is proportional to such potential, as shown in Figure

4.2. The same procedure is repeated for all input neurons. This visual data encoding

is described in detail in a separate paper [51]. The receptive fields of the neurons are

overlapping, an example of three receptive fields is shown in Figure 4.3 where, in case

C, a part of the RF lay outside the input space, and thus, that part is not contributing

to membrane potential.

Figure 4.2: Image to spike train encoding dataflow. Input image A is processed
with RFs of encoding neurons B, and the result C is received by encoding neurons,
generating the spike trains D where spike frequency is proportional to the intensity of

the corresponding pixel and its surroundings.

Figure 4.3: Three receptive fields in a 10x10 input space. Blue field corresponds
to the neuron A (3,3 in input matrix). Green field corresponds to neuron B (6,5) and
orange corresponds to neuron C (10,10). Note that only the active part or RF is shown.

Chapter 4 Evaluation of the simplified model 53

4.2 Network architecture

The proposed SNN consists of 2 layers, an encoding layer of 256 neurons with an on-

centered 5x5 pixel RF and the second layer of 16 neurons using the simplified LIF neurons

proposed in Section 2.3.4. Experimental testing showed that, for proper competitiveness

in the network, the number of neurons should be at least 20% greater than the number

of classes. For this reason, 16 neurons were implemented; if the number of neurons

is insufficient, only the most spike-intensive patterns are learned. Each sample was

presented to the network during 200 time units (TUs). With a refractory period of

encoding neurons of 30 TUs, the maximum possible amount of spikes is 200/30=6.

STDP parameters for learning were A+ = 0.6, A− = 0.3, τ+ = 8, τ− = 5. The maximum

weight change rate σ was fixed to 0.25 of maximum STDP value, σ = 0.0625.

Instead of using ’winner-takes-all’ strategy, a modification is done by using a ’winner-

depresses-all’ strategy, where the first spiking neuron gets a weight increase and all other

neuron potentials are depressed by 50% of the spike threshold value. Thus, strongly

stimulated neurons can fire immediately after the winner, which adds plasticity to the

network. The whole network structure is shown in Figure 4.4.

For the classic LIF neuron, a table-based PSP function of 30 points was used while

the simplified model uses constant decrease as PSP and does not require table based

functions. For both classic and simplified LIF models, STDP function was table-based

with 30 positive and 30 negative values. All algorithms (classic and simplified model)

were written using atomic operations without the usage of Matlab vector and matrix

arithmetic. Such coding style provides more accurate results in performance tests when

modeling hardware implementation.

4.3 Results

In order to prove noise robustness, input spike trains were corrupted by randomly in-

verting the state of 5% from all TU slots. Thus, some spikes were missing and some

other random spikes were injected into the spike trains. Five training epochs were run

before the evaluation. The implemented network successfully learned all patterns. In

Figure 4.5, the membrane potential change during training is shown. Initial values of

54 Chapter 4 Evaluation of the simplified model

Figure 4.4: Network structure used in the simulation. Input space of 10x10 is con-
verted into a spike train by a matrix of 10x10 input neurons with the 5x5 receptive field.
The generated spike train is fed to the hidden layer of 16 simplified LIF neurons with
training. Not all connections between the input space and encoding layer are shown.

the membrane potential are quite small, but with the training, the membrane poten-

tial becomes more and more polarized with strong negative values on the classes that

are not recognized by the selected neuron. It can also be appreciated that six neurons

(numbered 8,10,13,14,15,16) remained almost untrained, with random weights.

Training evolution can be observed by the spike rate diagrams shown in Figure 4.6. Each

graph represents one neuron, with classes along the X-axis. Before training, every neuron

is firing in several classes and after the training, each neuron has a discriminative high

spike rate only in one class. As a result, the final weight maps of neurons become similar

to the presented stimuli as Figure 4.7 depicts. The successful separation of patterns 2-5

and 1-6 proves that network can solve problems with partially overlapping classes. The

performance of learning between classic LIF and simplified LIF models can be measured

with the MSE (Mean Square Error) for normalized weights after training. The training

error for a single pattern (class 0) can be seen in Figure 4.8. The graph shows very

similarly learning dynamics and performance of both models. Starting from 5000 TU,

both models tend to increase the error showing over-training.

Chapter 4 Evaluation of the simplified model 55

Figure 4.5: Membrane potentials of neurons during training. At the beginning, neu-
ronal reactions are chaotic. The training leads to sharp individual neuronal reactions,
and neurons become specific to one pattern. The most intensive weight shaping occurs

between 3000 and 4000 TUs.

Figure 4.6: Spike rate per sample before and after training. Blue bars are spike
rate before training and red ones represent the spike rate after the training. Neurons

8,10,13,14,15,16 did not learn any pattern.

56 Chapter 4 Evaluation of the simplified model

Figure 4.7: Neurons weights representation after STDP training. Ten out of sixteen
neurons learned to discriminate all ten numbers in the SEMEION dataset.

Figure 4.8: MSE for single pattern during learning. Red line represents the simplified
model, blue represents classic LIF. It can be seen that, after 5000 TU, neuron becomes

overtrained for both models and MSE is similar.

Chapter 4 Evaluation of the simplified model 57

To compare the simulation time, three synthetic datasets from Semeion samples with 5,

6 and 12 classes were prepared (12 classes dataset as digits 1 and 0 were represented with

2 classes each). Every class was repeated 30 times to test different network sizes (8, 9,

16, 50 and 100 SNN neuron size in hidden layer were tested). Time of Matlab simulation

in Table 4.1 shows an improvement over 20 times when comparing the simplified and

classic LIF in these tests. The simulation was done on a 64-bit OS system with 6GB of

RAM and an Intel i7-2620M processor.

Table 4.1: Simulation speed of classic LIF and simplified LIF model networks. All
data are obtained on synthetic datasets taking the mean values of 5 runs.

Classic, sec Simplified, sec

5 classes, 8 neurons, 15000 time units 48.1 2.25
6 classes, 9 neurons, 15000 time units 48.9 2.4
6 classes, 16 neurons, 15000 time units 66.1 3.9
6 classes, 100 neurons, 15000 time units 137.1 13.03
12 classes, 50 neurons, 96000 time units 1327.12 80.28

4.4 Evaluation of the RBM based on the simplified model

To demonstrate the feasibility of the evtCD learning, an RBM was created with the

simplified LIF neurons. The event-encoded version of the classic MNIST dataset was

used, with uniform noise added to the spike train. The spiking RBM had 784 (28×28)

spiking inputs. Parameters used for training were:

• Max spikes per sample=200

• Number of neurons = 100

• Training set size = 35000

• Test set size = 5000

• Learning rate = 0.001

• Uniform noise amount=0.03

• Refractory period=0.02

• Threshold=1

58 Chapter 4 Evaluation of the simplified model

(a) MNIST dataset learning curve. (b) MNIST dataset confusion matrix.

Figure 4.9: evtCD RBM with classic LIF neuron learning curve and confusion matrix.

• Minimal membrane potential =-1

• STDP length=-5..5

• Membrane decay =0.1 (for classic LIF test)

First, a classic LIF neuron RBM was trained with given parameters. After the training,

the network had an accuracy of 80%, very close to the original implementation [32].

Unlike the original implementation, the maximal accuracy was achieved earlier, roughly

after half of the original dataset. This number was used as a baseline reference for tests.

The learning curve and confusion matrix are shown in Figure 4.9. The examples of the

trained weights are in Figure 4.10. It is clearly seen that the weights of the spiking RBM

are resembling the weights of the classic one and represent the selected features of the

presented digits.

The implementation tested is very robust and converges in a similar manner with vari-

able network parameters values. The main tested parameters were the learning rate

(Figure 4.11), STDP length (Figure 4.12) and membrane decay constant (Figure 4.13).

The network with long STDP length (stdp lag=0.04) has worse performance, while

membrane decay rate has no influence on the resulting accuracy. This proves that the

obtained error is typical for the given network size and encoding method.

Changing the neuron model from LIF to simplified LIF, however, resulted in reduced

accuracy during the training. Learning curves for different linear membrane decay values

are shown in Figure 4.14. Nevertheless, the network is learning the presented samples.

The best classification rate obtained with linear decay is around 71.5%. However, the

Chapter 4 Evaluation of the simplified model 59

Figure 4.10: Final learned weights for the evtCD RBM with LIF neuron. The weights
are similar to weights learned by a classic RBM or autoencoder.

network trained with the classic LIF and evaluated with simplified LIF actually shows

better results than the baseline implementation. The learning curve for such combina-

tion is shown in Figure 4.15, reaching almost 85% accuracy on the training set. The

effect was observed for various other network parameters.

As shown, the proposed simplified LIF model can be successfully used in SNNs with

STDP training. In the perceptron test it performed similar to the classic LIF and in the

RBM test, it showed up to 71.5% accuracy on MNIST dataset in contrast to classic LIF

which obtained 80.1%. After the training, classic LIF neuron can be replaced with the

60 Chapter 4 Evaluation of the simplified model

Figure 4.11: evtCD RBM with LIF neuron learning curve for different learning rates.

simplified one without loss of accuracy.The network preserves its learning and classifica-

tion properties while computational and memory complexity is reduced by eliminating

the PSP table in each neuron. Learning is stable and robust, the trained network can

recognize noisy patterns. A simple, yet effective visual input encoding was implemented

for this network. The simplification is beneficial for reconfigurable hardware systems,

keeping generality and accuracy.

Chapter 4 Evaluation of the simplified model 61

Figure 4.12: evtCD RBM with LIF neuron learning curve for different STDP length.

Figure 4.13: evtCD RBM with LIF neuron learning curve for different membrane
decay constant.

62 Chapter 4 Evaluation of the simplified model

Figure 4.14: evtCD RBM with simplified LIF neuron learning curve for different
membrane decay constant.

Figure 4.15: Learning curve for evtCD RBM trained with classic LIF and evaluated
with the simplified model.

Chapter 5

Spiking neuron as a finite

automaton and its hardware

implementation

This section describes the spiking neuron architecture, suitable for the classic and simpli-

fied LIF models described before and optimized for hardware massive parallel implemen-

tation. The primary considered platform for this topology is FPGA. Internal structure

and capabilities of modern FPGA families defined the algorithmic implementation, thus

it is important to discuss the hardware first.

5.1 FPGA in scope of the neuromorphic hardware

Field-Programmable Gate Arrays have evolved from compact ”glue logic” discrete ICs

replacements into the top performance computation accelerators during the last 30 years.

The recent rise of Machine Learning applications has also influenced the reconfigurable

logic market. Having massive parallel processing capabilities, highly developed inter-

connect and distributed memory, FPGAs provide a viable platform for neuronal com-

putations. Spiking neural networks were successfully implemented on FPGA numerous

times. Some of the most important implementations are worth to be mentioned here.

In 2003, an obstacle avoidance robot, guided by FPGA-implemented 64 neuron SNN

63

64 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

was presented [38]. The neurons utilized a LIF model with truncated weights. Cassidy

et al. [52] presented in 2007 a LIF-based implementation of a 32-neuron network with

STDP learning, however, the learning wasn’t tested on real datasets. A 2009 work by

Thomas and Luk [53] was using floating-point Izhikevich model and was able to place

up to 1024 neurons per single FPGA. Another work, presented by Rice et al. [54] from

the same year mentions over 9000 Izhikevich neurons on a single chip, however, it uses

weight storage on external RAM. Two remarkable works were made with real-life tasks.

