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INTRODUCTION

The advent of Spontaneous Symmetry Breaking (SSB) by Yoichiro Nambu [1]—-
[3] from Superconductivity to the particle physics community was the beginning
of an era, whose consequences are still fruitful. SSB is a phenomenon where a
symmetry in the basic laws of physics appears to be broken. For example, when
an standing straight rod which has the rotational symmetry, that is, it looks
the same from any horizontal direction, is pressurized from the top, it will bend
in some direction, and the rotational symmetry is lost. Since all directions are
equivalently probable to be chosen for bending, one says the symmetry is broken
spontaneously. There are many examples of SSB in Quantum mechanics and
solid state physics. For example, ferro-magnets, rotational invariance in crystals,
etc.

In the language of Quantum Field Theory (QFT), a system is said to possess a
symmetry that is spontaneously broken if the Lagrangian describing the dynamics
of the system is invariant under these symmetry transformations, but the vacuum
is not [4]. Since, the vacuum has many intrinsic degrees of freedom, SSB can play
an important role and as the universe expands and cools down, several SSB phase
transitions from states of higher symmetries to lower ones might have happened.
In fact, this is the ultimate dream of the particle physics community to realize,
what was the original symmetry of nature, before any SSB took place.

The SSB can happen in two ways that is, the symmetry which is broken can
be global or local, which has completely different consequences. We will here
describe briefly both types of SSB and then will consider some examples of each
in coming chapters. Lectures about the phenomenon of spontaneous symmetry
breaking of a global symmetry and how the situation changes in the presence of
a local gauge symmetry can be found in refs. [5,6].

First a recount of the history as Nambu describes it himself [1], One day before
publication of the BCS paper, Bob Schrieffer, still a student, came to Chicago to
give a seminar on the BCS theory in progress ... I was very much disturbed by
the fact that their wave function did not conserve electron number. It did not
make sense ... At the same time I was impressed by their boldness and tried to
understand the problem. So, the main reason which led him to the idea was the
fact that, as it turns out, in the BCS model of superconductivity [7], the quasi
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Introduction

particles introduced by Bogoliubov [8] and Valatin [9](BV), which are the building
blocks of the Cooper pairs, seem not to have a definite charge. This means that
the electric charge is not conserved which leads to problems for electromagnetic
phenomena like the Meissner effect. Therefore, he introduced the notion of a
massless spin—zero collective mode; to be called later on the Nambu—Goldstone
(NG) boson; that appears due to the spontaneously broken continuous gauge
symmetry and rescues the charge conservation [2]. This is an example of the SSB
for a local symmetry or as Weinberg puts it [10], A superconductor is simply a
material in which electromagnetic gauge invariance is spontaneously broken.

Soon after the introduction of the notion of the spontaneously broken contin-
uous local symmetry in superconductors, due to the similarity of the BV equation
to the Dirac equation, Nambu and Jona-Lasinio (NJL) transported the BCS the-
ory to nuclear physics [3]. In this case, the axial symmetry as an approximately
conserved global symmetry in flavor space, is spontaneously broken. Therefore,
the nucleon mass is generated by an SSB of chirality, and the pion is the NG
boson of this symmetry breaking. In the limit of exact conservation, the pion
will become massless and the proton and the neutron masses will also become
the same.

On the other hand, in 1962 Goldstone showed [11] that spontaneous breaking
of a global symmetry in a relativistic field theory results in massless spin-zero
bosons. According to the Goldstone theorem: if a theory has a global symmetry
of the Lagrangian, which is not a symmetry of the vacuum, then there must exist
one massless boson, scalar or pseudoscalar, assoctated to each generator which
does not annihilate the vacuum and having its same quantum numbers. These
modes are referred to as Nambu-Goldstone bosons or simply as Goldstone bosons.

So, the NJL model is an example of SSB, where the Goldstone theorem ap-
plies. It was the first model to introduce pion as a Nambu-Goldstone boson of the
broken chiral symmetry in QCD, but not the last one. In fact, it suffers from lack
of confinement and is nonrenormalizable in four space-time dimensions. There-
fore, this model is regarded as an effective theory for the QCD, which needs to be
UV completed. There are other effective theories to describe dynamics of mesons
like Chiral perturbation Theory (ChPT), which we will discuss in detail later on,
after introducing the notion of effective field theories in general. We will also
discuss a work related to ChPT.

Back to the history, after Goldstone’s prediction of massless modes, the prob-
lem was that apart from the pions in nuclear physics, they were excluded exper-
imentally in QFT and therefore, at the time the application of SSB to the QFT
was not clear. In fact, solution to this problem also came from the solid state
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community. The year before Goldstone published his paper, Philip Anderson
had pointed out [12] that, in a superconductor where the local gauge symmetry
is broken spontaneously, the Goldstone (plasmon) mode becomes massive due
to the gauge field interaction and is effectively eaten by the photon to become
a finite-mass longitudinal mode (Meissner effect), despite the gauge invariance.
But, he did not discuss any relativistic model and so, since Lorentz invariance
was a crucial ingredient of the Goldstone theorem, he did not demonstrate that
NG modes could be evaded.

Finally, following the work of Goldstone, Anderson and Nambu, in 1964 realis-
tic models with Lorentz invariance and non-Abelian gauge fields were formulated
by Higgs and others [13}/14]. They showed that in the case when a gauge symme-
try is broken spontaneously, the Goldstone’s theorem does not apply and another
mechanism comes to rescue, the so-called Higgs mechanism [13]. The would-be
Goldstone bosons associated to the global symmetry breaking do mot manifest ex-
plicitly in the physical spectrum but instead they combine with the massless gauge
bosons and as a result, once the spectrum of the theory is built up on the asymmet-
rical vacuum, there appear massive vector particles. The number of vector bosons
that acquire a mass is precisely equal to the number of these would-be-Goldstone
bosons. This led Glashow—Weinberg—Salam (GWS) [15-17] to develop the elec-
troweak theory as a part of the Standard Model of particle physics (SM). We will
describe the SM of Electroweak (EW) interactions in the next chapter and will
present two works related to the Higgs mechanism later on, in the framework of
the neutrino physics.

As a side note, Higgs also predicted that due to this SSB a new scalar mode
will appear in the particle spectrum of the theory, nowadays known as the Higgs
boson. This was finally detected in 2012 in the Large Hadron Collider at CERN.
But ironically, the only Higgs boson to be discovered experimentally before 2012
was also detected in solid state physics as an unexpected feature of the Ra-
man spectrum of NbSe2, an oscillation of the amplitude of the superconducting
gap (18],

The outline of this thesis is the following. In chapter [1| we will discuss the
Standard Model of electroweak interactions, which is also relevant to neutrino
physics. The chapter [2 briefly introduces the notion of effective field theories and
discusses symmetries of the QCD Lagrangian in the flavor space. Afterwards,
it introduces the ChPT as an effective field theory. A prologue to the paper on
ChPT is given at the end of this chapter. In chapter[3] using the information from
previous chapters, the neutrino physics is considered, where the Renormalization
Group (RG) equations for neutrino parameters are also discussed. A prologue to
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the two papers, related to neutrino physics, is given at the end of this chapter.
The three papers constituting the bulk of the thesis are presented subsequently.
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1. THE STANDARD MODEL OF PAR-
TICLE PHYSICS

The Standard Model of particle physics is one of the most successful models
in modern physics, based on the gauge group SU(3)¢ x SU(2), x U(1)y, which
describes the fundamental building blocks of nature and their interactions. It
includes strong interactions under SU(3)¢c, and weak interactions and the elec-
tromagnetic interactions, unified in the EW interaction under the gauge group
SU(2), xU(1)y. A pedagogical review to the SM as a gauge theory can be found
in Ref. [1].

The SM describes three out of the four fundamental interactions, but not
gravity. All of these interactions are mediated by the exchange of particles, called
gauge bosons. The mediator of the electromagnetic interaction is the photon,
for the strong interaction they are called gluons, and the weak interaction is
mediated by massive vector bosons called W and Z bosons. On the other side,
the SM contains three generations of fermions, each including two quarks and
two leptons. The particle content of the SM and the corresponding quantum
numbers are shown below

. _ u
1¢t fa‘mlly: lel = < — ) ) lel = €R, TﬂL{ = < d ) ) wR'll = uR,dgr
L L
27d family: ng = (

. _ t
37 family: szg = ( - ) , ¢R§ =TR, waSJ = ( b > ) ¢R§ =tg,br
L L

where the upper index [ (¢) stands for quark (lepton) and the anti particles also
have to be added. As it can be seen, there is no right handed counterpart for

6



The Standard Model of Particle Physics

neutrinos in the SM. The SM particles have certain quantum numbers, under
SU(2)r, x U(1)y transformations, which are listed in the following table.

T 75 | ¥ | O
ve (12 12 | —1 | 0
e, |12 —1/2| -1 | -1
ex | 0 0 -2 -1
w, (12 12 (13 [ 23 (1.1)
d, |12 12| 1/3 | -1/3
w10 0 43 23
d, | 0 0 |—2/3-1/3

Where the Hypercharge Y, and the electric charge @, of these particles are related
via

Q:§+T3. (1.2)

The Lagrangian of the EW Theory in a generic form can be written as [2]
Lsy=Lo+La+ Lssp+ Ly .

The Ly is the kinetic term for fermions. After implementing the local gauge
invariance the normal derivative transforms into the covariant derivative

. . Y
D, = au—zgsGM—ngM—zglgBu,

where W, = Wio./2, G, = GiAa/2. G, W and B, are the gauge fields of
SU(3)c, SU(2)r, and U(1)y respectively and A, are the Gell-Mann matrices.
Also, gs, g and ¢’ are the corresponding gauge couplings. Then L, takes the
form [1]

3
Lo =D > > i)y Dus(x), (1.3)
¢l LRj=1

where 1 is a generic notation for quarks and lepton fields introduced above. In
the rest of the thesis the sum over fermion field 7 is understood to be for all
families and both chiralities, unless it is stressed. Lg is constructed by adding
the gauge invariant kinetic terms for the gauge fields

1 1 1
Lo=—tao,Gqm —wewe — 1B, B |

which is written in terms of the field strength tensors,
GY, = 0,G — 0,GY% + go f*"GLGE

7



The Standard Model of Particle Physics

WS, = 0,Wg — 0,Wi + ge™Wiwy
B, = d,B, — 8,B,

and fo¢(e?) are the structure constants for the SU(3)(SU(2)) groups. The
conserved charges for SU(3), SU(2) and U(1) are called color, weak isospin and
hypercharge.

The Higgs Mechanism

In this section we describe the Lggp + Ly part of the Lagrangian , which
is the part related to the SSB. As was described earlier, due to the requirement
of the gauge invariance, the bosons and fermions of the SM should be massless.
However, this is not what we observe in nature. Therefore, they get mass via
the Higgs mechanism, where the EW symmetry gets spontaneously broken to the
electromagnetic U(1)en, group due to a non-vanishing vacuum expectation value
(vev) of a scalar doublet, namely, the Higgs field.

Hence, one introduces an additional field ® (the Higgs field), that interacts
with the gauge sector in a gauge and Lorentz invariant manner and whose self-
interactions, must produce the wanted breaking, SU(2)r x U(1l)y — U(1)em-
This happens by ® attaining a non zero vacuum expectation value (0|®|0) # 0.

The SSB of the EW theory is based on the following Lagrangian

ACSSB = (D;LCI))T(D#(I))_V<(I))
V(@) = —p20io + A\(@T®)2; A >0

o — (‘2;) (1.4)

Here @ is a fundamental complex doublet with hypercharge Y (®) =1 and V(®)
is the simplest renormalizable potential.

There are two possibilities for the v.e.v. < 0|®|0 > that minimizes the po-
tential V(®), Fig. depending if —u? > 0, or —u? < 0.

where,

1) (—p?) > 0: The minimum is at:

< 0|®|0>=0. (1.5)



1.1 The Higgs Mechanism

The vacuum is symmetric and therefore no symmetry breaking occurs.

