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Resumen 

Introducción 

Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y 
mortalidad. Como consecuencia del aumento de la esperanza de vida esta tendencia 
será aún más acusada en los próximos años. Es por ello que este grupo de 
enfermedades está entre las entidades que demandan una mayor atención en nuestro 
sistema sanitario. La disposición de herramientas fiables y económicas que permitan 
un diagnóstico rápido y dinámico de los pacientes con estas patologías será crucial 
para evitar el consumo de recursos innecesarios en pruebas diagnósticas 
complementarias, y así disponer de información pronostica fiable para el adecuado 
tratamiento de los pacientes. 

En esta tesis doctoral se aborda principalmente uno de los síndromes 
cardiovasculares que con más frecuencia motivan la atención de los pacientes en las 
instituciones sanitarias, el infarto agudo de miocardio. Cuando esta entidad se 
presenta parte del miocardio afectado sufre necrosis. El miocardio viable es aquel 
miocardio no necrótico cuya capacidad contráctil queda disminuida, pero es 
potencialmente recuperable. La determinación de la viabilidad miocárdica es de 
utilidad para predecir la función sistólica posterior a un infarto agudo de miocardio, 
cuya importancia es vital para determinar el consecuente tratamiento del paciente.  

La resonancia magnética cardíaca (CMR) se considera, en la actualidad, el método 
de imagen diagnóstica de referencia dado que permite explorar la anatomía del 
corazón de forma no invasiva y valorar su utilidad, no sólo de forma cualitativa, sino 
también cuantitativa. Con ella es posible analizar múltiples variables para predecir la 
función sistólica tardía. La modalidad rutinaria de CMR es la denominada cine CMR, 
pero en esta modalidad no es posible visualizar el miocardio infartado. Para poder 
visualizarlo, se utiliza la modalidad CMR con realce tardío de gadolinio (LGE). 
Existen técnicas de procesamiento de imágenes con las que se podrían extraer 
parámetros cuantitativos adicionales facilitando y mejorando el diagnóstico y 
pronóstico. Una de estas técnicas es el análisis de texturas que hasta la fecha ha sido 
poco estudiada en CMR. 
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La textura de una imagen puede ser descrita con palabras como: finura, aspereza, 
irregularidad y suavidad por mencionar algunas. El análisis de texturas es una técnica 
que permite cuantificar la textura de una imagen mediante diversos métodos de 
cálculo, obteniéndose de esta manera los denominados parámetros texturales. El 
análisis de texturas ha sido utilizado en varias aplicaciones médicas permitiendo la 
clasificación de tejidos y el diagnóstico de patologías. Con esta técnica es posible 
extraer información no apreciable visualmente en imágenes rutinarias con lo que se 
puede evitar el uso de técnicas diagnósticas más complejas. Debido al elevado número 
de técnicas de análisis de texturas, es posible extraer cientos de parámetros texturales, 
por lo que la correcta aplicación de técnicas de aprendizaje máquina como la selección 
de características y clasificadores es un requisito fundamental para la consecución de 
resultados satisfactorios.  

El trabajo de investigación en el que se enmarca este proyecto de tesis se basa en la 
aplicación del análisis de texturas en CMR para la clasificación y detección de 
miocardio infartado. La hipótesis de partida es que el tejido cardiaco presenta textura 
diferente según su afección, la cual muchas veces no se aprecia visualmente, y que 
podría ser detectada mediante la correcta aplicación del análisis de texturas. La 
relevancia de este proyecto se basa en la posibilidad de detectar el miocardio infartado 
en imágenes cine CMR, reduciendo al máximo la necesidad de realizar adquisiciones 
en la modalidad LGE, lo que implica una reducción en los costos sanitarios y en el 
tiempo de diagnóstico. Además, los mayores beneficiados serían aquellos pacientes 
con contraindicaciones al contraste gadolinio. Por lo tanto, el propósito de esta tesis es 
aplicar el análisis de texturas en imágenes convencionales de CMR para la evaluación 
de pacientes con infarto de miocardio, como alternativa a métodos existentes. 

En esta tesis se presentan tres aplicaciones del análisis de texturas en imágenes de 
resonancia magnética para la evaluación de pacientes con infarto de miocardio. La 
aplicación de estos estudios experimentales se basó en tres técnicas fundamentales 
que son presentadas en el documento de tesis como introducción teórica en los 
capítulos 2, 3 y 4 que describen respectivamente: la resonancia magnética cardíaca 
(CMR), el análisis de texturas, y las técnicas de aprendizaje máquina.   
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Objetivos 

El objetivo principal de esta tesis doctoral se centra en la aplicación del análisis de 
texturas en imágenes convencionales de CMR, como método alternativo a las técnicas 
actuales para la valoración del infarto de miocardio. Para ello se proponen los 
siguientes objetivos específicos: 

a) Explorar la capacidad de los parámetros texturales para diferenciar el
miocardio infartado del miocardio remoto en LGE CMR, y evaluar un método
de segmentación basado en texturas en un estudio multicentro preliminar.

b) Investigar la capacidad del análisis de texturas de imágenes LGE CMR para
diferenciar infartos de miocardio en estado agudo y crónico, y estudiar la
posibilidad de solucionar este problema usando únicamente imágenes cine
CMR en las cuales el infarto es visualmente imperceptible.

c) Detectar los segmentos infartados no-viables aplicando el análisis de texturas
en cine CMR, como potencial técnica alternativa libre del contraste gadolinio.

Metodología 

Se han estudiado, implementado y analizado tres aplicaciones del análisis de 
texturas y aprendizaje máquina en CMR. Dichos estudios buscan cumplir los objetivos 
específicos mencionados y son presentados en el documento de la tesis doctoral como 
tres estudios independientes descritos en los capítulos 5, 6 y 7. 

1. Detección del infarto de miocardio en imágenes de realce tardío de gadolinio

(LGE) CMR

La segmentación del miocardio infartado se realiza rutinariamente usando valores
umbrales de intensidad. No obstante, aunque exista un consenso en la práctica clínica 
para el uso de la técnica que etiqueta como tejido infartado a aquellas zonas del 
miocardio que presenten 5 desviaciones estándar por encima del miocardio remoto, o 
la técnica denominada FWHM (full width and half máximum), todavía existen 
limitaciones. Por este motivo, en este primer estudio experimental hemos decidido 
utilizar parámetros texturales y técnicas de aprendizaje máquina para proponer un 
método alternativo para la segmentación del miocardio infartado. 

En este estudio se han utilizado imágenes LGE CMR provenientes de diez 
pacientes masculinos con infarto crónico de miocardio. Éstas imágenes fueron 
adquiridas con un equipo de resonancia magnética de 1,5T (Sonata Magnetom, 
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Siemens, Erlangen, Alemania) y fueron las imágenes utilizadas para la etapa de 
entrenamiento del modelo predictivo utilizado posteriormente para la segmentación 
de imágenes en datos de prueba. Los datos de prueba corresponden a imágenes LGE 
CMR de cinco pacientes con infarto crónico de miocardio adquiridos con un equipo de 
resonancia magnética de 1,5T (Achieva, Philips, Best, Holanda). 

La etapa de entrenamiento consistió en extraer los parámetros de texturas de las 
regiones de interés (ROI), en este caso el miocardio infartado previamente 
segmentado con ayuda de cardiólogos expertos. La extracción de parámetros 
texturales se realizó con el software MaZda, versión 4.6 (Instituto de Electrónica, 
Universidad Politécnica de Lodz, Lodz, Polonia). Con dicho software se computaron 
un total de 122 parámetros texturales derivados de cuatro métodos: histograma (9 
parámetros), matriz de co-ocurrencia (88 parámetros), matriz run-length (20 
parámetros), y modelo autoregresivo (5 parámetros). Los parámetros texturales fueron 
calculados en ventanas de 5 x 5 píxeles dentro de cada ROI en 2D, por lo que en total 
se obtuvo un vector de datos de 2976 muestras. Este vector de datos fue separado en 
entrenamiento (50%) y validación (50%). El modelo seleccionado para entrenar los 
datos fue un support vector machine (SVM) con kernel radial, junto con un método de 
selección de características basado en el método de búsqueda de eliminación de 
parámetros recursivo (RFE). El modelo final consistió en 17 parámetros texturales, que 
usados en conjunto con el SVM otorgaron un área bajo la curva (AUC) ROC de 0,944 
en los datos de validación. Este modelo final fue el utilizado para hacer la 
segmentación en los datos de prueba.  

La segmentación en los datos de prueba requiere la delineación previa del 
miocardio, ya que el algoritmo de segmentación extrae los parámetros texturales 
dentro de esa región. Es decir, de cada pixel dentro del miocardio, se calculan los 
parámetros texturales tomando en cuenta los píxeles vecinos dentro de una ventana 
de 5 x 5 píxeles. La etapa de entrenamiento fue implementada en lenguaje R versión 
3.0.1 (R Development Core Team, Viena, Austria), y el algoritmo de segmentación en 
Matlab 2014b (MathWorks Inc., Natick, MA).  

Para evaluar la calidad de segmentación se utilizó el coeficiente Dice que compara 
la segmentación del método propuesto con la segmentación verdadera que fue 
obtenida junto con las imágenes de prueba de la base de datos de la STACOM 
challenge MICCAI 2012 (http://stacom.cardiacatlas.org/ventricular-infarction-

http://stacom.cardiacatlas.org/ventricular-infarction-challenge/
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challenge/). Los resultados obtenidos se presentan en la tabla 1: 

Tabla 1. Coeficientes Dice en los casos de prueba. 

Caso 1 2 3 4 5 Total 

Promedio 0,69 0,59 0,59 0,76 0,72 0,71 
Desviación 
Estándar 

(0,23) (0,06) (0,11) (0,04) (0,08) (0,12) 

En general el coeficiente Dice obtenido fue de 0,71; el cual es aceptable ya que un 
índice de 1 indica segmentación perfecta y un índice de 0 indica pésima segmentación. 
Lo más representativo de este primer estudio experimental es que se comprobó la 
transferibilidad del análisis de texturas, ya que los datos de prueba fueron obtenidos a 
partir de imágenes adquiridas con un equipo de resonancia magnética completamente 
diferente a aquél usado para adquirir las imágenes de entrenamiento. Esto es muy 
relevante para la práctica clínica y fue el estudio que sirvió de motivación para los dos 
siguientes que pretenden dar soluciones más innovadoras a las existentes en la 
práctica cardiológica. 

2. Diferenciación entre infarto de miocardio agudo y crónico

Si bien las imágenes LGE CMR realzan y hacen posible la detección del miocardio
infartado, no es posible hacer una discriminación visual del estado de la lesión, ya sea 
reciente (agudo) o avanzado (crónico). La identificación del estado del infarto es de 
especial importancia cuando ambas entidades coexisten, es decir el paciente presenta 
más de un infarto, ya que el tratamiento dependerá del tipo de lesión. En este estudio, 
se ha implementado el análisis de texturas para la diferenciación de infartos agudos 
de crónicos.  

Se incluyeron 44 casos: 22 pacientes con infarto agudo y 22 pacientes con infarto 
crónico. Fueron utilizadas imágenes cine CMR y LGE CMR adquiridas con un equipo 
de resonancia magnética de 1,5T (Sonata Magnetom, Siemens, Erlangen, Alemania). 
Las imágenes fueron adquiridas a la primera semana (agudo) y al sexto mes (crónico) 
del episodio de infarto. Se han analizado independientemente las imágenes LGE CMR 
y cine CMR. Incluimos el análisis independiente de cine CMR partiendo de la 
hipótesis de que el análisis de texturas permite evidenciar la información no visible, 
ya que el infarto no se visualiza en las imágenes cine CMR. 

http://stacom.cardiacatlas.org/ventricular-infarction-challenge/
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Las regiones de interés (ROIs) utilizadas para extraer los parámetros texturales 
fueron: el miocardio infartado en las imágenes LGE CMR, y el miocardio completo en 
cine CMR. Los parámetros texturales fueron computados en 2D para cada corte con el 
software MaZda, versión 4.6 (Instituto de Electrónica, Universidad Politécnica de 
Lodz, Lodz, Polonia). En total se calcularon 279 parámetros texturales para cada ROI, 
derivados de 6 métodos: histograma, gradiente absoluto, matriz de co-ocurrencia, 
matriz run-length, modelo autoregresivo, y transformadas Wavelets. 

Dos métodos de selección de características fueron implementados, uno tipo filtro 
basado en el coeficiente Fisher y el otro tipo wrapper: el SVM-RFE. Con ambos 
métodos se obtienen un ranking de parámetros texturales. Los parámetros del más al 
menos importante fueron agregados uno por uno y utilizados como entrada para 
entrenar distintos modelos clasificadores. Los modelos clasificadores utilizados 
fueron: k-nearest neighbors (kNN), red neuronal artificial (ANN), random forest (RF); 
y support vector machine (SVM) con kernel lineal, radial y polinomial. Los modelos 
fueron evaluados con validación cruzada del tipo anidado, es decir, la selección de 
características fue incluida dentro del bucle de validación para evitar una 
sobreestimación de los resultados. No se encontraron diferencias estadísticamente 
significativas al comparar los diferentes modelos, esto tomando siempre el 
subconjunto de parámetros óptimo según el método de selección de características.  

En el caso de las imágenes LGE CMR, el mejor modelo fue el SVM polinomial 
usando los mejores 99 parámetros texturales según el ranking otorgado por el SVM-
RFE (AUC = 0,873; IC: 0,85 - 0,88). Para las imágenes cine CMR, el mejor modelo fue el 
SVM lineal con 22 parámetros texturales según el ranking SVM-RFE (AUC = 0,831; IC: 
0,80 - 0,85). El resumen de resultados se muestra en las tablas 2 y 3. 

Con los resultados obtenidos se pudo comprobar el potencial del análisis de 
texturas para la diferenciación de infartos agudos de crónicos usando imágenes LGE 
CMR e incluso cine CMR, modalidad en la que el miocardio infartado no se aprecia 
visualmente. Sin embargo, la correcta clasificación de ambas entidades no es directa, 
sino que se logra mediante la correcta aplicación de algún método de selección de 
características en conjunto con un modelo predictivo. En ese sentido, el presente 
estudio también permitió corroborar la importancia de la selección de características 
para obtener óptimos resultados cuando se tratan datos de alta dimensionalidad. 
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Tabla 2. Clasificación en LGE CMR. 

Fisher - LGE CMR 

Model AUC IC Sensibilidad IC Especificidad IC 

KNN 0,831 (0,80 – 0,85) 0,732 (0,69 – 0,76) 0,848 (0,81 – 0,88) 
ANN 0,851 (0,83 – 0,86) 0,819 (0,79 – 0,84) 0,826 (0,80 – 0,85) 
RF 0,862 (0,84 – 0,88) 0,819 (0,79 -0,84) 0,861 (0,83 – 0,89) 
SVM-linear 0,867 (0,85 – 0,88) 0,846 (0,81 – 0,87) 0,84 (0,81 – 0,86) 
SVM-radial 0,854 (0,83 – 0,87) 0,789 (0,75 – 0,82) 0.865 (0,83 – 0,89) 
SVM-poly 0,865 (0,84 – 0,88) 0,831 (0,80 – 0,85) 0,851 (0,82 – 0,87) 

SVMRFE - LGE CMR 

Model AUC IC Sensibilidad IC Especificidad IC 

KNN 0,821 (0,79 – 0,84) 0,73 (0,69 – 0,76) 0.835 (0,80 – 0,86) 
ANN 0,851 (0,83 – 0,86) 0,789 (0,75 – 0,81) 0.859 (0,83 – 0,88) 
RF 0,858 (0,83 – 0,87) 0,8 (0,77 – 0,82) 0.865 (0,84 – 0,88) 
SVM-linear 0,857 (0,84 – 0,87) 0,811 (0,78 – 0,83) 0.829 (0,80 – 0,84) 
SVM-radial 0,834 (0,81 – 0,85) 0,795 (0,76 – 0,82) 0.866 (0,84 – 0,88) 
SVM-poly 0,873 (0,85 – 0,88) 0,82 (0,79 – 0,84) 0.848 (0,82 – 0,87) 

Tabla 3. Clasificación en cine CMR. 

Fisher - Cine CMR 

Model AUC CI Sensitivity CI Specificity CI 

KNN 0,711 (0,67 – 0,74) 0,697 (0,65 – 0,73) 0,671 (0,63 – 0,70) 
ANN 0,797 (0,77 – 0,82 0,770 (0,74 – 0,79) 0,804 (0,77 – 0,83) 
RF 0,797 (0,77 – 0,81) 0,773 (0,75 – 0,79) 0,767 (0,73 – 0,79) 
SVM-linear 0,797 (0,77 – 0,81) 0,747 (0,72 – 0,77) 0,822 (0,79 – 0,85) 
SVM-radial 0,737 (0,71 – 0,76) 0,722 (0,68 – 0,75) 0,760 (0,73 – 0,79) 
SVM-poly 0,802 (0,78 – 0,82) 0,769 (0,74 – 0,79) 0,790 (0,76 – 0,81) 

SVMRFE - Cine CMR 

Model AUC CI Sensitivity CI Specificity CI 

KNN 0,700 (0,67 – 0,72) 0,650 (0,61 – 0,68) 0,690 (0,65 – 0,72) 
ANN 0,828 (0,80 – 0,84) 0,792 (0,76 – 0,82) 0,816 (0,78 – 0,84) 
RF 0,796 (0,77 – 0,81) 0,749 (0,72 – 0,77) 0,788 (0,75 – 0,81) 
SVM-linear 0,831 (0,80 – 0,85) 0,812 (0,77 – 0,84) 0,803 (0,77 – 0,83) 
SVM-radial 0,783 (0,75 – 0,81) 0,762 (0,73 – 0,79) 0,753 (0,72 – 0,78) 
SVM-poly 0,827 (0,80 – 0,84) 0,790 (0,76 – 0,81) 0,806 (0,77 – 0,83) 
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El resultado más novedoso de este estudio fue la posibilidad de diferenciar 
imágenes con infarto agudo de crónico en imágenes convencionales de cine CMR, las 
cuales se obtienen sin contraste. Para tal efecto se utilizó como región de interés para 
extraer los parámetros texturales el miocardio delineado en su totalidad, ya que en 
esta modalidad el infarto es imperceptible. La metodología empleada no es 
directamente aplicable en la práctica clínica debido a que en estos casos la importancia 
radica en diferenciar infartos agudos de crónicos cuando ambas entidades coexisten, 
pero los resultados son motivadores ya que pueden ser usados como hipótesis para 
futuras aplicaciones que no necesiten la administración del contraste gadolinio. De 
hecho, estos resultados motivaron el siguiente estudio experimental.  

 

3. Detección de segmentos miocárdicos infartados en cine CMR 

Este estudio experimental estuvo motivado por los resultados del estudio previo 
en donde se encontró que es posible diferenciar infartos agudos de crónicos usando 
solamente imágenes cine CMR sin la necesidad de inyectar contraste. En el presente 
estudio se emplearon imágenes cine CMR para clasificar segmentos infartados en 
pacientes crónicos. El grupo de estudio consistió de 50 casos (edad media, 61; rango, 
23 – 80 años de edad). Fueron adquiridas imágenes cine CMR y LGE CMR con un 
equipo de resonancia magnética de 1,5 T (Sonata Magnetom, Siemens, Erlangen, 
Alemania). 

El miocardio de cada imagen fue manualmente delineado corte por corte y luego 
se utilizó la división por segmentos según la recomendación de la American Heart 
Association (AHA). Las imágenes LGE CMR fueron tomadas como referencias para 
identificar y etiquetar los segmentos según el porcentaje de infarto presente: 

- Segmentos no-viables: aquellos que presentan infarto transmural ≥ 50%. 
- Segmentos viables: aquellos que presentan infarto transmural 0 < LGE < 50%. 
- Segmentos remotos: aquellos que no muestran porcentaje de masa infartada.  

 
Los parámetros texturales fueron calculados para cada segmento, pero solamente 

utilizando las imágenes cine CMR, en las cuales no se puede identificar directamente 
si existe o no infarto. A diferencia de los dos estudios anteriores, en este hemos 
decidido utilizar Matlab 2015b (MathWorks Inc., Natick, MA) para el cálculo de 
parámetros y los mismos fueron analizados en 2D y 2D + t. Se calcularon 75 
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parámetros en 2D y 87 en 2D + t utilizando los siguientes métodos: matriz de co-
ocurrencia, matriz run-length, matriz size-zone, matriz de diferencia de tonos de 
grises, y local binary patterns (LBP). 

Análisis 2D 
Dado que las imágenes cine CMR corresponden a una secuencia temporal que 

abarca un ciclo cardíaco, para el análisis 2D se seleccionó el instante temporal 
correspondiente al fin de diástole. Por lo tanto, cada corte en este instante temporal 
fue usado para extraer parámetros texturales de cada segmento miocárdico 
previamente identificado.  

Análisis 2D + t 
Aprovechando la naturaleza temporal de las secuencias cine CMR, el análisis 2D + 

t consistió en tomar cada ROI como un volumen en donde la tercera dimensión 
corresponde al tiempo. De esta manera fue posible calcular los parámetros de texturas 
en su variante 3D teniendo en cuenta la heterogeneidad en las tres dimensiones. Lo 
ideal hubiera sido incluir la dimensión z de cada volumen cardíaco, pero esto no 
supuso resultados alentadores con nuestras imágenes ya que la distancia entre cortes 
es muy grande (del orden de los 7 mm) por lo que no es posible extraer mucha 
información en esa dimensión.  

Para la clasificación de segmentos se utilizaron los siguientes subconjuntos de 
datos, independientemente para 2D y para 2D + t: 

- Parámetros texturales basados en matrices
- Parámetros LBP
- Parámetros basados en matrices + LBP
- Parámetros seleccionados por el algoritmo SVM-RFE del total de parámetros

texturales.

Cada subconjunto de datos fue utilizado para entrenar un SVM con kernel radial.
Para la fase de entrenamiento se emplearon 30 de los 50 pacientes disponibles y la 
evaluación previa se hizo mediante validación cruzada del tipo anidado. Dado que 
este problema de clasificación consiste de tres clases, el entrenamiento se hizo con la 
técnica uno contra todos, de manera que la evaluación final se hizo tomando el AUC 
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promediado de cada clasificador: no-viable contra viable, no-viable contra remoto, y 
viable contra remoto. 

 Notablemente para todos los subconjutos de datos, los AUCs obtenidos para el 
análisis 2D + t fueron estadísticamente superiores (p < 0,01) que los obtenidos en el 
análisis 2D. Estos resultados indican la importancia de captar la heterogeneidad en 
varias dimensionas ya que es posible obtener mayor información que repercute en los 
resultados. El mejor modelo se obtuvo con los parámetros LBP en 2D + t (AUC = 0.849 
usando los 20 pacientes de validación). Los valores de AUC específicos para cada clase 
fueron de 0,935; 0,819 y 0,794 para segmentos no-viables, viables y remotos 
respectivamente.  

La formación de infarto crónico está asociada con disminución del espesor del 
miocardio. Por este motivo, el engrosamiento de miocardio también fue utilizado 
individualmente para entrenar el modelo clasificador. Este parámetro sirve como 
punto de referencia para la comparación con los obtenidos con los parámetros 
texturales. Con el engrosamiento de miocardio se consiguió un AUC de 0,561, valor 
muy por debajo de los obtenidos con texturas. Los principales resultados se muestran 
en la tabla 4. 

Tabla 4. Clasificación en datos de validación. 

 

Subconjunto N parámetros AUC 

 

Engrosamiento pared 1 0,561 

2D 

Matriz 39 0,753 

LBP 29 0,727 

Matriz + LBP 68 0,737 

SVM-RFE 67 0,755 

Engrosamiento + SVM-RFE 68 0,756 

2D + t 

Matriz 39 0,811 

LBP 48 0,849 

Matriz + LBP 87 0,822 

SVM-RFE 57 0,807 

Engrosamiento + SVM-RFE 58 0,820 
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En los últimos años, la resonancia magnética se ha convertido en la técnica no 
invasiva de referencia para la evaluación de las consecuencias estructurales del infarto 
de miocardio. Las secuencias cine CMR son empleadas en la actualidad para 
cuantificar parámetros de relevancia en pacientes post-infarto como la fracción de 
eyección o volúmenes ventriculares, en ese sentido las imágenes LGE CMR surgieron 
como la única técnica empleada para calcular la extensión de miocardio infartado. 
Esta variable ha demostrado ser decisiva para la predicción del remodelado del 
ventrículo izquierdo, recuperación sistólica tardía y evolución del paciente. Sin 
embargo, el uso de LGE CMR implica que los estudios sean más prolongados además 
de la administración del contraste gadolinio. Esto trae como consecuencia ciertas 
limitaciones para un grupo selecto de pacientes y para los laboratorios de CMR. i) un 
número significativo de pacientes post-infarto son clínicamente inestables al momento 
del estudio, y en consecuencia, no pueden tolerar estudios prolongados. ii) el uso de 
gadolinio puede inducir ciertos efectos, especialmente a aquéllos con un cierto grado 
de insuficiencia renal. iii) el número de estudios por turnos en los laboratorios debe 
ser reducido debido a la prolongación de estudios en donde se requiere la adquisición 
de secuencias LGE CMR. 

Si bien los resultados obtenidos son alentadores ya que indican que el análisis de 
texturas puede ser utilizado para diferenciar segmentos infartados de los no 
infartados en una modalidad de imagen en la que el infarto no es visualmente 
perceptible, esto todavía no tiene una aplicación clínica directa, pero sirve de hipótesis 
para futuros trabajos. La aplicación clínica de utilidad consistiría en poder detectar las 
zonas de infarto, además de la masa infartada, utilizando solamente las imágenes cine 
CMR. Para ello habría que hacer un análisis micro-textural para poder identificar las 
zonas a nivel de píxel.  