Zamarreno-Ramos et al. [55] is describing an event-based AER-driven mesh network-on-

chip of convolutional modules and Daniel Neil [56] presents a Minitaur, an event-driven

RBM implementation on low-cost FPGA board. However, these implementations lack

learning capabilities and are limited by the memory bandwidth.

The implementation of neural networks in FPGA can be divided into fine-grained and

course-grained. Fine-grained implementations have every element of the network imple-

mented separately, directly mapping the topology into the FPGA fabric. The biggest

problem of such approach is the number of connections, growing exponentially with the

network size. The coarse-grained implementations use more complex processing nodes,

and every node is computing separate parts of the network. This makes the topology of

the system simpler, but the internal data processing in the nodes is more complex since

different serializations in computations must be done.

Two main resources that are crucial for neural network implementation are the memory

and the arithmetic-logic units (ALU), that can be synthesized inside the FPGA. The

following description is relevant for the FPGAs of Xilinx brand. Intel FPGAs (former

Altera) have comparable resources. In fact, proposed architectures can be easily adapted

to different manufacturers or even implemented as ASIC.

5.1.1 Block RAM

To store the synaptic weights inside FPGA, a RAM has to be synthesized. As the

memory primitive is widely used in hardware design, the modern FPGAs family have

the significant amount of distributed memory blocks included, also called ”Hard IPs”,

as they are physically present in the chip and are not synthesized from common logic

blocks (CLB). Xilinx memory primitives are named Block RAM and are true dual-port

memories of 1024 18-bit words. The ”true dual-port” feature means that the memory

has two pairs of independent read and write ports with internal order of operation

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 65

arbitration. They can be configured either as two independent 1K×9-bit or one 1K×18-

bit memory. Each port can be used with a separate clock so that the memory can be

used as a dual-clock FIFO, what can be utilized for the external weight update, for

example. The Virtex 7 series has up to 3600 separate BRAMs or 68 megabits of internal

distributed memory per chip.

5.1.2 DSP48 block

Another widely used primitive included in the FPGA is the sophisticated arithmetic-logic

unit. Due to its popularity in DSP, arithmetic hard IPs in the FPGAs are commonly re-

ferred as DSP blocks. Xilinx 7th generation DSP48E1 block has the following properties

[57]:

• 25×18 two’s complement multiplier.

• 48-bit accumulator

• Pre-adder.

• Pattern detector for rounding.

• Dedicated cascading C 48-bit port for cascading the DSPs

• Depending on the device family and speed grade the block can work on frequency

up to 550 MHz fully pipelined.

The simplified block schematic of DSP48E1 is shown in Figure 5.1.

The schematic explains the possible and forbidden operations with this DSP block.

Input A can be multiplied by B, but not by C or D. Input C, dedicated to connecting the

output of the adjacent DSP can be used only for the same operations as the accumulator.

The ALU block, used in the SNN implementations described in this work, requires the

following operations.

• P=0. Clearing the accumulator.

• P=P+A. Basic MAC operation.

• P=A+B. Weight update operation.

66 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

Figure 5.1: DSP48E1 block schematic.Source: [57].

• P=C+A. Cascaded MAC to compute RBMs.

All the mentioned operations are supported by the DSP48E1 block natively and it can

be efficiently used in complex designs.

5.1.3 Fixed-point arithmetic and accuracy in FPGA

The performance of the fixed-point arithmetic is several times higher than floating-point

[58] and the hardware occupation is significantly lower. This makes fixed-point arith-

metic a common choice for the algorithms implemented in FPGA. However, the choice

of the proper arithmetic size and data format is very important for the performance of

the system. On the other side, in floating-point representation, the accuracy is a trade-

off for numeric range, while fixed-point arithmetic has the same accuracy across the

whole data range. The typical fixed point format to represent fractional data is called

Q-arithmetic, or Q-notation. The numbers are stored in QX.Y format, where X is a

decimal part and Y is a fractional part. The number of bits for X part limits the data

range to (0..2X) for unsigned and (−2X−1..2X−1) for signed numbers. The Y part size

defines the numerical accuracy as
1

2Y
. For an 8-bit fractional part, the accuracy will be

≈ 0.004. When considering fixed-point, inevitable loss of accuracy exists in arithmetic

operations. In case of multiplication AX.Y ∗BX.Y = CX+Y.Y , the result has to be rescaled

(shifted) by Y bits to the right. Thus, the maximum error of each operation is ±2−Y .

When performing MAC on N arguments, the result is a sum of N multiplications, and,

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 67

a maximum single element error is ±N ∗ 2−Y . The error is exponentially reduced with

the increase in the size of the fractional part and grows with the size of the matrix and

the number of chained matrix multiplications.

Xilinx DSP blocks are designed with a 48-bit accumulator and carry input. Then, there

is no reason to limit the MAC operation precision below this number if the DSP block

will be used in the design. Another key parameter is the number of bits per weight. As

the memory in Xilinx FPGAs is organized in 36-bit columns, divisors of 36 are preferred

for data size, especially 18 and 9 bits, natively supported by manufacturers IP-core.

Intel FPGAs have 9-bit standard BRAM width and endorse using similar data types.

5.2 VTSAER as a basis for neuron architecture

Simplified spiking model and Variable Timeslot AER described earlier can be used for the

dramatic improvement of large SNN architectures. Combined with the FPGA efficient

design guidelines, the new spiking architecture can be described by the following terms:

• The inputs are processed serially.

• All network neurons in the layer share the same input.

• The state of the neuron is only dependent on its neuronal input and its state in

the previous time unit.

Thus, the elementary spiking neuron can be treated as a finite automaton. Using VT-

SAER, control, timing, and event words can be processed simultaneously in all neurons

in the layer. After the initial weight loading, the neuron internal state is driven only by

its input.

The block diagram of the basic algorithm for a neuron with linear membrane potential

decay is shown in Figure 5.2.

The abbreviations used in the schematic are:

• REF: Refractory period flag.

• TSE: TimeStep Event.

68 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

Figure 5.2: Simple neuron block schematic.

• P: Membrane potential.

• X: current AER input value.

• REF CNT: refractory period counter of RLEN maximum length.

• THR: membrane threshold.

The input of the neuron is a VTSAER stream. Every event has the corresponding weight

in the neuron weight memory. When the input event arrives, the adder accumulates the

input spikes’ weights in the accumulator P until the threshold THR is reached. The

threshold can be either static, or modified by an external signal (threshold plasticity),

or be tied to a random number generator (stochastic spike generation). Note that, when

not in the refractory period, the timestep event is treated as a normal event. The weight

corresponding to the TSE address is the membrane degradation rate. This neuron does

not require a multiplier, free-running counters, PSP function generators and other ele-

ments present in other implementations [52, 59].

By assigning multiple TSE addresses, an arbitrary PSP function can be implemented.

The presented algorithm realizes only linear decay function; By assigning a part of

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 69

weight memory as a PSP lookup table, one can construct more complex piecewise lin-

ear membrane potential degradation functions at the cost of increased BRAM memory

occupation.

5.2.1 Binary shift-based LIF and multiplication-based LIF neurons

The proposed approach can be used to construct neurons with different nonlinear PSP.

Classic LIF function is usually realizing the function described by Equation 5.1, where

dP and dt are small values usually in thr range [0.001..0.1]. The resulting multi-

plicand e
dt
dP lays within [0.9..0.99] range. This equation can be rewritten in form

Pi+1 = Pi − Pi ∗ (1 − e−
dt
dP). It is possible to choose the multiplicand (1 − e−

dt
dP)

equal to some power of 2, and the multiplication by the power of 2 can be replaced

by binary shift. This leads to Equation 5.2, where D is a small number, in range of

[8..64]. For example, in the RBM tested in Section 4.4, the chosen decay parameters

were: dt = 0.1, dP = 0.005, what gives the decay Pi+1 = Pi ∗ 0.9512. The multiplierless

equation 5.2 for D = 16 gives the decay value Pi+1 = Pi ∗ 0.9375. As it was shown in

Figure 4.13, small weight decay changes do not influence the accuracy and learning rate.

Pi+1 = Pi ∗ e−
dt
dP (5.1)

Pi+1 = Pi − Pi >> (|D|) (5.2)

By adding one additional conditional operator and one subtractor it is possible to con-

struct a nonlinear membrane potential decay. The updated block schematic of such

neuron is shown in Figure 5.3. The algorithm remains almost the same as for the lin-

ear decay neuron, the only change is that the TSE has to be detected not only in the

refractory period but during normal membrane potential computation, too. TSE will

alter the ALU opcode, from P=P+A to P=P+B operation.

If a sufficient number of DSP blocks is available, a classic LIF function can be im-

plemented with the multiplier added to the neuron. The multiplier, necessary for the

70 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

Figure 5.3: Neuron with shift-based decay block schematic. D is a constant value
controlling the membrane potential decay 2−D.

calculation of the Equation 5.1 is replacing the shift block in the neuron schematic. More

detailed analysis of the multiplier-based implementation is in section 5.4.

5.3 STDP on-chip learning for the Automata neuron

True on-chip STDP learning is rarely used as it requires significant hardware resources

and no satisfactory implementations of STDP for large networks exist. Using VTSAER,

it is possible to add synaptic plasticity with little hardware overhead.

The most important problem of STDP is the backward causality: when a spike occurs,

the weights of multiple previous inputs have to be facilitated. As the neuron cannot

predict the moment of the spike, it can not update the weights before the spike. It

is relatively easy to depress the weights corresponding to spikes arriving during the

refractory period, but for the positive half of the STDP function, an additional input

event memory is required.

As all presynaptic spikes are the same for all neurons in a layer, this memory can be

shared for all neurons. The best solution proposed in this work is to use a second

VTSAER stream, delayed by RLEN time units. It will be a variable length FIFO

of a maximum size of N ∗ RLEN words, where N is the number of inputs. After a

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 71

postsynaptic (neuron output) spike, during the refractory period, STDP block handles

both facilitation and depression parts, adjusting the weights accordingly. There is no

need to manage the AER flow speed or play the stream backward every time the spike

occurs. However, handling two streams simultaneously can be costly in hardware. The

memory will require true a dual port operation, and the weight update calculation

will use two adders. This work proposes the use of interleaved VTSAER stream. In

the interleaved stream, the timeslots in the VTSAER are mixed between normal and

delayed, as shown in Figure 5.4. The modulation signal DTM defines a normal (0) or

delayed (1) timeslot.

CLK

VTSAER TSE A1 A2 A3 TSE A5 TSE A3 A4 A5 TSE A2 A1 TSE A4

DTM

Figure 5.4: Interleaved VTSAER stream.

This solution requires to half the data rate because every event will be processed in two

clocks instead of one. However, due to the elimination of the need to store the event

history, this implementation is more convenient in terms of resources.

Having interleaved VTSAER (IVA), the STDP algorithm becomes easy to implement.