2) (—u%) < 0: Which is the interesting case, there are infinite degenerate
vacua which can break the SU(2)r, x U(1)y. The simplest choice which
also respects the U(1)ey, of the vacuum is:

0 2
< 0|D]0 >= < N ) L o= /K (1.6)
o) A
The physical spectrum is built by performing ’small oscillations’ around

AV(9) A V(d)

o

o)

é1 1

Figure 1.1: The Higgs potential. The diagram on the left belongs to the
case 1 ([1.5) and the diagram on the right to the case 2 (1.6)), where the con-
tinuous symmetry in the ¢; — ¢ plane can break in infinite different directions.

this vacuum. These are parametrized by

d(x) = exp (if(xﬁ) ( v+2(a:) > ) (1.7)
v V2

— —

where £(x) and H (x) are small fields. Then, the {(z) fields are gauged away,
and the kinetic piece of the scalar Lagrangian leads, after diagonalization,
to the mass term of the gauge bosons and the Higgs boson H

2,2 1 2 4 22
(DNQ’)T(D“@,) — <g4v> WJW“_ + 3 ((gf)u) 27" + ...
1
V(@) = Z(2u®)H?+ .. (1.8)

2



The Standard Model of Particle Physics

and we get finally the tree level predictions:

2 2
My = 2 ar, = YOI

Mg = V2u. (1.9)

The physical W*, Z and A fields are linear combinations of the original W
and B fields:
Wi — Wl/ll + /LWF?
I NG )
Zy = coW)} —suB),
Ay = suWP+ B, (1.10)

where 6 is the Weinberg angle tan 6 = ¢'/g. As can be seen the photon has
remained massless.

Now, by rewriting the SSB part of the above Lagrangian as
Lsps + Ly — Liee 4oty

where
Lhee = 19,HO"H — M3 H? |

one finds the self interaction terms of the Higgs field as well as its interac-
tions with gauge bosons and the fermion fields to be

: M3 M? — 2 1
oy = -Shat - S - szwﬂw + MEWEWH (1 +oH+ UQHZ)
1, 2 1,
+ 5 M32,2" (1 +oH+ S H > : (1.11)

where 9 stands for the fermion field (see relation ([1.3])). The masses of the
fermions of all three generations come from the Yukawa Lagrangian

Ly = - (a,d) @dp; = (@,d) @ up;
— Y (D“Z_)LEI’ZRJ' + he., (1.12)

10



1.2 Shortcomings of the SM

where )\;; are the Yukawa couplings, ® is defined in (1.4) and u, d and [ are
the quarks and charged leptons fields in the so-called flavour basis. Also
®° = jo9¢™ which carries hypercharge —1. After the SSB this takes the
form

H (- _
Ly = = (1+2) {deMadp +ap M, up + LM, U} - (1.13)

As can bee seen, neutrinos remain massless because no Yukawa term can
be written for them, since there are no right-handed components.

The matrices M are not diagonal, but can be diagonalized with two unitary
matrices U and W such that

M, = UlMy,Wy  Mg=UlMg,Wy  M; = UM, W, . (1.14)
Then the mass eigen—states of the quarks and lepton fields become

dy = Ugdyp uy = Uyug, I, =UlL
dp = Wadr Uy =Wuur ly=Wlg. (1.15)

This transformation on the fields introduces flavour mixing in the charged
current (CC) interactions

g - _
Loc = N {WJ [u;fy“(l —v5)Vigd; + my*(1 —fy5)l’} + h.c.} ,(1.16)

where V = UMU;r is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3,4].

Since in the SM neutrinos are massless, there is no need to define a CKM
type matrix for the leptonic sector because in that case one can always
redefine the neutrino flavours, so that 7l = 7 U/l = ,I,. But, when
they are assumed to be massive a similar procedure as for the quarks will
be assumed which, will be discussed in the next chapters.

Shortcomings of the SM

Although the SM is very successful, we know that it cannot be the final
description of nature. Despite its very accurate predictions, there are a
number of observations that do not fall within the scope of what the SM
can describe. The most overwhelming problem of the SM is the fact that

11



The Standard Model of Particle Physics

it does not contain gravity. Apart from this, the SM does not have a
viable dark matter candidate and is not capable of describing the baryon
asymmetry of the Universe in a satisfactory way.

Another issue which is more relevant to our work is that there are no neu-
trino masses in the model. On the other hand, it is necessary to give mass
to neutrinos to describe neutrino oscillations, a phenomenon that will be
treated extensively in the next chapter. In this case there will appear a
mixing in the lepton sector similar to that in the quark sector described
above.

One could give the Dirac type of mass to the neutrinos by introducing a right
handed degree of freedom to the SM similar to the charged leptons. Also,
one could introduce a dimensional five operator, which gives the Majorana
mass to the left handed neutrinos (see next chapter). However, both of
these scenarios are beyond the SM, even though the Higgs mechanism is at
work in both cases.

To conclude, even though the SM has been utterly successful in describing
particle interactions, an underlying model is necessary to be a theoretical
model consistent with these observations and to be able to produce the
same results as the SM ones in the energy range that it is applicable.

12
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2. EFFECTIVE FIELD THEORIES
AND CHPT

The basic premise of all the effective theories is that dynamics at low en-
ergies (or large distances) do not depend on the details of the dynamics at
high energies (or short distances) [1,[2]. For example, if we want to study
the motion of a macroscopic object, a ball, we will not care at all about the
internal dynamics of the molecules, atoms, nuclei or quarks. These will not
macroscopically produce any significant modification. The reason is that
the macroscopic object lives at scales (meters) widely separated from e.g.
the quarks’ ones ( ~ 10~!5 meters).

When we say low energy physics we mean those processes that happen at
an energy smaller than a certain scale A. The value of such a scale depends
on the particular system we study. Low-energy physics can be described
using an effective Lagrangian that contains only a few degrees of freedom,
ignoring additional degrees of freedom present at higher energies. This is
clearly an approximation to the problem, which can always be improved
adding corrections induced by the neglected energy scales. Eventually we
will need to check that a more complete description including all the degrees
of freedom (both heavy or light) gives the same outcomes as the effective
theory, at least approximately.

In fact, there is a theorem ascribed to Weinberg which states [6]: For a
given set of asymptotic states, perturbation theory with the most general
Lagrangian containing all the terms allowed by the assumed symmetries
will yield the most general S-matrix elements consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetries.
In other words, regardless of the underlying theory, when the degrees of
freedom and the symmetries relevant to the energy scale at hand are known,
the effective Lagrangian built based on them will address the same physics
of the underlying theory. So, when studying a specific phenomenon, it is

14



Effective Field Theories and ChPT

necessary to isolate the most relevant ingredients from the rest, so that one
can obtain a simple description without having to understand everything.

Let us show how an effective field theory is built up. As we said, one must
find a good set of variables to describe the dynamics of the system under
study, which means one must select the relevant degrees of freedom. Thus
we select the fields we want to include in our description and build up the
Lagrangian starting from them. To do this we find out the symmetries of the
system and write down all the operators invariant under those symmetries.
The resulting Lagrangian is a sum of operators O; [1]

L£L=> CiO;. (2.1)

The operators O; are built out of the fields and their derivatives and the
constants C; are couplings. They determine how important the operator
they multiply is.

We are already facing a problem in . In principle there is no limit to the
number of operators satisfying the symmetries we have required. But we
can not calculate the probability amplitudes with an infinite number of op-
erators. However dimensional analysis offers us a way out. The Lagrangian
density has dimension four in power of masses thus each term C;0O; in the
sum (|2.1) must have dimension four. This means that if the dimension of
the operator O; is d;, then the coupling C; must have dimension —d; + 4.

There is another striking feature in that we have not observed yet.
The operators O; contain only the light degrees of freedom, the light fields.
However, this Lagrangian must also contain the information of the heavy
degrees of freedom. These information can only be encoded then in the C;
which therefore must somehow depend on the high energy scales, so on A.

This last consideration, together with the dimensional analysis done before,
leads us to assume that the C; couplings scale as

1

(2.2)
This assumption imposes an ordering in the operators of . If O; has
a large dimension d;(d; > 4) the corresponding coupling C; is small. This
means that the dynamics predicted by that term of the Lagrangian are
suppressed and therefore can be neglected at a first approximation. The
operators of are thus ordered according to their dimensions. The

15



Effective Field Theories and ChPT

larger the dimension of O; the less important the corresponding term of £
is. As a consequence also the observables calculated in the effective field
theory framework will be ordered in an expansion of terms of increasing
importance. We stress that while the form of the operators O; in can
be inferred by the symmetries and the field content, we do not have any
information on the couplings C;. We need phenomenology to infer their
values.

Matching in Effective Field Theories

In this section we go through an important subject in effective field theories
namely matching, which we will use in future work on neutrino physics
as well. Following the above discussions it should be clear that a theory
that describes interactions at a given energy and below, should not depend
directly on the dynamics at higher energies. In fact due to the Appelquist-
Carazzone theorem (3] it is vital to use the effective theory for calculating
the evolution of the parameters below the high mass scale, to get meaningful
results. This theorem states that heavy particles decouple at energies much
smaller than their masses, so that physics is independent of them at these
energies, except for the possible appearance of effective operators.

A very subtle point is in order here that is, in perturbation theory, the
observables can be expressed in terms of Feynman loop diagrams where
the integration is carried out to infinity. Consequently, contributions from
all energies are present even in the low-energy observables. Therefore, one
should properly define, what one means under the statement low-energy
and be able to track down the effect of the high energy theory in the low
energy one via the couplings of the effective theory, as stated above. This
task is done by a process called matching.

One starts at a very large scale, that is with a very high renormalization
scale . At this energy the physics is described by a set of fields y, describ-
ing the heaviest particles of mass M, and a set of light particle fields ¢,
describing all the lighter particles. The Lagrangian has the form [4]

L= £X7¢ + £¢ , (2.3)

where L4 contains all the terms that depend only on the light fields and
L4 is everything else. One then runs parameters of the theory down with

16



2.1 Matching in Effective Field Theories

respect to the energy and until the heavy particle with mass M shows up,
this evolution is described by the renormalization group. However, when
1 goes below the mass, then one should change to a new effective theory
without the heavy particle, changing the parameters of the theory. The
Lagrangian of the effective theory below M has the form

L+ 0Ly, (2.4)

where 0L, is the part that contains all the changes. This can be seen
schematically in Fig. [2.1) We shall illustrate this phenomena via a toy model

Large Scale
S

¢j7 X
Lu(x, o)+ L(9) renorgr;rrlglllllz)atlon
w=M ,
particle mass MATCHING
L(}) + 5L(¢) renorélrlggf)atlon

Low Energy
?;

Figure 2.1: An schematic illustration of a matching calculation [4]
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example here. We start with the high energy Lagrangian

2 2

_ Lo mt o MT o, g,
£=5(09) R 5 X~ 59X, (2.5)

where ¢ and x denote the light and heavy fields with masses m and M,
respectively. Consider the scattering process ¢(p1)o(p2) — ¢(p3)d(ps) at
the energies £ ~ m < M where the dynamics of the light field is described
by the following effective Lagrangian

1 1 1
Lepy = 5C0(09)" = 5C16" = ;Ca0" (2.6)

Here Cy, C7 and Cs are the Wilson coefficients of the effective Lagrangian
which contain the information from the high energy theory. One can expand
these coeflicients as

Co=CV+cV+... c=cV4cWy . cy=cPV+cV+. .., @27

where the upper index indicates the corresponding loop order. At the
matching scale p = M, both Lagrangians should lead to the same dy-
namics that is, all the scattering amplitudes should be identical. First we
check this for the tree level amplitudes which are shown in Fig.

The amplitude from the Lagrangian (2.5)) is

g2

while for the effective theory it is given by
My = —ics” (2.9)

from which one can conclude

(0) 9 s

at the tree level. Also at this level C’éo):l and C’fo):m2 by comparing
propagators of ¢ in both theories.

At one loop things are a bit more involved as shown in Fig. The
two upper diagrams of this figure after renormalizing lead to the following
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2.1 Matching in Effective Field Theories

<+ L

oy

Figure 2.2: The tree-level scattering amplitude for the process ¢¢ — ¢¢ in
the model described by the Lagrangian given in Eq. (up), and by the La-
grangian (down). In the upper figure the single and double lines correspond
to the light and heavy fields, respectively.

amplitude [5

2 3m? m? 1m? 1 p?
Ma = i 3 i D 5T 1 5
M2
_ 1n(?)}, (2.11)

with m(u) and g(p) as the running mass and coupling in the original theory
and the index g stands for renormalized. Doing the same calculations for
the effective Lagrangian one finds

iC" () + ip*C§) (). (2.12)



Effective Field Theories and ChPT

Now, demanding the two amplitudes to match at u = M one finds the
Wilson coefficients of the effective theory to be

1 oM 2(M m?(M
=yt =Ty (H " )>' .

Since both theories have similar IR behavior, the IR divergent logarithms
cancel in the process of matching as can be seen from the above relations.
In fact this is a general property of all effective theories. Also the C’;l) co-
efficient should be derived from another matching shown in the Fig. [5].