Conclusiones 

La presente tesis doctoral proporciona tres conclusiones principales derivadas de 
los tres estudios experimentales: 

1. Los parámetros de texturas pueden ser utilizados en combinación con un
clasificador SVM para la segmentación del miocardio infartado en imágenes LGE
CMR. Se comprobó la transferibilidad de esta aplicación a imágenes adquiridas
con un equipo de resonancia magnética diferente a aquel utilizada para los datos
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de entrenamiento. Sin embargo, son necesarios estudios multicentros de mayor 
volumen para la correcta validación de la técnica. La naturaleza preliminar de este 
estudio motivó la realización de los siguientes estudios presentados. 

2.  La diferenciación entre infarto agudo e infarto crónico es posible utilizando 
parámetros texturales y técnicas de aprendizaje máquina tanto en LGE CMR y en 
imágenes convencionales pre-contraste de cine CMR. La elección del clasificador 
resultó no ser relevante siempre y cuando se incluya un método de selección de 
características dentro del proceso. El método cuantitativo propuesto es una 
alternativa a la técnica más utilizada en la actualidad que implica la valoración 
visual de la presencia o no de edema en una modalidad de resonancia magnética 
específica para tal efecto.  

3. Diferencias implícitas entre segmentos no-viables, viables y remotos están 
presentes en imágenes cine CMR y pueden ser detectadas mediante la aplicación 
del análisis de texturas. Estos resultados sirven como punto de partida para el 
desarrollo de diversas aplicaciones, incluyendo la detección del miocardio 
infartado en cine CMR, aplicación que tendría un gran impacto si permite la 
cuantificación de la extensión del infarto en las secuencias cine CMR sin la 
necesidad de la administración de gadolinio para la adquisición de imágenes LGE 
CMR.     

 
 Los tres estudios experimentales propuestos fueron ejecutados con éxito 

obteniendo resultados prometedores demostrando la utilidad del análisis de texturas 
para la evaluación de pacientes con infarto de miocardio. De esta manera se puede 
decir que el análisis de texturas es una potencial herramienta cuantitativa en 
comparación con métodos existentes. La contribución principal de esta tesis fue la 
posibilidad de clasificar segmentos infartados usando solamente imágenes cine CMR. 
Estos resultados abren una línea de investigación que apunta a delinear el miocardio 
infartado sin la necesidad de administrar el contraste gadolinio. Como nota final se 
puede decir que el análisis de texturas permite resaltar detalles “invisibles” presentes 
en las imágenes.  
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Abstract 

Cardiovascular diseases constitute the leading global cause of morbidity and 
mortality. Magnetic resonance imaging (MRI) has become the gold standard technique 
for the assessment of patients with myocardial infarction. However, limitations still 
exist thus new alternatives are open to investigation. Texture analysis is a technique 
that aims to quantify the texture of the images that are not always perceptible by the 
human eye. It has been successfully applied in medical imaging but applications to 
cardiac MRI (CMR) are still scarce. Therefore, the purpose of this thesis was to apply 
texture analysis in conventional CMR images for the assessment of patients with 
myocardial infarction, as an alternative to current methods.  
Three applications of texture analysis and machine learning techniques were studied:  
i) Detection of infarcted myocardium in late gadolinium enhancement (LGE) CMR.

Segmentation of the infarcted myocardium is routinely performed using image
intensity thresholds. The inclusion of texture features to aid the segmentation
was analyzed obtaining overall good results. The method was developed using
10 LGE CMR datasets and tested on a separate dataset comprising 5 cases that
were acquired with a completely different scanner than that used for training.
Therefore, this preliminary study showed the transferability of texture analysis
which is important for clinical applicability.

ii) Differentiation of acute and chronic myocardial infarction using LGE CMR and
standard pre-contrast cine CMR. In this study, two different feature selection
techniques and six different machine learning classifiers were studied and
compared. The best classification was achieved using a polynomial SVM
obtaining an overall AUC of 0.87 ± 0.06 in LGE CMR. Interestingly, results on
cine CMR in which infarctions are visually imperceptible in most cases were also
good (AUC = 0.83 ± 0.08).

iii) Detection of infarcted non-viable segments in cine CMR. This study was
motivated by the findings of the previous one. It demonstrated that texture
analysis can be used to distinguish non-viable, viable and remote segments using
standard pre-contrast cine CMR solely. This was the most relevant contribution
of this thesis as it can be used as hypothesis for future work aiming to accurately
delineate the infarcted myocardium as a gadolinium-free alternative that will
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have potential advantages.  
The three proposed applications were successfully performed obtaining promising 

results. In conclusion, texture analysis can be successfully applied to conventional 
CMR images and provides a potential quantitative alternative to existing methods. 
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Chapter 1 

Introduction 

1.1 Motivation 
Ischemic heart disease is the most frequent etiology of cardiovascular diseases and 

constitute the leading global cause of morbidity and mortality. Myocardial infarction 
following a coronary occlusion is the primary cause of ischemic cardiomyopathy. Each 
year, more than 1.9 million people are affected by cardiovascular diseases in the 
European Union [1]. Myocardial infarction is the irreversible death (necrosis) of heart 
muscle secondary to prolonged lack of oxygen supply (ischemia) [2]. Early detection 
and accurate monitoring are essential to guide optimal patient treatment and to assess 
the patient’s prognosis.  

Magnetic resonance imaging (MRI) has become a powerful diagnostic tool by 
providing high quality images thanks to new advances in technology. MRI offers 
excellent anatomic details due to its high soft-tissue contrast and the possibility to 
enhance different types of tissues using different imaging techniques. Cardiovascular 
magnetic resonance (CMR), which entered the arena of noninvasive cardiovascular 
imaging over the past two decades, became a very important imaging modality, 
mainly due to its unique versatility [3]. CMR constitutes the gold standard technique 
for evaluation of myocardial infarction and several CMR image sequences have been 
developed in order to depict patterns that are relevant for diagnosis [4]. Nevertheless, 
some cases remain challenging due to technical limitations and the restricted ability of 
the human eye to detect intrinsic, heterogeneous characteristics of certain tissues or 
lesions. For example, the well-established technique to assess the extent of myocardial 
infarction is the so-called late gadolinium enhancement (LGE) CMR. This image 
modality requires the administration of gadolinium as contrast agent to enhance the 
infarcted region, but there are several contraindications to gadolinium that makes it 
inappropriate for certain group of patients, i.e. those with renal dysfunction. 
Therefore, alternatives to enhance the infarcted region without the use of gadolinium 
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are open to investigation [5]. 
In the past years, texture analysis has become the focus of interest in the field of 

medical imaging. Image texture can be defined as the spatial variation of pixel 
intensities that provides the visual appearance of coarseness, randomness, 
smoothness, etc. Figure 1.1 shows examples of visually perceptible textures that can be 
found in nature. However, in medical imaging the visual appearance of texture is 
usually imperceptible. It has been shown that different image areas exhibit different 
textural patterns that are beyond the limits of human visual perception [6]. Texture 
analysis describes a wide range of techniques for quantification of gray-level patterns 
and pixel inter-relationships within an image providing a measure of heterogeneity 
[7]. 

Figure 1.1. Examples of visually perceptible textures found in nature [8]. 

The term Radiomics has been recently introduced after successful applications of 
texture analysis methods in medical imaging problems [9]. The idea behind Radiomics 
is that one can extract an infinitive number of features or characteristics from the 
image, such as shape, color, texture, etc. The vast variety of features that can be 
obtained are not easy to understand but we can take advantage of machine learning 
techniques in order to exploit all the available information. Computer aided 
diagnostic tools assist the radiologist in the diagnosis by providing quantitative 
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measures of morphology, function, and other biomarkers in different tissues. 
Combining texture analysis and machine learning techniques can provide a powerful 
computer aided diagnostic tool [10]. 

Applications of texture analysis in medical imaging include classification and 
segmentation of tissues and lesions. Some applications include discrimination 
between different brain tumors [P01][11], [12], classification of diseases like 
Alzheimer’s [13] or Friedreich ataxia [14], and brain segmentation [15], [16]. 
Applications in liver, breast, and prostate are also found in the literature [17]–[19]. To 
the best of the author’s knowledge, studies reporting the application of texture 
analysis in CMR are very limited. The main studies found in the literature are cited in 
the following section. 

The reported success of texture analysis in several applications, added to the need 
to overcome technical limitations and contraindications of CMR by providing 
alternatives that would permit faster and cost-effective procedures, motivated the 
present thesis.  

1.2 Related Work 
This section presents a review of the studies regarding texture analysis in CMR 

that are mostly related to this thesis. 
Texture analysis was used by Kotu et al. [20] for segmentation of scarred 

myocardium in LGE CMR. Their method included dictionary learning and sparse 
representation of textures in combination with a maximum likelihood Bayes classifier. 
They showed that texture analysis aided with intensity values provides segmentation 
of scar with sensitivity and specificity values that are comparable to manual 
segmentations performed by expert cardiologists. Chapter 5 of this thesis introduces a 
similar approach for segmentation of left ventricular infarction in LGE CMR. Further 
work of the same group aimed to identify patients with myocardial infarction with 
high and low risk of arrhythmias that could benefit from implantable cardioverter 
defibrillator (ICD). They obtained good classification results using gray-level co-
occurrence matrix [21] and local binary pattern (LBP) features [22] extracted from LGE 
CMR. In a subsequent work they developed an interesting method to obtain 
probability maps of the scarred myocardium by using dictionary-based texture and 
intensity features [23]. The probability maps aid the visual inspection of the 
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myocardial tissue giving information of diagnostic importance, like core and border 
zone in the scarred myocardium.  

An implementation of 3D texture analysis using high resolution (7T scanner) LGE 
CMR images was presented by [24]. They computed feature maps of the GLCM 
contrast feature aiming to detect diffuse myocardial fibrosis in aging rats. They found 
a significant increase of myocardial fibrosis in the aged compared to the young rats, 
and fibrosis detected in texture feature maps correlated with histology. The 
discrimination between the elderly and young rats was also improved using texture 
maps in comparison to LGE CMR solely. A similar study from the same group found 
significant differences between acute and chronic myocardial infarction using three 
GLCM texture features in 3D [25]. Chapter 6 of this thesis delves into a similar idea in 
order to differentiate both infarction stages.  

Thornhill et al. [26] compared fibrotic and non-fibrotic segments of patients with 
hypertrophic cardiomyopathy (HCM) and healthy controls. Two texture features 
derived from the gray-level run-length matrix (GLRLM) were extracted from cardiac 
segments in LGE CMR. They found that both features were greater in patients with 
HCM in comparison to healthy controls, even in non-hypertrophic segments. 
Significant statistical differences were also found between non-hypertrophic, non-
fibrotic segments of HCM patients and controls.  

A recent study [27] used texture analysis in standard pre-contrast cine CMR to 
study different etiologies of left ventricular hypertrophy: HCM, amyloid and aortic 
stenosis. They implemented a scale filtration to extract features corresponding to fine, 
medium and coarse textures, and six histogram features were used to quantify the 
pre-filtered images. Statistical differences were found predominantly at the fine and 
medium texture scales. The novelty of this study was the application of texture 
analysis in conventional cine CMR as the visual appearance of the diseases cases are 
very similar in this image modality. This latter study follows our motivation for the 
experimental study described in Chapter 7, in which cine CMR images were used to 
detect infarcted segments.  
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1.3 Objectives 
The main objective of this thesis was to study the application of texture analysis in 

conventional CMR images, as an alternative to current methods for the assessment of 
myocardial infarction.  

Three specific objectives were defined as follows: 
 To explore the capability of texture features to distinguish infarcted from

healthy myocardium in LGE CMR, and to test a segmentation method in a
preliminary multicenter evaluation.

 To investigate the capability of texture analysis of LGE CMR to
differentiate acute from chronic myocardial infarction, and to study the
possibility to address this problem using standard cine CMR solely in
which infarctions are usually imperceptible.

 To detect infarcted non-viable segments using cine CMR solely and
texture analysis, as a potential gadolinium-free alternative.

1.4 Contributions to Knowledge 
This thesis offers three novel contributions for the assessment of patients with 

myocardial infarction by the application of texture analysis and machine learning in 
conventional CMR images. 

The first contribution is that texture analysis and intensity features are useful for 
detection of the infarcted myocardium in LGE CMR, and this can be used as an 
alternative to existing intensity threshold methods for segmentation of the infarcted 
myocardium. The segmentation method performed well in a small group of images 
acquired with a completely different MRI scanner, which indicates the transferability 
of texture analysis for this application. 

The second contribution is that texture analysis can be used to distinguish 
between acute and chronic myocardial infarctions in LGE CMR, in which the 
infarction appears hyperenhanced but the infarction’s age is not visually 
distinguishable. The quantitative nature of this approach is an advantage over existing 
methods that relies on the visual assessment of different image sequences. This 
problem was also assessed using cine CMR solely, in which the infarctions are 
imperceptible in most cases, obtaining promising results that indicate that texture 



Chapter 1. Introduction 
 

6 
 

analysis may be useful to enhance the infarctions areas in conventional pre-contrast 
cine CMR.  

The latter motivated the hypothesis for the last contribution of this thesis, which 
purpose was to detect infarcted non-viable segments using cine CMR solely. This 
contribution opens a promising area of research aiming to enhance the infarcted 
regions in conventional cine CMR as a gadolinium-free alternative.  

 

1.5 Thesis Structure 
This thesis is structured in 8 chapters that are self-contained and can be read 

independently. Chapters 2 to 4 present the theoretical background that is directly 
relevant for the understanding of the experimental studies. Chapters 5 to 7 are the 
experimental studies performed and represent the main contributions. Chapter 8 is an 
overall discussion of the experimental results.  

A summary of the remaining chapters of the thesis is introduced below: 
 
Chapter 2: Background on cardiac MRI 

This chapter gives a background on the principles of cardiac MRI with a focus on 
the techniques used to assess patients with myocardial infarction. The chapter begins 
with an introduction of the physiological principles of the heart and myocardial 
infarction, followed by an introduction of the general principles of MRI physics. 

 
Chapter 3: Texture analysis in MRI 

This chapter explains the process to undertake in order to perform texture analysis 
of MR images. The texture outcome can be considerably affected depending on the 
methodology used throughout the process. It is presented as a review of previous 
studies and the considerations to take in order to successfully apply texture analysis in 
MRI. The texture analysis methods that were used in the experimental studies are also 
described.  

 
Chapter 4: Overview on machine learning 

Feature selection and classification are the machine learning techniques mainly 
involved in texture analysis applications. This chapter introduces the methods used in 
the experimental studies. It also provides a summary regarding the evaluation of 
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model performance. 

Chapter 5: Segmentation of infarcted myocardium in LGE CMR. A preliminary 

multicenter evaluation 

This is the first experimental study that aimed to detect the infarcted myocardium 
in LGE CMR using texture analysis and histogram intensity features. A method for 
segmentation of the infarcted myocardium was developed and tested on a small 
sample data acquired with a completely different scanner than that used for training.  

Chapter 6: Differentiation between acute and chronic myocardial infarction 

This study aimed to distinguish acute and chronic myocardial infarction using 
quantitative texture analysis of LGE CMR and also using conventional pre-contrast 
cine CMR solely. The performance of six machine learning classification algorithms 
and two feature selection techniques were analyzed and compared.  

Chapter 7: Detection of infarcted myocardial segments in cine CMR 

This study aimed to classify infarcted non-viable segments using cine CMR solely 
as a gadolinium-free alternative to LGE CMR. The performance of 2D and 2D + t 
texture features were studied. 2D + t features include the temporal dimension of cine 
sequences in the analysis.  

Chapter 8 presents an overall conclusion. 
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Chapter 2 

Background on Cardiac MRI 

2.1 Introduction 
Cardiac MRI, also referred as CMR, is the well-established technique for 

noninvasive characterization of cardiac anatomy and function. It has been widely 
used to accurately measure left and right ventricular volumes, ventricular wall 
thickness, mass, and to characterize myocardial viability [4]. This chapter begins with 
a basic description of the heart anatomy and function, followed by the MRI principles, 
and ends with an introduction to the CMR techniques mostly employed for 
assessment of myocardial infarction. 

2.2 Heart Anatomy and Function 

2.2.1 Basic Principles 

The heart is the main organ of the cardiovascular system and supplies blood rich 
on oxygen and other nutrients to the body tissues. The heart wall is comprised of 
three layers: epicardium, myocardium and endocardium. The myocardium is the 
middle layer of muscular tissue composed of contracting cardiac fibers that allows 
contraction of the heart. The myocardium is surrounded by the epicardium (outer layer 
of the heart wall) and the endocardium (inner layer) [28].  

The heart is composed of four cavities: right atrium, right ventricle, left atrium and 
left ventricle. Atriums are the receiving chambers; they receive blood back to the heart. 
Ventricles are the discharging chambers, and represent the actual pump of the heart. 
Thus, the ventricular walls are more massive than the atrial walls. Moreover, the 
myocardium is thickest in the left ventricle as it has to create a lot of pressure to pump 
blood throughout the body. The heart wall that separates the left from the right 
cavities is called septum. Atrium and ventricles are separated by the atrioventricular 
valves: the tricuspid valve separates the right atrium from the right ventricle, whereas 
the mitral valve separates the left atrium from the left ventricle. These valves are 
responsible of controlling the blood flow through the chambers in only one direction: 
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from atriums to ventricles. The papillary muscles are projected into the ventricular 
cavities and play a role in controlling the atrioventricular valves (Figure 2.1). 

 

Figure 2.1. Anatomy of the heart. Frontal section showing the four cardiac chambers: atriums 

and ventricles (modified from [28]). 

 
The cardiac cycle includes all events associated with the blood flow through the 

heart during one heartbeat. The right atrium collects blood from the body through the 
cava veins. This blood then flows into the right ventricle, which pumps deoxygenated 
blood through the pulmonary artery to the lungs where gas exchange occurs. The 
pulmonary veins transport blood from the lungs back to the heart into the left atrium. 
Blood flows then to the left ventricle, which pumps blood into the aorta and from 
there blood is supplied to the rest of the body. The semilunar valves, aortic and 
pulmonary, are responsible of controlling the blood flow from ventricles to arteries. In 
the cardiac cycle, the term systole refers to the moments of heart contraction, and 
diastole refers to the moments of relaxation [28]. 
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2.2.2 Myocardial Infarction 

The cardiac muscle, or myocardium, also needs nutritive blood supply in order to 
function normally. The coronary arteries are responsible of providing blood to the 
myocardium. When the heart muscle is deprived of oxygen and fail to function 
normally it suffers ischemia. Ischemic cardiomyopathy is a disease caused by 
inadequate blood supply to the myocardium. The coronary arteries are tiny blood 
vessels and may easily become obstructed by, for example, an arteriosclerotic plaque. 
Atherosclerotic plaques are deposits of fats, calcium, or other substances inside the 
blood vessels that either block or partially block the blood flow. Immediately after an 
acute coronary occlusion, the area of myocardium that receives little or zero blood 
flow cannot maintain its normal function, and is said to be infarcted. The overall 
process is called myocardial infarction (Figure 2.2) [29]. 

Figure 2.2. Myocardial infarction due to an obstruction in a coronary artery [30]. 

Myocardial infarction is the most developed manifestation of ischemic heart 
disease. It mainly affects the left ventricle causing a decrease in its contractibility as a 
result of necrosis, or cell death, due to the prolonged ischemia. The presence of ST-
segment elevation in the electrocardiogram (ECG) denotes total occlusion of a 
coronary artery. This type of myocardial infarction, known as ST-segment elevation 
myocardial infarction (STEMI), is the most severe type as virtually all the heart muscle 
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being supplied by the affected artery becomes necrotic [31]. 
Shortly after acute myocardial infarction (AMI), the muscle fibers in the center of 

the ischemic area suffers necrosis. The affected areas undergo a process of change in 
their composition within the first days and weeks. The process includes resorption 
and scar tissue formation with the possibility of ventricular remodeling that may 
deteriorate the systolic function. In AMI, infarct areas exhibit necrosis, considerable 
myocardial edema, and normally microvascular obstruction (MVO) resulting from 
capillary obstruction. In the setting of chronic myocardial infarction (CMI), the 
initially necrotic myocardium is replaced by scar tissue [32]. 

Viable myocardium is the myocardium that due to ischemia does not contract 
normally but has the potential to recover [33]. Hence, viability can be defined as the 
capability of the myocardium to improve its contractile function after 
revascularization. Reperfusion techniques include primary angioplasty and 
thrombolytic therapy with fibrinolytic drugs [34]. Myocardial viability is of 
importance to determine late systolic function after an event of ischemia. Necrosis of 
the myocardial tissue is inversely related to its viability, and can be detected with 
techniques like ECG, echocardiography, or positron emission tomography (PET). 
However, MRI is the well-established technique for a complete assessment of the 
cardiovascular function after AMI [35]. Different MRI modalities were developed for 
this purpose and are described is Section 2.4. 

 

2.2.3 Cardiac Imaging Planes 

Body planes are oriented orthogonal to the long axis of the body and consist of 
axial, sagittal, and coronal views. Cardiac scans are usually acquired in planes 
different to the body planes in order to show the cavities (atriums and ventricles) of 
the heart. Standard cardiac planes include vertical long-axis (2-chamber) view, 
horizontal long-axis (4-chamber) view, and short-axis view. These planes are set along 
a line that extends from the apex to the center of the mitral valve (long-axis of the 
heart). The short-axis view extends perpendicular to the long axis of the heart at the 
level of the mid left ventricle. The horizontal long-axis is set by selecting the 
horizontal plane that is perpendicular to the short-axis, whereas the vertical long-axis 
is set along a vertical plane orthogonal to the short-axis plane (Figure 2.3) [36].  



Chapter 2. Background on Cardiac MRI 

13 

Figure 2.3. Orientation of the major cardiac planes with respect to the heart and their 

appearance on MRI. The cardiac chambers are indicated in each view. RV: right ventricle, LV: 

left ventricle, RA: right atrium, LA: left atrium (modified from [36]). 

Figure 2.4. Multi-slice cardiac MRI stack in short-axis view at end-diastole. The top-left image 

represents the most basal slice. 
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The vertical long-axis (2-chamber) view exhibits the left atrium and left ventricle, 
whereas the horizontal long-axis (4-chamber) view shows the atrium and ventricle of 
both sides of the heart. The left and right ventricles are better visualized in short-axis 
views, which are usually acquired in form of a multi-slice stack (Figure 2.4). Hence, 
short-axis views are routinely used to perform measurements of the left ventricle [37]. 

 

2.2.4 Cardiac Segments 

Evaluation of the left ventricular function is normally performed by dividing the 
myocardium into a specific number of segments. The standard method for regional 
analysis was proposed by the American Heart Association (AHA) and it is known as 
the 17-segment model [38]. 

In the AHA model, the heart is sectioned into basal, mid-ventricular, and apical 
thirds perpendicular to the long-axis. Then, each section is divided into segments at 
circumferential locations. The basal and mid-ventricular sections are divided into 6 
segments of 60° each, while the apical section is divided into 4 segments of 90° each. 
The last segment of the model is the apex, which is the area of myocardium beyond 
the end of the left ventricular cavity. Myocardial segments are named and localized 
with reference to the long axes of the left ventricle and the 360° locations on the short-
axis views. Segment locations and nomenclature are illustrated in Figure 2.5. 

 

Figure 2.5. Segment locations and nomenclature of the 17-segment model [38]. 
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To identify and separate the septum from the left ventricular anterior and inferior 
walls, the attachment of the right ventricular wall to the left ventricular is used. 
Representative basal, mid-cavity, and apical slices from the short-axis views should be 
selected for analysis. Alternatively, various slices can be aggregated to create just three 
thick short-axis sections. Only slices containing myocardium in all 360° should be 
selected. The latter is especially important at the basal slices where myocardium and 
connective tissue forms a complex mixing.  

2.2.5 Cardiac Function Parameters 

Because the function of the heart is to pump blood to the body, the left ventricle is 
used to measure the cardiac function according to one cardiac cycle. Ventricular 
volume is measured at end-diastole, the end of filling when volume is maximum, and 
at end-systole, the end of contraction when volume is minimum. Cardiac MRI can be 
used to compute the following parameters: 

 Stroke volume: Is the volume of blood pumped out by one ventricle with
each beat. It correlates with the force of ventricular contraction. Normal
resting value for stroke volume is around 70 ml/beat [28]. It is computed by
subtracting the ventricular volume at end-systole by the volume at end-
diastole in one cardiac cycle.

𝑆𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙) = 𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝑒𝑛𝑑 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒   (2.1) 

 Cardiac output: Is the amount of blood pumped out by each ventricle per
minute. It is the product of stroke volume and heart rate. Considering that
normal values of heart rate are around 75 beats/min, the average adult
cardiac output will be 5250 ml/min [28].

𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑚𝑙/𝑚𝑖𝑛)  =  𝑠𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒  (2.2) 

 Ejection fraction: Is the fraction of the end-diastolic volume that is ejected in
one beat – usually equal to about 60% [29].

𝐸𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (%)  =  
𝑠𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × 100

𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒
 (2.3) 
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 Volume indices: The volume measurements vary with the body size. 
Therefore, ventricular volumes are expressed as index using the body 
surface area (BSA): 𝐵𝑆𝐴 =  √((𝑤𝑒𝑖𝑔ℎ𝑡 × ℎ𝑒𝑖𝑔ℎ𝑡)/3600) [39]. 
 