Classic and modified one-sided STDP functions are shown in Figure 5.5. Figure A

shows typical asymmetric STDP function (depression is stronger than facilitation). This

function facilitates presynaptic spikes (negative ∆T) and depresses the postsynaptic

spikes (positive ∆T). Part B shows the modified STDP function, that is operating only

on postsynaptic spikes, facilitating the spikes arriving through the delayed VTSAER

stream.

The block diagram of the new STDP algorithm is shown in Figure 5.6. STDP is a

LUT-implemented STDP function, REF is the refractory period signal, active when the

neuron is in the refractory period. Note that the whole STDP weight update process is

using only three conditional operators. If the STDP is symmetrical, it halves the size of

LUT for this function. Also, there are successful implementations of a single-value ramp

STDP, when the weights are changed by the fixed value regardless of the ∆T [31, 32].

Such STDP implementation reduces the neuronal complexity even more.

72 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

-15 -10 -5 0 5 10 15

T

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
S

T
D

P
(

T
)

(a) An asymmetric STDP function for normal spike
train.

0 2 4 6 8 10 12 14

T

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
T

D
P

(
T

)

Normal
VTSAER

Delayed
VTSAER

(b) Converted asymmetric STDP function for inter-
leaved VTSAER.

Figure 5.5: The conversion of STDP function for IVA , with only positive values of
∆t.

Figure 5.6: Block schematic of STDP. Note that STDP is a function of counter
REF CNT and delayed/normal stream flag DTM.

5.4 FPGA implementation of the Automata neuron

The schematic of the linear decay neuron implemented is shown in Figure 5.7. Some

signal delay blocks necessary for data synchronicity are omitted.

Shown signals are:

• VTSAER - main AER data stream input. The width of this signal is log2(N),

where N is the number of inputs.

• DTM (Delayed Timeslot Marker) - high level of the signal corresponds to the

delayed timeslot. Allows for interleaved VTSAER data input.

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 73

Figure 5.7: FPGA implementation of linear decay neuron. The STDP block and
DTM (Delayed Timeslot Marker) input are not used in a version without learning. The
untitled top block is the weight memory (containing 0 as null event weight and TSE

membrane leakage weight). The saturated arithmetic ALU is in the center.

• WE - Write Enable. Used for weight initialization and online weight update.

• R ADDR - address for reading from the weight memory.

• W IN - data for weight initialization.

• W ADDR - address for writing into the weight memory.

• DIN - weight data input.

• DOUT - weight data output. The weights are coming into port A of ALU.

• BSEL - bank select input, used for batch learning. With bank switching, it is

possible to update the weights in one bank, while still using the unchanged weights

from the second bank for the inference.

• WUPDATE - weight external update signal, serves as WE for data from W IN.

Used for weight initialization.

• SPIKE - spiking binary output.

74 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

• OPCODE - the type of operation in ALU. Three-bit signal, composed by external

OPCODE, internal OPCODE from TRB and DSM signal.

• TSE - timestep event signal for STDP block that is switching the STDP internal

counter. Not used when STDP is constant.

As it is shown in the figure, the STDP block on the bottom and DTM signal are not

used if the learning is not required. Corresponding hardware can be excluded from the

neuron then.

The untitled block on the top is the weight memory, implemented as a dual-port BRAM.

ALU performs the operation of Add and Add-Accumulate.Basic hardware implementa-

tion of the neuron does not require a DSP48 block, the ALU is synthesized from the

CLBs. Weights are stored in BRAM configured in a true dual-port mode, where the ini-

tial weight setup is made through the port A and online weight update is done through

the port B. ALU in this neuron uses saturated arithmetic, bounding the membrane

potential P within certain range. This prevents potential numerical overflow problems.

The schematic of the shift-based nonlinear decay neuron described earlier in Section

5.2.1, is shown in Figure 5.8. Some signal delay blocks necessary for data synchronicity

are omitted. As it was mentioned earlier, this neuron requires one binary shift and one

additional comparison. Some possible decay rates for this neuron are: 0.125 (1
8), 0.0625

(1
16),0.0312 (1

32), 0.0156 (1
64). The block on the bottom of the schematic is constantly

producing the shifted value P >> |D|. TSE, detected by TRB, modifies the ALU opcode

to perform P = P − B operation instead of P = P + A. The membrane potential is

decayed according to the Equation 5.2.

This automata neuron can realize the multiplication-based LIF function described by

Equation 5.1 as well. For this, the binary shifter block is replaced by a multiplier with

normalizer. It reduces the accuracy of the representation according to the formula for

fixed-point arithmetic, shown in Equation 5.3, where Y is the fractional part width. This

neuron bears significantly higher hardware complexity, as it requires a multiplier now.

In addition, the maximum working frequency of this circuit will be lower, because of

the comparison, multiplication, and assignment which have to be done in one clock cycle.

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 75

Figure 5.8: FPGA implementation of shift-based nonlinear decay neuron. The TRB
is detecting TSEs, switching the multiplexer on ALU port B and changes the ALU
opcode from P = P + A to P = P − B operation. Block on the bottom is a binary

shifter.

Pi+1 = floor((Pi ∗ round(e
dt
dP ∗ 2Y)) >> Y) (5.3)

Multiplication-based decay neuron can be optimized at the cost of slight reduction of

accuracy. Equation 5.1 can be rewritten into a multiplication-subtraction form as in

Equation 5.4. This equation is still containing two references to Pi, but a subtrahend is

now a small number. If we replace Pi∗(1−e
dt
dP) by Pi−1∗(1−e

dt
dP), the difference will be

less than (1−e
dt
dP))% of the current P value, but the subtrahend can be computed in the

previous clock cycle. The resulting formula for the fixed-point arithmetic is described

in Equation 5.5. The floor function in Equation 5.3 and 5.5 is rounding down to the

nearest integer what is equal to truncation in fixed-point arithmetic. Other fixed-point

rounding strategies exist [60], but they are not included in this research due to the

76 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

0 50 100 150

Time Units

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l

LIF with shift-based decay

 Multiplication-subtraction LIF

Linear LIF

4-line linear LIF approximation

Floating-point LIF

Figure 5.9: Comparison of decay curves for various membrane potential decay algo-
rithms. The reference curve is the green one, computed with 64-bit floating point. All

other algorithms were using Q6.12 fixed-point arithmetic.

negligible effect for this application.

Pi+1 = Pi − (Pi ∗ (1− e
dt
dP)) (5.4)

Pi+1 = Pi − floor((Pi−1 ∗ round(1− e
dt
dP ∗ 2Y)) >> Y) (5.5)

The evaluation of the presented membrane decay algorithms is presented in Figure 5.9.

The simulation was made for the neurons with membrane threshold of 3. The weights

were slightly different for shift-based decay neuron, and for this neuron there is a small

initial discrepancy. After several events that raised the membrane potential to ≈ 1.97,

the membrane potential decay process starts. The neuron used Q6.12 fixed-point arith-

metic, thus the minimal quantization error is 1
4096 . Four neurons were tested: single line

linear-decay neuron, 4-line linear decay, shift-based decay (D = 5, equal to Pi
32 decay)

and the optimized multiplication-subtraction LIF. The floating-point simulated curve is

shown in green, the decay value was 5.25%. The 4-line approximation was done for the

Pi
32 and the graph shows that besides the linear decay neuron, all other curves are close

to each other.

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 77

0 20 40 60 80 100

Time Units

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
m

b
ra

n
e
 P

o
te

n
ti

a
l

-5

0

5

10

15

20

A
b

s
o

lu
te

 e
rr

o
r

10
-3

Floating-point LIF

Fixed-point LIF

Optimized LIF#1

Optimized LIF #2

Error or fixed-point

Error of optimized #1

Error of optimized #2

Figure 5.10: Comparison of decay curves and absolute error for subtraction-
multiplication based decay algorithms.

A more detailed evaluation of the subtract-multiply algorithm is presented in Figure

5.10. This graph is comparing the decay of multiplication-only (5.3) (orange line, marked

as Fixed-point LIF), instant subtraction-multiplication (5.4) (yellow line, marked as

Optimized LIF#1) and the two-step subtraction-multiplication Pi+1 = Pi−(Pi−1∗e
dt
dP

(violet line, marked as Optimized LIF#2) algorithms. The absolute error of these

algorithms compared to the floating-point implementation is shown in green solid, fine-

dotted and dashed lines with the scale on the right side of the graph. All algorithms

were using Q6.12 arithmetic. All implementations show almost overlapping decay curves,

providing the same behavior. The error of fixed-point implementation (solid green line)

is stable and matches the quantization error, while error of the Optimized LIF#1 (dashed

line) is slowly increasing due to the truncation of small numbers. The error of Optimized

LIF#2 is high initially but after 60 TUs decreases to even less than the Optimized LIF#1

error as the decay values decrease.

5.4.1 Neuron functional blocks description.

Beside ALU and BRAM, an automata neuron contains two complex functional blocks:

TRB (Threshold/Refractory Block) and the STDP block. They are realized with CLB

logic and do not require any vendor-specific IPs or components.

78 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

The TRB (Threshold/Refractory Block), shown in detail in Fig5.11, contains a com-

parator to compare ALU output with the hardcoded threshold. After detecting the

membrane potential higher than programmed threshold, the comparator generates an

output spike and enables the refractory counter REF CNT. In addition, TRB alters the

OPCODE to switch the ALU from Adder-accumulator into Adder mode, necessary for

the STDP. Every incoming TSE is detected by pattern detector and the output is driv-

ing the Refractory Counter REF CNT. WE signal for weight update can be driven high

either by the external WUPDATE or internal signal from the TRB (STDP weight up-

date). The REF CNT is downcounting from REF PERIOD constant value to 0. While

the REF CNT is counting (counter value greater than zero), the signal ZERO is low.

WE output is a negated sum (NAND) of the output of REF CNT and TSE detector.

It is done to avoid updating the membrane decay constant.

The STDP block structure varies depending on the type of STDP used. For the constant

value STDP, it is one-value register and the DTM is used as a sign bit. No TSE signal

is used. For the symmetric STDP, TSE is driving the counter with the halved output

(because two TSE will occur in the IVA for one present timeslot), the counter output is

driving the ROM address, where STDP values are held and the DTM is used as a sign

bit. The most complex asymmetric STDP block is shown in Figure 5.12.

The weight memory and weight update process are the most complex algorithmically

and the simplest in hardware. Two weight update scenarios are possible. In the first

case, the weights are initialized from the external source and are written through W IN

port with VTSAER as address line when WUPDATE is high. The second case is

Figure 5.11: Threshold and Refractory Block schematic (TRB). It consists of a com-
parator, pattern detector, a counter and a 2NAND gate to generate a WE signal for

the STDP weight update.

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 79

Figure 5.12: STDP generation block structure. STDP values are held in ROM, with
positive values in the upper half and the negative in the lower half of the memory.
ROM address is composed with the halved output of the TSE counter and DTM as the
most significant address bit. With such configuration, ROM can be treated as two-bank

memory, where DSM is the bank select bit.

the STDP operation: while Xilinx true dual-port BRAM allows reading and writing the

same address in one clock cycle with configurable policies (Write after Read or Read

after Write) [61], in practice, sometimes it is more favorable to separate the source and

destination. In automata neuron, the separation between weight read, modification and

write is made by a pipelined architecture. BRAM has one cycle input-to-output delay.