Q

|-

oo oW

Figure 2.3: The self-energy of the light particle at one loop in the model described
by the Lagrangian given in Eq. (2.5)(up), and by the Lagrangian (2.6 (down).

+...= + +...

Figure 2.4: The second set of diagrams for one loop matching conditions.
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Finally, putting every thing together and using these Wilson coefficients,
after the field redefinition

¢—>¢J1—;m, (2.14)
one can write the effective Lagrangian as
Log = 5067 — 5l (06 — 1aers)é,  (2.15)
where
m2pp(n) = mip(n) - gfflff)’i) (1 + mgﬁi”) - ;ggf?ii))?fﬁ(m
Ges(p) = —39%\2(2M) +(3+ a)m, (2.16)

where a comes from the contribution of the Fig. 2.4 So, in the context of
an example, we have seen how the effects of physics at high energy scale
appear in the low energy theory via the couplings.

QCD and the Chiral Lagrangian

Equipped with the previous discussions, we go ahead to the case of QCD
at low energies. We know that in some cases it can be extremely diffi-
cult to extract useful predictions in a theory even when the Lagrangian
is well-known. The usual way to calculate physical observables from the
Lagrangian is through the use of perturbation theory. This means that if
the coupling that governs the interaction is smaller than 1 it is possible to
order the different contributions to physical observables in terms of increas-
ing powers in the couplings and thus in decreasing order of importance. To
obtain a prediction it is therefore sufficient to add enough contributions to
this perturbative expansion.

On the other hand, we know that quarks and gluons are confined within
hadrons and their dynamics is described by the SU(3)¢ of the SM. Due to
the fact that QCD is a renormalizable theory, the properties of confinement
and asymptotic freedom can be explained by seeing the evolution of the
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coupling constant as(FE) with the energy involved thanks to the equations
of the renormalization group. It is observed that as(F) decreases as the
energy F increases. Then QCD ceases to be perturbative at low energies
because the interactions are very strong and calculating any observable is
impossible. This is where hadrons are the relevant degrees of freedom,
not quarks and gluons. Unfortunately, a transformation that links the
Lagrangian of QCD and its parameters with the properties of the hadronic
states is not known. A widely used method of dealing with the problem
has been through effective theories. In the case of QCD at low energies,
this theory is called Chiral Perturbation Theory (ChPT) [6,/7]. Some good
reviews on the subject can be found in Refs. [1}§].

Let us first show the QCD Lagrangian. Due to the fact that three quarks,
u, d and s are much lighter than the ¢, b and ¢, one can write the QCD
Lagrangian only for light degrees of freedom as

Lo 1 a v
L= Z Y (iv" 0y + gsGHyy — m); — EGWGZL . (2.17)

j:u7d7s

For completeness we should also add a term as 6G,, Gnge!” a8 to this La-
grangian, which is also called the #—term. The numerical value of the cou-
pling 6 is very small (6 < 1071%). A lot of interesting physics arises from
such a term. However we will not consider its effects in here, since it is
beyond the scope of this thesis. For more detailed explanations we recom-
mend [§].

One can define the left handed and right handed fermion fields as

b=k, Yr= (1w, (215)

and ¢ = ¢p +¢¥pr. The QCD Lagrangian when written in terms of ¢y, and
1p writes

L= Z TLL]- (i’YMau + gsGM’Yu)ij + IZR]- (i’Vuau + gsGM'Yu)ij
j=u,d,s
- - 1
— m¢Lj¢Rj — meijj — ZGZVG’;V. (2.19)

22



2.3 External Fields

If one drops the mass terms the Lagrangian will be invariant under the
following transformations in the flavor space

Y=g YR — grYR, (2.20)

where (g1,9r) € SU(3)r x SU(3)r. Hence, the massless Lagrangian of
QCD is said to have SU(3)r, x SU(3)gr = G symmetry or the chiral sym-
metry in the flavor space. Of course, quarks are massive and the chiral
symmetry is not realized fully in nature and for the three lightest quarks
u,d, s, it could be assumed to hold approximately. In this scenario, the
masses of the light quarks play the role of the symmetry breaking parame-
ters whose magnitude is a measure for the extent to which chiral symmetry
is broken explicitly. However, as this symmetry is not visible in the spec-
trum of light hadrons, it should be spontaneously broken in nature due to
some spontaneous symmetry breaking (SSB) mechanism. This leads to the
global symmetry SU(3);, x SU(3)r = G to be reduced to the subgroup
H=SU@3)y.

Now, the Goldstone theorem [9] dictates that the difference between the
original number of generators and the final ones, should have turned into
Goldstone bosons. In the case at hand the number of Goldstone bosons is 8.
As the chiral symmetry is also broken explicitly due to the quark masses in
the QCD Lagrangian, the bosons could be recognized as the pseudo—scalar
mesons, which have acquired a small mass due to this explicit symmetry
breaking.

In QCD the global chiral symmetry is broken via the strong underlying
interactions, which lead to a quark condensate. This condensate made up
of a quark and an anti-quark is the order parameter and the corresponding
SSB is said to be a dynamical symmetry breaking.

The next step is to show how external fields are included into the QCD
Lagrangian.

External Fields

This was introduced in [10] to simplify the calculations and to include inter-
actions like the electromagnetic and some of the weak ones. Furthermore it
allows to perform calculations maintaining the chiral symmetry throughout.

23



Effective Field Theories and ChPT

We consider again the Lagrangian for three-flavor QCD dropping the mass
terms and the gluon tensor field G,,,. But we incorporate now also a few
new fields called external fields (or sources).

L= > hip(i"0u + gsG*y)tir, + ir(iv*0u + gsG"vu)tir

i,j=u,d,s
— Pin(s —ip)ijhir — Vir(s +ip)ij WL + Vi (vu — ap)ij Vi
+ YirY (vu + ap)ijir - (2.21)

In there are four new fields s = 5%\ /2, p = p*Aa/2, v = v Aa/2, 0y =
ayAa /2. These depend on the space-time coordinates and are Hermitian
3 x 3 matrices. Chiral symmetry for the massless QCD Lagrangian is a
global symmetry, but thanks to these new sources it is possible to pro-
mote it to a local symmetry for the Lagrangian in . We assume the
operators (gr,gr) € SU(3)r x SU(3)R, depending now on the space-time
coordinates, to act on the fields as

VL = g1tr, Yr — grYr, (s+1ip) = gr(s+ip)g)
lu = (UM - au) - ngugE - iaﬂngE?
ru = (u+au) = grTgR — 10u9RIR - (2.22)

By plugging the transformation rules (2.22) in (2.21]) it is possible to show
that the Lagrangian (2.21) is invariant under local chiral transformations.

This is due to the particular transformations of the fields [, and r,.

Then, for example, the gauge fields of electroweak interactions can be au-
tomatically included as external fields by the substitution

_ 92 oo 2 972 + —
b = eQAu+ 2 (72 = sin? O ) Z,, + 7 (Wit + W),

T, = eQA, — sin® 0w Z,, (2.23)

cosOyy

with e, go and Oy, the electromagnetic coupling constant, the gauge cou-
pling constant of SU(2), and the weak mixing angle, respectively. Also

(2 0 0
Q=30 -1 0 |,
0 0 -1



2.4 Non-Linear Sigma Model

and
1 1 0 0
TZ - 5 —1 0 5
0O 0 -1
0 Vud Vus
T.={o0o o o |,
0 0 0

with V;; the elements of the CKM matrix.

For example if we identify the field v, with a photon field eQA,, we can
recover the electromagnetic interactions. Furthermore the field s provides
us with a very elegant way to include also the quark masses. We can indeed

identify
m, O 0
s=M = 0 mg O . (2.24)
0 0 mg

To understand how an effective theory, using the expansion in powers of
momenta can actually describe dynamics of the Goldstone bosons correctly,
forgetting about the underlying theory, we digress to the Linear Sigma
model as an example.

Non-Linear Sigma Model

Let’s start with the linear sigma model Lagrangian

L= %aw)T 0,6\ (0" ¢ - 1/2>2 , (2.25)

where the vector field ¢ = (¢1, ..., ¢n) is an N-component real scalar field.
The potential has its minimum at |¢| = v. The set of field configurations
that satisfy this equation is known as vacuum manifold and in this example
is the set of points ¢ = (¢1, ..., o) which satisfy ¢Z = ¢3 + ... + ¢ = V2.
This Lagrangian has a global O(N) symmetry under which ¢ transforms
as an O(N) vector. We assume that among an infinite number of ground
states that satisfy this condition, one of them is chosen dynamically so that
¢o = (0,0, ..,v). Hence, the symmetry is spontaneously broken to the sub-
group H = O(N — 1). This leads to the generation of N — 1 Goldstone
bosons according to the Goldstone theorem [9], which are taken to be 7.
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Expanding around this minimum and switching to polar coordinates, one
finds

0

0

(N-1) O'i .t .
o=(p+vyexp(i Y )| (2.26)

1

where o; are the Pauli matrices. Plugging back into the above Lagrangian,
one ends up with

1 1
L= 50upd"p = Np® +20p)* + 5 (v + p)?

N=1) i i (N-1)

X [0y exp(—1 Z g )O* exp(i Z

i %

ot - mt

NN, (2.27)

where [|yn is the NN element of the matrix. Then assuming that in the low
energy limit the p field is absent |11], one finds the corresponding effective
Lagrangian of the non-linear sigma model to be

1 (N-1) ol (N-1) ot ot
Lepr = 51/2[8“ exp(—i Z > )OH exp(i Z Minn.  (2.28)

% )

It can be seen that the coupling is proportional to momentum and the w
field has remained massless. Now the stage is set to introduce the ChPT.

ChPT

As was mentioned before, in the low energy domain a thorough analysis of
the QCD dynamics in terms of quarks and gluons is a highly non pertur-
bative problem. A description in terms of the hadronic states seems more
adequate. We have seen that there are 8 pseudo-Goldstone bosons arising
from the SSB of chiral symmetry identified with the pseudo scalar mesons.
Notice that there is a mass gap separating these pseudo-scalars from the
rest of the hadronic spectrum, the next particle in mass, the p meson, being
away from the octet. This allows us to build an effective field theory con-
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2.5 ChPT

taining only the Goldstone bosons as degrees of freedom, like the non-linear
sigma model, and basically forgetting about the quarks and gluons.

To construct an effective theory of strong interactions at low energies one
would build an effective Lagrangian for a process happening at a scale p <
A, using a expansion in powers of p/A where A is the cut—off of the model
to be around 1 GeV and p is the momenta. Then the Lagrangian could be
organized as a series of growing powers of momenta, i.e. of derivatives as

L=Lo+ L4+ ..Lop, (2.29)

where the subscript indicates the number of derivatives. The most impor-
tant contribution to a given amplitude comes from the tree level Lagrangian,
Lo. The next to leading order Lagrangian is £4 and so on.

The most general Lagrangian invariant under Lorentz and chiral transfor-
mations at the lowest order has the form [7]

F? F2
Ly = TOTT(DMUTD“U) + ZOTr(UxT +xU, (2.30)

where Fj is the pion decay constant, x = 2By(s + ip) and By is a constant
related to the chiral quark condensate. U is the SU(3) matrix, written in
terms of the meson fields as

iV 2
U= exp(iqﬁ) : (2.31)
Fy
where . .
¢ = T —%ﬂ'?(—){— 1677 K20
K K —
The covariant derivative is
D, U =0,U —ir,U+iUl, , (2.32)

with left and right fields [, and 7.

As we discussed above, the effective Lagrangian can be written in terms of a
sum of Lagrangians ordered by the dimensions of their operators. In ChPT
after the O(p?) Lagrangian we can decide to go to higher order and build
up the O(p*) one containing operators of dimension 4. The Lagrangian of
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the order p* has the form [7]

Ly = Li(D,U'D"U)? + Ly(D,U'D,U)(D*UTD"U)
+ L3(D*U'D,UD"U'D,U) 4 Ly(D*UTD,UY (XU + xUT)
+ Lsy(D*UTD,U(XTU + UTx)) 4+ Le(X U + xUN? + Lo (xTU — xUT)?
+ Ls(X'UX'U + xU\UT) — iLo(FE D*UDYUT + FL, D*UTD'U)

_|_

Li(UTFLUF™) | (2.33)
with non-Abelian field strengths

Flf;‘/ = oMY = 9"rH —i[rt,r],

L _ v v - v
FL = oMy —orer —ifen 0], (2.34)

Each of the operators in ([2.30]) and (2.33]) can contain in principle as many
mesons as wanted. These arise from the expansions of the U matrix. As
a consequence we can draw infinitely many Feynman diagrams. We clearly
cannot calculate contributions from an infinite set of diagrams. One might
wonder whether with ChPT we can predict any quantity at all.