𝐸𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑚𝑙/𝑚2) =  
𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒

𝐵𝑆𝐴
        (2.4) 

 

𝐸𝑛𝑑 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑚𝑙/𝑚2)  =  
𝑒𝑛𝑑 𝑠𝑦𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒

𝐵𝑆𝐴
            (2.5) 

 

 Wall thickening: The thickening of the myocardium perceived during wall 
motion, between end-diastole (𝑊𝑇ℎ𝐸𝐷) and end-systole (𝑊𝑇ℎ𝐸𝑆). In regional 
analysis, a segment with wall thickening < 2mm is considered affected [40]. 
 

𝑊𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 (𝑚𝑚)  = 𝑊𝑇ℎ𝐸𝑆 − 𝑊𝑇ℎ𝐸𝐷                      (2.6) 
 

 Left ventricular mass: The mass of the left ventricle is computed at end-
diastole by multiplying the end-diastolic volume index with the myocardial 
density. The myocardial density is normally assumed to be 1.05 g/ml [41].  

 

2.3 MRI Principles 

2.3.1 MRI Physics 

Magnetic resonance (MR) is a physical phenomenon in which atom nuclei with 
uneven number of protons, or neutrons, possess a spin and thereby a magnetic 
moment. The hydrogen atom (1H) is widely found in the human body due to its 
abundance in water and fat. Therefore, 1H is the most used nucleus in clinical MRI. 
The magnetic moments from protons are randomly oriented but in the presence of a 
strong magnetic field B0, they will align with the field and start to precess at a specific 
angular frequency (Figure 2.6).  

In the presence of a magnetic field, protons will take two distinct energy levels. 
This energy difference is the basis for generating a MR signal and causes a 
magnetization vector M0 along the z axis in the direction of the magnetic field. The 
number of spins aligned with the magnetic field is proportional to its strength, thus 
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higher field strengths yield a stronger MR signal. A spin can jump to the level of high 
energy if it receives an external energy equal or greater than the difference of both 
energy levels. This process is called excitation and it is achieved with radiofrequency 
(RF) pulses (Figure 2.7).  

Figure 2.6. Magnetic moments of hydrogen protons are normally oriented at random but they 

align at two different orientations (energy levels) in presence of an external magnetic field B0 

[42].  

 After receiving the external energy, the spin will try to return to the lower energy 
level, emitting the previously absorbed energy that is then detected and used to 
computationally reconstruct images. The latter is the relaxation process. There are two 
types of relaxation: longitudinal relaxation, restoration of longitudinal magnetization 

M0 (direction of the main field strength) to its equilibrium value; and transversal 
relaxation, the net magnetization leaving the transverse plane Mxy. Longitudinal 
relaxation is defined by a time T1, which is the duration of time it takes for the 
magnetization M0 to recover to 63% of its equilibrium value. The transversal relaxation 
is defined by a time T2, which is the time it takes for the transverse magnetization Mxy 

to decrease to 37% of its initial value directly after an RF pulse [43].  
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Figure 2.7. a) The net magnetization vector M0 in the longitudinal plane. b) After the 

application of a RF pulse with 90º flip angle, the magnetization vector is tilted to the xy plane. 

 

2.3.2 The MRI system 

An MRI system consists of three main components: a magnet that produces a 
strong, constant magnetic field; radiofrequency transmit and receive coils, which excite 
and detect the magnetic resonance signal; and magnetic field gradients, which enable 
the spatial localization the MR signals [43]. 

The magnet is the main part of the MRI system and it generates the magnetic field 
which is measured in units of Tesla (T). Typical field strengths for cardiac imaging are 
1.5T or 3T. Higher magnetic fields produce stronger MR signals thus increasing image 
quality and contrast. The majority of systems for clinical use are of 1.5T whereas 3T 
systems are more commonly used in research. 

The MR signals are produced within the patient’s tissue in response to RF pulses 
that are generated by a transmitter coil. A body coil is usually built into the 
construction of the magnet. Smaller transmitter coils are necessary for imaging the 
head or extremities, and special ones are used for cardiac MRI. The MR signals 
produced in the body are detected using a receiver coil. Special shielding is built into 
the MRI system room to minimize interference, as the MR signals are very weak and 
very sensitive to electrical interference.  

To localize the MR signals in the body to produce images, it is necessary to 
generate short-term spatial variations in magnetic field strength across the patient. 
These are commonly referred as gradients. Stronger gradients permit smaller 
anatomical features to be seen in the images. A gradient field is produced by using 
three sets of gradient coils, one for each direction, through which large electrical 
currents are applied repeatedly in a controlled pulse sequence. 
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2.3.3 Pulse Sequences 

Pulse sequences describe a temporal succession of RF pulses that allows to 
produce a wide range of image contrast. The difference in relaxation times between 
different tissues is exploited to generate specific contrast in the images according to 
the tissues of interest. For example, T1 and T2 vary according to the type of tissue in 
which the nucleus is located, and are longer in free water than in bound water. Pulse 
sequence parameters, i.e. timing and amplitude of the RF and/or gradient pulses, can 
be manipulated to elicit predominantly T1-weighted or T2-weighted image contrast. 
There are literally hundreds of pulse sequences and every year new ones are 
launched. Still, pulse sequences can be divided in two main groups: spin-echo and 
gradient-echo sequences. These are based on the way the echo of the MR signal is 
formed: rephasing 180º RF pulses, or rephasing gradients [42], [43]. 

In a conventional spin-echo sequence (Figure 2.8), the equilibrium magnetization 
is tilted to the transverse plane after a 90º RF pulse so the spins dephase naturally for a 
certain time. Then, an inversion pulse of 180º is applied to refocus spin dephasing. 
After a time equal to the delay between the 90º and 180º pulse, all the spins will come 
back into phase along the xy plane forming the spin echo. The second pulse is 
transmitted at half the time of the echo acquisition which is referred as the echo time 
(TE). The process is repeated at a time referred as the repetition time (TR).  

Figure 2.8. Pulse sequence timings for a spin-echo sequence. The time to echo formation is the 

echo time (TE), while the time between successive excitations is the repetition time (TR). 
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The conventional spin-echo sequence requires acquisition times of the order of 
minutes since the 90º and 180º pulses take time and the magnetization need to be 
recovered between each TR. Reduction of acquisition times is an important 
consideration for clinical applicability. In the gradient-echo sequence, an initial RF 
pulse with a flip angle < 90º is applied and the measurement is performed while the 
spins are dephasing. To boost the normal dephasing process, a gradient pulse is sent 
and then the gradient is reversed to allow the spins to rephase thus generating an 
echo. Signals can be detected with significantly reduced times in comparison to spin-
echo sequences.   

 

2.4 Cardiac MRI Techniques 
Different MRI modalities have been developed in order to depict cardiac anatomy 

and physiology. This section focuses on CMR modalities used to assess myocardial 
infarction and viability. Pulse sequence techniques receive different names depending 
on the manufacturer. In the following lines the simplified terms proposed by Friedrich 
et al. [44] are given. 

 

2.4.1 Cine CMR 

Cardiac motion and contractile function are studied using cine imaging. These are 
short movies that show heart motion through the cardiac cycle. The heart is constantly 
moving due to respiration and intrinsic cardiac motion. Image acquisition is 
synchronized with the cardiac cycle using ECG-gating to alleviate the intrinsic 
movement. Usually this is done retrospectively which involves continuous and 
simultaneous acquisition of the ECG and MR signal. The lungs are also moving 
during the respiratory cycle and this motion is usually alleviated with breath holding 
during imaging. To fully cover the heart, multiple breath-holds are often needed. 

The most used sequence for cine imaging is balanced steady state free precession 
(SSFP) which is a modification of the gradient-echo sequence. The signal in these 
images utilizes the ratio between T2 and T1. Cine SSFP images provide high contrast 
between the myocardium (appears dark) and the blood pool (appears bright) without 
the use of contrast. These sequences are used for the evaluation of wall motion and 
volumetric measurement, due to their clear delineation between myocardium and 
blood pool. Quantification is usually performed at end-diastole and end-systole [45]. 
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Figure 2.9. Short-axis views of cine CMR at end-diastole (a) and end-systole (b). The left 

ventricular myocardium appears dark while the blood pool appears bright.  

2.4.2 Late Gadolinium Enhancement CMR 

Delayed enhancement is a post-contrast sequence used to evaluate the extent of 
myocardial scar or fibrosis. The technique involves T1-weighted inversion recovery 
(IR) approximately 10 min after intravenous administration of contrast media. The 
contrast agents used in MRI are mostly paramagnetic based on gadolinium, hence this 
technique is referred as late gadolinium enhancement (LGE) CMR. The mechanism of 
LGE relies upon the assumption that the gadolinium distribution volume is small and 
tissue concentration is low in normal myocardium, whereas cell membrane rupture in 
acute necrosis or chronic scar tissue allows gadolinium to diffuse into myocytes 
leading to increased gadolinium concentration, shortened T1, and thus 
hyperenhancement. Normal myocardium enhances and washes out, while ischemic 
myocardium enhances late. LGE images are usually acquired during repeated breath 
holds in long axis views and in a stack of short axis slices covering the left ventricle. 

Inversion recovery (IR) sequences are used to null the signal from normal 
myocardium to accentuate surrounding pathology. IR sequences have a special 
parameter known as inversion time (TI). An appropriate TI to null normal 
myocardium must be found at each acquisition as this parameter varies from person 
to person. With appropriate settings, normal myocardium appears black or nulled, 
whereas infarcted regions appear bright or hyperenhanced (Figure 2.10). LGE CMR is 
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considered the reference method for assessing myocardial viability. It depicts 
irreversibly damaged myocardium that is present both acutely as necrosis, and 
chronically as fibrosis. The enhancement produced by necrosis or fibrosis is the same, 
therefore other techniques are necessary to differentiate AMI from CMI [3]. 

Quantification of the infarct using LGE can be performed using different 
techniques that include manual delineation of the lesion, thresholding by 2, 3, 4, 5, or 6 
SD above remote myocardium, and the full width and half maximum (FWHM) 
technique. In the latter approach, half of the maximum intensity within a user-selected 
hyperenhanced region is selected as intensity threshold. Using this threshold, a 
region-growing algorithm is used to identify the infarct boundaries from user-selected 
seeds. It has been shown that the FWHM technique for LGE quantification gives 
quantification results similar to manual delineation and it is statistically the most 
reproducible. Infarct size is usually assessed by reporting the percentage of the left 
ventricular mass showing LGE [46], [47].  

   

Figure 2.10. Short-axis views of LGE CMR. The signal from normal myocardium is nulled 

and appears dark, whereas regions of myocardial infarction (arrowed) appear hyperenhanced: 

inferior (a) and anteroseptal (b). The limits of infarcted areas are indicated with white lines.  

 

2.4.3 Edema CMR 

Black-blood T2-weighted short time inversion recovery (STIR) imaging is a 
sequence sensitive to increased myocardial water content, thus allowing the 
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enhancement of areas of myocardial edema. Increased water content associated with 
edema appears hyperenhanced on T2-weighted STIR images (Figure 2.11). Myocardial 
edema is present in the acute stage of myocardial injury and represents the area that is 
compromised from ischemia. Edema is a transitorily phenomenon that disappears 
before the sixth month after infarction, thus T2-weighted images can be used to 
differentiate acute from chronic MI. This technique also allows detection of the 
salvaged myocardium, which correspond to the myocardium at risk that does not 
exhibit necrosis [45], [48]. 

Figure 2.11. Short-axis (a) and horizontal long-axis (b) views of edema CMR. Edema appears 

hyperenhanced (arrowed) in relation to normal myocardium. 

2.4.4 Perfusion CMR 

Regional myocardial perfusion can be assessed by measuring the inflow of a 
contrast agent, like gadolinium, during the first passage through the myocardial 
vasculature. Perfusion CMR consists of a series of ECG-gated T1-weighted images 
(using gradient-echo or SSFP acquisition) with every one to two heartbeats during the 
first pass of an intravenously administered bolus of contrast media during one breath-
hold. The contrast agent is used to visualize the delay in perfusion in ischemic 
myocardium compared to healthy myocardium. In the presence of a microvascular 
disease or ischemia, perfusion will decrease to that part of the myocardium. Regions 
with low or no perfusion will appear hypoenhanced (Figure 2.12). Apart from 
visualizing the regional perfusion, some indices can also be calculated to 
quantitatively assess perfusion of ischemic myocardium [3], [49]. 
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Figure 2.12. Short-axis views of perfusion CMR. Regions with low or no perfusion will appear 

hypoenhanced, anterior (a) and anteroseptal (b), in relation to normal myocardium. 
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Chapter 3 

Texture Analysis in MRI 

Part of this chapter has been previously published in: 

Larroza A, Bodí V, Moratal D.  
Texture Analysis in Magnetic Resonance Imaging: Review and considerations for future 

applications. In: Assessment of Cellular and Organ Function and Dysfunction using Direct and 

Derived MRI Methodologies, Christakis Constantinides (Editor)  
InTech, Rijeka, Croatia, 2016. 

3.1 Introduction 
Texture analysis applications in MRI involve a general process that consists of six 

steps: MRI acquisition, region of interest (ROI) definition, ROI preprocessing, texture 
feature extraction, feature selection, and classification (Figure 3.1). None of these steps 
is specific, and the methods have to be chosen according to the application. The 
texture outcome can be considerably affected depending on the methodology used 
throughout the process. Here we present a condensed description of the possibilities 
at each step of the texture analysis process. The feature selection and classification 
steps will be described in detail in chapter 4, as these are part of the machine learning 
theory. 

Figure 3.1. Texture analysis process for MRI classification. ROI: Region of Interest. 
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3.2 MRI Acquisition 
As explained in Chapter 2, MRI gives us the possibility to enhance specific tissues 

by varying the acquisition sequence parameters. In this respect, the outcome of texture 
analysis strongly relies on the image acquisition protocols, and these should be 
carefully selected in order to obtain the maximum accuracy and reproducibility. 
Different measuring techniques produce different patterns in texture and these may 
vary among centers and manufacturers [7]. Texture analysis can be used reliably at 
one center with a specific imaging protocol but this does not mean that the same 
methodology can be directly applied to images acquired at different centers with 
different protocols [50].  

 

3.2.1 Sequences 

Repetition time (TR), bandwidth/echo time (BW/TE), and flip angle are the 
properties that are most likely altered in a clinical setting. Variation of these 
parameters enhances different tissues thus obtaining different image texture. 
Repetition time had the biggest impact when comparing different foam phantoms 
using clinical breast MRI protocols, whereby better texture discrimination was elicited 
at higher TR [51]. 

The choice of the MRI sequence for texture analysis depends on the application. 
Contrast-enhanced T1-weighted images is the current standard MRI protocol used by 
clinicians to assess brain tumors and was used for texture analysis in [P01], [11], [52]. 
Some studies compared different modalities obtaining diverse results. In the study of 
Tiwari et al. [53], contrast-enhanced T1-weighted provided better performance over 
T2-weighted and fluid-attenuated inversion recovery (FLAIR) images for 
discrimination of recurrent brain tumors from radiation induced lesions. T1-weighted 
MRI was also notably better than FLAIR images for dementia classification [54]. T2-
weigthed images were more suitable for differentiation between benign and 
malignant tumors [55], [56], and for discrimination of posterior fossa tumors in 
children [57]. Texture analysis applied to diffusion-weighted MR images also proved 
to be efficient for cancer classification [58]–[60]. Nevertheless, texture features used in 
these studies differ from each other, so a definite assumption of which MRI sequence 
is better cannot be made. Texture analysis applications in CMR were mainly applied 
to LGE CMR [20]–[26] . 
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3.2.2 Influence of Spatial Resolution and SNR 

Spatial resolution and signal to noise ratio (SNR) have been reported to be the 
most influential factors for texture analysis [7], [61], [62]. Image resolution is defined 
by slice thickness, field of view (FOV) and matrix size. Signal-to-noise ratio is defined 
as the coefficient between the mean signal over a homogeneous region of a tissue of 
interest and the standard deviation of the background noise. Texture discrimination 
improves with higher levels of SNR and it has been reported that a SNR > 4 is 
necessary to measure the real textural behavior of the human brain [63]. 
Discrimination based on texture analysis also improves with higher spatial resolution 
[7]. Texture analysis fails if the image resolution is insufficient since the finest textural 
details cannot be spotted, but at higher spatial resolution it is more sensitive to 
variations in the acquisition parameters [62]. 

Although current routine MRI scanners can produce high resolution images, these 
are susceptible to motion artifacts given the long scan times and are not widespread in 
clinical practice. A strong correlation between 3D structural indices and 3D texture 
features in trabecular bone in osteoporosis was found by [64], using routine images 
with standard resolution (0.7 × 0.7 mm2); indicating that these can be used to quantify 
the bone architecture without the need of higher resolution images. These previous 
results show that even if high-resolution images provide better texture discrimination, 
its application in clinical practice is far complicated as no good reproducibility among 
centers is expected. Apparently the slice thickness does not influence significantly the 
outcome of 2D texture analysis according to [65], who found only moderate 
differences between 1 mm and 3 mm thickness to separate white matter tissue and 
multiple sclerosis plaques. 

3.2.3 Influence of Field Strength 

One important difference among MRI scanners is the field strength of the magnet, 
being the most common values in clinical routine nowadays those of 1.5 T and 3 T. 
Scanners with higher field strength provide more SNR, thus increasing spatial and 
temporal resolution. In counterpart, artefacts resulting from breathing or any other 
type of body motion are more prominent on 3 T than on 1.5 T scanners, but these are 
generally compensated using some techniques offered by manufacturers [66]. Better 
texture-based discrimination is expected on the higher quality images acquired on 3 T 
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scanners as it was reported for liver fibrosis [67] and breast cancer classification [68]. 
In [56], they found significant differences between 1.5 T and 3 T when squamous cell 
carcinoma tumors on head and neck were compared. However, their results are in 
contrast with previous evidence [67], [68] since benign versus malignant tumor 
discrimination was better on 1.5 T. In the study of Waugh et al. [51], texture 
discrimination of foam phantoms using different clinical breast MRI protocols was in 
general improved when a 3 T scanner was used but changes in the imaging 
parameters at 1.5 T had less influence on the texture outcome. 
 

3.2.4 Multicenter Studies 

Few multicenter studies regarding the application of texture analysis in MRI have 
been published. In [55], they concluded that texture analysis of MRI can discriminate 
between different brain tissues obtained in routine procedures at three different 
centers. In [50], they compared the classification performance to discriminate between 
bone marrow and fat tissue on T1-weighted MRI of knees from 63 patients obtained 
from three centers with two different field strength MRI scanners: two centers at 1T 
and one at 3T. Texture information was extracted from two centers and was used to 
predict tissue on data from the third center, concluding that feature sets from one 
center may be used for tissue discrimination in data from other centers. In a very large 
multicenter study, Karimaghaloo et al. [15] analyzed 2380 scans from 247 different 
centers for segmentation of multiple sclerosis lesions achieving an overall sensitivity 
of 95% on a separate dataset of 120 scans from 24 centers. The promising results of this 
study may be the consequence of extracting texture features from different MRI 
protocols (T1, T2, proton density, and FLAIR) and using them in combination when 
modeling the classifier. It should be also noted that images were corrected for non-
uniformity effects and were normalized into a common spatial and intensity space, 
thus reducing the possible differences among multicenter scans. Opposite conclusions 
were reached by [56], as they stated that texture analysis is useful for discrimination of 
benign and malignant tumors when using one scanner with the same protocol but it is 
not recommended for multicenter studies. However, they did not mention any image 
normalization or inhomogeneity correction that could somehow have affected their 
results, as it is discussed in Section 3.4. 
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3.3 Region of Interest Definition 
Texture features are computed inside a predefined region of interest (ROI), or 

volume or interest (VOI) in the case of 3D texture analysis, and are usually placed 
over a homogeneous tissue or lesion area. Manual definition of ROIs is still considered 
the gold standard in many applications, and it is the chosen option over automatic 
methods [69]–[72]. Different approaches have been used to define ROIs that are also 
extended to 3D texture analysis. One approach for ROI definition is the positioning of 
squares [73] or circles [74] of predefined sizes over the tissue to be analyzed. Using 
this approach, only information of the underlying tissue is captured but some texture 
details can be lost because the ROI does not cover the entire area of interest. Another 
alternative is to use a bounding box defined as the smallest enclosing rectangular area 
of the tissue of interest [75], [76]. The latter approach has the advantage that the ROI 
covers the complete tissue or lesion, but it also includes information from adjacent 
parts that can affect the texture quantification. Although delineation of the entire 
tissue or lesion can be tedious, it is a better approach since the entire area of interest is 
included [57], [77]. It has been shown that for both 2D and 3D texture analysis, 
delineation of the entire lesion provides better accuracy than the bounding box 
approach [78]. Figure 3.2 shows examples of the three aforementioned ROI definition 
approaches. 

Figure 3.2. Approaches for defining a region of interest (ROI) over a brain tumor. The use of a 

bounding box that covers the entire lesion (a), or a small square inside the tumor (b) can be 

defined quickly and easily, but the delineation of the entire lesion (c) is preferred in order to 

capture the maximum texture information only within the area of interest.   
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3.3.1 Size of the Region of Interest 

The size of the ROI should be sufficiently large to capture the texture information 
thereby eliciting statistical significance [7]. In [79], they studied the effect of ROI size 
on various texture features extracted from circular ROIs of ten different sizes on brain 
MRI of healthy adults. They concluded that ROI size has a significant effect on the 
computed value of several texture features, and that comparisons of different ROI 
sizes will lead to false results. 

A good methodology to avoid possible influences of ROI size might be to use 
squares and circles of the same size among all samples but as we mentioned before, 
the complete delineation of the ROI might offer better results. It is recommended the 
use of the ROI delineation approach when the range of lesion sizes among samples is 
not significantly broad and when the employed texture features are not affected 
between this range, otherwise ROIs of fixed size might be a better approach. 

 
 
 

3.3.2 Feature Maps 

Texture feature maps can be computed by defining ROIs as sliding blocks of n × n 

pixels centered at each pixel on the image, so for each pixel a specific texture feature 
value is computed including its surrounding neighborhood. The block size should be 
large enough to capture sufficient texture information from each pixel neighborhood 
but small enough to capture more local characteristics allowing finer detection of 
regions [7]. Figure 3.3 shows examples of texture maps computed for sliding blocks of 
different sizes. Texture maps can reveal some characteristics that are not visible on the 
original image and are mainly used for segmentation tasks [80]. Computing features 
over texture maps can lead to better results than using the original MR images [81]. 
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Figure 3.3. Texture feature maps of a CMR image: a) original image, b) entropy feature map 

computed with a sliding block with a size of 5 × 5 pixels, and c) entropy feature map computed 

with a sliding block of 9 × 9 pixels. 

3.4 Region of Interest Preprocessing 
It is clear from Section 3.2 that MRI acquisition protocols are relevant for texture 

analysis. Several preprocessing techniques have been proposed in order to minimize 
the effects of acquisition protocols and are especially important when dealing with 
multicenter studies. The main purpose of these preprocessing techniques is to put all 
ROIs in the same condition so features extracted from them represent essentially the 
texture being examined. Some preprocessing techniques also aim to improve the 
texture discrimination. 

3.4.1 Interpolation 

Image spatial resolution is one of the most influential factors in texture analysis, 
and it was demonstrated that higher resolutions tends to improve texture-based 
classification but high-resolution images are not usually available in clinical routine 
[7], [64]. Image interpolation is an option to enhance images with a low spatial 
resolution. The effect of image interpolation on texture features was analyzed by [82], 
who compared three interpolation methods applied to T2-weighted images acquired 
at five different resolutions. They concluded that MR image interpolation has the 
potential to improve the results of texture-based classification, recommending a 
maximum interpolation factor of four. In their study, the most considerable 
improvements were found when images with original resolution of 0.94 × 0.94 mm2 
and 0.47 × 0.47 mm2, were interpolated by factors of two or four using the zero-fill 
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interpolation technique at the k-space domain. Image interpolation is of special interest 

when dealing with 3D texture analysis because in most MRI sequences the slice 

thickness is larger than the in-plane resolution. Re-slicing all images to obtain 

isotropic image resolution is required for computing texture features to retain the 

scales and directions in all three dimensions [83]. 

 

3.4.2 Normalization 

Even if the same scanner and protocol are used, they may produce MR images 

with different intensities. Certainly, they may depend on the acquisition conditions 

such as room temperature and hygrometry, calibration adjustment, slice location, etc. 

[84]. It was demonstrated that some features are not only dependent on texture, but 

also on other ROI properties, such as the mean intensity and variance [55]. To avoid 

the influence of such factors, ROI normalization is a recommended preprocessing 

step. In [84], they studied the effects of ROI normalization on texture classification of 

T2-weighted images and demonstrated that classification errors were dependent on 

the MR acquisition protocols if no normalization was applied. They compared three 

techniques, and the one that yielded the best results is known as “± 3σ” normalization. 

In this method, image intensities are normalized between µ ± 3σ, where µ is the mean 

value of gray-levels inside the ROI, and σ is the standard deviation, so that gray-levels 

located outside the range [µ - 3σ, µ + 3σ] are not considered for further analysis. The 

“± 3σ” normalization technique has become the most popular and preferred choice in 

most publications [85]–[87]. An example of this method is shown in Figure 3.4. 

 

Figure 3.4. Example of region of interest (ROI) normalization of a CMR image. The extracted 

ROI is shown in the original histogram and after normalization using the “± 3σ” method.  
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3.4.3 Inhomogeneity Correction 

There is still another residual effect that is not eliminated by ROI normalization, 

which are the variations of intensity present in MR images; mainly caused by static 

magnetic field inhomogeneity and imperfections of the radiofrequency coils [63]. 