ALU performs the calculation in two clock cycles. It means that the updated weight

will be stored only on the 4th cycle. This means that the W ADDR memory input

signal must be delayed for three clock cycles to synchronize with the data. Delays are

not shown in Figure 5.7 for the simplicity of the schematic.

During the refractory period, TRB drives WE high, and subsequent VTSAER input

reads the corresponding weight from the memory and passes it to the ALU. The updated

weight is stored by the same address after four clock cycles.

It is also possible to implement batch learning with this architecture. Multiple studies

show that batch learning when the update is done once per certain number of samples,

gives better results than constant weight update. For batch learning, the weight mem-

ory is two times bigger than the number of weights so that weights occupy half of the

RAM. Two halves will be referred as memory banks (upper and lower), and VTSAER

is used as address inside one bank, i.e., VTSAER range is N for 2N memory. During

the first batch, the weights are read from the upper bank. In the refractory period,

WE signal from the TRB also drives the BSEL port (signal shown with the dotted line

on the schematic). It modifies the most significant bit of the VTSAER, causing the

80 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

Decay type Linear Shift-based Multiplication-based Optimized sub-mul

Slice Registers 85 93 83 83
Slice LUTs 97 97 117 115
BlockRAM 1 1 1 1
DSP48E 0 0 1 1
Frequency, MHz 387.372 387.372 287.993 365.724

Table 5.1: Hardware occupation of single automata neuron.

readdressing of read and write operations to a second bank. As the second bank contains

zeroes after the reset, during the update it will contain only weight changes results or

∆W . In the end of the batch, the second bank will be filled with the sums of weight

updates. The update of the main weights can be made after the batch by computing the

sum of the weights from the lower and upper bank with storing the result in the upper

bank.

ALU used in the multiplierless designs performs three operations: Clear (P = 0), Add-

Accumulate (P = P +A) and Add (P = A+B). Add-accumulate is used in membrane

potential calculation and Add is used in the STDP weight update computation. Both

operations use saturated arithmetic to prevent overflow. This is more safe practice in

fixed-width integer computations. To increase the speed, both operations are made

pipelined with pipeline length of two. External OPCODE signal is used for resetting

the neuron and for future functionality expansion.

The hardware occupation of the implemented neurons is shown in Table 5.1. The syn-

thesis was made in Xilinx ISE 14.7 for Virtex 7 xc7vx485t-3 device with default synthesis

rules, no DSP48E block usage. Weight width is 18 bits, the number of weights is 1024.

The synthesis was made without a policy of keeping block hierarchy, what lead to better

logic optimization. In the synthesized RTL, counters in the TRB and STDP blocks are

merged into one and some secondary logic functions are also optimized.

The comparison shows that optimized subtraction-multiplication algorithm can be syn-

thesized with almost 100 MHz higher frequency for the same device, and the hardware

complexity is lower than the multiplication-based LIF implementation. Shift-based and

linear decay neurons have the lowest hardware occupation.

The choice between multiplierless and multiplier-using models should be done with re-

gard to the intended hardware resources. Multiplierless automata neurons have such low

logic hardware occupation that the number of neurons in FPGA is limited only by the

amount of the block memory available in the chip. The accuracy of this architecture is

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 81

limited only by the arithmetical accuracy of the chosen data type bit width. Membrane

potential computation, threshold detection, and weight plasticity do not differ from the

software realization within its numerical accuracy limits.

5.4.2 Simulation of Automata neuron functioning

Multiple tests were conducted to test the proposed architecture. The simulation was

made with the Q6.12 numeric format. The waveforms shown in Figures 5.13 and 5.14

describe the weight update process in hardware.

Figure 5.13 shows in detail the ”synthetic” single-sided (only potentiation) weight up-

date: one short series of events (AER 1-10) is driving the neuron until fired after the

event #6. Neuron comes into the refractory period (REF=1) and weight update starts.

The next three events: 7,8,9 are treated as the presynaptic events and every correspond-

ing weight (RAM[7,8,9,10]) is potentiated by 100.

Figure 5.13: The simulation of single STDP series. The spike, marked as red A, causes
the potentiation of the weights #7,8,9,10. The addresses and values are highlighted by

a red rectangle, marked as B.

Figure 5.14 shows a more realistic scenario of multiple interleaved time frames, processed

during the refractory period. Events #1 to #4 are arriving in current, or direct time

frame and are depressed, while events #6 to #10 are arriving in the delayed time

frame and are potentiated. Event #5 is present in both time frames and is sequentially

depressed and potentiated in the corresponding time frame. TSE with the address #0

82 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

(null events are not used in this simulation) changes the value of the STDP function

(from 29 to 25) what can be traced by comparing the updates of the weight #1. After

several hundreds of clock cycles, the neuron becomes responsive only to the inputs #6

to #10, expressing the desired weight plasticity.

Figure 5.14: Simulation of multiple STDP series. Memory values are at the bottom.
In the depression phase, marked with blue A (posneg signal is high), the weights #1
to 5 are depressed (blue rectangle). In the potentiation phase, marked with red B, the
weights #5 to 10 are potentiated (red rectangle). Note that the weight #5 is both

depressed and potentiated during one refractory period.

5.5 Composing a layer of Automata Neurons. Multi-layered

networks

The proposed neuron structure can be easily connected in parallel to form a layer of

arbitrary width. All elements in the layer will share most of the signals, having only

WUPDATE input separately driven, necessary for the individual initial weight loading,

and the SPIKE output signals will also be independent. As the number of connections

in the layer is a linear function of the number of elements, the hardware complexity

per element will not be high even in very large layers, and the working frequency will

remain almost unchanged. It is easy to notice that the number of hardware components

is changing linearly with the size, with very little logic overhead spent in connections.

Moreover, multiple layers of spiking neurons can be computed reusing the same hard-

ware. Consider the weight memory with multiple memory banks, one for each layer.

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 83

Membrane decay type Linear Shift-based

Number of neurons 100 500 1000 100 500 1000
Slice Registers 4442 43000 83000 5739 48000 96000
Slice LUTs 7226 49000 96000 7225 48500 97000
BlockRAM 50 250 500 50 250 500
DSP48E 0 0 0 0 0 0
Frequency,MHz 387.372 387.372 387.372 387.372 387.372 387.372

Table 5.2: Hardware occupation of layers of different size.

Such architecture can compute the neuronal states in an arbitrary number of layers.

The proposed multilayered network architecture is shown in Figure 5.15. All neurons

are connected to the same signal buses, only WUPDATE inputs and SPIKE outputs

are individual signals. The proposed architecture has excellent scaling possibilities, what

is proven by the synthesis results for networks of different size, shown in Tables 5.2, 5.3.

The tables contain the synthesis results for the four types of automata neurons. Also, a

detailed synthesis report presented in Table 5.4 proves that the synthesis results match

the proposed topology. The data in this table are taken from RTL synthesis, not actual

FPGA placement that can alter the component usage due to technology limitations.

Figure 5.15: 3-3-2 network schematic. Hidden layer weights are stored in the upper
memory bank, and output layer weights are stored in the lower memory bank. All

signals beside SPIKE and WUPDATE are common for all neurons.

84 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

Membrane decay type Multiplier-based Optimized sub-mul

Number of neurons 100 500 1000 100 500 1000
Slice Registers 4439 41500 83000 4439 41500 83000
Slice LUTs 9424 49000 116000 9324 57500 96000
BlockRAM 50 250 500 50 250 500
DSP48E 100 500 1000 100 500 1000
Frequency,MHz 287.994 287.994 287.994 365.070 364.511 364.511

Table 5.3: Hardware occupation of layers of different size.

Layer size 1000 1

1000x18-bit dual-port block RAM 1000 1
18-bit addder/subtractor 1000 1
4-bit subtractor 1000 1
4-bit down counter 1000 1
18-bit up accumulator 1000 1
Registers 80000 80
Flip-Flops 80000 80
Comparators 2000 2
18-bit comparator greater 1000 1
4-bit comparator greater 1000 1
Multiplexers 1000 1
18-bit 2-to-1 multiplexer 1000 1

Table 5.4: Hardware components of 1000-neuron layer and a single neuron. Neurons
implemented are linear decay simplified LIF. The numbers are from the RTL logical
synthesis, not from the actual FPGA placement. FPGA Place and Route numbers are

in tables 5.2 and 5.3.

Summarizing, the proposed hardware-friendly Automata neuron can successfully im-

plement various LIF spiking neuron models with STDP plasticity. The architecture is

versatile and can host a wide range of PSP and STDP functions. An array of Automata

neurons will have size linearly dependent on the number of neurons, as there are no fully

connected elements that lead to the exponential growth of the hardware occupation.

This means that this architecture is not affected by the connectionist problem, which

has been the important issue over the years.

5.6 The limitations of the fixed-point models

While fixed-point arithmetic can reach arbitrary precision in the given numeric range,

there are practical limitations for the implementations. In the machine learning field, it

is more practical to work with dimensionless units, thus, parameters like time, conduc-

tance, current, voltage, and capacitance have to be proportionally converted. Choosing

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 85

W Weight range [-1..1],[-10..10]
∆W minimal weight update [0.005, 0.03]
dt Time step [0.005..0.05]

1− e
dt
dP Membrane decay [0.01..0.1]

Thr Threshold [1..10]

Table 5.5: LIF neuron parameters of the selected implementations.

proper numeric format is crucial for the maximum efficient memory utilization.Also,

knowing the limits of numerical resolution and range is necessary to tune the learning

algorithm for the network. To study such limitations, a set of network parameters used

in practice was chosen.

One of the limitations is the minimum weight change. The Automata neurons were built

with the goal of maximum simplicity and performance in the hardware, so the weights

are stored and computed in the same numeric format. In general, 9 or 18-bit size is a

preferable data width for optimal BRAM utilization. The second limitation is the min-

imal time unit dt. If the chosen TU is too small, the membrane potential decay dt
dP can

be smaller than the selected numeric format allows. If the chosen TU is too large, the

STDP becomes nondiscriminative and the possible refractory period values are limited.

The parameter ranges listed in Table 5.5 were taken from the different practical SNN

implementations [31, 32, 56, 62, 62, 63].

Consider a 9-bit Q2.7 format for example. Numeric range of Q2.7 is [-1.9922..1.9922],

and resolution is 0.0078. The values of minimal weight update and time step can be

lower than the resolution, and some networks may have the weights out of the numeric

range. The 18-bit Q6.12 format has a numeric range of [- 63.9998.. 63.9998] and a res-

olution of 2.4414e-04, what is satisfying all the encountered conditions. However, there

are studies showing that after the learning, the weight resolution can be significantly re-

duced without compromising the accuracy [31]. Therefore, Q6.12 can be recommended

as a basic format for spiking networks with learning and the Q2.7 can be used as a

weight-optimized data format for pretrained network implementations.

86 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

5.7 Complete neuromorphic data processing system de-

sign with the vectored architecture

The described multilayer SNN core, shown in Figure 5.15, is a self-sufficient spike pro-

cessing unit. For the users’ convenience, it is reasonable to add a microprocessor for

data initialization and processing management, as well as common bus interface to en-

hance the compatibility with the existing peripherals. The possible configurations of the

proposed neuromorphic data processing systems are shown in Figures 5.16 and 5.17. In

Figure 5.16: Neuromorphic real-time processing system layout. The non-spiking
input is encoded into spikes with the vectored RF architecture described in 6. The
result is encoded into VTSAER using mapper block, and the encoded VTSAER stream

is processed by the dedicated SNN core.

the first case, the system is working in true real-time mode, encoding non-spiking input

on the fly and processing it with the separate SNN core. VTSAER encoding protocol is

described in Section 3.4.2.