Luckily also the Feynman diagrams, as the Lagrangians, can be ordered in
a systematic way according to the expected size of their contributions. This
is once again done through a power counting of the momenta in the different
parts of the diagram. Thus if we want to calculate an observable we first
must decide at which order in the momentum expansion we want to stop to
get the desired precision. Then we calculate as many diagrams as needed.
The procedure is illustrated in Fig A vertex from Lo in counts as
two powers of momenta since it has two derivatives or M?2. Also, because
of the mathematical form of the propagator 1/(p? — M?) an internal line
counts as 1/p%. Finally, the loop integration gives a power of p*. We will
use these rules in our calculations when computing the local and non-local
Green functions (see next sections).

As can be seen, the expansion in ChPT is organized in powers of momenta
p and mass. When one wants to calculate an observable one needs to take
matrix elements of the operators in the Lagrangian. From the previous
discussions, the coefficient of an operator with d derivatives behaves as
1/A@=%_ Therefore the effect of a d derivatives vertex is of order p®/A(4—4)
and at an energy small compared to A, the more derivatives are involved
the smaller is the contribution to the matrix element. Hence, the contri-

28



2.5 ChPT

~p’ ~ 1/p® Jd'p=p'

~ (p*)? (1/p*)*p* = p* ~ (p*) (1/p*) p* = p*

Figure 2.5: The upper part diagrams show the power counting rules. The lower
diagrams are loop diagrams [12].

bution from (2.33)) is smaller than the one of (2.30). Notice that in the
Lagrangian (2.30) and (2.33]) the external fields appear as well. The fields

[ and r count as a derivative so as momentum, while s and p contribute as

P2

The couplings in and have the role in ChPT of the C; in (2.1))
and one needs to infer their values from experiments. In order to identify
from which physical observables one can find out their values, one must
look at the operators they multiply and check which are the processes they
are responsible for.

At the lowest order O(p?), the effective ChPT Lagrangian £» depends only
on two low-energy couplings. The next to leading order Lagrangian, L4,
which includes couplings of O(p?), introduces seven (ten) additional cou-
pling constants for the two (three) quark flavors case [7].

Predictions of the O(p?) and O(p*) chiral Lagrangians are in very good
agreement with experimental observations. Some examples can be found in
Refs. [1,[8]. Now, phenomenological precision obliges us to go to the next—
to—next—to leading order or O(p®). This task was accomplished in Refs. [13]
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and [14]). Through the use of partial integration, the equations of motion,
Bianchi identities and the Cayley-Hamilton relations for SU(n) matrices,
the authors of Ref. |[13] managed to write down a basis of operators for Lg
in the even-intrinsic-parity sector for n = 2 (n = 3) light flavors consisting
of 90(53) terms plus 4(4) contact terms. For the sake of completeness we
have shown the terms of the O(p%) Lagrangian in the Appendix.

To be able to construct these operators, we introduce a new notation which
will be more appropriate for our calculations. We define

u, = i{ul(d, —iry)u—u(d, —il,)u'}
ye = ulyul +uxtu, (2.35)

where

u = exp <\/§iﬂ)¢) , (2.36)

is the Goldstone matrix field, r,, = v,+a, and ¢, = v,—a,. The Lagrangian
of lowest order takes the form

g
Lo = e (uput + x4) . (2.37)

To go to higher orders like O(p°®) one will need additional operators [13]

i = uFf”ML + uTFﬁuu , Vi,
hyw = Vyuu, +Vyu,,
)
X+p = uTDuqu + uDMXTu =Vux+ — 5{)(;, uu}t, (2.38)

with D, x = 0,x — ir,Xx + ixl,. The covariant derivative
VX =0,X + [y, X], (2.39)
is defined in terms of the chiral connection

1
r,= i{UT(au —ir)u +u(d, — il )ul} . (2.40)

The matrices u,, fi, by and V) fiY7 are also traceless.
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The First paper (see Chapter )

Motivation

So as it was stated, the number of the operators in the O(p®) chiral La-
grangian increases significantly, compared to the lower order Lagrangians
and the pattern shows that by going to higher orders, this number will in-
crease even more. The question is, now that one has to deal with such a
large number of terms, does one know for sure that there is no redundancy
in the Lagrangian? In other words, is the minimality of this Lagrangian
proved?

In recent years, an additional relation among the operators in the basis
of |13] for the n = 2 case was proven [15|, where no additional manip-
ulations but those already used in [13] were required. This showed that
the derivation of an algorithm to exhaust all possible algebraic conditions
among the Lg operators imposed by partial integration, equations of mo-
tion, Bianchi identities and, particularly, Cayley-Hamilton relations, is a
nontrivial task.

Therefore, the question about the minimality of the O(p%) chiral Lagrangian
is proper and, to the best of our knowledge, remains unanswered. It is our
aim to describe a method that provides necessary conditions for the exis-
tence of additional relations between the operators of the L4 Lagrangian.

By doing so one could be sure that is not dealing with unnecessary operators
in calculations and also, one will not have to go through experiments to
extract the value of redundant coupling constants. Needless to say that,
even if one has resources to do so, it is not practical because many of the
operators contribute to processes in the lowest approximation which are
phenomenologically irrelevant [13].

Based on what we said before, our aim is not to find the possible alge-
braic conditions among the Lg operators using the common approach to
the problem. In fact, we know that processes with up to 6 mesons legs or
two vector or axial-vector currents are far off experimentally which means,
for practical purposes it would be enough to check the minimality of the
Lagrangian up to this approximation and not to the operator level. Besides
that, if one can reach this level of precision, the task of checking the min-
imality at the operator level will be hugely simplified. So, we have chosen
to check the minimality of the basis of the O(p%) Lagrangian up to this ap-
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proximation. This has allowed us to develop a mechanism which, although
computationally involved, is straightforward and with automatization can
be generalized to any number of basis.

Furthermore, to simplify the calculations and establish the method (see
below), we have chosen to work in the chiral SU(2) flavor limit, without
external scalar or pseudo scalar sources. That is, we only have pions as
pseudo scalar mesons and we also set all the masses equal to zero. Of
course, when the method is established, one can generalize it to the case of
SU(3) flavor including the masses as well.

The Method

To answer the question of the minimality of the order pb chiral Lagrangian,
instead of using the algebraic conditions (used in [13]) we analyze the Green
functions built from arbitrary linear combinations of the operators in the
basis and demand them to vanish for an arbitrary kinematic configuration.
Then, if we find some relations between the operators involved in the pro-
cess, we can say these operators are not independent (it is explained below
via an example). On the other hand, if the method allows for new relations,
it cannot immediately answer the question about the minimality of the set,
but it has the advantage that it gives the precise form that the (potential)
new relations among the operator must have.

The method involves the computation of tree-level Green functions of order
p8. Despite being tree-level, the large number of operators in L£g and their
involved Lorentz structure, containing vertices with up to six derivatives,
produce rather long expressions. The latter can nevertheless be handled
easily with the help of computer tools, and the method lends itself easily
to automatization.

The general structure of the O(p®) ChPT Lagrangian, in the n = 3 case
reads [13}/14]
90
EEU(B) = Z C;O; + 4 contact terms , (2.41)
i=1

which for the n = 2 case, in which we are interested, becomes [13}14]

53
EEU(Z) = Z ¢iP; + 4 contact terms , (2.42)

=1
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where P; and O; are the basis elements and ¢; and C; are the corresponding
low energy constants. As we said, we work in the chiral limit without
external scalar and pseudo scalar sources. This leaves us with 27 + 2 of the
53 4 4 operators.

In this limit, v, and a,, the external vector and axial sources respectively,
are general traceless 2 X 2 matrices

Uil V12 ai; a2
vy = and a, = . (2.43)
vt~ ) az —an )

It should be mentioned that we do not confine ourselves to the Standard
Model vector and axial currents, but allow for the parametrization of other
possible beyond-the-Standard-Model currents. Also, the matrix ¢ in the
two flavor-case collects the pion fields,

1.0 +
¢ = ( fff T ) : (2.44)

On the other hand, as we work in the chiral limit and since quark masses
are introduced in the ChPT meson amplitudes through the scalar matrix
s, then we can put s = 0. In addition we also set p = 0 and therefore, we
can drop all operators containing the x tensor in what follows.

Now, to check the independency of the basis of the Lagrangian in this
specific limit, we are going to find the solutions of the following relation

d ePi=0 . (2.45)
=1

So, we demand that the matrix elements which include these operators to
vanish

O[T d(z1)p(x2) - .. fr(y1) f2(y2) /d%ZaZ ( )\O Y =0, (2.46)

where, «; are real or complex numbers, ¢ an arbitrary number of pion fields
and f; = v, a, s, p external field sources. Therefore, by calculating the
amplitude in terms of the coefficients ¢; and the Lorentz invariants; which
in general can have any value as we are assuming an arbitrary kinematic
configuration; and demanding it to vanish, we are able to find the relations
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between the operators contributing to each matrix element, if there exist
any.

To demonstrate how our method works in a crystal clear manner, we will
explain it using an example, step by step. That is the decay of an off-shell
photon to four pions, 77, 7~ and two 7°, which we denote symbolically as
(v*47). The Feynman diagrams belonging to this Green function at order
p® are shown in Figs. and As can be seen, there exist two types of
diagrams, those without internal pion lines, which we call local, and those
with a pion propagator, which we call non-local. The local diagrams only
include the p® Lagrangian. The non-local diagrams consist of two vertices
of which, one is of order p® and the other p? but still, the whole diagram re-
mains of order pb, following the laws of power counting described in Fig.
We work in the momentum space for the sake of convenience and take all
the momenta to be incoming. Using the energy momentum conservation,
we are able to write one momentum in term of the others. Then, we have
4 independent momenta, p;, p2, p3 and ps and one polarization vector, €
belonging to the photon field. By taking the pion fields to be on-shell, we
can eliminate the momentum squared via the on-shell condition, p? = 0.
Therefore, we have 10 different Lorentz invariants, p; -€, p1-p2, p1-P3, P1-P4,
Po - €, P2 - P3, P2 - P4, P3 - €, P3 - p4 and py - €, in terms of which the ampli-
tudes are written. Operators which contribute to the local amplitude are
P1,P3, Por, Pag, P3g, P37, Pas, Ps1 and Ps3. On the other hand, the con-
tribution to the non-local amplitude comes from the O(p?) Lagrangian as
well as the operators P51 and Ps3 of the O(p®) Lagrangian. In the non-local
case, both Lagrangians can contribute to each vertex.

The total amplitude in this case is too large to be shown here. However,
after calculating the total amplitude, we multiply the contribution of each
operator by an arbitrary coefficient, «;, and adding up all contributions,
demand the whole amplitude to vanish. This will lead to a set of coupled
equations to be solved to find the «a;s. The set of equations to be solved in
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this case has the general form

8 (—6627 — 24651) = 0,
6 (—12c1 + 12¢o + 12¢3 + 6c36 + 638 — 8cs1) = 0,
8 (—12¢o — 24¢3 + 6c36 — 4es1) = 0,

16 (—6c3 + 9car — 6cos + 3cz6 — 3ca7 + 9ess + 9ez1 — 3es3) = 0,
16 (12¢1 — 12c9 — 6¢3 + 3cag — 9ezg — 9esg + 25¢51 — 3es3) = 0,
8 (—12¢3 + 6¢38 — 2¢51 — 2¢53) = 0,
16 (2¢51 — 2c53) = 0,
8 (6¢51 — 2¢53) = 0,
18 (—24c1 + 24eg + 30c3 — 3ea7 + 9esp + 15¢37 — 21ess — best — c53) = 0,
14 (12¢5 + 6c3 — 3c27 + 3cs6 — Iess — 51 — ¢33) = 0,
14 (—12¢9 — 6¢3 + 3c27 — 3c36 + 9Yessg + 51 + ¢53) = 0,

7+ (p1)

7 (p2)

o(p3)

7o(pa)

Figure 2.6: The local diagram.
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m(p1) T+ (p1)

mo(p1 +P2+/Pz)<</ 7 (p2) 7 (1 + 3+ pa) o(p3)
AN " i

mo(pa) 7_(py)

Figure 2.7: The non-local diagrams.

Now, if some of the operators are not independent, we will find some rela-
tions between the given coefficients as explained before. Obviously, doing
this calculation without automatization is not practical. After solving all
these equations together, one will find the following relations between the
operators involved in this process.