Texture features depend on local average image intensity and are therefore affected by 

image inhomogeneity. Correction of non-uniformity artifacts in MRI is recommended 

as a preprocessing step prior to ROI normalization and especially for large ROIs [88]. 

Figure 3.5 shows an CMR image with inhomogeneity and the corrected image within 

the myocardium ROI. A review of methods for MRI inhomogeneity correction is 

available in [89], being the most popular method found in texture literature [90]–[93], 

the so-called N3 algorithm [94]. 

  

Figure 3.5. Example of a CMR image with inhomogeneity (a), the average local image 

intensity of the lower right part is brighter than the upper part. The myocardium region of 

interest was corrected and appears homogeneous in (b). 

 

3.4.4 Quantization of Gray-levels 

Texture analysis methods based on matrix computation, e.g., co-occurrence and 

run-length matrices, require quantization of gray-levels. A typical MR image is 

represented by 10 or 12 bits per pixel, that is, 1024 or 4096 levels of gray. So, in MRI 

texture analysis, quantization will refer to the reduction of levels of gray used to 

represent the image. Typical number of gray-levels used for texture feature 

computation are 16, 32, 64, 128, and 256. Reducing the number of gray-levels improves 

SNR and the counting statistics inherent in the matrix-based texture analysis methods 
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at the expense of discriminatory power [95]. Some studies reported that no significant 

effects were found when different numbers of gray levels were tested [85], [96] while 

in the study of Chen et al. [78], a gray-level of 32 was reported to be an optimal choice 

for breast MRI. A specific study regarding the impact of the number of gray-levels on 

co-occurrence matrix texture features was carried out by [97]. They concluded that the 

number of gray levels, or dynamic range, has a significant influence on the 

classification of brain white matter, obtaining an optimal number of 128 levels for both 

2D and 3D texture analysis approaches. It is recommended to optimize the number of 

gray levels for each specific application. 

 

3.5 Texture Feature Extraction 
Feature extraction is the main and specific step in the texture analysis process and 

implies the computation of texture features from predefined ROIs. Many approaches 

have been proposed in order to quantify the texture of an image allowing the 

computation of numerous features. In this section, we briefly describe the most 

popular texture analysis methods that were implemented in the experimental studies 

of this thesis (chapters 5-7). Extensive reviews of existing feature extraction methods 

are given in [6], [83], [98], [99].  

 

3.5.1 Histogram  

The simplest method for feature extraction is by using the image histogram, which 

represents the counts of pixels that shares a given intensity value. Gray-scale MR 

images are normally represented by 12 bits per pixel, representing a total of 4096 gray-

levels. Pixels with low gray-level values appear darker the those with higher levels. 

Histograms for two different ROIs are shown in Figure 3.6. 
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Figure 3.6. Histograms of two different ROIs inside a CMR image. The blood pool appears 

brighter (red ROI) than the myocardium (green ROI) in cine CMR and this situation is 

reflected in the histogram. The image in the example was quantized to 256 gray-levels. 

Histogram-based features do not really describe the actual texture of the image or 
ROI being analyzed as they do not take into account spatial neighborhood 
relationships or dependencies among pixels. Nevertheless, they are normally included 
in combination with other feature extraction methods as they may improve the 
texture-based classification [100].  

Assuming that 𝑁𝑔 is the number of distinct gray-levels, and 𝑝(𝑖) is the normalized 
histogram vector (histogram whose entries are divided by the total number of pixels 
in the ROI), features derived from the histogram are: 

 Mean: The average gray-level value.

𝜇 = ∑ 𝑖𝑝(𝑖)

𝑁𝑔

𝑖=1

  (3.1) 

 Variance: Indicates how far the gray-levels are from the mean thus giving and
idea of the homogeneity of the pixel distribution.

𝜎2 = ∑(𝑖 − 𝜇)2𝑝(𝑖)

𝑁𝑔

𝑖=1

  (3.2) 
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 Skewness: Measures the lack of symmetry. The histogram is symmetric when 
the left and right distributions of the center point are similar. 

𝜇3 = 𝜎−3 ∑(𝑖 − 𝜇)3𝑝(𝑖)

𝑁𝑔

𝑖=1

                                              (3.3) 

 Kurtosis: Indicates if the histogram is peaked or flat in relation to the normal 
distribution.  

𝜇4 = 𝜎−4 ∑(𝑖 − 𝜇)4𝑝(𝑖) − 3

𝑁𝑔

𝑖=1

                                      (3.4) 

 Percentiles: A percentile gives the highest gray-level value under which a 
given percentage of the ROI pixels are contained. Percentiles are normally 
calculated at 1, 10, 50, 90, and 99%. For example, if the 90% percentile of a 256 
gray-levels ROI is 100, the 90% of the pixels in that ROI has a gray-level value 
from 0 to 99. 

 

3.5.2 Absolute Gradient 

The gradient measures the spatial variation of gray-level values across the image. 
Therefore, if the gray-level varies abruptly from black to white, a high gradient value 
is obtained; but if the variation is smooth the gradient value will be low. The gradient 
may be positive or negative, depending on whether the gray-level variation is from 
dark to bright or in the opposite way. The absolute gradient does not take the sign 
into consideration, as the interest is to know if the intensity variation is abrupt or 
smooth. To obtain the absolute gradient histogram, each pixel 𝑋(𝑖, 𝑗) is assigned a 
value that is obtained considering its neighborhood as shown in Equation 3.5. 
Features computed from the absolute gradient histogram are: mean, variance, 
skewness, kurtosis, and the percentage of non-zero elements [6].  

 
A B C 
D 𝑋(𝑖, 𝑗) F 
G H I 

𝐴𝑏𝑠𝐺𝑟𝑋(𝑖, 𝑗) = √(𝐻 − 𝐵)2 + (𝐹 − 𝐷)2                               (3.5) 
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3.5.3 Gray-Level Co-occurrence Matrix 

The gray-level co-occurrence matrix (GLCM) is a feature extraction method based 
on second-order statistics. Pairs of pixels separated by a predefined distance and 
direction are counted and the resulting values are allocated in the GLCM. The count is 
based on the number of pairs of pixels that have the same distribution of gray-level 
values [7]. Normally, GLCMs are computed in four directions (horizontal, vertical, 
45°, 135°) for 2D, and in 13 directions for 3D approaches [83], using different pixel or 
voxel separations. Figure 3.7 shows an example for computing a GLCM. The pixel 
distance has to be chosen according to the application: a larger distance will allow 
detection of coarse areas but care must be taken not to overstep the size of the ROIs. 

One main concern about GLCMs is their dependence on direction, so different 
values may be obtained if the image is rotated. This situation may be unacceptable for 
texture characterization on MRI since images from different patients may have 
different orientations. Rotation invariant features can be achieved by averaging, or 
simultaneously adding up, the matrix values over all directions [101], [102] or by 
averaging the statistical features derived from the matrices [103].  

Several texture features can be computed from each GLCM, aiming to quantify the 
homogeneity (smoothness) or heterogeneity (coarseness) of the image. The most 
popular features computed from GLCMs are those introduced by Haralick et al. [101]. 
Here we define the features used in this thesis together with their formulas. 

Figure 3.7. Computation of a gray-level co-occurrence matrix (GLCM) for a given 4 × 4 pixel 

image (a) with three gray-levels (b). In this example the matrix is computed in horizontal 

direction for one-pixel separation. The number of transitions of gray-levels is counted and 

allocated in the co-occurrence matrix (c). The marked values indicate that there are three 
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transitions from one to two gray-levels and this count is allocated in the corresponding 

position in the co-occurrence matrix. 

Assuming that 𝑁𝑔 is the number of distinct gray-levels, and 𝑝(𝑖, 𝑗) is the 𝑝(𝑖, 𝑗)𝑡ℎ 
entry in a normalized GLCM. The mean of rows and column sums of the GLCM are 
represented by 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 , 𝜎𝑦; these are related to the marginal distributions 𝑝𝑥(𝑖) =

∑ 𝑝(𝑖, 𝑗)
𝑁𝑟𝑜𝑤𝑠
𝑖=1 , and 𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)

𝑁𝑐𝑜𝑙𝑢𝑚𝑛
𝑗=1 .  

 
 Angular Second Moment: Also known as Energy or Uniformity. High values 

indicate good homogeneity due to the presence of few entries 𝑝(𝑖, 𝑗), but with 
relatively high values. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑[𝑝(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

                                    (3.6) 

 
 Contrast: Refers to how much difference there is between gray-level values of 

different objects within the image. Low values indicate high homogeneity. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ (𝑖 − 𝑗)2 ∑ ∑ 𝑝(𝑖, 𝑗)                        (3.7)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑔−1

𝑛=0

 

 
 Correlation: This feature measures how correlated a pixel is to its neighbors. 

It is a measure of gray-level linear dependencies within the image. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
𝑖𝑗𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

                                (3.8)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 
 Entropy: Measures the randomness of the pixel distribution; the amount of 

disorder within the image. It takes high values for a more random 
distribution.  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔(𝑝(𝑖, 𝑗))                              (3.9)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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 Sum of Squares: It is the variance computed from the GLCM. It is also
measure of randomness.

𝑆𝑢𝑚𝑆𝑞 = ∑ ∑(1 − 𝜇𝑥)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 (3.10) 

 Inverse Difference Moment: It is a measure of homogeneity. High values
indicate smooth texture.

𝐼𝑛𝑣𝐷𝑖𝑓𝑓𝑀𝑜𝑚 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)  (3.11)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 Sum Average: Measures the mean of 𝑝𝑥+𝑦.

𝑆𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=1

  (3.12) 

 Sum Variance: Measures the variance of 𝑝𝑥+𝑦.

𝑆𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑆𝑢𝑚𝐴𝑣𝑒𝑟𝑔)2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=1

 (3.13) 

 Sum Entropy: Measures the entropy of 𝑝𝑥+𝑦.

𝑆𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑥+𝑦(𝑖)log (𝑝𝑥+𝑦(𝑖))

2𝑁𝑔

𝑖=1

  (3.14) 

 Difference Variance: Measures the variance of 𝑝𝑥−𝑦.

𝐷𝑖𝑓𝑉𝑎𝑟𝑛𝑐 = ∑ (𝑖 − 𝜇𝑥−𝑦)2𝑝𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

 (3.15) 

 Difference Entropy: Measures the entropy of 𝑝𝑥−𝑦.

𝐷𝑖𝑓𝐸𝑛𝑡𝑟𝑝 = − ∑ 𝑝𝑥−𝑦(𝑖)log (𝑝𝑥−𝑦(𝑖))

𝑁𝑔

𝑖=1

  (3.16) 

 Dissimilarity [85]: Measures the dissimilarity between pair of pixels.

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑|𝑖 − 𝑗|𝑝(𝑖, 𝑗)  (3.17)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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3.5.4 Gray-level Run-length Matrix 

Gray-level run-length matrices (GLRLMs) consider higher-order statistical 
information in comparison with GLCMs. Runs of a specific gray-level are counted for 
a chosen direction. For example, three consecutive pixels with the same gray-level 
value along the horizontal direction constitutes one run of length three. Computation 
of a simple run-length matrix is shown in Figure 3.8. Fine textures will be dominated 
by short runs whereas coarse textures will include longer runs [98]. Rotation 
invariance can be achieved by averaging over all directions, as previously mentioned 
for the co-occurrence matrix method. 

 

 

Figure 3.8. Computation of a gray-level run-length matrix (GLRLM) for a given 4 × 4 pixel 

image (a) with three different gray-levels (b). The number of runs for each gray-level is 

allocated in the run-length matrix (c). For example, the marked values indicate that there are 

two runs of size two for gray-level 3.  

 
The features computed from GLRLMs implemented in this thesis are defined in 

the following lines. Assuming that 𝑁𝑔 is the number of gray-levels and 𝑁𝑟 is the 
number of runs, 𝑝(𝑖, 𝑗) is the number of times there is a run of length 𝑗 having gray-

level 𝑖, and 𝐶 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
. 
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 Short Run Emphasis [104]: It divides each run-length value by the length of
the run squared thus emphasizing short runs.

𝑆𝑅𝐸 =
1

𝐶
∑ ∑

𝑝(𝑖, 𝑗)

𝑗2
 (3.18)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Long Run Emphasis [104]: It multiplies each run-length value by the length of
the run squared thus emphasizing long runs.

𝐿𝑅𝐸 =
1

𝐶
∑ ∑ 𝑗2𝑝(𝑖, 𝑗)  (3.19)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Gray-level Nonuniformity [104]: Measures the gray-level nonuniformity. It
takes low values when runs are equally distributed throughout the gray-
levels.

𝐺𝐿𝑁 =
1

𝐶
∑(∑ 𝑝(𝑖, 𝑗))2  (3.20)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Run-length Nonuniformity [104]: Measures the nonuniformity of the run-
lengths taking low values when the runs are equally distributed throughout
the lengths.

𝑅𝐿𝑁 =
1

𝐶
∑(∑ 𝑝(𝑖, 𝑗))2  (3.21)

𝑁𝑔

𝑖=1

𝑁𝑟

𝑗=1

 

 Run Percentage [104]: It is the fraction of the total number of runs to the total
number of possible runs if all of them had a length of one. It takes low values
for images with linear structures.

𝑅𝑃 = ∑ ∑ 𝑝(𝑖, 𝑗)/ ∑ ∑ 𝑗𝑝(𝑖, 𝑗)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

  (3.22)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Low Gray-level Run Emphasis [105]: Analogous to SRE but it makes use of
the distribution of gray-levels of runs.

𝐿𝐺𝑅𝐸 =
1

𝐶
∑ ∑

𝑝(𝑖, 𝑗)

𝑖2
 (3.23)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 



Chapter 3. Texture Analysis in MRI 
 

42 
 

 High Gray-level Run Emphasis [105]: Analogous to LRE but it makes use of 
the distribution of gray-levels of runs. 

𝐻𝐺𝑅𝐸 =
1

𝐶
∑ ∑ 𝑖2𝑝(𝑖, 𝑗)                                       (3.24)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Short Run Low Gray-level Emphasis [106]: Emphasizes the joint distribution 
properties of the run-lengths and gray levels instead of individual ones 
separately.  

𝑆𝑅𝐿𝐺𝐸 =
1

𝐶
∑ ∑

𝑝(𝑖, 𝑗)

𝑖2𝑗2
                                          (3.25)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Short Run High Gray-level Emphasis [106]: Similar to SRLGE. 

𝑆𝑅𝐻𝐺𝐸 =
1

𝐶
∑ ∑

𝑖2𝑝(𝑖, 𝑗)

𝑗2
                                      (3.26)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 Long Run Low Gray-level Emphasis [106]: Similar to SRLGE. 

𝐿𝑅𝐿𝐺𝐸 =
1

𝐶
∑ ∑

𝑗2𝑝(𝑖, 𝑗)

𝑖2
                                       (3.27)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 
 Long Run High Gray-level Emphasis [106]: Similar to SRLGE. 

𝐿𝑅𝐻𝐺𝐸 =
1

𝐶
∑ ∑ 𝑖2𝑗2𝑝(𝑖, 𝑗)                                    (3.28)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 
 Gray-level Variance [107]: Variance of the gray-level distribution. 

𝐺𝐿𝑉 =
1

𝑁𝑔 × 𝑁𝑟

∑ ∑(𝑖𝑝(𝑖, 𝑗) − ∑ 𝑖 ∑ 𝑝(𝑖, 𝑗)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

)2                 (3.29)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 
 Run-length Variance [107]: Variance of the run-length distribution. 

𝑅𝐿𝑉 =
1

𝑁𝑔 × 𝑁𝑟

∑ ∑(𝑗𝑝(𝑖, 𝑗) − ∑ 𝑗 ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

𝑁𝑟

𝑗=1

)2                (3.30)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
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3.5.5 Gray-level Size Zone Matrix 

The gray-level size zone matrix (GLSZM) takes into account the size of areas with 
pixels of the same intensity level. It is calculated using the same principle as the 
GLRLM, but considering areas instead of runs. However, it is not necessary to 
compute matrices in several directions so this matrix is invariant to image rotation 
[107]. Figure 3.9 shows and example for computation of a GLSZM.  

Figure 3.9. Computation of a gray-level size zone matrix (GLSZM) for a given 4 × 4 pixel 

image (a) with three different gray-levels (b). The area size of each gray-level is allocated in the 

size zone matrix (c). For example, the marked values indicate that there is one area of size 5 for 

gray-level 3 (green), and one area of size 4 for gray-level 2 (red).  

Features calculated from the GLSZM are equivalent to those of the GLRLM 
(Equations 3.18 to 3.30) but replacing the number of runs (𝑁𝑟) with the number of 
zones (𝑁𝑧). The corresponding names when the features are derived from the GLSZM 
are: small zone emphasis (SZE), large zone emphasis (LZE), gray-level nonuniformity 
(GLN), zone-size nonuniformity (ZSN), zone percentage (ZP), low gray-level zone 
emphasis (LGZE), high gray-level zone emphasis (HGZE), small zone low gray-level 
emphasis (SZLGE), small zone high gray-level emphasis (SZHGE), large zone low 
gray-level emphasis (LZLGE), large zone high gray-level emphasis (LZHGE), gray-
level variance (GLV), zone-size variance (ZSV) [107]. 
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3.5.6 Neighborhood Gray-tone Difference Matrix 

The neighborhood gray-tone difference matrix (NGTDM) was introduced by 
Amadasun and King [108] aiming to describe the visual properties of textures. To 
compute a NGTDM from an image, let 𝑃(𝑖) represent the summation of gray-level 
differences among all pixels with gray-level 𝑖. 𝑁𝑔 represents the highest gray-level 
value present in the image, and (𝑁𝑔)𝑒𝑓𝑓  is the total number of different gray-levels in 
the image. The 𝑖𝑡ℎ entry of the NGTDM is defined as: 

𝑃(𝑖) = {
∑|𝑖 − 𝐴�̅�|          𝑓𝑜𝑟 𝑖 ∈ 𝑁𝑖  𝑖𝑓 𝑁𝑖 ≠ 0,

0                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                       (3.31) 

Where 𝑁𝑖 is the set of all pixels with gray-level 𝑖 in the image excluding the peripheral 
region of width 𝑑, and 𝐴�̅� is the average gray-level of the neighbors around a center 
pixel with gray-level 𝑖 located at position (𝑘, 𝑙) so:  

𝐴𝑖 = 𝐴(𝑘, 𝑙) =
1

𝑊 − 1
[ ∑ ∑ 𝑓(𝑘 + 𝑚, 𝑙 + 𝑛)

𝑑

𝑛=−𝑑

𝑑

𝑚=−𝑑

] , (𝑚, 𝑛) ≠ (0,0) 

Where 𝑑 specifies the neighborhood size and 𝑊 = (2𝑑 + 1)2. Figure 3.10 shows an 
example for computing a NGTDM with 𝑑 = 1.       
 

 

Figure 3.10. Computation of a neighborhood gray-tone difference matrix (NGTDM) for a 

given 4 × 4 pixel image with three different gray-levels. Specifying a distance d = 1, results in a 

3 × 3 neighborhood. This neighborhood can only be centered on pixels within the green square 

while the rest of the pixels are considered as being in the periphery of the image. So, for the 

centered pixels, the P(i) value is computed using Equation 3.31 and allocated in the NGTDM. 

For an 𝑁 × 𝑁 image, the probability of occurrence of the gray-level value 𝑖 is 
defined as 𝑛𝑖 =

𝑁𝑖

𝑛2, where 𝑛2 = 𝑁 − 2𝑑. The NGTDM features are defined as: 
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 Coarseness: Coarse textures are represented by high values of this feature
where gray-level differences are small. The constant 𝜖 in the formula is a small
number to prevent coarseness becoming infinite.

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = [𝜖 + ∑ 𝑛𝑖𝑃(𝑖)

𝑁𝑔

𝑖=1

]

−1

 (3.32) 

 Contrast: High contrast means that the intensity difference between
neighboring regions is large.

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = [
1

(𝑁𝑔)𝑒𝑓𝑓[(𝑁𝑔)𝑒𝑓𝑓 − 1]
∑ ∑ 𝑛𝑖𝑛𝑗(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

] [
1

𝑛2
∑ 𝑃(𝑖)

𝑁𝑔

𝑖=1

]    (3.33) 

 Busyness: A busy texture is one in which the spatial frequency of intensity
changes is very high.

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
∑ 𝑛𝑖𝑃(𝑖)

𝑁𝑔

𝑖=1

∑ ∑ (𝑖𝑛𝑖 − 𝑗𝑛𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

, 𝑛𝑖 ≠ 0, 𝑛𝑗 ≠ 0  (3.34) 

 Complexity: Textures with high information content are considered complex,
for example when many patches or primitives are present.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑ ∑
|𝑖 − 𝑗|[𝑛𝑖𝑃(𝑖) + 𝑛𝑗𝑃(𝑗)]

𝑛2(𝑛𝑖 + 𝑛𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

, 𝑛𝑖 ≠ 0, 𝑛𝑗 ≠ 0     (3.35) 

 Strength: Strong textures are comprised of primitives that are easily definable
and clearly visible. The constant 𝜖 in the formula is a small number to prevent
strength becoming infinite.

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
∑ ∑ (𝑛𝑖 + 𝑛𝑗)(𝑖 − 𝑗)2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

[𝜖 + ∑ 𝑃(𝑖)
𝑁𝑔

𝑖=1
]

, 𝑛𝑖 ≠ 0, 𝑛𝑗 ≠ 0  (3.36) 

3.5.7 Autoregressive models 

The autoregressive models assume a local interaction among pixels by considering 
the pixel gray-level as a weighted sum of its neighbors. Assuming f is a zero mean 
random field, an autoregressive causal model is defined by: 

𝑓𝑠 = ∑ 𝜃𝑟𝑓𝑟 + 𝑒𝑠                                                      (3.37)

𝑟∈𝑁𝑠

 

Where 𝑓𝑠 is the image intensity at site 𝑠 and 𝑒𝑠 denotes an identically distributed noise. 
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𝑁𝑠 is a neighborhood of 𝑠 and 𝜃 is a vector of model parameters. An example of a local 
neighborhood for a causal model is shown in Figure 3.11  

 

Figure 3.11. Local neighborhood of image element fs. Shaded area indicates the region where 

valid causal half-plane autoregressive model neighborhood may be located. The parameters θ 

can be interpreted as measures of statistical similarity between intensities of pixel S and its 

neighbors, in four directions (vertical, horizontal and two diagonal). 

 

To use the autoregressive model for image texture classification, it is necessary to 
identify the model parameters for a given image region. In the case of the example in 
Figure 3.11, there are five unknown model parameters: the standard deviation 𝜎 of the 
noise  𝑒𝑠 and the model parameter vector 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]. These parameters 
can be estimated through Equations 3.38 and 3.39 by previously minimizing 
the sum of the squared error: ∑ 𝑒2

𝑠 = ∑ (𝑓𝑠 − 𝜃𝑤𝑠)2.𝑠  

𝜃 = (∑ 𝑤𝑠𝑤𝑠
𝑇

𝑠

)

−1

(∑ 𝑤𝑠𝑓
𝑠

𝑠

)                                              (3.38) 

𝜎2 = 𝑅−1 ∑(𝑓
𝑠

− 𝜃𝑤𝑠)
2

𝑠

                                                        (3.39) 

Where 𝑤𝑠 = 𝑐𝑜𝑙[𝑓𝑏 𝑖 ∈ 𝑁𝑠], and 𝑅 is the number of pixels inside ROI such that for the 
point 𝑠 moved to a pixel location, all the four immediate neighbors of 𝑠 will be placed 
inside the ROI as well. 

The autoregressive model gives an indication on how smooth or coarse the texture 
is because it assumes a local interaction among local pixels, so it finds relations among 
groups of neighboring pixels. The parameters 𝜃 are measures of statistical similarity 
between intensities of the pixel 𝑠 and its neighbors. Therefore, the parameters 𝜃 will 
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widely vary for coarse textures whereas they will be similar to each other for smooth 
textures. High values of the parameter 𝜎 indicates high image similarity to white 
random noise with no regular structure in it, and small values of 𝜎 suggests presence 
of regular textures [7].    

3.5.8 Wavelets 

The wavelet transform is a technique that analyzes the frequency content of an 
image within different scales and frequency directions. The frequency is directly 
proportional to the gray-level variations within the image. Wavelet coefficients 
corresponding to different frequency scales and directions can be obtained to describe 
a given image. Wavelet coefficients are associated to each pixel in an image to 
characterize the frequency content at that point over different scales [99]. Figure 3.12 
shows an example of a Wavelet transform applied to an image at one scale. 

Figure 3.12. Wavelet transform of a CMR image at one-scale decomposition. The high-high 

(HH) subimage represents diagonal high frequencies, high-low (HL) extracts the horizontal 

high frequencies, low-high (LH) vertical high frequencies and the subimage low-low (LL) 

represents the lowest frequencies.  
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Wavelet transform methods are popular because they offer some advantages, such 
as: variation of the spatial resolution to represent textures at the most appropriate 
scale, and the wide range of choices for the wavelet function that can be adjusted for 
specific applications [100]. The Wavelet energy can be computed at any considered 
scale and sub-band within a marked ROI.  

𝐸𝑛𝑒𝑟𝑔𝑦 =
∑ (𝑑𝑥,𝑦

𝑠𝑢𝑏𝑏𝑎𝑛𝑑)
2

𝑥,𝑦∈𝑅𝑂𝐼

𝑛
                                    (3.40) 

Where n is the number of pixels within the ROI of subimage d at given scale and sub-
band. ROIs need to be reduced in size at successive scales in order to correspond to 
sub-band image dimensions [109].  