The second figure represents the combined vectored core for the encoding and network

inference. The vectored RF encoding architecture is described in Section 6.3. The com-

bined architecture reuses the same hardware for encoding and SNN inference or training.

Initially, the core works in the encoder mode, accepting non-spiking data and generating

the spike train, encoded into VTSAER with the corresponding block. A VTSAER FIFO

memory is added to hold the VTSAER stream of the encoded input. After all inputs

for the given sample are encoded, the core is switched into the SNN mode, and the data

from VTSAER FIFO are taken as an input to the core. The process is repeated for the

next input sample. VTSAER FIFO can be also used as an interlayer memory, allowing

Chapter 5 Spiking neuron as a finite automaton and its hardware implementation 87

Figure 5.17: Neuromorphic processing system layout with one universal core. The
similarity in the RF encoding and SNN architectures make the combined vectored core
possible. The core is encoding the input sample first and the resulting spike train is
encoded into the VTSAER stream and stored in FIFO. After that, the VTSAER is

read from the FIFO and processed in the universal core in the SNN mode.

to compute multiple layers with the same SNN core.

The global layout of the proposed System-On-Chip is shown in Figure 5.18. The back-

bone of the system is the interconnect bus; standard interconnect type for Xilinx is an

AXI4 bus. Processor, executing user code, is using the SNN core as an accelerator. The

core is configured by the processor. Spike stream can be transmitted either through the

SoC interconnect, or directly into the core. A multi-chip system can be build utilizing

dedicated high speed AER links [45, 64].

Figure 5.18: Possible SoC schematic utilizing the proposed core.

88 Chapter 5 Spiking neuron as a finite automaton and its hardware implementation

LIF Neuron type DSP Memory usage Remarks

Linear 0 1
The simplest model,

worse results in training

N-line piecewise linear 0 N
Additional TSE detector necessary,
TSAER requires special generation

Shift-based 0 0 Limited choice of decay values

Sub-mul 1 1 (CLB) Most versatile type

Multiplier-based 1 0 Worst speed

Table 5.6: General comparison of the described neurons. Sub-mul neuron uses one
additional register. Memory usage refers only to the memory necessary to implement

the selected PSP function.

As a summary, this chapter described four main novelties of this thesis: a flexible spike

encoding protocol, a multiplierless neuron architecture, a novel vectored topology with

linear hardware complexity and STDP mechanism modification. It was shown that spik-

ing neural networks implemented in software can be ported into the FPGA. The proposed

topology and neuron architecture describes the universal blocks to create various feed-

forward networks. The proposed neuron architecture has flexible membrane potential

decay options, with positive and negative sides described in table 5.6. With the results

presented, the Sub-mul optimized architecture is recommended for the systems where

DSP blocks are available and the precise membrane potential decay is necessary. Shift-

based neuron offers very good area, speed, and precision for the selected decay rates.

Chapter 6

Receptive field encoding and

spike train generation

Visual receptive fields described in Section 3.3 pose a significant computation task and

then, the hardware acceleration can speed up the whole system. In this section, two

RF hardware architectures will be presented and compared. The first architecture was

developed at the beginning of the work on the thesis and was published in 2014 [65].

It is an example of fully parallel design. The second architecture is the vectored type

architecture and shows superior performance in tests.

The neurons in the receptive or sensory layer generate a response defined by Equation

6.1, which is the Frobenius inner product (FIP) of input I and weight W ; matrices are

of size i× j.

RRF =
∑

Iij ∗Wij (6.1)

The matrix Wij defines a receptive field of the neuron, where i is X-axis resolution and

j is Y-axis resolution. These RFs can be used as line detectors, small shape detectors,

performing feature extraction for higher layers. Simple classification tasks (i.e. the incli-

nation of the line, circle or non-circle object) can be performed by single-layer receptive

field neurons. Having normalized input and weights, the maximum excitation will be

achieved when the input exactly matches the weight matrix.

As stated earlier, sensory layer neurons generate spikes at a frequency proportional to

89

90 Chapter 6 Receptive field encoding and spike train generation

their excitation level. As the neuron firing frequency can not be infinite, the maximum

firing rate is limited. The spiking response firing rate (FRn) is described by Equation

6.2, where ηmin is the defined minimum refractory period, Rn is current RF response

and Rmax is the maximum possible value of receptive field response.

FRn =
1

ηmin ∗ Rmax
Rn

(6.2)

Image-to-spike encoding task can be split into two blocks: Frobenius Inner Product

(FIP) modules used for calculation of the receptive field response, and integrate-and-fire

or stochastic neurons generating spike trains with firing rate proportional to the RF

response. The VTSAER encoder, described in Section 3.4.2 can be connected to serve

the VTSAER-based systems. The overall schematic is shown in Figure 6.1, a control

logic to coordinate the system is based on a Finite State Machine and is responsible for

the image loading and storing intermediate results. For testing purposes, a hardware

system based on Xilinx PLB-IPIF architecture with Microblaze softcore processor (not

shown in Figure 6.1) to link with the developed module was used.

Figure 6.1: Implemented system schematic.

Spike train can be generated in deterministic and stochastic manner. A simple Integrate-

and-Fire (IF) (without leakage) neuron can generate deterministic spike train. The

deterministic neuron schematic is shown in Figure 6.3A. The neuron consists of an ac-

cumulator and a comparator with the constant threshold value. The receptive field

response RF(x) is accumulated until the threshold is crossed. When this happens, the

comparator output zeroes the accumulator and the cycle starts from the beginning. The

Chapter 6 Receptive field encoding and spike train generation 91

Figure 6.2: Poissonian spike generation with the PRNG and comparator.

firing rate has no lower limit, and the upper limit is equal to the maximum possible

RF(x) divided by the threshold value.

Stochastic spike train generation is more complex. Traditionally, stochastic spike trains

are modeled with the Poisson process [66]. The Poissonian spike train has the average

spike rate per time proportional to the input stimuli, while the spikes themselves are

random and mutually independent. Such spike train can be generated by a the random

number generator and a comparator, as shown in Figure 6.2. However, most of the

LIF and IF models include refractoriness, which means that the spikes are not mutually

independent and the probability of firing a spike is the function of input stimulus and

the time passed from the previous spike. This process can be modeled by replacing the

constant threshold with the random number generator. Now the neuron has a proba-

bility of spiking with any membrane potential, and this probability is increasing with

every time unit passed after the previous spike, as the membrane potential increases.

The schematic of this type of IF neuron is shown in Figure 6.3B.

Implementing true random number generator is a challenge, as it should have some

external source of randomness: radio noise, radioactive decay etc. However, for the

stochastic spike train generation task, the requirements are not so strict and a proce-

dural Pseudo-random Number Generator (PRNG) with normal output distribution is

sufficient. PRNG, used in this implementation is a 64-bit linear feedback shift register

(LFSR), resulting in a total period of 264 clock cycles.

Typically, LFSRs are widely used as a pseudo-random number generators in embedded

systems as they are very hardware-efficient and fast, with sufficient randomness for non-

critical applications. For better randomness, LFSR is initialized with a non-zero input

value to the neuron or an arbitrary 8-bit number provided by parent IP-core. LFSR is

constantly running and, after the regeneration request caused by reset or output spikes,

the new current threshold value is set on the block output.

92 Chapter 6 Receptive field encoding and spike train generation

(a) Deterministic spiking neuron. (b) Stochastic spiking neuron.

Figure 6.3: Integrate-and-Fire neuron for deterministic and stochastic spike train
generation.

6.1 Frobenius inner product calculation implementation

For the base module of 8x8 RF with 8-bit data width, the block consists of 64 parallel

8-bit signed multipliers and one 65-input 8-bit signed adder. For partially parallel com-

putation of big RF response, the block is designed with a HOLD signal that reroutes the

previous adder value to the 65th input, allowing to calculate Frobenius product for the

big RFs. This block calculates the output in 2 clock cycles, but the processing can be

pipelined, i.e. calculation of the sum of the multiplication product can be done in the

same cycle as new data arrive to the multiplier. The receptive field to make convolution

can be hardcoded or loaded dynamically to the module. The hardcoded block requires

about two times fewer resources compared to pure CLB implementation, then, it is fa-

vorable if no reconfiguration is required. A general schematic of FIP block is shown in

Figure 6.4. The block supports RF sizes up to 8x8 and 512-bit input data width. If

receptive fields of bigger size are necessary, FIP is used in serial mode, calculating the

field response in several cycles. As a single 8x8 Frobenius norm calculation is done in 2

clock cycles, a 32x32 RF response is calculated in 16 ∗ 2 = 32 clock cycles. In existing

implementations [67, 68], RF size varies between 5 and 9; thus a base size of 8x8 for the

FIP module was chosen. All modules use saturated signed fixed-point arithmetic with

user-defined data width. All simulations and area occupation calculation were made

with 8-bit signed arithmetic.

Chapter 6 Receptive field encoding and spike train generation 93

Figure 6.4: Frobenius inner product module.

6.2 Hardware occupation and speed of fully parallel FIP

implementation

Hardware resource occupation is presented in Table 6.1. Three versions of FIP module

were implemented. The multipliers can be either synthesized from CLBs or from the hard

DSP48 blocks embedded in the FPGAs. The dedicated DSP48 blocks provide better

speed and scalability, but their number is limited. If possible, DSP48 blocks can be used

as multipliers. Also, weight loading interface increases the complexity of the module, and

the hardcoded version with constant weights should have less hardware occupation. The

synthesis was made in Xilinx ISE 14.2 software for Xilinx Spartan 6 family of devices with

default optimization settings (optimization goal: speed, optimization effort: normal, Use

DSP Blocks: Auto). The largest device in the family, XC6-SLX150T contains 180 DSP48

blocks, which means that it can contain a minimum three of the FIP modules without

significant utilization of other logic resources. This is described in the table as ”FIP on

DSP48”.

LUT LUT-FF pairs DSP48 Max f(MHz)

Stochastic IF neuron 54 83 0 222.82
Neuron layer(1K neuron) 55242 83886 0 222.82
8x8 FIP on DSP48 1242 1242 64 40
8x8 FIP on CLB 6618 6618 0 35.84
8x8 FIP CLB/hardcoded 3642 3642 0 41.2

Table 6.1: Implementation Results for the proposed blocks: Integrate&Fire neuron, a
neuron layer of 1024 units and three different Frobenius Inner Product (FIP) encoding

block implementations

It can be seen that hardcoded FIP RF is smaller than normal RF FIP block, but a DSP48

implementation is the smallest in terms of logic occupation. With pipelined operation

94 Chapter 6 Receptive field encoding and spike train generation

and hardcoded RFs, a single 8x8 RF-FIP block can process up to 40 Mpix per second,

utilizing around 7% of an XC6-SLX150T device. It can be efficiently implemented in

parallel architectures counting thousands (more than 3000 for an XC6-SLX150T device)

of encoding neurons. The processing speed is sufficient to encode stereo video stream

with XGA resolution (1024x768@24 FPS) in real time.