Results
The combination of matrix elements
(vv), (vaa), (vv2m), (aa2m), (vir), (67), (2.48)

already involve all the operators in the limit we are cheking that is the
SU(2) with s = p = 0. However, operators P;; and Ps5 only appear in
(vaa) and hence we need another matrix element namely (vvar) to which
Py5 contributes in order to fix it completely. Therefore, as a whole one
needs to calculate seven Green functions.
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Combining the equations for ¢; found for the different Green functions we
get
€38 = C50 = C52 = C55 = C56 = 0,
c1 (8P1 = 2Py + 6Py — 20 Poy + 8Pas + 12Pag — 16 Pag — 3Py + 3 Pyg
— 6P31 +12P32 — 3 P33 + 8Pag — 8 P37 — 11Pag + 5 Pyg + 14 Py
— 8Py — 9Pus +3Pas — 3Pus — 6Ps1 — 6Ps3) = 0

+ co7 (87727+8P28 —2Pog+2P30 —4P31 +8P3a —2P33 — 2 P39 + 2Py

+ 4Py — 2Py +2Pag — 2Pas — 4 P51 —4Ps) =0, (2.49)

which holds for whatever values of ¢; and co7. In other words, the two lin-
ear combinations among the operators P; between parenthesis must vanish
independently. It leads to

4Po7 + 4Pog — Pog + P3og — 2P31 +4 P32 — P33 — Psg+ Pao+ 2Pu
—Pag+ Paa— Pys —2P51 —2P53 =0, (2.50)

8P1 — 2Py 4+ 6Pz — 20 Pag + 8Pas + 12Pag — 12Pa7 — 28 Pag + 8 P3g — 8 P37
—8P39+2Pso+8Py1 —8Pya —6Py3=0. (2.51)

But, these relations were already shown to exist analytically in Refs. [15/16].
Therefore, using our method we have concluded that these are the only
operator relations which can exist in the limit we have studied and the
original basis of 27 measurable terms plus 2 contact terms written in [13] in
the even-intrinsic-parity sector has 25+2 independent terms. Also, the fact
that they are proved analytically as well, confirms our method. The point
is, even if the two relations had not been proved analytically, our method
would be useful to be sure that up to this approximation there are two
relations and to be sure that they hold at the operator level.
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Appendix
monomial (Y;) ‘ SU(n) ‘ SU(3) ‘ SU(2) ‘ contributes to
(u - why, W) 1 1 1 T — T
(u - u)(hu,h*) 2 T — T
(hywupht uf) 3 3 2 T — T
(hywtp) (W uP) 4 T — T
(hyw (uphtPu” + u” hHPuy,)) 5 4 3 T — T
(hupup) (W*Pu”) 6 T — T
((w-u)®x4) 7 5 4 T — T
((w-u)?) (x1) 8 6 T — T
(u-u)(u-ux4) 9 7 T — T
(u-u)?(x+) 10 T — T
(u - uwx+ut) 11 8 T — T
(u - wwy) (x4ut) 12 9 T — T
(Xt upuy utu’) 13 10 5 T — T
(X+) (upuputu®) 14 11 T — T
(Xt uyuy ) (utu) 15 T — T
(x4 ) (upu)? 16 T — T
(X+huh*) 17 12 6 (mm)
(X+) (hy M) 18 13 ()
(u-ux?t) 19 14 7 (m)
(u - ux4)(x+) 20 15 8 ()
(u-u)(x2) 21 16 (mm)
(u-u)(x+)? 22 (mm)
(X+upx+ur) 23 17 9 (m)
Dt 2 | 18 ()
(x3) 25 19 10 (7rm)
0 2% | 20 | n (rer)
(xs)? 27 | o ()
i (x—{huw, u’u"}) 28 22 12 T — T
i (x—huw)(uu”) 29 23 T — T

Table 2.1:
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’ monomial (Y;) ‘ SU(n) ‘ SU(3) ‘ SU(2) ‘ contributes to
i (hputu?)(x-) 30 24 T — T
i (hyutx_u") 31 25 13 T — T
i (huut)(x—u") 32 T — T
(u - ux?) 33 26 14 T — T
(u-ux—)(x-) 34 27 15 T — T
(u-u)(x%) 35 28 T — T
(u-u)(x_)? 36 T — T
(upx—utx—) 37 29 16 T — T
(uyx—)? 38 30 T — T
(X4 39 31 17 (m7)
O () 40 32 18 (m7)
(X+x=)(x-) 41 33 19 ()
() (x)? 1 ()
§(x-Dx ) B s | 0 | F
i (x-) (0 ) “ | o3| oo FE (1)
() () 5| 36 FE (1)
(o)’ 6 | 37 (55)
(et 7| s | 2 (55)
(xap)? 48 39 23 (SS)
((u-u)?) 49 40 24 T — 41
((w-u)?)(u - u) 50 41 T — 4
(u - u)? 51 T — 4m
(u - uuyu - uut) 52 42 T — 4w
(u - uuy)? 53 43 T — 4w
(u - uuyu,utu’) 54 44 25 T — 4m
(u - uuyuy,) (U u”) 55 T — 41
(u - u)(uyu,)? 56 T — 41
(u - u)(uyu,utu”) 57 45 T — 41
(upuyuputu’ul) 58 46 26 T — 4w
(upuyu,)? 59 T — 4w
(upuyuputulu”) 60 47 T — 4w
(upuyup) (U ulu’) 61 T — 4w

Table 2.1:
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monomial (Y;) ‘ SU(n) ‘ SU(3) ‘ SU(2) ‘ contributes to

(upuy) (upurulu’) 62 T — A
(upuy) (U, ) (u?uf) 63 mm — 4w
i <f+;u/{u u, UHUV}> 64 48 v — 4w
i(u-u ><f+u,,u“u ) 65 49 v — 4Amw
i (frmuputu’u?) 66 50 27 v —4rn
i (frputu - uu) 67 51 28 v — 4w
i (frmd{up, utuPu}) 68 52 v — 4w
i (frptp) (U u?ul) 69 v — Ar
(Lol ) ) 70 7o dm
(u-wfyuwfi) 71 53 29 Y — T
<u ><f+,uuf > 72 54 YY — T
(frpupfiuP) 73 55 30 Ny = T
(i) 74 vy =
(Fopw fiPu"u,) 75 56 31 vy = T
<f+;wf+ Upt ) 76 o7 32 YY — T
(o F20) (¥ up) 77 58 vy =
([ (up [P0 +u” fPu,)) 78 59 33 vy = T
<f+,uuup><f+p Y) 79 YY — T
(Frmu? ) (Fi up) 80 60 VY = T
O frm FE7) 81 61 34 (VV)
O ) S 1) 82 62 (VV)

i (frpdxs, ufu”}) 83 63 Fy(t), Ki3
i Oc) (fputu) 84 64 FE(t), Kis
i (foputxgu”) 85 65 35 F7(t), Kis
(f—pw (WPu u? + utu,hP)) 86 66 36 Ky
<ffwh"’)><u“up> 87 67 37 Ky
(f_w,u“><h pup> 88 68 Kl4
(f—pw (UWFRYPu, + u,hVPul)) 89 69 38 K
(w-uf_p f“”) 90 70 39 K,
(- w)(fpu f27) 91 71 Ky
(f-pup fiuP) 92 72 40 K,

Table 2.1:
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’ monomial (Y;)

‘ SU(n) ‘ SU(3) ‘ SU(2) ‘ contributes to

(f-pwap)? 93 Ky

(fopw F2Pu ) 94 73 41 Ky

(f=pw P upu?) 95 74 42 K,

(fop FE2) (uup) 96 75 Ky

(fopw (upfEPu” + u” fHPu,)) 97 76 43 K,y

(f-pwtp) (fEPu”) 98 K4,

(o) (2 up) 99 7 Ky

U (fru [ f20, h8]) 100 78 44 T — Iy

L (fm[F205 FED) 101 79 45 (VAA)

X+ fo F27) 102 80 46 (AA)

O ) o f27) 103 | 81 (AA)

(frm " x=]) 104 82 47 T — vy

(-, utu”]) 105 83 48 Ky

i (fou”)(utx-) 106 84 Ki

(Fo Xt w}) 107 85 49 (VAA)

O () 108 | 86 (VAA)

(Vof VP L) 109 87 50 (AA)

i (Vo [y [P, u"]) 110 88 51 Fr(t), Kis
L (VFfyu [ 2P up)) 111 89 52 T — vy

L (VH o [h7P ) 112 90 53 FE(1), K3

contact terms

(D, xDH*xT) 113 91 54

i (FrLu,Fi°F{,) + L — R 114 92 55

(D,FruDPFI"y + L — R 115 93 56

additional contact term for SU(3)

det(x) + h.c. 94

additional contact term for SU(2)

(DuxD*X) + h.c. 57

Table 2.1:  O(p%) operators in the basis of [13].
refers to the numbering scheme used in the latter reference.

The label in the first column
The last column

indicates the simplest Green function to which the operator contributes. Also,

u - u stands for u,u”.
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3. NEUTRINO PHYSICS AND RENOR-
MALIZATION GROUP EQUATIONS

The first sign of neutrinos appeared via the study of the nuclear beta decay
in the 1920s
n—p+e +7.. (3.1)

Normally the energy of the electron in the final state is expected to be
given as E, = M; — My, but the experiments showed that the energy of the
electron covers a continuous range from m, to the maximum allowed value.
Many people tried to explain this phenomenon and even Niels Bohr went as
far as questioning the energy conservation principle. Finally in 1930 Wolf-
gang Pauli proposed that the missing energy could be taken away by a new
particle, which had not been observed to that date, with spin 1/2 and zero
electric charge. These new particles, called neutrinos, remained unobserved
until 1956 when Reines and Cowan detected them [1]. Further studies
showed that neutrinos were chiral particles and led to the V-A nature of
weak interactions, to which neutrinos contribute. Later on muon neutrinos
were discovered via the interaction 7+ — u* + v and it was demonstrated
by L. Lederman, M. Schwarz and J. Steinberger in 1962 that the type of
neutrino involved in this process was v,,. Finally, the neutrino belonging
to the third lepton 7 was also discovered in July 2000 by the DONUT col-
laboration [2]. Even though at the beginning neutrinos were assumed to be
massless and the SM was constructed with massless neutrinos, oscillation
experiments have shown that neutrinos are massive. Therefore in coming
sections we describe the experimental bounds on the neutrino masses and
introduce the models which can accommodate the mass of neutrinos.
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d

Limits on the Neutrino masses

To measure the neutrino mass directly one can use the kinematics to put
an upper bound on it. Taking into account that 14,15 and v3 are primary
mass components of v, v, and v; respectively, the upper limits on the 7,
mass from different experiments read [6]

my, < 22eV [7] at 20. (3.2)

If one assumes that neutrinos are Majorana, then the neutrinoless double
beta decay experiments should be studied. A double beta decay experi-
ment can be described via the Feynman diagram in the Fig. while the
neutrinoless double beta decay experiment is showed in Fig. which is
sometimes called the lobster diagram.

- - u d - - u
e w
w i o
Ve M
Ve e~
W B %%
€ — -
i > d u
U

Figure 3.2: The Feynman diagram

Figure 3.1: The Feynman diagram for the neutrinoless double beta de-
for the double beta decay experi- cay experiment, the lobster dia-
ment [6] gram [6]

The expression for the effective neutrino mass in neutrinoless double beta
decay is

M. =| ZUermj E (3.3)
J

which is a function of mixing angles and phases and the upper limit is
M. <04 eV [5)].
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3.2 Neutrino mass and See-saw mechanism

Also, there are some bounds from cosmological observations on the neutrino
masses which are model dependent. Combining the Cosmic Microwave
Background (CMB) data of the WMAP experiment with supernovae data
and data on galaxy clustering one can obtain an upper limit on the sum of
neutrinos masses. Depending on the model complexity and the input data
used one obtains (up to 20) [8]:

> m; < (0.3—1.3)eV. (3.4)

Assuming the validity of the ACDM (Cold Dark Matter) model, and us-
ing the Planck experiment data on the CMB temperature power spectrum
anisotropies, polarization and gravitational lensing effects, the Planck Col-
laboration reported the following updated upper limit on the sum of the
neutrino masses (up to 20) [9;/10]

> m; <057eV. (3.5)
J

Now that the limits on neutrino masses are known, we go ahead to consider
the consequences of massive neutrinos.