 

3.5.9 Local Binary Patterns 

The local binary pattern (LBP) is a texture descriptor introduced by Ojala et al. 
[110] and it became very popular thanks to its simplicity and high-discriminative 
power. The LBP descriptor labels each pixel in an image by comparing its gray-level 
with the surrounding pixels and then assigning a binary number. A value of unity is 
assigned to the surrounding neighbors with gray-level greater than the central pixel in 
a predefined patch and a value of zero otherwise. A binary number is then obtained 
and assigned to the central pixel. The original LBP operator considers a 3 × 3 patch, so 
the surrounding pixels form a binary number of 8 digits. After labeling all pixels in an 
image, a LBP feature map is obtained as well as a histogram that consists of 256 bins 
when considering 3 × 3 patch. Figure 3.13 summarizes the described procedure.  

The LBP histogram can be used as feature vector for classification where each bin 
represents one feature. Another approach is to compute new features from the LBP 
map as carried out by [54], [111]. Uniform LBPs have been proposed to reduce the 
length of the feature histogram. A LBP binary code is uniform if it contains at most 
two transitions from 0 to 1 or vice-versa. Examples of uniform patterns are: 0000000 
(no transitions), 00001111 (one transition), and 10001111 (two transitions). Patterns 
with more than two transitions are labeled as non-uniform, and distinct labels are 
assigned to each uniform pattern. For a 3 × 3 patch, the number of bins on the uniform 
histogram is reduced to 59 instead of the original 256. Uniform LBP patterns function 
as templates for microstructures, such as spots, edges, corners, etc. 

The original LBP descriptor defined for a 3 × 3 patch was extended to include 
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more neighbors by adding two parameters: the parameter P that defines the number 
of neighbors, and the radius R that determines the spatial resolution. Quantification at 
different resolutions can be obtained by varying these two parameters. Rotation 
invariance is achieved by performing a bitwise shift operation on the binary pattern P-

1, times and assigning the LBP value that is the smallest. It has been shown that 
rotation-invariant LBP is robust against some common MRI artifacts, including image 
inhomogeneity even at 40% of intensity variations [112].  

Figure 3.13. Computation of a basic local binary pattern (LBP) image. For each pixel in the 

original image, its gray-level is compared to the surrounding pixels. A value of unity is 

assigned to the pixels with gray-level greater than the central pixel, and a value of zero 

otherwise. Then a binary number is obtained and this value is allocated in the same position of 

the original pixel thus obtaining the LBP image.   

3.5.10  Volumetric Texture Feature Extraction 

Feature extraction methods have been firstly proposed for 2D texture analysis. The 
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advantage of the volumetric nature of MRI datasets can be obtained by extending the 
original methods to 3D. A simple approach to capture volumetric information is to 
compute 2D features in all MRI slices and then average these values [113], but in this 
case the gray-level distributions in the third dimension are not taken into account. 
Nevertheless, it has been shown that even this simple averaging method outperforms 
the typical 2D approach where only one slice is analyzed [114]. The extension of 2D 
approaches to 3D is not straightforward as factors such as translation and scaling 
become more complex. A review of 3D feature extraction methods is presented in [83]. 
Compared with 2D texture analysis, 3D approaches increase the dimensionality and 
the information captured from the image, thus improving the discrimination power 
[78], [115], [116].  

Dynamic texture analysis is possible by including the temporal dimension 
available in some image datasets, i.e. cine CMR. For this purpose, an extension of the 
LBP texture analysis method was proposed to analyze video sequences [117]. The 
latter approach can be considered as 2D + t, so conventional 3D features can also be 
implemented by using time (t) as the third dimension. Notable results were observed 
for discrimination of benign and malignant breast lesions [118] and for localization 
and segmentation of the heart [119], when using 4D spatio-temporal texture analysis 
in MRI. 

    

3.5.11  Feature Extraction Tools 

The widely used software package MaZda (Institute of Electronics, Technical 
University of Lodz, Lodz, Poland) [120] is freely available and allows computation of 
texture features based on histogram, GLCM, GLRLM, absolute gradient, 
autoregressive model and the Haar wavelet transform. MATLAB (MathWorks Inc., 
Natick, MA) toolboxes can also be found for texture feature extraction, like the one 
provided by Vallières et al. [85]1 that allows computation of features based on GLCM, 
GLRLM, GLSZM, and NGTDM; and the implementations of the local binary pattern 
operator provided by Ojala et al. [110]2. 

    

                                                           
1 Available from https://github.com/mvallieres/radiomics 
2 Available from http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware 
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Chapter 4 

Overview on Machine Learning 

4.1 Introduction 
Machine learning is an interdisciplinary field that include statistics, artificial 

intelligence, data mining and pattern recognition, by applying algorithms that can 
learn from data to accurately represent and make use of the underlying information. 
Machine learning in medical imaging is a promising growing field and its main 
applications include image segmentation, registration, computer aided detection and 
diagnosis. Essentially, machine learning algorithms aim to identify patterns that could 
help radiologists and specialists make accurate decisions when assessing imaging data 
[10], [121]. 

Machine learning problems can be supervised or unsupervised. In supervised 
learning, each sample in the dataset consists of input observations, or features, and 
output observations, or responses. When the responses are categorical variables the 
problem is known as classification, and when the responses are numeric the problem is 
known as regression. The purpose of supervised learning is to build a model that can 
“learn” from available data in order to predict new samples with unknown classes. In 
contrast, unsupervised learning is more challenging as the output classes are not 
available. Therefore, it is necessary to seek relationships between features and 
observations. Cluster analysis is a typical unsupervised tool that aims to find if the 
observations fall into distinct groups [122].  

In the texture analysis process that was illustrated in Figure 3.1, machine learning 
techniques play a key role. Considering the large number of texture features that can 
be computed it is necessary to find those that better describe the data, this process is 
known as feature selection. The reduced set of features is then used to differentiate 
tissues or lesions; this is the classification step. This chapter focus on describing the 
supervised classification methods, and feature selection techniques, that were 
implemented in the experimental studies of this thesis. 
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4.2 Feature Selection 
The vast variety of feature extraction methods for texture analysis allows us to 

obtain a myriad of features. This generates a problem, because as much features we 
have, the more complex the classification model becomes. The computed features 
have different discrimination power depending on the application. The redundant or 
irrelevant features hinder the classification performance and can yield issues of 
dimensionality. This phenomenon arises when dealing with a high-dimensional 
feature space. The classification performance decreases when more features are added 
to the model. Feature selection is the process to choose the most relevant features for a 
specific application. Reducing the number of features speed up the testing of new data 
and make the classification problem easier to understand, but the main benefit is the 
increase in classification performance by avoiding the curse of dimensionality. This 
phenomenon occurs when adding more features degrade the performance of a 
predictive model [123], [124].  

While methods like principal component analysis (PCA) or linear discriminant 
analysis (LDA) are used for dimensionality reduction, they are not considered as 
feature selection methods since they still require the computation of all the original 
features [125]. Apart from embedded feature selection methods that are built-in within 
some predictive models, i.e. classification trees, most approaches for reducing the 
number of features fall into two main groups: filter and wrapper methods [126]. 

  

4.2.1 Filter Methods 

Filter feature selection methods make use of a certain parameter to measure the 
discriminatory power of each feature. For example, typical statistical methods, such as 
t-test or the Mann–Whitney U test, can be used to find and select features with 
statistical significance [93]. Filter methods are performed as a preprocessing step that 
is independent of the choice of the predictive model. Most filter methods consider the 
individual predictive power of each feature and consequently, redundant features 
may be selected and important interactions between features will not be quantified. 
For example, filters may not select a feature that is completely useless by itself but is 
relevant to provide a significant improvement in performance when used together 
with other features [123]. Filter methods rank features according to the measuring 
parameter and usually a predefined number of features is selected, e.g. 5 or 10, as 
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input to a predictive model. 
A popular filter method is based on the Fisher coefficient, which is defined as the 

ratio of between-class variances to within-class variances: 

𝐹 =
𝐷

𝑉
=

1

1−∑ 𝑃𝑘
2𝐾

𝑘=1

∑ ∑ 𝑃𝑘𝑃𝑗(𝜇𝑘 − 𝜇𝑗)2𝐾
𝑗=1

𝐾
𝑘=1

∑ 𝑃𝑘𝑉𝑘
𝐾
𝑘=1

 (4.1) 

Where 𝐷 denotes between-class variance, 𝑉 is the within-class variance, 𝜇𝑖 and 𝑉𝑖 are 
the mean and variance of class 𝑖 respectively, 𝑃𝑖  is the probability of class 𝑖 (ratio of 
number of data samples from class 𝑖 to the number of all data samples) [127]. The 
Fisher method is computationally efficient but it generates highly correlated features 
with the same discriminatory power that may not be optimal for classification. In 
these cases, wrapper methods may be preferred.  

4.2.2 Wrapper Methods 

The main drawback of the filter methods is that the feature selection is based on 
the intrinsic information of the training data and does not consider the predictive 
capability of a certain subset of features. Wrapper methods take advantage of a 
predictive model in combination with a search algorithm in order to select the subset 
of features that provides optimal performance. The downside of wrapper methods is 
that many models have to be trained and tested thus increasing the computation time. 
There is also an increased risk of over-fitting with wrappers if the evaluation with 
resampling methods are not performed correctly. Resampling methods to avoid over-
fitting will be described in Section 4.4.  

The quality of the selected subset of features in wrappers depends fundamentally 
on the search algorithm. A straightforward approach to find the most discriminative 
features, or the combination of features that yields the best classification, is to perform 
an exhaustive search. In the exhaustive search method, all possible combinations of 
features are tested as input to a classifier and those that yield the best discrimination 
are selected. The problem with this method is that it becomes tremendously expensive 
to compute when the feature space is very high. Therefore, an algorithm that uses 
some type of search strategy has to be chosen.  

Forward selection and backward elimination are the most popular search 
strategies. In forward selection, features are progressively added into larger subsets, 
whereas in backward elimination the algorithm starts with the full set of features and 
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progressively removes the least promising ones. Both strategies generate subsets of 
features that are evaluated by using an objective function, i.e. the classification 
accuracy of a predictive model. Forward selection is computationally more efficient 
than backward elimination. However, it has been argued that weaker subsets are 
found by forward selection because the importance of features is not assessed in the 
context of other features not included yet [123]. 

The recursive feature elimination (RFE) is a backward search algorithm that 
avoids refitting many models at each step of the search. The full model is created and 
a measure of feature importance is computed to rank them from most to least 
important. It ranks the features by recursively training a classifier and removing the 
feature with the smallest ranking score and selecting the subset of features that yields 
the best classification. Any classifier can be used in conjunction with the RFE to 
compute the feature scores [126]. The feature selection technique known as support 
vector machine-recursive feature elimination (SVM-RFE), first proposed for gene 
selection in cancer classification [128], has gained major attention for selecting texture 
features due to its good performance over other methods  [129]. 

The SVM-RFE algorithm returns a ranking of features by recursively training a 
linear SVM and removing the feature with the smallest ranking score. At each 
iteration, the coefficients of the weight vector 𝒘 of a linear SVM are used to compute 
the feature ranking score. The feature with the smallest ranking score 𝑐𝑖 = 𝑤𝑖

2 is 

eliminated. The ranking criterion is chosen to remove the feature whose removal least 
affects the objective function, which is defined as 𝐽 = 1/2‖𝒘‖2. The choice of the 
objective function is explained by expanding the function in Taylor series to second 
order [128]:  

𝛥𝐽(𝑖) =
𝜕𝐽

𝜕𝑤𝑖

𝛥𝑤𝑖 + 
𝜕2𝐽

𝜕𝑤𝑖
2

(𝛥𝑤𝑖)2.                                        (4.2) 

At the optimum of 𝐽, the first-order term can be neglected and with 𝐽 = 1/2‖𝒘‖2, 
Equation 4.2 becomes ∆𝐽(𝑖) = ∆𝑤𝑖

2. The change in weight ∆𝑤𝑖 = 𝑤𝑖  corresponds to 
removing the 𝑖𝑡ℎ feature. A modified version of the SVM-RFE method was proposed 
by Duan et al. [130]. The modified approach, named multiple SVM-RFE, incorporates 
resampling at each step of the SVM-RFE algorithm to stabilize the feature selection. If 
t linear SVMs are trained on different subsamples of the original data: let 𝒘𝑗 be the 
weight vector of the 𝑗𝑡ℎ SVM, 𝒘𝑗𝑖  the corresponding weight value associated with the 
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𝑗𝑡ℎ feature, and 𝑣𝑗𝑖 = 𝑤𝑗𝑖
2. The feature ranking score becomes:

𝑐𝑖 =
𝑣�̅�

𝜎𝑣𝑖

 (4.3) 

Where 𝑣𝑖 and 𝜎𝑣𝑖 are the mean and standard deviation of variable 𝑣𝑖: 

𝑣�̅� =
1

𝑡
∑ 𝑣𝑗𝑖

𝑡

𝑗=1

  (4.4) 

𝜎𝑣𝑖 = √
∑ (𝑣𝑗𝑖 − 𝑣�̅�)

2𝑡
𝑗=1

𝑡 − 1
 (4.5) 

The weight vectors are normalized 𝒘𝑗 = 𝒘𝑗/‖𝒘𝑗‖ before computing the ranking 
score. The algorithm described by Duan et al. [130] is: 

1. Start: ranked feature set 𝑅 = [ ]; selected subset 𝑆 = [1, … , 𝑑];

2. Repeat until all features are ranked:
a. Train t linear SVMs on subsamples of the original training data, with

features in set 𝑆 as input variables;
b. Compute and normalize the weight vectors;
c. Compute the ranking scores 𝑐𝑖 for features in 𝑆 using Equation 4.3;

d. Find the feature with the smallest ranking score: 𝑒 = arg 𝑚𝑖𝑛𝑖𝑐𝑖; 
e. Update: 𝑅 = [𝑒, 𝑅], 𝑆 = 𝑆 − [𝑒]; 

3. Output: Ranked feature list 𝑅.

4.3 Classification Methods 
The main goal in texture analysis applications is the classification of different 

tissues and/or lesions to automate or aid the diagnosis decision. Simple statistical 
methods can be used to determine the texture features with statistical significance for 
discrimination of two or more classes. However, following the feature selection step 
described in the previous section, we focus on more complex classification algorithms 
that make use of proper combination of features to achieve the highest discrimination. 
The feature selection and classification steps are not specific for texture analysis, so 
instead of providing a full description of the existing methods, we briefly describe the 
classifiers that were implemented in the experimental studies of this thesis. These 
classifiers were chosen due to their well-known performance in application to other 
datasets [131]. 
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4.3.1 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) classifies data by using a sample’s neighborhood to 

predict the sample’s class. The classification is performed using the K-closest samples 

from the training set. How close is a sample from its neighbors is determined by a 

metric like the Euclidean distance. To allow each feature to contribute equally to the 

distance calculation they need to be centered and scaled, otherwise the distance values 

will be biased towards features with larger scales [126]. 

Given a positive integer 𝐾 and a test observation 𝑥0, the KNN classifier tries to 

identify the 𝐾 points in the training data that are closest to 𝑥0, represented by 𝑁0. Then 

it estimates the conditional probability for class 𝑗 as the fraction of points in 𝑁0 whose 

response values equal 𝑗. The test observation 𝑥0 is assigned to the class with the 

largest probability [122]:  

Pr(𝑌 = 𝑗|𝑋 = 𝑥𝑜) =
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗)

𝑖∈𝑁0

.                                        (4.6) 

The choice of the number of neighbors 𝐾 is important as it affects the classification 

performance. Figure 4.1 shows an example for two different values of 𝐾 that results in 

different classifications. When 𝐾 = 1, the decision boundary is overly flexible and 

assigns the class of the closest point. At larger values of 𝐾, the method becomes less 

flexible and produces nearly linear decision boundaries [122]. Therefore, the 

parameter 𝐾 should be tuned by using resampling techniques in order to choose the 

value that yields the best performance.  

 

Figure 4.1. An example of the KNN classifier for a dataset with two classes, illustrated in blue 

and red. A new sample at which a predicted class label is desired is shown as a solid black 

point. The closest points to the new observation are identified when using K=1 and K=3 

neighbors. The new sample will belong to the most commonly occurring class depending on the 

number of neighbors. In this case, if K=1 the new sample will be predicted as red and if K=3 it 

will be predicted as blue. 

K=1 

K=3 
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4.3.2 Artificial Neural Network 

Artificial neural networks (ANNs) simulate the way the human brain processes 

information by implementing neurons and inter-connections. They function based on 

the following principles: 

 Elements called neurons, or nodes, process the information. 

 The nodes transmit signals to other nodes through connections. 

 Each connection has an associated weight. 

 Each node applies an activation (transfer) function (usually non-linear) to the 

sum of entries weighted according to the connection weights, thus obtaining 

an output value that will be transmitted to the rest of the network. 

The artificial neuron is the one that receives the signal from the neighboring 

neurons and then calculates an output value, which is sent to other neurons. Nodes 

can represent the input and output information as discrete or continuous values. For 

the sake of classification purposes, the outputs are represented as discrete values. 

Basically, an ANN consists of three types of layers: input, hidden and output layers; 

where each layers is composed by several nodes. Figure 4.2 shows a basic ANN with 

three layers. The input nodes receive the information from the predictors, or features, 

and these are transmitted through the network. The output nodes receive the 

weighted information and produces the output value, which in the example 

correspond to a binary classification [132].  

 

Figure 4.2. An artificial neural network (ANN) with three layers. The input layer consists of 

nodes I1 to I4, the hidden layer of nodes H1 to H5, and the output layer consists of node O1. 

This model has four features (A, B, C, D) that correspond to the input nodes, and one output 

node that correspond to a binary prediction. The interconnections between nodes are indicated 

with lines, where thicker lines indicate larger weights and color indicates the sign of the weight 

value (+ black, - gray). 
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The arrangement of nodes together with the activation function used by the 

neurons make it possible to solve non-linear classification problems. Typical 

activation functions are: the step function, sigmoid function and Gaussian function, 

among others. An ANN model can be designed with different number of nodes 

and/or hidden layers and with different inter-connections between them. The ANN 

discrimination power depends on the density and complexity of these 

interconnections [10]. 

The most popular ANN model is known as multilayer perceptron. This type of 

ANN starts with an input layer in which each node corresponds to a predictor 

variable. The input nodes are connected with each of the nodes making up a hidden 

layer. The nodes in the hidden layer connect with the nodes in another hidden layer or 

to the output layer. The output layer consists of one (binary prediction) or more 

output nodes. A multilayer perceptron can be made up of different number of hidden 

layers with a minimum of one. The illustration of Figure 4.2 represents a multilayer 

perceptron with one hidden layer. In the multilayer perceptron, the information is 

always transmitted form the input layer towards the output layer [132], [133]. 

  The advantage of ANNs is that as more complex they are, with more nodes and 

interconnections, they can learn complex patterns in data that are not easily separable. 

However, the complexity of ANNs makes them computationally expensive [10]. 

Usually the weights of an ANN are initialized using random values near zero. Hence, 

the model starts nearly linear and becomes non-linear as the weights increase. Often 

ANNs have too many weights and will over-fit the data, so they will adapt almost 

perfectly to the training data but the performance will notably decrease when trying 

to predict new samples. An explicit penalization method used to regularize the model 

is by using the parameter weight decay. For a three layer multilayer perceptron, the 

weight decay and the number of nodes in the hidden layer need to be properly chosen 

in order to obtain the best generalization performance [133].   

 

4.3.3 Random Forest 

A classification tree is a predictive model that uses a set of binary rules to calculate 

a target value. To better understand how a classification tree works we refer to Figure 

4.3. In this example, the dataset consists of four input features (A, B, C, D), and two 

output classes. The classification tree algorithm randomly chooses predictor B and 
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makes a split into two nodes according to the values that are above or below a certain 

threshold. The data is split in this manner several times until a stopping criterion is 

met. The aim of classification trees is to partition the data into smaller and pure 

groups, those that contain a larger proportion of one class in each node [126]. 

 

Figure 4.3. A classification tree that uses four predictors (A, B, C, D) in order to find a 

decision rule that predicts the data into class 1 or class 2.  

 

An ensemble model is one that combines the results from different models that 

can be of similar or different type. The result of an ensemble model is usually better 

that the individual ones. The random forest classifier is an ensemble model of many 

classification trees. Classification trees are easy to interpret but they are prone to over-

fitting and ignorance of a variable in case of small sample size. Random forests 

generally improve the performance of the model at the expense of lossing 

interpretability.  Each tree in a random forest grow as follows [126], [133]: 

 A subset of 2/3 of the training data is selected to train each tree. 

 Some features are selected randomly out of all predictor variables and the best 

candidate is used to split the node. 

 For each tree, using the remaining 1/3 of data, the misclassification rate is 

calculated. Aggregated error from all trees is used to determine the overall 

classification.  

 Each tree provides a classification, or vote for a certain class. The forest 

classifies according to those having the most votes over all trees.  
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Two parameters determine the overall performance of a random forest classifier: 

the strength, how accurate the individual classifiers are; and the correlation, the 

dependence between the trees. To improve accuracy, it is necessary to minimize the 

correlation while maintaining the strength. Reducing the number of random variables 

𝑚𝑡𝑟𝑦 used in each tree reduces both the strength and correlation. Increasing it 

increases both. Therefore, the parameter 𝑚𝑡𝑟𝑦 has to be chosen in order to find the 

best balance that will yield the best performance. Another tuning parameter that 

affects the performance of the random forest classifier is the number of trees, which 

also needs to be chosen according to the application [134].  

 

4.3.4 Support Vector Machines 

Support vector machines (SVMs) are advanced classifiers that were developed in 

the early 1990s and have gained popularity in many fields. They have been shown to 

perform well in a variety of applications and are often considered one of the best 

classifiers for computer-aided detection in radiology [10], [122]. 

To understand the SVM, first we define the hyperplane. In a p-dimensional space, a 

hyperplane is a flat subspace of dimension 𝑝 − 1. Therefore, in two dimensions, a 

hyperplane will be a line and in three dimensions it will be a plane. In higher 

dimensions is difficult to visualize a hyperplane but the same notion still applies. 

Considering the classification problem shown in Figure 4.4 where two features are 

used to predict two classes that are perfectly separable, there are multiple possibilities 

of a hyperplane that can be used to separate the classes, so it is necessary to use an 

appropriate metric to decide which hyperplane to use [122], [126]. 

The margin distance is a metric defined by Cortes and Vapnik [135]. The margin is 

the distance between the classification boundary and the closest data point. For 

example, Figure 4.4 (right) shows one possible hyperplane as a solid line. The dashed 

lines on both sides of the boundary are at the maximum distance from the line to the 

closest training data. In this example, the highlighted data points that are equally 

closest to the classification boundary are known as support vectors. The maximum 

margin classifier is defined by the slope and intercept of the boundary that maximize 

the buffer between the boundary and the data. 
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Figure 4.4. A data set with linearly separable classes, illustrated in blue and red. The left plot 

shows four separating hyperplanes, out of many possible, that correctly separate both classes. 

The right plot illustrates the maximal margin hyperplane shown as a solid line. The margin is 

the distance from the solid line to either of the dashed lines. The solid points that lie on the 

dashed lines are the support vectors, and the distance from those points to the margin is 

indicated by arrows.  

 

In many cases, due to complexity of the data, it is not possible to construct the 

hyperplane that satisfies the maximal margin classifier. This motivated the concept 

known as soft margin, which also separates both classes but allowing some 

misclassifications aiming to perform better when grouping the remaining data points. 

The support vector classifier is based on the soft margin because it allows some data 

points to be on the incorrect side of the margin. The data point can be on the incorrect 

side of the margin and also on the incorrect side of the hyperplane.      

The use of hyperplanes allows classification of linearly separable data. However, 

many classification problems are non-linear. For this purpose, the SVM seeks to map 

the input space to a higher dimension via a kernel function, and in the transformed 

feature space, it tries to find a hyperplane that will result in maximal discrimination. 

Here, a kernel is a matrix that encodes the similarities between samples that can be 

used to achieve discrimination between classes that are non-linearly separable [10]. 

For a two-class classification problem with 𝑁 samples {𝒙𝑖 , 𝑦𝑖}𝑁, where 𝑥𝑖 denotes 

the 𝑖𝑡ℎ sample vector in the original space and 𝑦𝑖 ∈ {+1, −1} represents the class label 

of 𝒙𝑖, the optimization problem to find the discriminant function 𝑓(𝑥) = 𝑤. 𝜑(𝐱) + 𝑏 is 
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formulated as [135]: 

 

min
𝐰,𝑏

1

2
||𝒘||

2
+ 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1
                                                     (4.6) 

Subject to: 𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , where 𝜉𝑖 ≥ 0 are slack variables that allow a data 

point to be in the margin error 0 ≤ 𝜉𝑖 ≤ 1 or to be misclassified 𝜉𝑖 ≥ 1. The parameter 

𝐶 > 0 sets the trade-off between margin and losses. By using Lagrange multipliers, 

(4.6) can be written into its dual form: 

max
𝛼

∑ 𝛼𝑖 −
1

2
∑ ∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗(𝒙𝑖 · 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

                          (4.7) 

Subject to: ∑ 𝑦𝑖𝛼𝑖 = 0𝑁
𝑖=1 , 0 ≤ 𝛼𝑖 ≤ 𝐶. The solution of the dual formulation is the 

weight vector 𝒘: 

𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

.                                                                       (4.8) 

 

The support vectors are those samples (𝒙𝑖 for which 𝛼𝑖 > 0) that are on the margin 

or within the margin when a soft margin SVM is used. A kernel function, defined as 

𝑘(𝐱, 𝐱′) = 𝜑(𝐱) · 𝜑(𝐱′), can replace the dot products in the SVM formulation (4.7); 

thereby performing large margin separation in the feature-space of the kernel [135], 

[136]. The polynomial kernel is defined as: 

𝑘(𝐱, 𝐱′) = (𝐱 · 𝐱′ + 1)𝑑                                                        (4.9) 

The feature space for this kernel consists of all monomials up to degree 𝑑. The kernel 

with 𝑑 = 1 is the linear kernel, and in that case the additive constant in Equation 4.9 is 

usually omitted. As the degree of the polynomial kernel is increased, the classifier will 

have a more flexible decision boundary. Another widely used kernel is the radial or 

Gaussian kernel defined by: 

𝑘(𝐱, 𝐱′) = exp(−𝜎‖𝒙 − 𝒙′‖2)                                       (4.10) 

Where 𝜎 > 0 is a parameter that controls the width of the Gaussian. It plays a similar 

role as the degree of the polynomial kernel in controlling the flexibility of the classifier 

[136]. Examples of non-linearly separable data is shown in Figure 4.5, where a radial 

and polynomial kernel perfectly define the classification boundaries.  
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Figure 4.5. A data set with non-linearly separable classes, illustrated in blue and red. The plots 

show how a radial kernel (left) and polynomial kernel of degree 3 (right) can separate both 

classes. The classification boundaries are shown in gray while the support vectors are 

highlighted with solid points.  