6.3 Vectored FIP computation

The previous model, while being able to compute the 8× 8 RF FIP in two clock cycles,

requires 64 DSP blocks and runs on a maximum frequency of 40 MHz. Also, the ded-

icated DSP blocks cannot be shared within the design to be used for other functions.

Another complex spot is the input data bus. It assumes that the input image can be

read in blocks of 8x8 pixels, and with 8 bits per pixel the data bus should be 512 bit

wide. The vectored architecture utilizes narrow data bus and is optimized for serial pixel

input with multiple RFs calculated simultaneously. Let W be an N-element array of

receptive fields of size M ×M . The input image patch I and the RF can be represented

as vectors ~I, ~Wn of length M2. Then the corresponding RF response in vector form is

equal to Equation 6.3.

RRFn = ~I · ~Wn (6.3)

The whole array of RF can be computed by the series of equations: 6.4.

RRF 1 = I1 ∗W 1
1 + I2 ∗W 1

2 + . . .+ IM2 ∗W 1
M2

RRF 2 = I1 ∗W 1
2 + I2 ∗W 2

2 + . . .+ IM2 ∗W 2
M2

. . .

RRFN = I1 ∗WN
1 + I2 ∗WN

2 + . . .+ IM2 ∗WN
M2

(6.4)

It is easy to note that computation can be parallelized on N nodes as vector-by-scalar

multiplication. Input Im can be shared for simultaneous computation. Array W is

split into M independent memories with a common address bus and the RRFn sum of

products is calculated by MAC operations.

After the computation of Frobenius inner product, the response of the given RF must

Chapter 6 Receptive field encoding and spike train generation 95

Figure 6.5: Vectored implementation of RF neuron.

Slice Registers 39
Slice LUTs 43
BlockRAM 1
DSP48E1 1
Frequency 325.256 MHz

Table 6.2: Hardware occupation of single RF Integrate-and-fire neuron.

be converted into a spike train. Frequency coding used in the IF neuron described in

the fully parallel implementation uses add-accumulate operation. The vectored model

can use the same neuron, but as MAC and add-accumulate operations can be both

implemented in the same DSP48 block, the design can be optimized. The hardware

design of a Integrate-and-Fire neuron with vectored Receptive Field encoding is shown

in Figure 6.5.

The main elements of the neuron are the BRAM-ALU pair. ALU is modified to have

two accumulators: one for the FIP calculation, second for Integrate&Fire membrane

potential. The threshold in this implementation is a constant value; for the stochastic

spike train generation, an RNG can be easily added to the design.

Due to its simplicity, the implementation has higher working frequency. Synthesis results

for this neuron are shown in Table 6.2.

For maximum efficiency, the implementation is pipelined. Reading from memory takes

one clock cycle, MAC operation is pipelined into 2 cycles. The waveform of the working

neuron is shown in Figure 6.6.

96 Chapter 6 Receptive field encoding and spike train generation

Figure 6.6: Hardware simulation of a neuron. Easy to notice how ISI is changing from
the infinity (no spikes, response is below threshold) to 4 and then to 3 clock cycles.

6.4 On numerical accuracy of RF computation and spiking

response.

As this module requires multiplication, a normalization for Q-format is necessary. Nor-

malization increases the numerical error, but for the spike generation in discrete time

units it is not important. Also, normalization discards small weights, increasing the

sparsity of the reaction. By discarding very small RF response, the spike frequency has

a minimum limit. It may be undesired on very large receptive fields, but in practice,

RFs larger than 13×13 are rarely used. Consider a 13×13 RF with 8-bit fractional width

weights. The minimal possible response for this RF is 2−8 = 0.0039. If the whole RF

response is normalized to 1, the possible output range is limited to 99.61% of numeric

range. If the weights’ values are normalized to 1 (Rmax = 169), the possible output

range is almost 100%. As the synthesized spike streams are not intended to be biologi-

cally plausible, weight range, timing units and refractory period can be arbitrary.

However, if all input values for the separate pixels are below some threshold, their indi-

vidual RF responses will be too weak and will be rounded to 0 with normalization. The

minimum single multiplication response is equal to 1× 22Y for QX.Y format, and, as it

was explained in Section 5.1.3, the overall maximum RF response error is ±N × 2−Y .

For the given RF it is 0.6602. Obviously, it is an inappropriate error for an RF response

normalized to 1, but for the Rmax = 169, the error will only be 0.39%. Numerical

accuracy and maximum error for various RFs and fractional part sizes are presented in

Table 6.3.

Results illustrate the influence of the numerical accuracy on the spike response. Con-

sider an RF neuron with ηmin = 10 TU, Rmax = 1 (Equation 6.2). The input I and

RF response are normalized to 1 and stored with 8-bit precision. Interspike interval

Chapter 6 Receptive field encoding and spike train generation 97

(ISI) will vary between 10 (maximal response) and 15 (minimal response) TUs. For the

Rmax = 169, ISI will vary between 10 and 2560. Such difference in ISI boundaries shows

how important is the proper data format selection.

Fractional part, bits 1× 1 3× 3 5× 5 9× 9 13× 13

6 1.5625e-02 1.4062e-01 3.9062e-01 1.2656e+00 2.6406e+00
8 3.9062e-03 3.5156e-02 9.7656e-02 3.1641e-01 6.6016e-01
10 9.7656e-04 8.7891e-03 2.4414e-02 7.9102e-02 1.6504e-01
12 2.4414e-04 2.1973e-03 6.1035e-03 1.9775e-02 4.1260e-02
14 6.1035e-05 5.4932e-04 1.5259e-03 4.9438e-03 1.0315e-02
16 1.5259e-05 1.3733e-04 3.8147e-04 1.2360e-03 2.5787e-03

Table 6.3: Accuracy and maximal error for different RF size and fractional part width.

6.5 Comparison of fully parallel and vectored FIP imple-

mentation.

In this section, two different architectures were presented. They both represent classical

”time vs size” tradeoff with linear dependability in terms of processing cycles. However,

working frequency of FPGA circuits is highly dependent of routing and functions with

multiple arguments (64-input adder) work significantly slower. Vectored implementation

has the same hardware complexity (if the weights are stored in BRAM) for the RFs up to

1024 elements. Single BRAM48 can be configured as 4× 9− bit1Kelement independent

single-port RAMs, thus it can be shared among 4 RF neurons. Fully parallel architecture

requires multiple DSP blocks, and weights are stored in CLB-synthesized RAM. Let’s

compare the 8× 8 RF neurons. The fully parallel architecture will compute the output

in 2 clock cycles on 40 MHz, or 0.05 µs. The vectored architecture will use 64 cycles for

computation, and 3 more cycles for passing through the pipeline. Total execution time

of 67 clock cycles on 325 MHz is 0.206 µs. While using 64 times more resources, the fully

parallel architecture is only 4 times faster. In typical tasks there are several RF used,

and 4 parallel RF vectored neurons vastly outperform fully parallel neurons. Proposed

architecture, based on BRAM-ALU pair, provides a versatile computating platform for

various algorithms that can be represented as a sequence of vector-by-scalar operations.

A variation of such architecture was successfully applied for matrix multiplication [60].

Automata neuron implementation, presented in the previous chapter is also built using

this schematic. It is possible to create a universal neural block that can be used as

98 Chapter 6 Receptive field encoding and spike train generation

RF encoder or spiking neuron by merging the vectored RF architecture with spiking

elements of Automata neuron.

Chapter 7

Final remarks and conclusions

7.1 Comparison with the state of the art hardware imple-

mentations

It is hard to directly compare experimental systems, as almost every architecture re-

ported in the scientific literature has unique features and was made using different hard-

ware. The architecture, described in this work can process up to 370 million input

events per second with the spiking network of 1 to 10000+ neurons in parallel, and

any arbitrary number of neurons serially. The main limitation is the amount of on-chip

block memory available. The new generation Xilinx Ultrascale+ Virtex devices host up

to 95 Mb of BRAM and up to 360 Mb of UltraRAM, which is also compatible with the

architecture. Even cost-optimized Kintex family contains up to 35 Mb of BRAM and 36

Mb of UltraRAM. A single medium-scale Kintex FPGA can contain more than 2 million

18-bit weights or 4 million 9-bit ones. This is a dramatic improvement over the previous

FPGA generations. Older architectures that use external DDR memory for weight stor-

age become less competitive with such resources, and the parallel event processing speed

becomes more important. Minitaur, a hardware-implemented spiking RBM offers up to

18.73 million of synaptic operations per second with 75 MHz equivalent clock speed;

more recent architecture described in [69] goes up to 196 million of synaptic updates

(operating on internal BRAM), and has the STDP capability. Both architectures are

coarse-grained, with large neural processing cores. SPEEDS architecture [70] is a mix

of coarse and fine-grained architectures with external memories and performs up to 72

99

100 Chapter 7 Final remarks and conclusions

millions of synaptic operations per second. Coarse-grained architectures provide a more

realistic comparison. Some examples of single spiking neuron occupation are shown in

Table 7.1. The proposed architecture outperforms other implementations in terms of

speed and occupation, with hardware complexity less that 10 times compared to previ-

ous works.

How big the implemented network can be? What is the maximum performance? The

answers to these questions can be only speculative. The vectored architecture maintains

the high clock speed regardless of the size of the layer, and then the maximum through-

put can be deducted from the number of elements in parallel. One processing node

performs 387 millions of synaptic computations per second. A layer of thousand units

will perform 387 billions of synaptic computations, and 10000 units go up to 3.87 trillion

of synaptic computations in one second. However, the throughput of the existing hard-

ware interfaces will reduce these theoretical numbers by several times. The limitations

are not within the architecture itself but on the amount of memory available and the

capability to provide equally fast data input and output. Also, the largest practically

used spiking architectures nowadays rarely exceed 1000 neurons. It is more useful to

focus on efficient implementations dedicated for smaller, cost-efficient chips and the de-

velopment of high-bandwidth spike transmission interfaces. The vectored architecture

can offer excellent processing speed and latency on all contemporary FPGA families,

from mid-range Spartan-6 up to high-end Virtex Ultrascale+.

Device and implementation LUT FF DSP48A Clock speed(MHz)

Spartan-6, [71] 723 808 0 322.82
Zynq, [72] 3000 n/a 9 200
Virtex-2, [73] 602 491 0 204.311
Spartan-6, [74] 1221 864 0 128.7
Spartan-3, [75] 543 250 1 69
Virtex-7, this work (linear) 97 86 0 387.372
Spartan-6, this work (linear) 95 83 0 272.046

Table 7.1: Comparison of the selected fine-grained spiking neuron hardware imple-
mentations.

Chapter 7 Final remarks and conclusions 101

7.2 Conclusions

FPGA usage for SNN implementation is not a new topic. Significant efforts were made

and a number of systems of various complexity was built. However, most of the im-

plementations were made by porting software algorithms into hardware or designed to

have very narrow usage. FPGAs, being in the middle between dedicated ASICs and

general-purpose CPU-based computing systems seldom were perceived as self-sufficient

neuromorphic platforms. The presented work is an effort to join the scattered elements

of the neuromorphic hardware into a versatile, universal architecture beneficial for mod-

ern commercial hardware. The accepted neuronal models and networks are much closer

to the classic Machine Learning field than to the biological models, used in neuroscience.