Neutrino mass and See-saw mechanism

First we will review some basic properties of the Dirac equation and its
solutions. We know that a Dirac spinor can be written in the form

U =19 +vYgr, (3.6)

where ¥, and ¥pr represent the left chiral and right chiral fermion fields,
respectively. This can be seen more clearly by introducing the projection
operator

1— 1
_ V5 and Pr — + 75

P,
L 2 2 )

(3.7)
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which has the effect

PV =79y,
PrY = ¢p,
VP, =g,
TPy =y . (3.8)

These projectors are useful for massless as well as massive Dirac particles.

Another useful operator is the charge conjugation operator which is defined
for the fermion field as follows

¥ = CT = Cyou,
(3.9)

where C = iyp72. In correspondence with the aforementioned properties of
the ¥ one should note that

(Y1) = (¥°)r and (Yr) = (¥°)L. (3.10)
This property can be interesting in the case that
Y = (Yr)®,
Yr = (YL)°, (3.11)

which, neglecting a possible phase factor, boils down to

Yo =1 (3.12)

This is the definition of a Majorana field.

The See-saw mechanism

Using the above definitions one can define two types of masses for fermions
namely, the Dirac mass and the Majorana mass. The Dirac mass term reads

Lp=—MpWpir +Vr¥R). (3.13)
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3.2 Neutrino mass and See-saw mechanism

Also, taking into account the properties of the operator C, the Majorana
mass term takes the form

Lo = — g Mu(05n + B0) — s Ma(Piin + Un) . (3.14)

where the notation wz( R) = (Yr(ry) is in use. Tt is worthwhile to mention
that both of the above mass terms violate the chiral symmetry, while the
Majorana mass term violates the lepton number symmetry as well.

Both of these masses can be used to write a general fermion mass term

1. — | — _
Lfass = —5MiBEwL — 5 Maliaon — Mpbrir + he,
11—
= —§\IICLM\I/L + h.c., (3.15)
with
U, = ¢CL and M= | M Mp (3.16)
¢R MD MR
To diagonalize this matrix we define
g cosf sind and  UL=U| ). (317
—sinf cosé XL2
Then

My 0 \ [ cosf —sinf M; Mp cos@ sinf (3.18)

0 M, ) \ sinf cosé Mp Mg —sinf cosf )
where the masses are real but can be positive or negative. Demanding the
off diagonal terms to vanish one finds the mixing angle to be

2M
Now, the diagonalized mass term reads
LY v L=
Laig = =5 Mixipxir — 5 Maxapxar + hec., (3.20)
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which describes two Majorana fields with masses M; and M» and the eigen-
values become

M M My, — Mp)?
M12: R+ L:I:\/( L y R) +M12) (321)

So far we have considered the fermion fields in general but, the Majorana
mass term is allowed only for electrically neutral particles since otherwise
it would violate charge conservation. Therefore, it is belived that the only
candidates to have a Majorana mass in the SM are neutrinos.

Moreover, in the context of the SM the Majorana mass for the left handed
neutrinos is not allowed due to the SU(2) gauge invariance. This can be
cured via the Higgs mechanism by introducing the dimension 5 Weinberg
operator

L. — % 79, o ¢, + hc. . (3.22)

This is an effective Lagrangian where; based on what we said about the
effective Lagrangians in the previous chapter; the effect of the heavy degrees
of freedom is given by A and ks is a complex symmetric matrix. Also, I,
is the left handed lepton field of the SM and @ is the standard model Higgs
doublet. After the SSB the neutral component of the Higgs field will get
the vacuum expectation value (®¢) = v/v/2 with v = 246 GeV. When
the Higgs field gets the vev this term becomes a Majorana mass term for
the left handed neutrinos. The only issue with this operator is that it is
not renormalizable. In a fundamental theory it should be generated by
"integrating out” some heavier new states. One way to provide this is the
See-saw mechanism.

If one adds singlet right handed neutrinos to the SM, they can get the
Majorana mass, which in principle can be very heavy. Also, a Dirac mass
term could be created via the Lagrangian (3.13)). Hence, following the above

calculation, writing
U, = ( VL ) (3.23)
VR

instead of (3.16)), taking My = 0 and the limit Mp > Mp, the eigenval-
ues (3.21) belong to two Majorana neutrinos, one which is very heavy and
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3.2 Neutrino mass and See-saw mechanism

another one which is very light such that

M?
M, ~-——L
1 A .(R )
My ~ Mg, (3.24)

where the minus sign can be absorbed by a phase redifinition [11]. The
corresponding eigenstates read

o, Mp
X1L = V[, Mr R >
Mp
~ Vs — vy 3.25
X2L VR+MRVL (3.25)

Which are approximately the left handed fields defined above, but with
a small admixture of order %—g. Now, if one assumes Mp to be around
100 GeV which corresponds to the EW scale, taking Mp to be around
10™ GeV, then M; = 0.1 eV which is compatible with the upper limit of
the left handed neutrino masses. This is the essence of the Type-1 See-saw

mechanism.

Another interesting limit to consider is when My = Mpr = 0 and Mp # 0.
In this case, the mixing angle is maximal § = /4 and the eigenstates
become

1
X1L = E(VL - Vlc%)a
1
XL = E(VL +VR), (3.26)

which shows that a Dirac fermion can be written in terms of two Majorana
fermions with identical masses. For the case of Mp = 0, the rotation matrix
is the identity.

In short, in type one See-saw one adds singlet right handed neutrinos to
the SM and using the Higgs field one can create a Dirac mass. At the same
time, the right handed neutrino can get a Majorana mass term, which can
be very large in principle compared to the Higgs vev. This will lead to a
mass matrix which after diagonalization leads to a light left handed mass
term. In type two See-saw, there are no right handed neutrinos and instead,
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one writes down the Majorana mass term directly using a new SU(2) triplet
scalar field. The new triplet, combined with the two left handed doublets of
leptons, will lead to a singlet under the group transformations. Finally, the
type three See-saw is similar to type one with a fermion triplet replacing
the right handed neutrinos. Different types of the See-saw are shown in
the Fig. [3:3] It should be stressed that all of these variants of the See-saw
mechanism boil down to the Weinberg operator, when the heavy degrees of
freedom are integrated out.

N e
N . X FH R
~ - Y ~ -
RN Np ~ H A RN Sk 7 g
N e * N 7
g - ﬂ
e AN /\
type — Iseesaw type — I1seesaw type — I11seesaw

Figure 3.3: See-saw different scenarios

In fact, the nature of neutrinos is still unknown and they can be of Dirac
or Majorana type. There are many ongoing experiments [3]— [5] to test this
point however, we take both to be equally probable. Therefore, one of our
projects deals with Majorana neutrinos and the other with Dirac neutrinos
(next sections).

Neutrino oscillations in vacuum

As Bruno Pontecorvo [12] predicted many years ago, when neutrinos are
massive the flavor mixing will happen for neutrinos in vacuum. We know
that the weak eigenstates of quarks are related to the mass eigenstates by
the CKM matrix [13]

d d
§ | =VeEM [ o | (3.27)
v b
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As it was discussed in chapter [I] the same thing happens for the lepton
sector, when neutrinos are massive, that is

Ve V1
vy | = UPMNS -, , (3.28)
Vr 123

where Upjsns stands for Pontecorvo-Maki-Nakagawa-Sakata unitary ma-
trix [12,/14]. Now, since it is not practical to measure the mass of neutrinos
at least for the time being, one has to write the amplitudes in term of all
mass eigenstates and due to the fact that each state evolves with a different
phase, one will inevitably face oscillations in flavor space. We will elaborate
more on this in coming paragraphs. Writing

[va) =D Unilva) (3.29)

one can write a well defined flavor state in terms of mass states, at a dis-
tance L from the production point, and at a time t after production in the
following form

ANEDY U;je—iEﬂ“Pijuj) , (3.30)
j

where E; = 1/p? + m?. Calculating the amplitude for the transition from
one flavor state to another, using (v;|v;) = d;;, one finds

M(va — vp;t, L) = (vplva(t, L))

= 2 UaUske™ 5 (vl
.j7k

=Y U4,Ugje Pttt (3.31)
J

By squaring the amplitude one finds the probability of the transition to be
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P(VA — UB; t, L) = Z U:UUBjUAkUEke_i(Ej_Ek)t+i(pj_pk)L . (3.32)
Jik
Since we do not know when precisely each neutrino is produced, therefore
we should integrate over time

1
Plva—vsil) = 5 [dtPwa—vsit, D

1 (i —
= = S U, UnUnUe®POLS(E; — B,
Jik
4Am?kL
~ Y UkUpUapUppe™ 25, (3.33)
j7k“
where N is a normalization constant and the approximation
2 2

m; m;
pi:,/Eg_mggE,-—zégE—ﬁ, (3.34)

(2

has been used in the limit p — FE. As it can be seen, the probability

depends on the energy E the distance L and the mass squared difference

Am?k = m? — m%, not the absolute masses.

Two flavor case

To be more specific, we consider the case of two flavor oscillations [6]. Let’s
assume the oscillation takes place between the electron and muon neutrino
flavors. Ignoring the Majorana phases for the case of the Majorana neutrino

(1/@)_( co.sﬁ 81n9><1/1>. (3.35)
vy —sin @ cos 6 V9

Assuming that the initial state is an electron neutrino it can be written in

one has

terms of the mass states as follows

lv(t =0)) = |ve) = cos O|v1) + sin O|va) . (3.36)
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3.3 Neutrino oscillations in vacuum

Then the probability takes the form

Am3, L

P(ve — vy; L) = sin® 2 0sin?| 15 !,

(3.37)
which depends on the neutrino energy E and the mass difference (Am3, =
m3—m3), also called the solar mass Am? ;. The other mass square difference
which appears in the three flavor case (Am3; = m3 —m3) is also called the
atmospheric mass Am?2,,, see Fig. [3.4 For the three generation case, the
mixing matrix parameters which are the three angles have already been
measured but the CP phase remains undetermined. Apart from this, it is
not known which is the hierarchy of the masses, normal (NH) or inverted

(IH), as represented in Fig. 3.4

[ — (m,j)2 (mz)z— —
(Amz)sol
(ml)2 ]
VC
(Am®),,,,
v
K (Amz)atm
m v,
— s (m,)’
(A[nz)sol
- (m,)’ (m,)’m —
normal hierarchy inverted hierarchy

Figure 3.4: Different mass hierarchy scenarios
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For the case of three flavors, one can use the matrices

1 0 0
O, =10 cosfas sinfas | ,
0 —sinfog cosbag
cos 613 0 sinfze™

02 - 0 1 O 5
—sinfy3e¢® 0 cos f13

cosfiy sinfios 0
03 = —sin 912 COS 912 0 5 (3.38)
0 0 1

with the Dirac phase ¢ and the Majorana phase matrix

et 0 0
F'=]10 €% 0], (3.39)
0 0 1

in the Standard Parametrization to have

/
c12€13 512€13 s13e”"
, , )
— 23512 — $23513C12€%0  CogCia — S23513512€"  sazcrg | F, (3.40)

i i
893512 — €23513C12€"°  —S23C12 — €23513512€"  €23C13

where, ¢pn = €08 Omp, Spn = Sin Oy

The global status of the neutrino mixing parameters is given in Tab.

Quantity Best Fit | 30 Range
Am3, (107 eV?) | 7.60 7.1-8.16
Am3, (1073 eV?) | 246 | 2.30 — 2.59

% 33.02 | 30-365
03, 489 | 38517
°, 841 | 7.82-9.02

Table 3.1: The global fits for the neutrino mixing parameters [16]
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3.3 Neutrino oscillations in vacuum

CP and T violating effects

In principle one can assume that the oscillation probability violates CP or
T that is

P(vy —vp) # P(va — vp),
P(vg — vp) # P(vg — va), (3.41)

while CPT is conserved
P(I/A — VB) = P(DB — ﬂA) . (3.42)

Now one can calculate the probability P(v4 — vp) for the three flavor case,
which, yields

Cim2 L
P(va = vp) = | UpiUije ™75 > =3 |Up; |*|Uaj |
j j

Am?kL)

+ > 2Re[Up;UgUs;U k] cos o

j<k

Am?kL>

+ 3 2Im[Up; U Ui Ui sin ( o7

i<k

(3.43)

2 _ 2 2
where Amj; = mj —mj.

There are some points to be observed in this relation. By making a CP
change that is changing U — U™, the "cos" term does not change sign while
the "sin" term does. It means that as long as § = 0 or § = 7, there is no
CP violating effect in which case the imaginary part of the mixing matrix
vanishes. Studying the time reversal effect, which is the exchange vp — v4
one can come to the same conclusion. And finally, making both changes,
U — U* and vp — v, together, which is equal to v — ¥, one can probe
that the CPT invariance holds for the oscillation probability.