 
The SVM has been designed for two class problems. To extend SVMs to multiclass 

problems there are two alternatives: one-versus-one and one-versus-all classification. In 
the first approach, if there are 𝐾 > 2 classes then a combination of (𝐾

2
) SVM classifiers 

is constructed, each comparing a pair of classes. The final classification is performed 
by assigning the test observation to the class to which it was most frequently assigned 
in the pairwise classifications. The one-versus-all approach assumes that one class is 
of interest and the rest of classes are collectively represented by a unique class, and 
this is repeated for all classes obtaining a total of 𝐾 SVMs. A test observation is 
assigned to the class for which the fitted SVM is largest, as this amounts to a high level 
of confidence that the test observation belongs to the 𝑘𝑡ℎ class rather than any of the 
other classes [122]. 
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4.4 Model Validation and Evaluation 

4.4.1 Over-fitting and Bias-variance Trade-off 

Complex non-linear models are capable of learning data so well that can correctly 
predict every sample. However, the interest is to accurately predict new samples that 
were not used when fitting the model. As more flexible is the model it will better fit 
the data but its generalization to new samples will be very poor. This problem is 
commonly known as over-fitting. To avoid overestimated values, it is always 
recommended to split the data into training and testing sets so that results on new 
data can be reported. The testing set will only be used to estimate the classification 
performance of the model developed with the training set [126]. 

There is another concern when estimating the model performance on testing set 
and it is referred as the bias-variance trade-off. Bias is the error that is introduced by 
approximating a real-life problem; the difference between the predicted and true 
values of performance. Variance refers to the amount by which the model would 
change if it is estimated by using a different training set. Ideally the model 
performance should not vary too much if different training sets are used. If a model 
has high variance, then small changes in the training set can result in large changes in 
the estimated performance. Good test set performance will have low variance and low 
bias but in general this is not the case. As the model flexibility increases, the variance 
will increase and the bias will decrease, therefore it is important to find the best bias-
variance trade-off [122]. 
 

4.4.2 Model Tuning 

Many models have parameters that cannot be directly estimated from the data but 
have to be chosen when building the model. For example, in a KNN classifier, 
choosing too few neighbors may over-fit the samples of the training data while too 
many neighbors may not be sensitive enough to yield reasonable performance. Here, 
the number of neighbors is referred as tuning parameter because there is no formula to 
calculate an appropriate value. The classification models described in the previous 
section have at least one tuning parameter. These parameters control the complexity 
of the models, so they are likely to cause over-fitting if values are not suitable. 

One approach to choose the best tuning parameters is to define a set of candidate 
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values and then fit a model for each of these values. Then, each model has to be 
evaluated on a hold-out or test set and the tuning parameters that yield the best 
generalization performance will be taken as optimal. The recommendation for 
choosing the tuning parameters is to repeat this procedure several times and then 
averaging the results. The latter can be done by using some resampling techniques 
[126].  

 

4.4.3 Resampling techniques 

The ideal procedure to estimate the model performance on new data is to use a 
separate testing set, but unfortunately data samples are usually sparse. Resampling 
techniques use a subset of samples to fit the model and the remaining to estimate the 
efficacy of the model. This process is repeated multiple times and the results are then 
aggregated. 

In the resampling technique known as k-fold cross-validation, the samples are 
randomly partitioned into k groups (or folds) of equal size. First, the model is trained 
using all samples except those on the first fold. Those samples not used to fit the 
model are used to estimate performance measures. The same process is repeated with 
the second fold as held out, and so on. Lastly, the k resampled estimates of 
performance are summarized with the mean and standard deviation.  

A special case where k equals the number of samples is known as leave-one-out 
cross-validation. In this case, only one sample is held-out at a time so the final 
performance is calculated from the k individual predictions. Repeated k-fold cross-
validation is another variant that replicates the original procedure multiple times. For 
example, if 5-fold cross-validation is repeated ten times, 50 different held-outs will be 
used to estimate the model performance. There is no formal rule to choose the value of 
k but it have been shown empirically that using 𝑘 = 5 or 𝑘 = 10 yields an accuracy 
that suffer neither from excessively high bias nor from very high variance. 
Additionally, repetitions on the k-fold cross-validation reduces the bias [122], [126]. 

An important consideration has to be made when performing feature selection 
and resampling. A typical mistake is that resampling is performed after the features 
had been selected. Over-fitting occurs as consequence because the feature selection 
algorithm already “saw” the resampling held-outs. An outer resampling loop is 
needed to properly resample the feature selection process. The outer loop is used to 
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estimate the generalization performance of the model with the selected features that 
are estimated using an inner loop [126]. This resampling method is referred as nested 

cross-validation. 
 

4.4.4 Measures of Classification Performance 

Considering that we predict the class labels on a testing set, the confusion matrix 

(Figure 4.6) is the common method for describing the classification performance. In 
the examples we consider a two-class problem but the same notion applies when 
constructing a confusion matrix for more than two classes.  

 True values 
Predicted values Positive Negative 

Positive True Positives (TP) False Positives (FP) 
Negative False Negatives (FN) True Negatives (TN) 

Figure 4.6. Diagram showing how to construct a confusion matrix for a classification problem 

with two classes, namely positive and negative. 

 
From the first row of the confusion matrix, the values of the positive class that are 

predicted correctly are the true positives (TP), whereas those that are inaccurately 
classified are the false positives (FP). Similarly, the second row contains the predicted 
negatives with false negatives (FN) and true negatives (TN). Several performance 
measures can be calculated from the confusion matrix: 

 Accuracy: The overall accuracy reflects the agreement between the observed 
and predicted classes.  

Accuracy =
TP + TN

TP + FP + FN + TN
                                     (4.11) 

 
 Sensitivity: The sensitivity of the model is the rate that the positive class is 

predicted correctly for all samples having that class. The sensitivity is also 
known as the true positive rate. 

Sensitivity =
TP

TP + FN
                                                   (4.12) 
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 Specificity: The specificity is the rate that the negative class is predicted 
correctly for all negative samples. The false positive rate is defined as one minus 
the specificity. 

Specificity =
TN

FP + TN
                                                    (4.13) 

 
 Positive Predictive Value: Indicates the probability that the prediction 

assigned to the positive class is true. 

PPV =
TP

TP + FP
                                                                (4.14) 

 
 Negative Predictive Value (NPV): Indicates the probability that the 

prediction assigned to the negative class is true. 

NPV =
TN

FN + TN
                                                              (4.15) 

 
Measures calculated from the confusion matrix are useful to evaluate the 

classification performance. Nevertheless, it should be noted that the confusion matrix 
is constructed by considering discrete predictions. Most classification models also 
generate continuous predictions that are in the form of a probability. For example, the 
predicted values of class association for any individual sample are between zero and 
one and sum one. In some applications, the probabilities for each class can be very 
useful for measuring the confidence of the model about the predicted classification. 
The class probabilities can be used to set a threshold value that will determine the 
boundary between classes. Classification models usually take the probability of 0.5 as 
threshold but in some applications it may be of interest to set a different value [126].  

The receiver operating characteristic (ROC) curve is a method used to evaluate the 
classification performance by considering class probabilities. It is constructed by 
evaluating the class probabilities across different thresholds. For each threshold, the 
sensitivity and false positive rate (one minus the specificity) are plotted against each 
other. Figure 4.7 shows a ROC curve in which two threshold probabilities are 
indicated on the curve, one at 0.5 and the other at 0.9. It can be noticed how the 
resulting sensitivity and specificity varies depending on the threshold value. A model 
that perfectly separates two classes would have unity sensitivity and specificity. On 
the ROC curve this will be represented as a single step between (0, 0) and (0,1) and 



Chapter 4. Overview on Machine Learning 
 

68 
 

constant from (0, 1) to (1, 1) [126]. 
The area under the ROC curve (AUC) is a measure used to determine the overall 

performance of a classifier. A perfect classifier will have AUC = 1 whereas a 
completely ineffective classifier will have AUC = 0.5, which is plotted as a diagonal 
line. The ROC curve has the advantage to be insensitive to disparities in the class 
proportions since it is a function of sensitivity and specificity. Therefore, it is 
suggested to report results using the AUC instead of the overall accuracy when 
dealing with imbalanced datasets, as in these cases the accuracy will be mostly 
influenced by the majority class [10], [126]. 

 

Figure 4.7. A receiver operating characteristic (ROC) curve for a given data. The blue square 

indicates the value corresponding to a probability threshold of 50% while the red dot 

corresponds to a threshold of 90%.   
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Chapter 5 

Segmentation of Infarcted Myocardium 

in LGE CMR. A preliminary multicenter 

evaluation 

Part of this chapter was published in: 

Larroza A, López-Lereu MP, Monmeneu JV, Bodí V, Moratal D.  
Texture analysis for infarcted myocardium detection on delayed enhancement MRI.  

IEEE International Symposium on Biomedical Imaging (ISBI 2017), April 18-21, 2017, 
Melbourne, Australia. 

5.1 Introduction 
Assessment of myocardial infarct size is relevant for prognosis of patients 

suffering myocardial infarction. The well-established technique for infarct detection is 
LGE CMR. Manual segmentation is possible thanks to hyperenhancement of the 
infarcted area but it is prone to inter and intra-observer variability [46]. State-of-the-art 
methods for quantification of infarct size rely on setting an intensity threshold (2-5 
standard deviations) above remote myocardium, or the FWHM. New techniques have 
been developed in order to overcome the limitations of intensity based methods [47].  

Texture analysis in medical imaging has been applied for segmentation of 
anatomical structures and detection of lesions, as different lesion areas exhibit 
different textural patterns that sometimes are beyond human visual perception [6]. A 
previous study about the application of texture analysis in CMR reported an 
improvement in detection of infarcted myocardium in LGE CMR [20]. 

In this first experimental study, we explored the capability of texture features in 
combination with image histogram features to distinguish infarcted from healthy 
myocardium. A method for segmentation of the infarcted myocardium in LGE CMR 
by training a support vector machine (SVM) classifier with previously selected 
features is proposed. This study is a preliminary evaluation of the application of 
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texture analysis for segmentation using data from two different centers. 
 

5.2 Material and Methods 
The steps followed towards segmentation are summarized in Figure 5.1 and are 

described in the following sections. 

 

Figure 5.1. General approach of the proposed infarcted myocardium segmentation method.  

 

5.2.1 MRI Data 

The data consisted of short-axis stacks of LGE CMR covering the left ventricle, 
derived from 10 men (age range, 58 - 70 years old) suffering chronic myocardial 
infarction (MRI scan at six months after infarction). All patients gave written informed 
consent and the study was approved by the Medical Ethical Committee of our 
hospital (Hospital Clínico Universitario de Valencia, Valencia, Spain). Imaging was 
performed in breath-hold using a 1.5T MRI scanner (Sonata Magnetom, Siemens, 
Erlangen, Germany). LGE CMR sequences were acquired after 10 min of gadolinium 
injection using segmented inversion recovery sequences, cancelling out the signal 
from the healthy myocardium (repetition time/echo time: 2.5/1.2 ms, flip angle: 45°, 
voxel size 1.56 × 1.56 × 7 mm). 
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5.2.2 Region Labeling 

The left myocardium and infarct were manually segmented by mutual consent of 
two expert cardiologists with more than 10 years of experience. A small region of non-
infarcted myocardium opposite to the infarct was labeled as remote myocardium to 
avoid possible overlapping between classes. Remote myocardium was not labeled in 
some slices due to considerable infarct size. The number of image slices showing a 
well-defined infarct varied from 4 to 9 depending on the patient. In total, 119 regions 
were identified: 61 as infarct and 58 as remote myocardium. 

 

5.2.3 Feature Extraction 

Feature extraction was performed using the MaZda software, version 4.6 (Institute 
of Electronics, Technical University of Lodz, Lodz, Poland) [137]. Feature maps were 
generated for each segmented slice by using a small window (5 × 5 pixels) sliding over 
the image. Texture features are not pixel independent but using a 1-pixel step for the 
sliding window was possible to obtain the feature information for each pixel in its 
surrounding neighborhood. Only pixels with surrounding neighborhood completely 
inside the infarct or the remote myocardium were used as training vectors, otherwise 
information corresponding to other regions would be added.  

Before computation of texture features and to avoid variability due to intrinsic 
differences between images, the image intensity was encoded to 8 bits/pixel for all 
images and pixels inside each window were normalized to the intensity mean ± 3 
standard deviations. A total of 122 features derived from the following methods were 
extracted: histogram (9 features), GLCM (88 features), GLRLM (20 features), 
autoregressive model (5 features) [99]. 

 

5.2.4 Feature Selection 

A feature selection step was necessary to keep only the most relevant features and 
specially to reduce the computation time associated with the generation of feature 
maps. The multiple SVM-RFE feature selection was implemented [130] using 10-fold 
cross-validation with 10 repetitions. Thus, at each step of the multiple SVM-RFE 𝑛 =

100 linear SVMs were trained with a fixed value of the 𝐶 parameter. The parameter 
𝐶 = 1 was determined beforehand from the finite set 𝐶 ∈ {10−4, … , 100, … , 104} on the 
basis of the highest classification accuracy estimated with the resampling method 
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when including the full set of features. 
Prior to feature selection, the vector data (2976 pixels, 1814 remote myocardium 

and 1162 infarcts) was split into half training and half testing, so the feature selection 
process was carried out solely on the training set. The ranked features returned by the 
multiple SVM-RFE were progressively added one by one from most to least 
important. Each feature subset was then used to train a linear SVM and to predict the 
outcome on the test set. The plot of accuracy vs. size of feature subsets on the test set is 
shown in Figure 5.2. Classification accuracy improved when the feature dimension 
was incremented but at certain point stabilized around 0.95. Taking the first 17 
features (Table 5.1), an accuracy of 0.944 was obtained, so we decided to use these 
features to train the final classifier model. 

Figure 5.2. Accuracy values on test set for different subsets of features ranked by the multiple 

SVM-RFE feature selection technique. 

5.2.5 SVM Training 

The entire vector data available along with the selected features were used to train 
a nonlinear SVM classifier with Gaussian radial basis function (RBF) kernel using the 
Kernlab package [138] in R language version 3.0.1 (R Development Core Team, 
Vienna, Austria). The kernel parameter 𝜎 was set to a value between the 0.1 and 0.9 
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quantile of the ‖𝑥 − 𝑥′‖ statistics calculated with the sigest function in the Kernlab 
package. The SVM 𝐶 parameter was chosen from 𝐶 ∈ {10−4, … , 100, … , 104} according 
to the highest classification accuracy assessed with 10-fold cross-validation with 10 
repetitions. The chosen parameters values were: 𝜎 = 0.045, 𝐶 = 10. 

The final classifier model was implemented in Matlab 2014b (MathWorks Inc., 
Natick, MA) to segment new images provided with prior segmentation of the entire 
myocardium as the method limits the search inside this region. Pixels near myocardial 
boundaries which neighborhood lies outside the myocardium might cause small areas 
segmented as infarct due to the inclusion of information from non-myocardial regions. 
To deal with this problem, a refined segmentation was obtained by performing a 
morphological opening to remove objects within an area smaller than a given 
threshold of 20 pixels. 

5.3 Experiments and Results 
To validate the performance of the segmentation method on new images 

regardless of the acquisition parameters, and for comparison reasons, we decided to 
use images taken from the dataset provided by the STACOM challenge at MICCAI 
2012 [139]. Five human LGE CMR with ground truth segmentations of the left 
ventricular myocardium and the corresponding infarct were available. These five 
human cases were used to evaluate the segmentation by comparing the results with 
the given ground truth. All cases had a history of myocardial infarction of at least 
three months prior their MRI scan. The images were acquired in breath-hold on a 1.5T 
MRI scanner (Achieva, Philips, Best, The Netherlands). Image acquisition parameters 
were: repetition time/echo time: 3.4/2.0 ms, flip angle: 25º, voxel size 1.8 × 1.8 × 8 mm. 

The segmentation results were compared with the ground truth by calculating the 
degree of area overlap measured by the Dice coefficient, which is given by equation 
5.1, where A and B are the two segmentations for comparison.  Dice values vary 
between 0 and 1. Higher Dice indicates better agreement between the segmentation 
and the ground truth. Average Dice coefficients over slices per case are shown in 
Table 5.2. 

Dice =
2 ∗ ‖𝐴 ∩ 𝐵‖

‖𝐴‖ + ‖𝐵‖
 (5.1) 
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Table 5.1. Ranked features used to train the final SVM classifier. 

Method Feature    Rank 

Histogram Percentile 1% 1 
GLCM Sum variance (1 pixel, horizontal) 2 
Histogram Skewness 3 
GLCM Sum variance (1 pixel, vertical) 4 
GLCM Sum variance (1 pixel, 45º) 5 
GLCM Correlation (2 pixels, vertical) 6 
GLCM Contrast (1 pixel, vertical) 7 
GLCM Sum variance (2 pixels, horizontal) 8 
GLCM Difference variance (1 pixel, 135º) 9 
GLRLM Run percentage (horizontal) 10 
GLRLM Run length non-uniformity (horizontal) 11 
GLCM Contrast (1 pixel, horizontal) 12 
Histogram Variance 13 
GLCM Sum of squares (2 pixels, 45º) 14 
Autoregressive model θ4 15 
GLRLM Run length non-uniformity (135º) 16 
GLRLM Long run emphasis (135º) 17 

Table 5.2. Dice coefficients shown on test cases. 

Case 1 2 3 4 5 Overall 

Mean 0.69 0.59 0.59 0.76 0.72 0.71 

SD (0.23) (0.06) (0.11) (0.04) (0.08) (0.12) 

Figure 5.3 shows the segmentation on a representative slice for each case with its 
associated Dice coefficient. The first two images show lower contrast than the rest, in 
consequence the Dice coefficients were also lower. In general, the infarcted areas 
segmented by the proposed method were smaller than the ground truth in the images 
with low contrast, and larger in those with high contrast. When the infarct was located 
near the myocardial boundaries, the segmented images showed an inclusion of the 
boundary pixels as can be seen in the third column of Figure 5.3. This situation is a 
limitation of the method since pixels on the boundaries tend to capture texture 
information belonging to the adjacent region. 
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Figure 5.3. Segmentation results (bottom row) for a representative slice per case. 

As expected, histogram features were important for detection of infarcted 
myocardium. Three histogram features were selected for the final model including the 
first ranked feature (percentile 1%). The remaining 14 features included in the final 
model were derived from texture analysis methods, most of them from GLCM, 
indicating the important discrimination properties of texture features. The model was 
trained on a dataset with different acquisition parameters, obtaining an overall good 
segmentation and therefore good generalization. Therefore, these results indicate the 
cross-center transferability of texture analysis but it has to be validated on larger 
datasets. 

 The results are in accordance with those proposed at the left ventricle LGE CMR 
segmentation challenge at MICCAI 2012, were obtaining a Dice of 0.8 or above in 
human scans was challenging for all submissions [139]. A direct comparison with the 
methods presented in the challenge was not feasible as those were compared using 
testing cases segmented by three raters and using the STAPLE method to obtain 
ground truth segmentations. 



Chapter 5. Segmentation of Infarcted Myocardium in LGE CMR 
 

76 
 

5.4 Conclusion 
This chapter presented a method for detection of infarcted myocardium in LGE 

CMR, by training an SVM classifier with a subset of features derived from the image 
histogram and from texture analysis methods. The results obtained on a validation 
data from the STACOM segmentation challenge at MICCAI 2012 showed good 
overlap with the ground truth segmentation. Texture features showed important 
discriminatory properties for detection of infarcted myocardium. This was a 
preliminary evaluation using small sample data from two different centers, therefore 
further validation is needed.  
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Chapter 6 

Differentiation between Acute and 

Chronic Myocardial Infarction 

Part of this chapter was published in: 

Larroza A, Materka A, López-Lereu MP, Monmeneu JV, Bodí V, Moratal D.  
Differentiation between acute and chronic myocardial infarction by means of texture 

analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging.  

European Journal of Radiology. 2017; 92: 78-83. 

6.1 Introduction 
The problem of differentiating between acute (AMI) and chronic myocardial 

infarction (CMI) is of clinical importance for patient treatment and follow-up in cases 
of preexisting CMI and limited possibility of localizing the acute lesion by means of 
ECG or coronary angiography [140]. Previous studies reported the capability of other 
MRI sequences, such as T2-weighted edema CMR [141] and contrast-enhanced cine 
CMR [142], for differentiation of both entities but technical limitations still exist [143]. 
Therefore, alternatives to address this problem are open to investigation. 

Late gadolinium enhancement (LGE) is the well-established sequence for 
detection and evaluation of myocardial infarction [4]. However, there is no difference 
in the hyperenhancement of the infarcted myocardium in LGE CMR regarding the 
infarct’s age [140]. The presence of edema in AMI and fibrosis in CMI characterize the 
most important corresponding pathologic changes of the heart. They have an effect on 
the internal structure of the tissue. This suggests there may be an inherent texture 
difference between images of the tissues affected by AMI and CMI.   

Significant differences between AMI and CMI were found in animal models using 
texture analysis in LGE CMR [25] but, to our knowledge, applications to human 
studies and other MRI sequences have not been reported. Therefore, in this 
experimental study we investigated the capability of texture analysis of LGE CMR to 
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differentiate AMI from CMI. We also studied the possibility to address this problem 
using standard cine CMR solely. Infarctions are visually imperceptible in most cine 
CMR images and we believe that necrotic and/or fibrotic areas can be enhanced using 
texture analysis. Figure 6.1 shows examples of cine and LGE CMR in acute and 
chronic stage. 

Figure 6.1. Representative slice of a patient with myocardial infarction in acute (AMI) and 

chronic (CMI) stage. Infarcted areas are hyperenhanced in LGE CMR (white arrows) but these 

are imperceptible in the corresponding cine images. 

6.2 Materials and Methods 

6.2.1 Study Group and Imaging Protocol 

This retrospective study included 44 cases: 22 with AMI and 22 with CMI 
diagnosis. These cases correspond to 27 patients: 17 of them had MRI scans at one 
week (AMI) and six months (CMI) after a first ST-segment myocardial infarction, five 
patients had only AMI scans, and five had only CMI scans. Baseline characteristics of 
the study group are displayed in Table 6.1. All cases included only one type of 
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myocardial infarction, AMI or CMI, so the cases of a prior myocardial infarction were 
discarded on the basis of previous admissions due to cardiovascular diseases and/or 
electrocardiographic abnormalities. 

All MRI examinations were performed using a 1.5T scanner (Sonata Magnetom, 
Siemens, Erlangen, Germany). Cine images were acquired at rest in 2-, 3-, and 4-
chamber views and every 1 cm in short-axis views with steady-state free precession 
(SSFP) imaging sequences (repetition time/echo time: 3.2/1.6 ms; flip angle: 61°; voxel 
size: 1.56 × 1.56 × 7 mm). Late gadolinium enhancement (LGE) images were acquired 
10 min after the administration of gadolinium at a dose of 0.075 mmol/kg body weight 
(gadobenato dimeglumine; MultiHance, Bracco, Italy). A segmented, inversion 
recovery steady-state free precession imaging sequence was used (repetition 
time/echo time: 2.5/1.2 ms, flip angle: 45°, voxel size: 1.56 × 1.56 × 7 mm), and 
inversion time was adapted to null the signal from the normal myocardium. Cine and 
LGE CMR in short-axis views were used for analysis and all slices of interest had 
identical location and orientation in space. 

Table 6.1. Baseline characteristics of the study group. 

AMI CMI Total 

Number of cases 22 22 44 
Baseline characteristics 

Age (years) 61 ± 9 61 ± 10 61 ± 9 
Male sex (%) 20 (90) 20 (90) 40 (90) 
Diabetes mellitus (%) 5 (22) 7 (31) 12 (27) 
Hypertension (%) 9 (40) 8 (36) 17 (38) 
Dyslipidemia (%) 8 (36) 7 (31) 15 (34) 
Current Smoker (%) 5 (22) 4 (18) 9 (20) 

Heart rate (beats per min) 82 ± 12 86 ± 12 84 ± 12 

Systolic blood pressure (mm Hg) 144 ± 25 131 ± 24 138 ± 26 
Magnetic resonance parameters 

LV Ejection fraction (%) 48 ± 15 51 ± 17 50 ± 16 
LV End-diastolic volume index (ml/m2) 92 ± 28 89 ± 30 91 ± 29 
LV End-systolic volume index (ml/m2) 50 ± 30 47 ± 32 49 ± 31 
LV mass (g/m2) 81 ± 19 77 ± 21 79 ± 20 
Infarct size (% of LV mass) 24 ± 11 22 ± 10 23 ± 11 

*Continuous variables are expressed as mean ± standard deviation.
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6.2.2 Region of Interest Definition 

Images were segmented using the freely available software Segment, version 2.0 
(Medviso, Lund, Sweden) [144]. The left ventricular myocardium was manually 
segmented on short-axis cine images at end-diastole. The myocardium segmentation 
was then exported to the corresponding LGE views. Infarcted myocardium regions 
were identified in LGE images using the FWHM technique [46].  