My goal was not to build just another large-scale emulation circuit, but a working sys-

tem that has a practical value.

The main novelties, proposed in this thesis are:

• A new modification of AER protocol. The proposed variation offers true syn-

chronicity of the events, elimination of timestamp overflow and uniform processing

procedure.

• Novel LIF neuronal model implemented as a finite automaton. This approach

allowed me to dramatically simplify the logic circuitry with the preservation of

the desired functionality. By converting the input data stream into a control

sequence, I removed the internal state change logic from the neuron and eliminate

the time-dependency of the system. The states and outputs of Automata neurons

are independent of the system clock and are defined only by the input VTSAER

stream. Neurons can be synchronous or asynchronous, they accept variable data

rate. Developed PSP models are efficient and have good accuracy compared to

the software implementations. The neuronal functionality was verified with neural

networks trained on publically available datasets.

• A novel approach to the STDP realization. By using interleaved VTSAER, I was

able to create a small, independent STDP block with finite automaton behavior.

The proposed method allows to implement various types of causality-driven synap-

tic plasticity, and learning is done with half of the neural computation speed on

the interrupted data input stream.

102 Chapter 7 Final remarks and conclusions

• Vectored network architecture, allowing to implement very large networks with an

arbitrary number of layers. The erformance of the proposed architecture outper-

forms significantly exisiting designs, and versatility allows to implement virtually

any type of feedforward network as well as receptive field encoding layer. The

benefits and features of this architecture go beyond the SNN field and I have

successfully applied the developed architecture for the matrix multiplication and

classic ANN computation tasks. Regarding the spiking computations, a vectored

architecture implemented on modern FPGA device can provide a true single-chip

low-power neuromorphic processing. The overall performance will allow to process

information from multiple neuromorphic sensors, and low latency makes it a viable

option for the real-time controlling systems.

• Vectored approach to the visual receptive fields data encoding. The proposed

algorithm and architecture also goes beyond the SNN field and can be used for

convolutional neural networks as well.

The philosophy of lightweight, massively parallel computation with ”hardware before

software” thinking gave me the possibility to explore previously omitted paths in the

neuromorphic hardware field. The capabilities of spiking neural networks grow every

day, and undoubtedly SNNs will find a proper place in robots, drones and embedded

systems, performing real tasks. And I believe FPGAs will play an important role in

it. I hope my work will help others to go further, to port more and more SNNs into

hardware, accelerating them hundreds of times.

Bibliography

[1] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[2] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.

Psychology Press, 2005.

[3] Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[4] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[5] Wolfgang Maass. Networks of spiking neurons: the third generation of neural

network models. Neural networks, 10(9):1659–1671, 1997.

[6] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML-10), pages 807–814, 2010.

[7] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition, 1997. ISBN 0070428077, 9780070428072.

[8] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2nd edition, 1998. ISBN 0132733501.

[9] Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural networks

with resume: Sequence learning, classification, and spike shifting. Neural Comput.,

22(2):467–510, February 2010. ISSN 0899-7667. doi: 10.1162/neco.2009.11-08-901.

URL http://dx.doi.org/10.1162/neco.2009.11-08-901.

103

http://dx.doi.org/10.1162/neco.2009.11-08-901

Bibliography BIBLIOGRAPHY

[10] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using

spike-timing-dependent plasticity. Frontiers in computational neuroscience, 9:99,

2015.

[11] Timothée Masquelier, Rudy Guyonneau, and Simon J Thorpe. Competitive stdp-

based spike pattern learning. Neural computation, 21(5):1259–1276, 2009.

[12] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and

Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep networks through

weight and threshold balancing. In Neural Networks (IJCNN), 2015 International

Joint Conference on, pages 1–8. IEEE, 2015.

[13] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press, 2002.

[14] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE

transactions on neural networks, 15(5):1063–1070, 2004.

[15] Wikimedia Commons. Biological neuron structure, 2017. URL https://en.

wikipedia.org/wiki/File:Neuron-no_labels2.png.

[16] Thomas Splettstoesser. Biological synapse structure, 2017. URL https://

commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg.

[17] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. The Journal of

physiology, 117(4):500–544, 1952.

[18] Allan L Hodgkin and Andrew F Huxley. The dual effect of membrane potential on

sodium conductance in the giant axon of loligo. The Journal of physiology, 116(4):

497, 1952.

[19] Wulfram Gerstner. A framework for spiking neuron models: The spike response

model. Handbook of Biological Physics, 4:469–516, 2001.

[20] Taras Iakymchuk, Alfredo Rosado-Muñoz, Juan F. Guerrero-Mart́ınez, Manuel

Bataller-Mompeán, and Jose V. Francés-Vı́llora. Simplified spiking neural net-

work architecture and stdp learning algorithm applied to image classification.

https://en.wikipedia.org/wiki/File:Neuron-no_labels2.png
https://en.wikipedia.org/wiki/File:Neuron-no_labels2.png
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_lines.svg

Bibliography 105

EURASIP Journal on Image and Video Processing, 2015(1):4, 2015. ISSN 1687-

5281. doi: 10.1186/s13640-015-0059-4. URL http://dx.doi.org/10.1186/

s13640-015-0059-4.

[21] John R Hughes. Post-tetanic potentiation. Physiological reviews, 38(1):91–113,

1958.

[22] Henry Markram, Joachim Lübke, Michael Frotscher, and Bert Sakmann. Regulation

of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275

(5297):213–215, 1997.

[23] Olivier Bichler, Damien Querlioz, Simon J Thorpe, Jean-Philippe Bourgoin, and

Christian Gamrat. Unsupervised features extraction from asynchronous silicon

retina through spike-timing-dependent plasticity. In Neural Networks (IJCNN),

The 2011 International Joint Conference on, pages 859–866. IEEE, 2011.

[24] Thomas J Strain, LJ McDaid, Liam P Maguire, and T Martin McGinnity. A

supervised stdp based training algorithm with dynamic threshold neurons. In Neural

Networks, 2006. IJCNN’06. International Joint Conference on, pages 3409–3414.

IEEE, 2006.

[25] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory

and tools for the conversion of analog to spiking convolutional neural networks.

arXiv preprint arXiv:1612.04052, 2016.

[26] Abigail L Person and David J Perkel. Unitary ipsps drive precise thalamic spiking

in a circuit required for learning. Neuron, 46(1):129–140, 2005.

[27] P. Smolensky. Parallel distributed processing: Explorations in the microstructure

of cognition, vol. 1. chapter Information Processing in Dynamical Systems: Foun-

dations of Harmony Theory, pages 194–281. MIT Press, Cambridge, MA, USA,

1986. ISBN 0-262-68053-X. URL http://dl.acm.org/citation.cfm?id=104279.

104290.

[28] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann

machines for collaborative filtering. In Proceedings of the 24th international con-

ference on Machine learning, pages 791–798. ACM, 2007.

http://dx.doi.org/10.1186/s13640-015-0059-4
http://dx.doi.org/10.1186/s13640-015-0059-4
http://dl.acm.org/citation.cfm?id=104279.104290
http://dl.acm.org/citation.cfm?id=104279.104290

Bibliography BIBLIOGRAPHY

[29] Y. Bu, G. Zhao, A.-l. Luo, J. Pan, and Y. Chen. Restricted Boltzmann machine:

a non-linear substitute for PCA in spectral processing. aap, 576:A96, April 2015.

doi: 10.1051/0004-6361/201424194.

[30] C. C. Tan and C. Eswaran. Performance comparison of three types of autoencoder

neural networks. In 2008 Second Asia International Conference on Modelling and

Simulation (AMS), pages 213–218, May 2008. doi: 10.1109/AMS.2008.105.

[31] Emre Neftci, Srinjoy Das, Bruno U. Pedroni, Kenneth Kreutz-Delgado, and Gert

Cauwenberghs. Event-driven contrastive divergence for spiking neuromorphic sys-

tems. CoRR, abs/1311.0966, 2013. URL http://arxiv.org/abs/1311.0966.

[32] Daniel Neil. Online Learning in Event-based Restricted Boltzmann Machines. PhD

thesis, Institute of Neuroinformatics, 2013.

[33] Rafael Serrano-Gotarredona, Matthias Oster, Patrick Lichtsteiner, Alejandro

Linares-Barranco, Rafael Paz-Vicente, Francisco Gómez-Rodŕıguez, Luis Camuñas-

Mesa, Raphael Berner, Manuel Rivas-Pérez, Tobi Delbruck, et al. Caviar: A 45k

neuron, 5m synapse, 12g connects/s aer hardware sensory–processing–learning–

actuating system for high-speed visual object recognition and tracking. IEEE

Transactions on Neural Networks, 20(9):1417–1438, 2009.

[34] Tobi Delbrück, Bernabe Linares-Barranco, Eugenio Culurciello, and Christoph

Posch. Activity-driven, event-based vision sensors. In Circuits and Systems (IS-

CAS), Proceedings of 2010 IEEE International Symposium on, pages 2426–2429.

IEEE, 2010.

[35] Shih-Chii Liu, André Van Schaik, Bradley A Mincti, and Tobi Delbruck. Event-

based 64-channel binaural silicon cochlea with q enhancement mechanisms. In

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium

on, pages 2027–2030. IEEE, 2010.

[36] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer.

Real-time classification and sensor fusion with a spiking deep belief network. Fron-

tiers in neuroscience, 7, 2013.

[37] Edgar Douglas Adrian. The impulses produced by sensory nerve-endings: Part 4.

impulses from pain receptors. The Journal of physiology, 62(1):33, 1926.

http://arxiv.org/abs/1311.0966

Bibliography 107

[38] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano. Hardware spiking neural

network with run-time reconfigurable connectivity in an autonomous robot. In

NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings., pages 189–198,

July 2003.

[39] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals

of eugenics, 7(2):179–188, 1936.

[40] Luis M Martinez and Jose-Manuel Alonso. Complex receptive fields in primary

visual cortex. The neuroscientist, 9(5):317–331, 2003.

[41] Dictionary of optometry and visual science, 7th edition. Clinical and Experimental

Optometry, 92(5):465–465, 2009. ISSN 1444-0938. doi: 10.1111/j.1444-0938.2009.

00388.x. URL http://dx.doi.org/10.1111/j.1444-0938.2009.00388.x.

[42] John G Daugman. Uncertainty relation for resolution in space, spatial frequency,

and orientation optimized by two-dimensional visual cortical filters. JOSA A, 2(7):

1160–1169, 1985.

[43] S. Marĉelja. Mathematical description of the responses of simple cortical cells∗. J.

Opt. Soc. Am., 70(11):1297–1300, Nov 1980. doi: 10.1364/JOSA.70.001297. URL

http://www.osapublishing.org/abstract.cfm?URI=josa-70-11-1297.

[44] Misha Mahowald. VLSI Analogs of Neuronal Visual Processing: A Synthesis of

Form and Function. PhD thesis, California Institute of Technology, Pasadena,

California, 5 1992.