Using the unitary property of the matrix U namely
> UpiUk; = 0aB,
i

> UaUh; =645, (3.44)
A
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one can find relations between the U dependent coefficients of the above
relation, especially for J]‘-‘}CB = —Im[UAjUZkUngBk] which deals with the
CP and T invariant property. Along with the unitarity one can also use the
symmetries

Tl = —JiP = —JhA (3.45)
and
TP =it =0, (3.46)
to obtain the additional relations
JiP = JiB = J4P. (3.47)
Using these facts one finds that there exist one coefficient

J=Jh = _Im[UelUZ1U:2Up2]
= c13513512C12523C3 SN 0, (3.48)
called Jarlskog parameter, in terms of which all other non vanishing coeffi-

cients can be written. Putting everything together the transition probabil-
ity reads

s Am2 L  /Am2.L  sAm2. L
P,y = A2, sm( 4Elf ) + A% sin (ﬁ) + AL sm( 4E1u3 )

o Ami, Ly . Am3 Ly . AmiL
+ 8J sin ( 1B, ) sin ( 1B, ) sin ( 1B, ) ) (3.49)

where use has been made of the trigonometric relation

b
sina +sin 8 —sin (a + f) = 4sin(g) sin( =) sin (M) , (3.50)
2 2 2
and the notation

A = —ARe[UaiUp, Ui, U] - (3.51)

In the above relation, the part that controls the CP and T violation effects
is the second part, which depends on the Jarlskog parameter. The morals
that can be drawn from this relation are first, to have CP and T violation,
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0 must be non trivial. Second, the mixing angles 012, 23 and 613 must be
2

Am?z. L
non vanishing and finally, the quantity Tg must be non vanishing, which
means all oscillation modes should be active.

The HSMU Hypothesis

After introducing some features of the neutrino physics in previous sections,
here we introduce the main objective of our work in neutrino physics. Due
to grand unified theories [17]- [20], quarks and leptons get unified at high
scales and appear in the same fundamental representation, therefore one
may conclude that their weak interaction properties parametrized by means
of the CKM and PMNS matrices will get unified at high scales as well. On
the other hand, as experimental results show [21]- [23], the elements of the
PMNS matrix are large whereas those of the CKM matrix are close to unity.
Indeed, there have been many studies suggesting that this occurs due to the
running of the RGE equations of the neutrino mixing parameters, that is,
assuming that the elements are small at high scales, their values can change
drastically [24]- [27] when running them down to the EW scale. The only
assumption needed to realize this scenario is that the neutrino masses are
quasi degenerate and hierarchical. Using these facts and assuming that at
the unification scale

where 0;; (with 4,5 = 1,2,3) are leptonic mixing angles and 9% are the
quark mixing angles, Mohapatra et. al. showed that in fact this idea
works [28]- [29]. Later on they considered its properties for the case of
non zero Dirac and Majorana phases as well [30] and took into account the
threshold corrections [55] to bring the solar mass squared difference into
the experimental range. Later on this idea, known as high scale mixing
unification hypothesis (HSMU), was revised in the light of new experimental
data [31,32] and was also extended to the case of Dirac neutrinos as well [33].
This hypothesis nicely explains the pattern of mixings in the neutrino sector
including the recent observation of a nonzero small value of 613 [34]— [38].

What we are going to do is to generalise the HSMU hypothesis in the way
that the equality of the CKM and PMNS matrices is replaced by propor-
tionality (see next sections).
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Minimal Supersymmetric Model

As we are going to discuss the Renormalization Group Equations for neu-
trino mixing parameters, both in the context of the SM and the Minimal
Supersymmetric Model (MSSM), since in our work both parts will be used,
we need to comment on the basis of the MSSM to the extent that is relevant
to our work. A good review on Supersymmetry (SUSY) can be found in
Ref. [39]. SUSY is based on the fact that for every fermion (boson) there
exists a boson (fermion), which is its partner and has exactly the same
quantum numbers apart from spin. However, since the super partners have
not been observed in nature, one introduces the SUSY breaking, which we
will talk about later on. The minimal extension of the SM so as to include
the supersymmetry is called the MSSM. The particle content of the MSSM
is shown in Tab.

spin 0 spin 3 spin 1 | (SU(3),SU(2),Uy(1))
quarks(squarks) (ar, JL) (ur,dr) - (3,2, %)
UR UR - (3,1, %)
iR dR - (3,1,—3)
leptons(sleptons) | (7,ér) (v,er) (1,2,-1)
én eR - (1,1,-1)
higgs(higgsinos) | (hf, hY) | (hf,hj) - (1,2,3)
(hgshg) | (hghg) | - (1,2,—3)
gluons(gluinos) - g g (8,1,0)
W -bosons(winos) - WE WO | wE wo (1,3,0)
B-boson (bino) — B B (1,1,0)

Table 3.2: The particle content of the MSSM in terms of the chiral and gauge
eigenstates and the representation in the SM gauge groups. The transformation
property under SU(3) x SU(2) and the value of Uy (1) is given in the last column.
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3.6 Renormalization Group Equations

As was mentioned before, since the super partners have never been observed,
one has to assume that one way or another the SUSY is broken. In our
work, we take the scale of SUSY breaking to be at 2 TeV, which is in
accordance with the recent SUSY searches in accelerators [40,/41].

The MSSM contains two Higgs doublets which introduces new scalar degrees
of freedom. Apart from that, as it is always the case for 2HDM models, it
introduces two vevs, 11 and v, whose ratio is defined as tan 8 = Z—f This
becomes important when running the MSSM RGs.

Renormalization Group Equations

After the invention of the renormalization group by Stuckelberg and Peter-
mann [42] in 1953, it was studied by Gell-mann and Low [43] who applied
the approach to short distance quantum electrodynamics and also by Bo-
goliubov and Shirkov [44]. Then, Wilson [45]- [47] applied it to study the
critical phenomena in statistical physics and won the Nobel prize of 1982 for
his decisive contributions in this field. Finally Callan and Symanzik [48}/49]
investigated the energy-scale dependence of Green’s functions in general
quantum field theories, and were able to conclude the renormalization-group
equation, which was also named after them. The basic idea is that when a
theory is renormalized at a given scale, p, it remains so under variation of
1 by changing the values of coupling constants and masses, g and m, which
are functions of p themselves. Demanding that a physical quantity like an
scattering matrix element is invariant under change of u, the renormaliza-
tion group equation as an specific form of the Callan-Symanzik equation

reads
oS oS oS
op Py "o =0 (3.53)
where
dg(w) p Om(p)
_ __pomu 54

We are especially interested in the 5 function, which gives the rate of change
of the renormalized coupling with respect to the fixed bare charge, at a given
scale p [50]. In our analysis, we are going to study the change of the Yukawa
couplings of the given Lagrangian for which we will need to calculate the g
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function. As for the Majorana neutrinos, we are dealing with the Weinberg

operator (3.55))

L, = % e, E{bsbaqﬁa +h.c., (3.55)

that can be built out of the SM particle content and gives Majorana mass
to left handed neutrinos.

For example, if one assumes that the Lagrangian is derived via the
see—saw type-1 mechanism then, x can be derived below the scale A via
the renormalization group equations (RGE), without considering the heavy
right handed neutrinos.

This is motivated by the arguments given in the previous chapter on ef-
fective field theories. Consequently, one has to integrate out the heavy
Majorana neutrinos from the theory when using the effective theory [51]
and make sure that heavy particles do not contribute to the g-functions at
low energy.

To calculate the RGEs for the coupling constant of the effective operator one
has to calculate the relevant loop diagrams. The one-loop diagrams with
leptons and scalars that are relevant to this purpose are shown in Fig. (3.5
Also the ones with U(1)y gauge bosons, B, are listed in the Fig. while
those with W; are the same with B replaced by W;. At the one-loop level,
x obeys the RGE [52]

e

16
T

= C |(V.YDr + w(VYHT| + ax, (3.56)

where ¢ = In(u/A) and p is a random scale below the See-saw scale and
above the SM scale. The coefficients C' are

C = —; in the SM (3.57)
and
C =1 in the MSSM (3.58)

and the o coefficients read

asu = =363+ 202 +yp+vD) +6 (v H syl +oR bl ul) + A,
6
assw = —=f — 695 +6 (v + 92 +ui) | (3.59)
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(d) (e)

Figure 3.5: One-loop diagrams with leptons and scalars.

where g, g, and g5 are the gauge couplings. They satisfy their own RGEs
which writes

dag:
16#2% = a;g3 , (3.60)

where (a;,as,a3) = (41/10,—19/6,—7) in the SM or (33/5,1,—3) in the
MSSM. Also, A, the Higgs self-coupling, satisfies the RGE

dA 3 373 2
16W2E =622 — 3\ (59% + 3g§> +3 (59% +g§) + 395

+ANTE [3(Y, Y1) + 3(vaYd) + (Y]

=T [3(Y, Y2430V + (VY2 (3.61)
where Y}, Y, and Y, are the charged lepton, up-type quarks, down-type

quarks Yukawa coupling matrix, respectively. Using these RGEs one can
evaluate the running of the Yukawas of quarks and leptons from the high
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Figure 3.6: One-loop diagrams with U(1)y gauge bosons, B

scale to the SM scale and the other way around. Then we are going to
examine the behaviour of the neutrino mixing parameters during this run-
ning.

Running neutrino mass parameters

Assuming that Y} is diagonal in the sense that Y] = Iy = Diag{ye, yu, Y-},
where y; is the Yukawa of a given flavor, taking into account that the 7
Yukawa is much bigger than the one of the other leptons, defining ( =

Am%
Am§3
of the PMNS matrix (3.40)), one finds the running equation of the neutrino

L with Ams; and Amesggz defined in Fig. and using the definition
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3.7 Running neutrino mass parameters

parameters as follows [53], [54]

2 ip1 ip2 |2
. B y2 . 9 |my e"P1 + mg e'P2|
012 = _327'('2 sin 26019 sin” 693 Amgd + 0(013) 7(3'62)

2
T m3

013

sin 2012 sin 2923

" 322 AmZ, (140)
X [m1 cos(¢1 — 6) — (1 4 ¢) ma cos(pa — 0) — (mg cosd]
+ O(b13), (3.63)
2 i 2
» Yr 1 2 i 2, .2 |mie +mg|
fo3 = ~ 39,2 Sin 2053 m 1o Imao €'?? 4+ ms|* + s79 ¢
+0(613) , (3.64)

where the dot is the logarithmic derivative with respect to the renormal-
ization scale 0 = p (d/du)f. The RGE for the Dirac phase is given by

. Cy2 st Oyl
0= 3272 f13 * 871'25 +00h) (3.69)

ms
ATnztm (1 + C)
[m1sin(p; —0) — (1 + ¢) ma sin(gp2—9) + ¢mg sind] ,(3.66a)

5(0) _ T2 533 sin(p1 — o)
Am?

5(71) = sin 2015 sin 2093

X

sol
5 | M1 cos2093 singy  macdy sin(20 — ¢2)
A7TL<3L‘cn1(1 + C) ATn‘atm
2 .
mi Cie sin(20 — me cos 2093 sin
+mgcly |2 (20=¢1)  mo 28 TRP2 | (3.66b)
ATnatm(l + C) ATna‘nm

63



Neutrino physics and Renormalization Group Equations

For the physical Majorana phases, we obtain

) Cy? mis?y sin g + (14 ¢) ma c2y sin gy
= T 20
T e {m3 con s AZ (1+0)
2 2
mi11Mo C S Sin —
+ 12”532w19m}+0@@, (3.67)
msol
. Cy; misiy sin g1 + (14 ) ma iy sin g
= 26
7T e T AmZ,, (1+0)
2 2
mimo s S Sin —
4 T2 51 2 (p1 — #2) } +O(b13) . (3.68)
msol

Without loss of accuracy one can neglect ¢ against 1 in many cases. For
the masses, the results for y. =y, = 0 are

1672 = [a+ Cup? (253 535+ B ) | (3.692)
1672y = [aw + Cuy? (20d 535 + Fo) | ms (3.69b)
16721y = [ + 2Cxy? ¢y cBy| ma (3.69¢)

where F7 and F5 contain terms proportional to sin 613,

F| = —s13 sin 2675 sin 2093 cosd + 23%3 0%2 c§3 , (3.70a)
Fy = 513 sin 2619 sin 263 cos § + 2575 5% ¢35 . (3.70b)

These formulae can be translated into RGEs for the mass squared differ-
ences,

d
87'1'2 %Amgol = O Amgol
b Ot 2 (mehy - mi ) + R 710)
d
82 ﬁAmfwm: o Am2,

+ Cuy? {ng ci3 o3 — 2m3 cfy 533 + Fatm] , (3.71Db)
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where
F = (m% + m%) $13 sin 2619 sin 2653 cos d

+ 2573 Ch3 (m% sty —mi C%Q) ; (3.72a)

Fatm = —m3 s13 sin 2015 sin 2093 cos § — 2m3 533 519 ¢33 . (3.72b)

Some discussions on the basic features of RGEs of the three neutrino masses,
three flavor mixing angles and three CP—violating phases are in order.