Texture analysis was performed independently in LGE and cine CMR. Regions of 
interest (ROIs) for computing texture features were defined as the infarcted 
myocardium areas in LGE CMR, and the entire myocardium in cine CMR, since 
delineation of infarcted areas are challenging in this image modality (Figure 6.2). Only 
slices for which the infarcted area in LGE images was larger than 2 cm2 were chosen 
for the analysis, resulting in 92 AMI and 97 CMI slices for each MRI modality. 

Figure 6.2. Workflow of the texture-based method to differentiate AMI from CMI. Cine and 

LGE CMR were analyzed independently. Texture features were extracted from predefined 

ROIs: the left ventricular myocardium in cine CMR, and the infarcted area in LGE CMR. The 

supervised classification was evaluated with nested cross-validation.  
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6.2.3 Region of Interest Preprocessing 

To ensure that the outcome of the analysis truly characterizes the ROI texture, 
some image preprocessing was implemented. Firstly, the original images were 
interpolated to a pixel size of 0.5 × 0.5 mm2 using the cubic B-spline method in order to 
invoke the heterogeneous information that may have the potential to improve the 
texture-based classification [82]. Subsequently, inhomogeneity correction was applied 
throughout the ROI using the additive model described by [88]. The latter procedure 
is critical especially for large ROIs as of cine CMR. Lastly, ROI normalization was 
performed to minimize the influence of image contrast and brightness variation, by 
using a method that remaps the ROI histogram to fit within the intensity mean ± 3 
standard deviations [84]. 

6.2.4 Texture Feature Extraction 

Texture features were computed using the MaZda software, version 4.6 (Institute 
of Electronics, Technical University of Lodz, Lodz, Poland) [120]. A total of 279 
features were calculated for each ROI based on the six texture modeling and 
characterization methods available in MaZda that were defined in Section 3.5 and are 
summarized in Table 6.2. Matrix-based features were computed using 256 gray levels 
and in four directions: horizontal, vertical, 45º and 135º. 

Table 6.2. List of texture features used in this study. 

Method Features N 

Histogram Mean, variance, skewness, kurtosis, percentiles (1, 10, 50, 90, 
and 99%). 

9 

Absolute gradient Gradient mean, variance, skewness, Kurtosis, non-zeros. 5 

Gray-level Co-
occurrence matrix 

 Angular second moment, contrast, correlation, sum of squares, 
inverse difference moment, sum average, sum variance, sum 
entropy, entropy, difference variance, difference entropy. 
Matrices were calculated for one to five inter-pixel distances in 
four directions: horizontal, vertical, 45º and 135º. 

220 

Gray-level Run-
length matrix  

Run-length non-uniformity, gray-level non-uniformity, long 
run emphasis, short run emphasis, and run percentage; in four 
directions: horizontal, vertical, 45º and 135º. 

20 

Autoregressive 
model 

θ1, θ2, θ3, θ4, σ. 5 

Wavelets Subbands LL, LH, HL, and HH at five scales. 20 
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6.2.5 Feature Selection and Classification 

Two feature selection techniques were implemented: one filter method based on 
the Fisher coefficient, and one wrapper method; the multiple support vector machine - 
recursive feature elimination (SVM-RFE). These feature selection techniques were 
described in Section 4.2. The multiple SVM-RFE was implemented using a repeated 
five-fold cross-validation to stabilize the feature selection, and the C parameter of the 
linear SVM was set to unity. 

Both feature selection techniques return a ranking of features, so the optimal 
number of features should be chosen by comparing the classification performance of a 
certain model for different subsets of features. Six predictive models were tested using 
the caret package [145] in R language, version 3.3.0 (R Development Core Team, 
Vienna, Austria). These models were chosen due to their well-known performance in 
application to other datasets [131]: 

 K-Nearest Neighbors (KNN): using the method knn in the caret package with
11 neighbors in the range 1:2:21.

 Artificial Neural Network (ANN): using the method nnet in the caret
package, training a multilayer perceptron with a single hidden layer. Tuning
parameter size (of the hidden layer) with values {1, 3, 5, 7} and tuning
parameter weight decay with values {0, 0.1, 0.01, 0.0001}, at different random
weight initializations.

 Random Forest (RF): using the method rf in the caret package with ntree = 500
and tuning the parameter mtry chosen from {2, 4, 8, 10}.

 SVM-linear: using the method svmLinear in the caret package with linear
kernel tuning parameter C in the range {2-2 …24}.

 SVM-radial: the SVM with Gaussian kernel using the method svmRadial in
the caret package. The tuning parameters C and sigma were chosen from the
finite set {2-2…24} and {10-2…102} respectively.

 SVM-poly: the SVM using a cubic kernel (degree = 3) using the method
svmPoly in the caret package. The tuning parameters C and scale were chosen
from the finite set {2-2…24} and {10-2…10-2} respectively.
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6.2.6 Model Evaluation 

To evaluate their generalization performance, the different models were tested 
using the nested cross-validation approach illustrated in Figure 6.3. Basically, the 
dataset was split into training and testing sets n = 50 times by using a repeated 5-fold 
cross-validation. For each training set, a feature ranking was obtained and the 
classification performance was tested for different number of features that were 
progressively added one by one according to the ranking. An inner 5-fold cross-
validation was used for tuning the parameters of the classifier model. Using this 
approach, we avoid any possible over-fitting because everything, including the 
feature selection, was performed in a separate training set. Care was taken to ensure 
that samples from the same patient were either in the training or in the testing set at 
each loop, thus avoiding another source of bias. The same data partition was used for 
each of the six classifiers in order to obtain a fair comparison among them.   

Feature values were standardized to zero mean and unit variance across training 
samples. Area under the curve (AUC) of the receiver operating characteristic (ROC) 
was used as an index of classification accuracy. The class probabilities estimated by 
each model were used to plot average ROC curves. Sensitivity and specificity were 
computed for the cutoff on the ROC curve that maximizes the product of both 
measures. Student t-test was used for comparison among classification models. 
Results were reported with 95% confidence intervals and statistical significance was 
set at p < 0.05. Bonferroni correction was applied when multiple comparisons were 
performed. 
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Figure 6.3. Nested cross-validation procedure. The outer loop is used to estimate the 

generalization performance on the test fold, the process is repeated 50 times (5 folds x 10 

repetitions). The middle loop is used to test different subset of features that are added one by 

one according to feature ranking. The 5-fold cross-validation inner loop is used to tune the 

classifier using a predefined set of parameters according to the model.  
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6.3 Results 

6.3.1 LGE CMR 

For each training set in the nested cross-validation, the feature selection algorithm 
returned feature rankings and these were averaged over resamples to obtain a single 
ranking. The top ten features for each feature selection technique are shown in Table 
6.3. Noticeably, the features ranked by both feature selection techniques were very 
different. The top ten features ranked by the Fisher technique were derived from the 
gray-level co-occurrence matrix (GLCM) and most of them correspond to the feature 
difference entropy at different directions and scales. One feature derived from the gray-
level run-length matrix (GLRLM) was ranked second by the SVM-RFE but the 
remaining features were also from the GLCM. Scatter plots for the entire LGE CMR 
dataset using the best two features are shown in Figure 6.4.  

In the Fisher ranking, the average rank value for each feature was very similar to 
its position in the ranking thus indicating that the Fisher technique tended to select the 
same feature at each resample. In contrast, the SVM-RFE showed higher average rank 
values indicating that different features were selected at each resample. This 
phenomenon can be appreciated by looking at the resampling profiles in Figure 6.5; 
using only one feature the AUC values in the Fisher profiles are around 0.8 whereas in 
the SVM-RFE profiles are below 0.7. Nevertheless, the SVM-RFE profiles are smoother 
and show that after achieving a peak value it stabilizes, so it may give more reliable 
information when testing the generalization performance. 

Optimal classification models were selected according to the number of features 
that yielded the highest AUC value. An interesting finding was that pairwise 
comparisons did not show statistical significant differences among models (Table 6.4), 
thus suggesting that the choice of the classifier is not as relevant as the feature 
selection is. Paired t-test between the reduced set and full set of feature showed that in 
most cases the reduced set outperformed significantly the results of the full set of 
features (p < 0.05). This improvement was more noticeable for the KNN and SVM-
radial models (Table 6.5). 
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Table 6.3. Top ten ranked features in LGE CMR. 

Fisher - LGE CMR Rank SVMRFE - LGE CMR Rank 

Difference entropy (3 pixels, 0º) 1.8 Difference variance (5 pixels, 135º) 24.0 
Difference entropy (5 pixels, 0º) 1.9 Run percentage (45º) 28.2 
Difference entropy (2 pixels, 0º) 2.8 Sum of squares (4 pixels, 135º) 32.5 
Difference entropy (1 pixel, 0º) 3.8 Sum variance (1 pixel, 135º) 36.7 
Difference entropy (3 pixels, 45º) 4.6 Angular 2nd moment (4 pixels, 135º) 37.0 
Difference entropy (4 pixels, 0º) 6.0 Angular 2nd moment (3 pixels, 135º) 37.7 
Inverse diff. moment (4 pixels, 0º) 8.8 Sum variance (1 pixel, 45º) 38.5 
Difference entropy (4 pixels, 45º) 9.3 Angular 2nd moment (2 pixels, 135º) 39.5 
Difference entropy (2 pixels, 45º) 9.4 Sum average (3 pixels, 45º) 39.9 
Inverse diff. moment (5 pixels, 0º) 10.4 Sum of squares (1 pixel, 45º) 41.5 

Figure 6.4. Scatter plots for the entire LGE CMR dataset using the top two features according 

to the average ranking returned by the Fisher and SVM-RFE feature selection techniques. 

AMI: acute myocardial infarction, CMI: chronic myocardial infarction. 
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Figure 6.5. Resampling profiles for different classification models in LGE CMR. Average AUC 

values over resamples of nested cross-validation for different subset of features added according 

to the ranking returned by the Fisher and SVM-RFE feature selection techniques. 



Chapter 6. Differentiation between Acute and Chronic Myocardial Infarction 

88 

Good classification (AUC > 0.8) was obtained for the optimal models driven by the 
selected features. The best feature subsets were used to compute the classification 
performance parameters (Table 6.6) and to plot the ROC curves (Figures 6.6 and 6.7). 
The SVM-poly with 99 features ranked by the SVM-RFE has the best estimate of 
performance (AUC = 0.87). However, based on the confidence intervals, this value is 
similar in performance to other models including RF and the SVM variants obtained 
with the Fisher ranking. All performance values fall within the confidence intervals 
suggesting that there are not reasons for concern with regards to potential over-fitting. 

Sensitivity and specificity were computed according to the optimal operating 
point on the ROC curve that maximizes the product between both measures. 
Sensitivity measures the ability of the model to detect AMI, whereas specificity 
measures the ability to detect CMI. Sensitivity and specificity values were also higher 
than 0.8 for the best models.  

Table 6.4. Pairwise comparison among classification models in LGE CMR. 

Fisher – LGE CMR 

KNN ANN RF SVM-linear SVM-radial SVM-poly 

KNN - 0.1404 0.0232 0.0088 0.0944 0.0143 

ANN 0.1404 - 0.4218 0.2475 0.8419 0.3249 

RF 0.0232 0.4218 - 0.7233 0.5458 0.8559 

SVM-linear 0.0088 0.2475 0.7233 - 0.3383 0.8631 

SVM-radial 0.0944 0.8419 0.5458 0.3383 - 0.4322

SVM-poly 0.0143 0.3249 0.8559 0.8631 0.4322 - 

SVMRFE – LGE CMR 

KNN ANN RF SVM-linear SVM-radial SVM-poly 

KNN - 0.0243 0.0062 0.0075 0.3224 0.0001 

ANN 0.0243 - 0.6224 0.6689 0.2045 0.1167 
RF 0.0062 0.6224 - 0.9483 0.0787 0.2809 
SVM-linear 0.0075 0.6689 0.9483 - 0.0902 0.2531 
SVM-radial 0.3224 0.2045 0.0787 0.0902 - 0.0047
SVM-poly 0.0001 0.1167 0.2809 0.2531 0.0047 - 

*Significance was corrected with the Bonferroni method p = 0.05/15, or p = 0.0033. Statistical
significant p values are highlighted in bold.
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Table 6.5. Nested cross-validation results for the full and reduced sets in LGE CMR. 

Full set Fisher – LGE CMR SVMRFE – LGE CMR 

Model AUC ± SD Size AUC ± SD p value Size AUC ± SD p value 

KNN 0.78 ± 0.07 6 0.83 ± 0.08 0.000 25 0.82 ± 0.07 0.000 

ANN 0.83 ± 0.06 94 0.85 ± 0.05 0.149 157 0.85 ± 0.06 0.036 

RF 0.84 ± 0.07 124 0.86 ± 0.07 0.004 202 0.85 ± 0.07 0.004 

SVM-linear 0.85 ± 0.05 183 0.86 ± 0.06 0.089 217 0.85 ± 0.05 0.179 
SVM-radial 0.73 ± 0.11 6 0.85 ± 0.07 0.000 23 0.83 ± 0.07 0.000 

SVM-poly 0.86 ± 0.06 268 0.86 ± 0.06 0.226 99 0.87 ± 0.05 0.014 

*The p value column corresponds to a t-test that evaluates whether the AUC values for the
reduced model was larger than the value associated when using the full set of features.
Statistical significance was set to p < 0.05.

Table 6.6. Classification performance parameters in LGE CMR. 

Fisher - LGE CMR 

Model N features AUC CI Sensitivity CI Specificity CI 

KNN 6 0.831 (0.80 - 0.85) 0.732 (0.69 - 0.76) 0.848 (0.81 - 0.88) 
ANN 94 0.851 (0.83 - 0.86) 0.819 (0.79 - 0.84) 0.826 (0.80 - 0.85) 
RF 124 0.862 (0.84 - 0.88) 0.819 (0.79 -0.84) 0.861 (0.83 - 0.89) 
SVM-linear 183 0.867 (0.85 - 0.88) 0.846 (0.81 - 0.87) 0.84 (0.81 - 0.86) 
SVM-radial 6 0.854 (0.83 - 0.87) 0.789 (0.75 - 0.82) 0.865 (0.83 - 0.89) 
SVM-poly 268 0.865 (0.84 - 0.88) 0.831 (0.80 - 0.85) 0.851 (0.82 - 0.87) 

SVMRFE - LGE CMR 

Model N features AUC CI Sensitivity CI Specificity CI 

KNN 25 0.821 (0.79 - 0.84) 0.73 (0.69 - 0.76) 0.835 (0.80 - 0.86) 
ANN 157 0.851 (0.83 - 0.86) 0.789 (0.75 - 0.81) 0.859 (0.83 - 0.88) 
RF 202 0.858 (0.83 - 0.87) 0.8 (0.77 - 0.82) 0.865 (0.84 - 0.88) 
SVM-linear 217 0.857 (0.84 - 0.87) 0.811 (0.78 - 0.83) 0.829 (0.80 - 0.84) 
SVM-radial 23 0.834 (0.81 - 0.85) 0.795 (0.76 - 0.82) 0.866 (0.84 - 0.88) 
SVM-poly 99 0.873 (0.85 - 0.88) 0.82 (0.79 - 0.84) 0.848 (0.82 - 0.87) 

*Sensitivity and specificity were computed according to the optimal operating point on the ROC
curve that maximizes the product between both measures. Sensitivity measures the ability of
the model to detect acute myocardial infarction, whereas specificity measures the ability to
detect chronic myocardial infarction. The CI column corresponds to 95% confidence interval.
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Figure 6.6. Average ROC curves over test sets in LGE CMR using the features selected by the 

Fisher technique. The circles on the curves indicate the optimal operating point that maximizes 

the product between sensitivity and specificity. 
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Figure 6.7. Average ROC curves over test sets in LGE CMR using the features selected by the 

SVM-RFE technique. The circles on the curves indicate the optimal operating point that 

maximizes the product between sensitivity and specificity. 
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6.3.2 Cine CMR 

The averaged feature rankings obtained with the cine CMR dataset are shown in 
Table 6.7. As in LGE CMR, the features ranked by both feature selection techniques 
were also very different. In cine CMR, most of the top ten features ranked by Fisher 
were derived from the Wavelets method whereas the tendency of the SVM-RFE was 
to rank GLCM features first. Scatter plots for the entire cine CMR dataset using the 
best two features are shown in Figure 6.8. 

Table 6.7. Top ten ranked features in cine CMR. 

Fisher - cine CMR Rank SVMRFE - cine CMR Rank 

Wavelet HL (scale 3) 1.1 Sum average (1 pixel, 90º) 12.8 
Wavelet HL (scale 1) 2.2 Inverse diff. moment (4 pixels, 0º) 14.6 
Wavelet HL (scale 2) 4.2 Wavelet HL (scale 1) 16.7 
Wavelet LL (scale 4) 5.0 Difference variance (5 pixels, 90º) 23.9 
Wavelet LL (scale 3) 7.4 Sum average (5 pixels, 45º) 27.7 
Wavelet LL (scale 2) 8.1 Difference entropy (1 pixel, 45º) 36.9 
Difference variance (1 pixel, 0º) 13.2 Difference entropy (2 pixels, 135º) 38.7 
Wavelet HH (scale 4) 17.5 Sum average (3 pixels, 0º) 39.3 
Difference variance (2 pixels, 0º) 18.0 Sum entropy (1 pixel, 0º) 39.6 
Correlation (1 pixel, 0º) 20.8 Contrast (5 pixels, 90º) 41.6 

As in the case of LGE CMR, Fisher average rank values for each feature were very 
similar to its position in the ranking, whereas the SVM-RFE showed higher average 
rank values indicating that different features were selected at each resample. 
However, the resampling profiles show that in general the SVM-RFE achieves a peak 
AUC value and then stabilizes, which indicates that the feature selection at each 
resample is more specific. 
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Figure 6.8. Scatter plots for the entire cine CMR dataset using the top two features according 

to the average ranking returned by the Fisher and SVM-RFE feature selection techniques. 

AMI: acute myocardial infarction, CMI: chronic myocardial infarction. 

Paired t-test between the reduced and full set of features showed that the SVM-
RFE improved significantly the results of the full set of features for most classifiers (p < 
0.05). This improvement was only noticeable for RF and SVM-radial regarding the 
Fisher technique (Table 6.8). Pairwise comparisons indicate that KNN had a poor 
performance in relation to the other models (Table 6.9). The best feature subsets were 
used to compute the classification performance parameters (Table 6.10) and to plot the 
ROC curves (Figures 6.10 and 6.11). The SVM-linear with 22 features ranked by the 
SVM-RFE has the best estimate of performance (AUC = 0.831). Based on the 
confidence intervals, this value is similar in performance to other models including 
ANN and SVM-poly. Interestingly, SVM-RFE results outperformed those of Fisher. 
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Figure 6.9. Resampling profiles for different classification models in cine CMR. Average AUC 

values over resamples of nested cross-validation for different subset of features added according 

to the ranking returned by the Fisher and SVM-RFE feature selection techniques. 
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Table 6.8. Nested cross-validation results for the full and reduced sets in cine CMR. 

Full set Fisher - Cine CMR SVMRFE - Cine CMR 

Model AUC ± SD Size AUC ± SD p value Size AUC ± SD p value 

KNN 0.68 ± 0.08 3 0.71 ± 0.11 0.154 54 0.70 ± 0.09 0.345 

ANN 0.79 ± 0.06 194 0.79 ± 0.08 0.535 24 0.82 ± 0.07 0.000 

RF 0.78 ± 0.07 255 0.79 ± 0.07 0.008 205 0.79 ± 0.07 0.026 

SVM-linear 0.78 ± 0.07 131 0.79 ± 0.07 0.111 22 0.83 ± 0.07 0.000 

SVM-radial 0.61 ± 0.16 62 0.73 ± 0.08 0.000 9 0.78 ± 0.09 0.000 

SVM-poly 0.79 ± 0.07 270 0.80 ± 0.06 0.165 76 0.82 ± 0.07 0.003 

*The p value column corresponds to a t-test that evaluates whether the AUC values for the
reduced model was larger than the value associated when using the full set of features.
Statistical significance was set to p < 0.05.

Table 6.9. Pairwise comparison among classification models in cine CMR. 

Fisher - Cine CMR 

KNN ANN RF SVM-linear SVM-radial SVM-poly 

KNN - 0.0000 0.0000 0.0000 0.1184 0.0000 

ANN 0.0000 - 0.9684 0.9886 0.0003 0.7546 
RF 0.0000 0.9684 - 0.9797 0.0003 0.7247 
SVM-linear 0.0000 0.9886 0.9797 - 0.0003 0.7438 
SVM-radial 0.1184 0.0003 0.0003 0.0003 - 0.0000

SVM-poly 0.0000 0.7546 0.7247 0.7438 0.0000 - 

SVMRFE - Cine CMR 

KNN ANN RF SVM-linear SVM-radial SVM-poly 

KNN - 0.0000 0.0000 0.0000 0.0000 0.0000 

ANN 0.0000 - 0.0583 0.8412 0.0075 0.9563 

RF 0.0000 0.0583 - 0.0364 0.4285 0.0659 
SVM-linear 0.0000 0.8412 0.0364 - 0.0041 0.7986 

SVM-radial 0.0000 0.0075 0.4285 0.0041 - 0.0088

SVM-poly 0.0000 0.9563 0.0659 0.7986 0.0088 - 

*Significance was corrected with the Bonferroni method p = 0.05/15, or p = 0.0033. Statistical
significant p values are highlighted in bold.
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Table 6.10. Classification performance parameters in cine CMR. 

Fisher - Cine CMR 

Model N features AUC CI Sensitivity CI Specificity CI 

KNN 3 0.711 (0.67 - 0.74) 0.697 (0.65 - 0.73) 0.671 (0.63 - 0.70) 
ANN 194 0.797 (0.77 - 0.82 0.770 (0.74 - 0.79) 0.804 (0.77 - 0.83) 
RF 255 0.797 (0.77 - 0.81) 0.773 (0.75 - 0.79) 0.767 (0.73 - 0.79) 
SVM-linear 131 0.797 (0.77 - 0.81) 0.747 (0.72 - 0.77) 0.822 (0.79 - 0.85) 
SVM-radial 62 0.737 (0.71 - 0.76) 0.722 (0.68 - 0.75) 0.760 (0.73 - 0.79) 
SVM-poly 270 0.802 (0.78 - 0.82) 0.769 (0.74 - 0.79) 0.790 (0.76 - 0.81) 

SVMRFE - Cine CMR 

Model N features AUC CI Sensitivity CI Specificity CI 

KNN 54 0.700 (0.67 - 0.72) 0.650 (0.61 - 0.68) 0.690 (0.65 - 0.72) 
ANN 24 0.828 (0.80 - 0.84) 0.792 (0.76 - 0.82) 0.816 (0.78 - 0.84) 
RF 205 0.796 (0.77 - 0.81) 0.749 (0.72 - 0.77) 0.788 (0.75 - 0.81) 
SVM-linear 22 0.831 (0.80 - 0.85) 0.812 (0.77 - 0.84) 0.803 (0.77 - 0.83) 
SVM-radial 9 0.783 (0.75 - 0.81) 0.762 (0.73 - 0.79) 0.753 (0.72 - 0.78) 
SVM-poly 76 0.827 (0.80 - 0.84) 0.790 (0.76 - 0.81) 0.806 (0.77 - 0.83) 

*Sensitivity and specificity were computed according to the optimal operating point on the ROC
curve that maximizes the product between both measures. Sensitivity measures the ability of
the model to detect acute myocardial infarction, whereas specificity measures the ability to
detect chronic myocardial infarction. The CI column corresponds to 95% confidence interval.
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Figure 6.10. Average ROC curves over test sets in cine CMR using the features selected by the 

Fisher technique. The circles on the curves indicate the optimal operating point that maximizes 

the product between sensitivity and specificity. 
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Figure 6.11. Average ROC curves over test sets in cine CMR using the features selected by the 

SVM-RFE technique. The circles on the curves indicate the optimal operating point that 

maximizes the product between sensitivity and specificity. 
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6.4 Discussion 
We found that texture analysis has the potential to correctly differentiate AMI 

from CMI regions (AUC > 0.8) contained in LGE and cine CMR. However, the 
classification was not straightforward as no individual texture feature was capable of 
accurately differentiate samples of both classes. An appropriate subset of features that 
were selected and evaluated in combination with some predictive models provided 
good classification performance. We corroborated that feature selection is relevant to 
achieve optimal classification performance and by doing so the choice of classification 
algorithm is not of substantial importance.  

The novel finding of this study was the possibility to discriminate slices with AMI 
and CMI in conventional cine CMR using the delineated myocardium as ROI, since 
myocardial infarction is not usually detectable in this image modality. It has been 
reported that regional lipomatous metaplasia are detectable in cine CMR as chemical 
shift artifacts along the sub-endocardium and are indicative of chronic myocardial 
infarction [146]. Another study reported the possibility to detect the acute-related 
edema in cine CMR [147]. These previous studies suggest that the infarction can be 
detected in cine CMR but the visual appreciation of images is challenging as intensity 
variations are not always visible in this image modality. Our approach of using the 
entire myocardium to predict the infarct age may provide more reproducible results 
and it is indicative that texture analysis can be used to detect infarctions in cine CMR.  