[45] T. Iakymchuk, A. Rosado, T. Serrano-Gotarredona, B. Linares-Barranco,

A. Jiménez-Fernández, A. Linares-Barranco, and G. Jiménez-Moreno. An aer

handshake-less modular infrastructure pcb with x8 2.5gbps lvds serial links. In 2014

IEEE International Symposium on Circuits and Systems (ISCAS), pages 1556–

1559, June 2014. doi: 10.1109/ISCAS.2014.6865445.

[46] Juan Antonio Leñero-Bardallo, Teresa Serrano-Gotarredona, and Bernabé Linares-

Barranco. A five-decade dynamic-range ambient-light-independent calibrated

signed-spatial-contrast aer retina with 0.1-ms latency and optional time-to-first-

spike mode. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(10):

2632–2643, 2010.

http://dx.doi.org/10.1111/j.1444-0938.2009.00388.x
http://www.osapublishing.org/abstract.cfm?URI=josa-70-11-1297

Bibliography BIBLIOGRAPHY

[47] Shih-Chii Liu, Tobi Delbruck, Giacomo Indiveri, Rodney Douglas, and Adrian

Whatley. Event-based neuromorphic systems. John Wiley & Sons, 2015.

[48] Rafael Serrano-Gotarredona, Matthias Oster, Patrick Lichtsteiner, Alejandro

Linares-Barranco, Rafael Paz-Vicente, Francisco Gomez-Rodriguez, H̊avard Kolle

Riis, Tobi Delbrück, Shih-Chii Liu, S Zahnd, et al. Aer building blocks for multi-

layer multi-chip neuromorphic vision systems. In NIPS, pages 1217–1224, 2005.

[49] Alejandro Linares-Barranco, Gabriel Jimenez-Moreno, Bernabé Linares-Barranco,

and Antón Civit-Balcells. On algorithmic rate-coded aer generation. IEEE Trans-

actions on Neural Networks, 17(3):771–788, 2006.

[50] UCI Machine Learning Repository. Semeion Handwritten Digit Dataset. 2014. URL

http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit.

[51] Taras Iakymchuk, Alfredo Rosado-Munoz, Manuel Bataller-Mompeán, Juan F

Guerrero-Mart́ınez, and Jose V Francés-Vı́llora. Frequency spike encoding using

gabor-like receptive fields. IFAC Proceedings Volumes, 47(3):701–706, 2014.

[52] A. Cassidy, S. Denham, P. Kanold, and A. Andreou. Fpga based silicon spiking

neural array. In 2007 IEEE Biomedical Circuits and Systems Conference, pages

75–78, Nov 2007. doi: 10.1109/BIOCAS.2007.4463312.

[53] D. Thomas and W. Luk. Fpga accelerated simulation of biologically plausible spik-

ing neural networks. In 2009 17th IEEE Symposium on Field Programmable Custom

Computing Machines, pages 45–52, April 2009. doi: 10.1109/FCCM.2009.46.

[54] K. L. Rice, M. A. Bhuiyan, T. M. Taha, C. N. Vutsinas, and M. C. Smith. Fpga

implementation of izhikevich spiking neural networks for character recognition. In

2009 International Conference on Reconfigurable Computing and FPGAs, pages

451–456, Dec 2009.

[55] C. Zamarreno-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and

B. Linares-Barranco. Multicasting mesh aer: A scalable assembly approach for re-

configurable neuromorphic structured aer systems. application to convnets. IEEE

Transactions on Biomedical Circuits and Systems, 7(1):82–102, Feb 2013. ISSN

1932-4545. doi: 10.1109/TBCAS.2012.2195725.

http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

Bibliography 109

[56] D. Neil and S. C. Liu. Minitaur, an event-driven fpga-based spiking network ac-

celerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22

(12):2621–2628, Dec 2014. ISSN 1063-8210. doi: 10.1109/TVLSI.2013.2294916.

[57] Xilinx. 7 series dsp48e1 slice user guide (v1.8). Technical Report UG479, Xilinx, Inc,

November 2014. URL http://www.xilinx.com/support/documentation/user_

guides/ug479_7Series_DSP48E1.pdf.

[58] Intel. Understanding peak floating-point performance

claims, February 2017. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/wp/

wp-01222-understanding-peak-floating-point-performance-claims.pdf.

[59] Andrew Cassidy, Andreas G Andreou, and Julius Georgiou. A combinational digital

logic approach to stdp. In Circuits and Systems (ISCAS), 2011 IEEE International

Symposium on, pages 673–676. IEEE, 2011.

[60] Taras Iakymchuk, Alfredo Rosado-Munoz, Manuel Bataller Mompéan, Jose Vi-

cente Frances Villora, and Emmanuel Ovie Osimiry. Versatile direct and transpose

matrix multiplication with chained operations: An optimized architecture using

circulant matrices. IEEE Transactions on Computers, 65(11):3470–3479, 2016.

[61] Xilinx. 7 series fpgas memory resources user guide (v1.11). Technical Report

UG473, Xilinx, Inc, November 2014. URL http://www.xilinx.com/support/

documentation/user_guides/ug473_7Series_Memory_Resources.pdf.

[62] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J. Thorpe, and Tim-

othée Masquelier. Stdp-based spiking deep neural networks for object recognition.

CoRR, abs/1611.01421, 2016. URL http://arxiv.org/abs/1611.01421.

[63] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas Nowzari-

Dalini, and Mohammad Ganjtabesh. First-spike based visual categorization using

reward-modulated stdp. arXiv preprint arXiv:1705.09132, 2017.

[64] A Yousefzadeh, M Jab loński, T Iakymchuk, A Linares-Barranco, A Rosado,

LA Plana, T Serrano-Gotarredona, S Furber, and B Linares-Barranco. Multiplex-

ing aer asynchronous channels over lvds links with flow-control and clock-correction

for scalable neuromorphic systems.

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://arxiv.org/abs/1611.01421

Bibliography BIBLIOGRAPHY

[65] T Iakymchuk, A Rosado-Munoz, M Bataller-Mompean, JF Guerrero-Mart́ınez,

JV Francés-Villora, M Wegrzyn, and M Adamski. Hardware-accelerated spike train

generation for neuromorphic image and video processing. In Programmable Logic

(SPL), 2014 IX Southern Conference on, pages 1–6. IEEE, 2014.

[66] David Heeger. Poisson model of spike generation. Handout, University of Standford,

5:1–13, 2000.

[67] C.A. Perez, C.A. Salinas, P.A. Estevez, and P.M. Valenzuela. Genetic design of

biologically inspired receptive fields for neural pattern recognition. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 33(2):258–270, Apr

2003. ISSN 1083-4419. doi: 10.1109/TSMCB.2003.810441.

[68] J.A. Perez-Carrasco, Bo Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona,

Shouchun Chen, and B. Linares-Barranco. Mapping from frame-driven to frame-free

event-driven vision systems by low-rate rate coding and coincidence processing–

application to feedforward convnets. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 35(11):2706–2719, 2013. ISSN 0162-8828.

[69] Byungik Ahn. Special-purpose hardware architecture for neuromorphic computing.

In SoC Design Conference (ISOCC), 2015 International, pages 209–210. IEEE,

2015.

[70] G. Séguin-Godin, F. Mailhot, and J. Rouat. Efficient event-driven approach using

synchrony processing for hardware spiking neural networks. In 2015 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), pages 2696–2699, May 2015.

doi: 10.1109/ISCAS.2015.7169242.

[71] E. Jokar and H. Soleimani. Digital multiplierless realisation of a calcium based

plasticity model. IEEE Transactions on Circuits and Systems II: Express Briefs,

PP(99):1–1, 2016. ISSN 1549-7747. doi: 10.1109/TCSII.2016.2621823.

[72] Lei Wan, Yuling Luo, Shuxiang Song, J. Harkin, and Junxiu Liu. Efficient neuron

architecture for fpga-based spiking neural networks. In 2016 27th Irish Signals

and Systems Conference (ISSC), pages 1–6, June 2016. doi: 10.1109/ISSC.2016.

7528472.

[73] H. Soleimani, A. Ahmadi, and M. Bavandpour. Biologically inspired spiking neu-

rons: Piecewise linear models and digital implementation. IEEE Transactions on

Bibliography 111

Circuits and Systems I: Regular Papers, 59(12):2991–3004, Dec 2012. ISSN 1549-

8328.

[74] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh. A cordic based digital hardware

for adaptive exponential integrate and fire neuron. IEEE Transactions on Circuits

and Systems I: Regular Papers, 63(11):1986–1996, Nov 2016. ISSN 1549-8328.

[75] T. Iakymchuk, A. Rosado, J. V. Frances, and M. Bataller. Fast spiking neural

network architecture for low-cost fpga devices. In 7th International Workshop on

Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pages 1–

6, July 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Resumen de la tesis doctoral
	0.1 Capítulo 2
	0.2 Capítulo 3
	0.3 Capítulo 4
	0.4 Capítulo 5
	0.5 Capítulo 6
	0.6 Capítulo 7

	1 Introduction
	1.1 Goals and aims of this thesis
	1.2 Structure of this thesis

	2 Neural networks and models: a brief overview
	2.1 Biological neurons and neural models
	2.2 Neural plasticity
	2.3 Neural models
	2.3.1 Biological spiking neuron
	2.3.2 Hodgkin-Huxley Model
	2.3.3 Leaky Integrate and Fire (LIF) model
	2.3.4 Simplified Spiking Neural model

	2.4 Long-term plasticity
	2.5 Neural networks types
	2.5.1 Multilayer Perceptron

	2.6 Restricted Boltzmann Machine

	3 Neural encoding
	3.1 Rate-based encoding
	3.2 Position coding
	3.3 Visual receptive fields
	3.3.1 Receptive field neuron response
	3.3.2 Gabor filters

	3.4 Address-Event Representation
	3.4.1 Variable timeslot length AER (VTSAER)
	3.4.2 Online event encoding into VTSAER

	4 Evaluation of the simplified model
	4.1 Image encoding
	4.2 Network architecture
	4.3 Results
	4.4 Evaluation of the RBM based on the simplified model

	5 Spiking neuron as a finite automaton and its hardware implementation
	5.1 FPGA in scope of the neuromorphic hardware
	5.1.1 Block RAM
	5.1.2 DSP48 block
	5.1.3 Fixed-point arithmetic and accuracy in FPGA

	5.2 VTSAER as a basis for neuron architecture
	5.2.1 Binary shift-based LIF and multiplication-based LIF neurons

	5.3 STDP on-chip learning for the Automata neuron
	5.4 FPGA implementation of the Automata neuron
	5.4.1 Neuron functional blocks description.
	5.4.2 Simulation of Automata neuron functioning

	5.5 Composing a layer of Automata Neurons. Multi-layered networks
	5.6 The limitations of the fixed-point models
	5.7 Complete neuromorphic data processing system design with the vectored architecture

	6 Receptive field encoding and spike train generation
	6.1 Frobenius inner product calculation implementation
	6.2 Hardware occupation and speed of fully parallel FIP implementation
	6.3 Vectored FIP computation
	6.4 On numerical accuracy of RF computation and spiking response.
	6.5 Comparison of fully parallel and vectored FIP implementation.

	7 Final remarks and conclusions
	7.1 Comparison with the state of the art hardware implementations
	7.2 Conclusions

	Bibliography