Different MRI sequences were used in previous studies aiming at differentiating 
AMI from CMI. Kim et al. [142] stated that the signal intensity in contrast-enhanced 
cine CMR is useful for differentiating AMI from CMI. They found that the 
hyperenhancement in both contrast-enhanced cine CMR and LGE CMR was more 
accurate in differentiating AMI from CMI than the presence of myocardial thinning. 
Abdel-Aty et al. [141] claimed that T2-weighted cardiac MRI depicts infarct-related 
myocardial edema as a marker of AMI when combining LGE with T2-weighted CMR. 
In fact, T2-weighted CMR has been consensually adopted in clinical practice for 
detecting edema thus differentiating AMI from CMI [48]. However, there is an 
ongoing controversial debate about the technical limitations and the pathophysiologic 
background of conventional T2-weighted edema imaging, as reported by a recent 
study [143] that stated that using these techniques with simple thresholds did not 
facilitate the discrimination of AMI and CMI. Additionally, these techniques rely on 
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the visual assessment of the images. 
In the study of [25], texture analysis of high resolution LGE CMR was used to 

differentiate AMI from CMI in rats. They computed only three texture features 
derived from the co-occurrence matrix in 3D and all of them were found statistically 
different. The authors found that the entropy texture feature was higher in AMI 
suggesting its textural complexity due to the presence of microvascular obstruction. 
Interestingly, our results are somehow in accordance with these previous findings as 
most of the top ten features ranked by the Fisher feature selection were related to the 
feature difference entropy.  

A limitation of this study was that we included orientation dependent texture 
features, that may influence the results if the short-axis views are not acquired in a 
standardized position as we did. The inclusion of rotation invariant and 3D texture 
features may provide a more robust classification [9], [83]. The main limitation of our 
findings related to cine CMR is that we computed texture features from the entire 
myocardium rather than from specific segments with known infarcts that should be 
more clinically relevant. Nevertheless, these findings can be used as a starting point 
for future research. Differentiating AMI from CMI is clinically important when both 
infarction entities coexist, which complicates treatment planning and follow-up after 
treatment [140]. In our study, we included only patients having one type of infarction 
in order to have a reliable ground-truth for the experiments. Further validation in 
patients with coexisting AMI and CMI is required for future work.  

6.5 Conclusion 
Our results show that texture analysis can be used for differentiation of AMI from 

CMI in cardiac LGE CMR and also in standard cine CMR. Differentiation is not 
straightforward and requires the application of machine learning techniques in order 
to take advantage of conventional CMR images. The unexpected findings obtained 
using cine CMR motivated the study presented in the next chapter in which the 
objective was to detect visually imperceptible segments in cine CMR. 
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Chapter 7 

Detection of Infarcted Myocardial 

Segments in Cine CMR 

This chapter has been submitted in part as: 

Larroza A, López-Lereu MP, Monmeneu JV, Gavara J, Chorro FJ, Bodí V, Moratal D. 
Texture analysis on cardiac cine magnetic resonance imaging to detect non-viable 

segments in patients with chronic myocardial infarction.  

Medical Physics [submitted]. 

7.1 Introduction 
Typical MRI protocols for chronic ischemic heart disease and viability includes 

cine and LGE acquisitions. Cine modalities provide moving images of the heart and 
are mainly used to assess the contractile function, ventricle volumes and ejection 
fraction. LGE CMR is the well-established technique to quantify the extent of scar in 
patients with myocardial infarction but relies on the administration of gadolinium to 
enhance the scarred area [4]. Hence, LGE CMR is contraindicated in certain patients, 
i.e. those who have significant renal dysfunction, so gadolinium-free methods to
identify diseased myocardium are open to investigation [148]. 

 Histological properties of scarred myocardium differ from normal myocardium 
and in consequence, textural properties are also different. The fibrosis formation 
causes distortion of the normal myocardium architecture thus altering the texture 
properties. In the previous chapter, we have shown that texture analysis of 
conventional CMR can differentiate acute from chronic myocardial infarction. 
Moreover, a recent study [27] used texture analysis in standard pre-contrast cine CMR 
to study different etiologies of left ventricular hypertrophy.  

In this study, we part from the hypothesis that infarcted myocardium can be 
enhanced by using texture analysis in conventional cine CMR, modality in which the 
affected myocardium is hardly detectable by visual inspection. The purpose was to 
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determine the capability of texture analysis of cine CMR to detect infarcted non-viable 
segments in patients with chronic myocardial infarction. 

 

7.2 Materials and Methods 

7.2.1 Study Group and Imaging Protocol 

This retrospective study included 50 patients (mean age, 61; range, 23 – 80 years 
old) suffering chronic myocardial infarction examined between April 2012 and July 
2015. The inclusion criteria were: 1) first ST-segment elevation myocardial infarction 
treated with percutaneous intervention within the first six hours after the onset of 
chest pain; 2) stable clinical course without complications during the first six months; 
3) single-vessel disease and a patent (thrombolysis in myocardial infarction (TIMI) 
flow grade 3 and residual stenosis < 50%) in the infarct-related artery at the end of pre-
discharge cardiac catheterization and at the sixth month.  

MRI was performed at 179 ± 12 days after a first ST-segment myocardial 
infarction. Images were acquired in breath-hold using a 1.5T MRI scanner (Sonata 
Magnetom, Siemens, Erlangen, Germany). Cine images were acquired at rest in 2-, 3-, 
and 4-chamber views and every 1 cm in short-axis views with steady-state free 
precession imaging sequences (repetition time/echo time: 3.2/1.6 ms; flip angle: 61°; 
voxel size: 1.56 × 1.56 × 7 mm). Each short-axis cine sequence consisted of 35 frames. 
Late gadolinium enhancement (LGE) images were acquired 10 min after the 
administration of gadolinium at a dose of 0.075 mmol/kg body weight (gadobenate 
dimeglumine, Multihance, Bracco Diagnostics, Milan, Italy) in identical projections 
and locations to the cine images. A segmented, inversion recovery steady-state free 
precession imaging sequence was used (repetition time/echo time: 2.5/1.2 ms, flip 
angle: 45°, voxel size: 1.56 × 1.56 × 7 mm), and inversion time was adapted to null the 
signal from normal myocardium. 

Left ventricle (LV) ejection fraction (%), LV end-diastolic volume index (ml/m2), 
LV end-systolic volume index (ml/m2) and LV mass (g/m2) were calculated by manual 
planimetry of endocardial and epicardial borders in short-axis views cine images. 
Infarct size (% of LV mass) was assessed as the percentage of LV mass showing LGE. 
Baseline characteristics and MRI parameters are summarized in Table 7.1. 
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Table 7.1. Baseline characteristics of the study group. 

Number of patients 50     

Baseline characteristics   Magnetic resonance parameters   
Age (years) 65 ± 12 LV Ejection fraction (%) 51 ± 16 

Male sex (%) 45 (90) LV End-diastolic volume index (ml/m2) 86 ± 31 

Diabetes mellitus (%) 13 (26) LV End-systolic volume index (ml/m2) 45 ± 29 

Hypertension (%) 17 (34) LV mass (g/m2) 73 ± 19 

Dyslipidemia (%) 16 (32) Infarct size (% of LV mass) 21 ± 12 
Current Smoker (%) 10 (20) 

  Heart rate (beats per min) 82 ± 11 
  Systolic blood pressure (mm Hg) 139 ± 26 Number of segments 

 Infarct location 

 

Non-viable segments (LGE ≥ 50%) 5 ± 3 

Anterior (%) 38 (76) Viable segments ( 0 < LGE < 50%) 3 ± 2 
Inferior (%) 8 (16) Remote segments 11 ± 5 

Other (%) 4 (8) 
Abnormal wall motion segments  
(Wall thickening ≤ 2 mm) 4 ± 3 

*Continuous variables are expressed as mean ± standard deviation. 

 

7.2.2 Region of Interest Definition 

The left ventricular myocardium was manually segmented on short-axis views of 
both cine and LGE CMR using the freely available software Segment, version 2.0 
(Medviso, Lund, Sweden) [144]. Then, the 17-segment AHA model [38] excluding the 
apex was used to divide the slices into four or six equal segments depending on the 
slice level. Various slices were used to create the three thick short-axis sections defined 
by the 17-segment model. Only slices containing myocardium in all 360° were 
selected. Infarcted myocardium regions were identified in LGE images using the full 
width and half maximum (FWHM) technique [46]. The labeled segments were located 
on the cine slice with the same spatial location and the closest cardiac phase to that of 
LGE (end-diastole). Segmentations on cine CMR were propagated to all time frames to 
allow texture analysis of cine sequences including the time dimension (2D + t).  
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Figure 7.1. General diagram of the texture-based approach to detect non-viable segments. In 

the training phase, LGE CMR was used as reference to define ROIs in the corresponding cine 

CMR slice. Texture features were extracted from cine CMR and were used to train an SVM 

classifier.  
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Non-viable segments were identified as those showing LGE ≥ 50% transmural 
extension, segments showing 0 < LGE < 50% transmural extension were labeled as 
infarcted but viable and those not showing enhancement were labeled as remote 
myocardium [40]. In total, 1400 cine CMR segments were defined as ROIs for texture 
feature extraction: 340 non-viable (24%), 224 viable (16%), and 836 remote segments 
(60%). Figure 7.1 shows a general diagram of the proposed methodology. 

 

7.2.3 Region of Interest Preprocessing 

Preprocessing was implemented to ensure that the analysis truly characterizes the 
ROI texture. The original images were interpolated to a pixel size of 0.5 × 0.5 mm2 
using the cubic B-spline method [86]. Inhomogeneity correction was applied 
throughout the entire myocardium using the additive model described by [92]. 
Normalization was performed using the “± 3σ” normalization technique [88]. 

 

7.2.4 Texture Feature Extraction 

Texture features were computed using the toolboxes provided by Vallières et al. 
[89] and Ojala et al. [114] in Matlab 2015b (MathWorks Inc., Natick, MA). Features 
were calculated for each ROI segment by means of four matrix-based texture analysis 
methods and LBPs, which are summarized in Table 7.2. 

 
2D Analysis 

Two-dimensional analysis was performed on the end-diastolic cine CMR slice. 
Texture features were calculated in their rotation invariance form to evade image 
rotation as a possible source of bias. In matrix-based methods, only one matrix was 
computed for each method by simultaneously taking into account the neighboring 
points at one-pixel distance in four directions: horizontal, vertical, 45º and 135º. Image 
quantization was set to 16 gray-levels based on a preliminary comparison among 
various levels. The LBPP,R operator, where P is the total number of neighborhood 
pixels and R is the radius in pixel was set to LBP8,1. Rotation invariance values were 
used thus the LBP histogram was reduced to 36 bins instead of the original 256.  

 

2D + t Analysis 

To take advantage of the temporal dimension available in cine CMR, texture 
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analysis was also performed in 2D + t. It was implemented as volumetric 3D texture 
analysis but using time as the third dimension for each slice. The z dimension was not 
included because of the very large slice thickness in comparison to pixel size in the 
available images.  

Similar to 2D analysis, only one GLCM, GLRLM, GLSZM and NGTDM was 
computed per slice by simultaneously taking into account the neighboring properties 
of voxels in 13 directions of 3D space [85]. A preliminary evaluation showed that 8 
gray-levels yielded the best results in our data, so this value was used for matrix-
based features in 2D + t. Isotropic image resolution is a requirement for volumetric 
texture computation, therefore time-spacing was indicated as having the same value 
as the in-plane resolution.  

The spatio-temporal LBP known as LBP-TOP is an extension of the LBP operator 
that was proposed to analyze video sequences [117]. The LBP-TOP analyze the video 
sequence by concatenating the LBP histogram on three orthogonal planes: xy, xt and 
yt. In our analysis, the same LBPP,R operator was used for the three planes and were set 
to LBP4,1, thus obtaining a concatenated histogram of 48 bins.  

Table 7.2. List of texture features used in this study. 

Method Features 2D 2D+t 

GLCM  Angular second moment, contrast, correlation, inverse difference moment, 
sum of squares, sum average, entropy, dissimilarity. 

8 8 

GLRLM  

Short run emphasis, long run emphasis, gray-level non-uniformity, run-
length non-uniformity, run percentage, low gray-level run emphasis, high 
gray-level run emphasis, short run low gray level emphasis, short run 
high gray-level emphasis, long run low gray-level emphasis, long run 
high gray-level emphasis, gray-level variance, run-length variance. 

13 13 

GLSZM 

Small zone emphasis, large zone emphasis, gray-level non-uniformity, 
zone-size non-uniformity, zone percentage, low gray-level zone 
emphasis, high gray-level zone emphasis, small zone low gray level 
emphasis, small zone high gray-level emphasis, large zone low gray-level 
emphasis, large zone high gray-level emphasis, gray-level variance, zone-
size variance. 

13 13 

NGTDM Coarseness, contrast, busyness, complexity, strength. 5 5 

LBP 2D: P=8 and R=1, 3D: P=4 and R=1 in three orthogonal planes. 36 48 

*Values under the 2D and 2D + t columns indicate the number of features for each method.  
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7.2.5 Classification 

Classification was performed using an SVM with radial kernel implemented in the 
caret package [146] in R language, version 3.3.0 (R Development Core Team, Vienna, 
Austria). Tuning parameters C and sigma were chosen from the finite set {2-2…24} and 
{10-2…102} respectively.  

Analysis was performed independently in 2D and 2D + t using the following 
subsets of features as input to the SVM classifier:  

 Matrix features: All texture features derived from matrix-based methods: 
GLCM, GLRLM, GLSZM, and NGTDM. 

 LBP features: The LBP histogram where each bin represent one feature. 
 Matrix + LBP: The full set of features. 
 SVM-RFE: The multiple SVM-RFE [130] feature selection was implemented to 

the full set of features. Five-fold cross-validation was used to stabilize the 
feature selection and the C parameter of the SVM was set to unity. This 
method returns a ranking of features that was used to choose the optimal 
subset of features according to the performance of the radial SVM classifier. 

Furthermore, the wall thickening (Wth), defined as the difference in myocardial 
thickness between end-diastole and end-systole, was used as input to the classifier. 
The performance using Wth solely was taken as reference for comparison with 
texture-based models.  

 

7.2.6 Model Evaluation 

The study group was randomly split into training (30 patients) and testing sets (20 
patients). The training set was used for model building and the testing set to evaluate 
the generalization performance. Feature selection and model tuning were performed 
within the nested cross-validation approach that was illustrated in the previous 
chapter (Figure 6.3). The training set was split n = 50 times by using a repeated 5-fold 
cross-validation. An inner 5-fold cross-validation was used for model tuning. 

Feature values were standardized to zero mean and unit variance across training 
samples. Near-zero values were found in some bins of the LBP histograms and these 
were excluded from analysis. All classification models were built within a multiclass 
approach using the one-versus-all technique. Performance parameters were reported 
on the testing set by considering each class individually: non-viable, viable and 
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remote myocardium.  

 Area under the curve (AUC) of the receiver operating characteristic (ROC) was 

used as an index of classification accuracy. The class probabilities estimated by each 

model were used to plot ROC curves. Sensitivity and specificity were computed for 

the cutoff on the ROC curve that maximizes the product of both measures. Class 

probabilities of the best model were also used to analyze the agreement between the 

infarct percentage measured on LGE CMR and the SVM probability on cine CMR 

using Bland Altman analysis [149]. The McNemar’s test [150] was used to compare the 

performance between models trained with 2D and 2D + t features.  

 

7.3 Results 
The top 10 features selected by the SVM-RFE for 2D and 2D + t subsets are shown 

in Table 7.3. The top 2D feature was derived from the GLSZM texture analysis method 

and the top 2D + t feature was from the GLRLM method. The top 10 features included 

features from all texture analysis methods. However, the average ranks are relatively 

high thus indicating that at each fold of the nested cross-validation different features 

were selected. The feature profiles shown in Figure 7.2 indicate that almost all 2D 

features (67 out of 68) were necessary to achieve optimal classification performance. 

For the 2D + t subset, 57 out of 87 features were optimal. These top number of features 

were used to train the final classifier and to test its performance on the testing set. It 

can be seen that 2D + t features performed better that 2D features.  

 

 Table 7.3. Top ten ranked features according to the SVM-RFE algorithm. 

2D features Rank 2D + t features Rank 

GLSZM – GLN 6.52 GLRLM – GLN 19.98 

NGTDM – Coarseness 15.78 GLSZM – GLN 20.62 

LBP – bin 13 16.90 GLRLM – LGRE 24.04 

GLSZM – ZSN 16.98 NGTDM – Busyness 24.64 

NGTDM – Strength 17.12 GLCM – Entropy 25.04 

GLSZM – LZLGE 18.50 GLRLM – HGRE 25.54 

NGTDM – Busyness 18.50 LBP – bin 18 25.56 

GLRLM – LGRE 18.60 GLSZM – SZHGE 26.52 

LBP – bin 27 20.68 GLSZM – ZP 27.06 

LBP – bin 35 20.88 GLSZM – ZSV 27.06 
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Figure 7.2. Resampling profiles for 2D and 2D + t texture features. Average AUC values over 

resamples of nested cross-validation for different subset of features added according to the 

ranking returned by the SVM-RFE feature selection technique. 

 

Feature profiles for each class are presented in Figures 7.3 and 7.4 for 2D and 2D + 

t respectively. Classification performance was better for non-viable than remote 

segments for both cases. Notably, the classification for viable segments was very poor, 

which was expected considering that these are the “intermediate” segments that have 

small percentage of infarcted mass. 

Classification performance parameters on testing set are reported in Table 7.4. The 

AUC values obtained with the SVM-RFE subset are very similar to that of the nested 

cross-validation profiles. The best overall performance was achieved combining the 

SVM-RFE subset with the wall thickening feature (AUC = 0.756) when using the 2D 

approach. The best overall performance for the 2D + t approach was achieved using 

the LBP features (AUC = 0.849).    
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Figure 7.3. Resampling profiles for 2D texture features according to each class. Average AUC 

values over resamples of nested cross-validation for different subset of features added according 

to the ranking returned by the SVM-RFE feature selection technique. The average profile is 

shown in light gray. 
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Figure 7.4. Resampling profiles for 2D + t texture features according to each class. Average 

AUC values over resamples of nested cross-validation for different subset of features added 

according to the ranking returned by the SVM-RFE feature selection technique. The average 

profile is shown in light gray. 
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Chronic scar formation is associated with thinned myocardium; therefore, the wall 
thickening feature was also used individually to train the SVM classifier. However, 
the performance using only this feature was very poor (AUC = 0.561) in comparison to 
those obtained with texture features. Figure 7.5 shows a comparison of 2D and 2D + t 
features that clearly shows how the latter outperforms the 2D approach. This 
difference was statistically significant for all cases according to the McNemar’s test.  

 

Figure 7.5. Barplot comparing the AUC values for 2D and 2D + t features on testing set for 

each subset of features. 2D + t features provided larger values in all cases with statistical 

significance (p < 0.01) according to the McNemar’s test. 

 
ROC curves for the best models in 2D and 2D + t are shown in Figures 7.6 and 7.7 

respectively. The best model was achieved with 2D + t LBP features. AUC values were 
0.935, 0.819, and 0.794 for non-viable, viable and remote segments respectively. 
Notably, classification of viable segments performed better than remote segments on 
testing set, contrary to the expected feature profiles previously shown in Figure 7.4.  
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Figure 7.6. ROC curves for the best model using 2D features (Wth + SVM-RFE). One ROC 

curve for each class is shown according to the one-versus-all technique. The circles on the 

curves indicate the optimal operating point that maximizes the product between sensitivity and 

specificity.  
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Figure 7.7. ROC curves for the best model using 2D + t features (LBP). One ROC curve for 

each class is shown according to the one-versus-all technique. The circles on the curves indicate 

the optimal operating point that maximizes the product between sensitivity and specificity. 
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To evaluate how the probability of the SVM classifier correlates with the mass 
percentage in each segment, the Bland Altman plot of Figure 7.8 was reproduced. It 
can be seen that most of the segments fall within the 95% that represents the 
likelihood of a real difference between both methods.  

 

 

Figure 7.8. Bland Altman plot of differences between the mass percentage measured in LGE 

CMR and the probability of the SVM classifier in cine CMR. Most of the segments fall within 

the upper and lower limits that represent the 95% likelihood of representing a real difference 

between both methods.  

 
Figure 7.9 shows examples of testing cine CMR and the predicted segments 

compared to the LGE ground truth.  
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Figure 7.9. Examples of images on testing set and the predictions using the LBP features in 

2D + t. Scar (yellow) is represented on the ground truth LGE images. Segments predicted as 

non-viable are colored in red, those predicted as viable in blue and those predicted as remote in 

green. White arrows indicate the incorrectly predicted segments. Top row shows a correctly 

classified image, the inferoseptal segment is covered by less than 50% of scar and it was 

predicted as viable. The middle row shows a small scar that covers slightly more than 50% of 

the segment and it was incorrectly classified as viable. The two non-viable segments of the 

bottom row were correctly classified but the viable segment was incorrectly predicted as 

remote. 
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7.4 Discussion 
This study demonstrated that texture analysis has the potential to discriminate 

between non-viable, viable and remote segments in cine CMR. High discrimination 

(AUC > 0.8) was achieved using 2D + t texture features extracted from cine CMR, 

modality in which the scarred myocardium is visually imperceptible in most cases. 

However, classification was not straightforward as it was necessary the combination 

of several texture features and an advanced classifier such as the SVM to achieve high 

discrimination. 

In recent years, CMR has become the gold standard non-invasive imaging 

technique for a comprehensive evaluation of the structural consequences of 

myocardial infarction. Beyond the well-established value of cine CMR to accurately 

quantify relevant parameters in post-infarction patients such as ejection fraction or left 

ventricular volumes, in this scenario LGE CMR has emerged as a unique tool for 

calculating the extent of the scar. As derived from LGE CMR, this variable has been 

demonstrated to be decisive for predicting left ventricular remodeling, late systolic 

recovery and patient’s outcome [151], [152]. However, the use of LGE CMR involves a 

prolongation of studies and the administration of contrast. In turn, this implies certain 

limitations for selected subsets of patients and for cardiac MR labs: i) A significant 

number of post-infarction patients are still clinically unstable at the time of the study 

and, as a consequence, they cannot tolerate prolonged studies. ii) The use of 

gadolinium can induce side effects, especially it can worsen renal function in patients 

with a certain degree of renal insufficiency. iii) The number of studies per shift in 

cardiac labs has to be necessarily reduced due to the prolongation of cases in whom 

LGE sequences have to be used. 

Thus, if the methodology proposed in this manuscript can be further validated 

and extended to detect the scar precisely, relevant benefits for post-infarction patients 

(less side effects, less time of scanning, better tolerance for unstable patients) and 

logistic advantages for labs (more studies per unit of time) could be achieved. 

The presented approach could detect non-viable segments on cine CMR. The main 

objective would be to precisely delineate the scar using cine CMR solely. To achieve 

that goal, further multicenter studies including larger study groups will be needed in 

order to precisely identify the scar extent, so the presented hypothesis can be 

validated and included in the routine practice of MRI labs. 
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A myriad of features that might improve classification accuracy could be 

incorporated in the analysis, technique known as Radiomics [9], including features 

derived from other texture analysis methods, that we did not analyze. We presented a 

2D + t approach without considering the z dimension because of the large slice 

thickness of the available images. Research on data with better image resolution is 

recommended for future work, so an approach of 3D + t texture analysis can be 

performed and this may improve the results.  

 

 

7.5 Conclusion 
This study reinforced the hypothesis that implicit differences between non-viable, 

viable and remote segments are present in cine CMR and can be detected by the 

application of texture analysis. The results could serve as starting point for the 

development of several applications, including the delineation of scar in cine CMR, 

application that would have great impact allowing the quantification of scar extension 

on cine sequences without the need of further LGE acquisitions.  
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Chapter 8 

Conclusions 

This thesis provides three main conclusions according to the experimental studies 
(Chapters 5 to 7), and are summarized here: 

1. Texture and intensity features can be used in combination with an SVM
classifier for segmentation of the infarcted myocardium in LGE CMR. The
transferability of this application to images acquired with a different scanner
was tested on a small sample data. Larger multicenter studies are needed for
validation of the proposed method.

2. Differentiation between acute and chronic myocardial infarction is possible
using texture features and machine learning techniques in LGE CMR and in
standard pre-contrast cine CMR. The choice of the classifier is not relevant as
long as a properly feature selection method is implemented. This quantitative
approach is an alternative to the most useful existing method that relies on the
visual assessment of edema CMR images.

3. Implicit differences between non-viable, viable and remote segments are
present in cine CMR and these can be detected by the application of texture
analysis. These results could serve as starting point for the development of
several applications, including the delineation of scar in cine CMR, application
that would have great impact allowing the quantification of scar extension on
cine sequences without the need of further LGE acquisitions.

The experimental studies showed that texture analysis can be successfully applied 
to CMR images to assess patients with myocardial infarction. The main contribution 
was the possibility to classify infarcted non-viable segments using conventional cine 
CMR solely. This finding opens a research line aiming to accurately delineate the 
scarred myocardium as a gadolinium-free alternative, which will have potential 
advantages if it is successfully validated and applied in clinical routine. Finally, it can 
be said that texture analysis can enhance the “invisible” details of CMR images.   
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