(a) The running of neutrino Yukawa couplings «,, or masses m;, are deter-
mined by a, unless the y2-associated term is enhanced by large values of
tan 5. Also they are independent of the CP—violating phase §.

(b) Taking into account that only the derivative of 615 is proportional to
1/Am?,,, regarding the current solar and atmospheric neutrino oscillation
data yield, 612 is more sensitive to radiative corrections than 613 and 6o3.
Although its evolution can be downgraded adjusting the value of 1 — @s.
Also, one can observe that 613 can be radiatively generated even from zero

initial value.

(¢c) The variation of Dirac phase & is proportional to 91_31 therefore, its
running is different from 1 and ¢o. For small values of 613, § becomes large
and divergent in the limit 15 — 0. Also, d can be radiatively generated.
It is interesting to note that 8 can be kept finite even when 615 approaches
zero, by fine-tuning of 9§, 1 and s, which can be used to know the relation
between § and two Majorana phases in this limit.

The Second Paper (see Chapter )

Motivation

Inspired by the HSMU hypothesis discussed above, we ask the question,
why the CKM and PMNS should be taken exactly equal at the high scale.
In fact, there is no symmetry to avoid them to be proportional. From here
we postulate the most general relations among the quark and the leptonic
mixing angles at the unification scale. In a compactified form the most
general relation among the leptonic and the quark mixing angles within the
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same generations is as following
10 = o 0%, 015 = ab? 0%, B3 = k6] (3.73)
12 = 12> 13 — Gy V13, 23 — tk3 Usg, .

where k;, with i = (1,2, 3) are real exponents. We refer to this relation as
the, high scale mixing relation, (HSMR). We have chosen (k1, k2, k3) to be
(1,1,1) for the simplicity of our analysis. The relations within the same
generations are the simplest generalization of the HSMU hypothesis.

The Method

The working of the HSMU hypothesis is as follows. The implementation
of the HSMU hypothesis requires the minimum supersymmetric standard
model (MSSM) as an extension of the standard model (SM). One first
evolves the quark mixing angles from the low scale (mass of the Z boson) to
the supersymmetry (SUSY) breaking scale using the SM RG equations, dis-
cussed before. After that, from the SUSY breaking scale to the unification
scale, evolution of quark mixing angles is governed by the MSSM RG equa-
tions. In the next step, the quark mixing angles at the unification scale,
are put equal to those of the neutrinos following the HSMU hypothesis.
The leptonic mixing parameters are then run from the unification scale to
the SUSY breaking scale using the MSSM RG equations. From the SUSY
breaking scale to the low scale, mixing parameters are evolved through the
SM RG equations.

Effects of the Large tan 5 and Threshold Corrections

We would like to highlight two important effects which the MSSM has in our
calculations. The first one is the effect of a large tan 5. To show the tan g
dependence of our results we do some numerics. As in the SM y, =~ 0.01,
the constant including this factor will amount to

3y3 —6
~ 0.5.1 74
6172 0.5.1077, (3.74)
and in the MSSM it becomes
33 0.5.107%(1 + tan 5?) (3.75)
6472 ’
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which means the running of angles get enhanced by a factor of (14 tan 5?)
and that is why we choose the large value of tan 5 = 55.

Another important contribution of the MSSM to our calculation is called
the threshold correction. As it was discussed in the context of effective field
theories, the effect of High energy physics demonstrates itself at low energy
(at the scale where the heavy degrees of freedom are integrated out) via the
Wilson coefficients of the effective Lagrangian. These high energy effects
appear order by order that is, in tree level and loops.

Now, the running of the neutrino parameters from high scale to the low
scale, happens in two regions. First in the context of MSSM and then SM.
This being the case, one would expect that by passing the MSSM breaking
scale 2 TeV, where all the heavy super partners are getting integrated out,
their effect shows up in the low energy theory, and this is indeed the case.
However, a delicacy is involved here. As the super partners can have dif-
ferent masses in general, when approaching the MSSM breaking scale while
running down the parameters, one should integrate them out one by one
and do the matching accordingly. The corrections imposed this way on the
masses and couplings, are called threshold corrections.

In fact, without calculating these corrections and do the matching while
assuming all the super partner masses to be degenerate, all parameters
can be brought into the experimental range but one, which is the solar
mass square Am3,. But, after taking into account the MSSM threshold
corrections [55] the general mass term for neutrinos can be written as

M, (1) = I(Mp, ) MJT" (Mg, 1) + 6M™, (3.76)

where, u is the scale of the RG running, My is the new physics scale, which
can be the See-saw scale and M defines the threshold corrections to the
mass. These corrections read

(Am3))im = 2m®cos2012[—2Te + T, + T;],

(Am3y), = 2m®sin®19[—2Te + T, + T,),

(Am3)m = 2m?cos? 012[—2Te + T, + T,], (3.77)
where m is the mean mass of the Quasi Degenerate (QD) neutrinos and
the one loop factor Tx(& = e,p,7) is a function of y5 = 1 — 22 with

xa = Mg/My. Mg stands for wino mass and M, represents the mass
of charged sleptons [56,/57]. We work with an inverted hierarchy in the
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chargedfslepton Sector where the mass of the selectron is defined through
the ratio R = M . The mass of the wino is chosen to be 400 GeV following
the direct searches at the LHC [40,41]. In short, the threshold correction
effect helps the solar mass squared to come in range.

Different Scenarios for the Proportionality at High Scale

There will be different possibilities depending on the relations among the
proportionality factors in relation . We firstly list below the different
possible cases with the maximum and the minimum allowed values of the
three independent proportionality factors «,

Case A: 013 = o™ 0%, 013 = ™ 0%, O3 = Q™ 0%, (3.78)
Case B: 012 = o 0%, 013 = 015, 03 =af"™ 0%, (3.79)
Case C: (012 = o™ 0y, 013 =" 05, 03 = 5" 03, (3.80)
Case D: 013 =al"™@ 0%, O13=al™ 0%, O3 =™ 0%, (3.81)
Case E: 01 =al™ 0%, 015 = al® 0%, Oy = ol 0%, (3.82)
Case F: 612 =a/"" 0%, 013 =03 01,5, 03 =™ 0%, (3.83)
Case G : 01 =" 0}y, 013=a8"" 0];, 03 =al" 03, (3.84)
Case H: 01 =al™ 0%, 015 =™ 0%, O = ag”m 0%,. (3.85)

Then we move on to scenarios where the «; are related. There can be more
general HSMR where two proportionality constants can be identical and the
third one is different. However we will discuss in this work more simplified
scenarios, where the three proportionality constants are equal.

912 = Otkl 9(1]2, (913 = Osz 0(113, 923 = a’“3«9§3. (3.86)

As explained before we have restricted the values of k; as either 0 or 1.
We note that the value (ki,k2,k3) = (0,0,0) will reduce HSMR to the
HSMU hypothesis making Eq. a specific form of HSMR, Eq. .
We present below the seven different possible cases, where the quark mixing
angles are assumed to be proportional to the corresponding leptonic mixing
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angles.
Casel: fip=abl,,  013=70], O3 = 02, (3.87)
Case 2: 012 = 0, 013 = o 65, Oa3 = 03, (3.88)
Case 3: 010 =0,, 613 = 05, b3 = o 0, (3.89)
Case 4 : 012 = a 0, b3 = o 6, 023 = 03, (3.90)
Case 5 : 012 = 61,, 613 = o 6, O3 = o 0, (3.91)
Case 6 : 012 = o 0, 613 = 05, O3 = o 0, (3.92)
Case 7 : 012 = o 0, b3 = o 6, O3 = v 6. (3.93)

The proportionality constant « in the above relations is taken as a real pa-
rameter. We have carried out a detailed study for these cases in the second
paper. We have used the MATHEMATICA based package REAP [58] for
the numerical computation of our results.

Results

We have thoroughly investigated the implications and the phenomenolog-
ical consequences of all the possible cases, taking into account the latest
experimental constraints. The whole analysis has been done with the as-
sumption of normal hierarchy and QD mass pattern. In general, we have
discovered three new correlations among Am%Q, My, 015 and the sum of
neutrino masses. These correlations were not investigated in previous stud-
ies.

The different scenarios of the HSMR can be discriminated through mea-
surements of various observables like M., and by precise determination of
the values of the mixing angles, particularly the 6,3 and 623 mixing angles.
As we have shown in the figures for various cases as well in the tables,
the allowed ranges for M., and the angles are different for different cases
and a precise determination of these observables can be used as a way to
distinguish various cases of HSMR. In addition to neutrino observables one
can also use other processes like lepton—flavor violation to distinguish the
different allowed cases. The mass—splitting in the charged—slepton sector
is given by the ratio R = MM;T The ratio R almost discriminates every
scenario and hence, processes like 4 — ey, u — eee and the anomalous
magnetic moment of the electron. For example, the SUSY contribution to
the anomalous magnetic moment of the electron directly depends on the
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ratio R [59]. The detailed study of this aspect of the work is beyond the
scope of this paper.

Finally, in short, the crux of our paper is following.

— We have proposed and studied the HSMR hypothesis which is a more
general framework than the HSMU hypothesis.

— The HSMR hypothesis provides a very simple explanation of the ob-
served large neutrino mixing. The present and future neutrino exper-
iments can easily test predictions of our work. If our predictions are
confirmed by experiments, like GERDA, it would be a good hint of
quark-lepton unification at the high scale.

— We observe that the HSMU hypothesis represents the o« = 1 limit of
the HSMR hypothesis and is constrained by the lowest allowed value of
M. which is 0.384 MeV. Therefore, if the HSMU hypothesis is ruled
out by experiments, like GERDA, the other HSMR cases with a # 1
may survive and their confirmation would be itself a strong hint of the

proportionality between quark and leptonic mixing angles which is the
basis of the HSMR hypothesis.

— We have done a rigorous, thorough and comprehensive study with the
HSMR hypothesis which does not exist in the literature. All results
reported in the literature using the HSMU hypothesis, are a very small
subset of our results with the HSMR hypothesis presented in our paper.
Moreover, we have also thoroughly compared the HSMR hypothesis
with respect to the HSMU.

— In our work, we have discovered new strong correlations among differ-
ent experimental observables for every limit of the HSMR hypothesis.
These correlations do not exist in the literature and are easily testable
in present ongoing experiments. For example, there is a strong corre-
lation between Am%z and M. This correlation can be easily tested
by the GERDA experiment. There are two more such correlations
namely among 62, >, m; and M., discussed in our work which are
completely new and unexplored in the literature.

— Furthermore, we have comprehensively studied a strong correlation
between o3 and 613 and predictions can be easily tested in present
ongoing experiments. This correlation was studied in a previous study
in a specific limit. Since we have done a comprehensive full parameter
scan, this correlation has become a robust band now.
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Results Within the Type-1 See-saw Framework

The dimensional five operator originates from integrating out the heavy
degrees of freedom and it can be realized in six different ways [60]. How-
ever, regardless of which model is used at the high scale, the shape of the
dimensional five operator will be the same. It is worth while to mention
that even above the EW scale the mass of the left handed neutrino runs
via Yukawas. The same happens to the mass of right handed neutrinos in
models like See-saw.

What the REAP package does is to calculate the x matrix in relation
at the high scale using the values of the masses which we give as the input.
Then, using the RG equation runs it down to the SUSY breaking scale, via
the dimensional five operator and finally, from there to the Z mass scale
using the standard model RG equations. The difference between the two
runnings originates from the different particle content of the models and
the fact that SUSY has two Higgs doublets while the SM only has one.

In the first step, we have taken A «~ 10'* GeV and assumed that whatever
new physics which can exist, will show up above this energy range and hence
is not covered in our study because, we have taken the HSMU(R) scale to
be 104 GeV as well, which makes our work totally model independent. It
means, we do not care about which specific model will enter the game (type
one, two, three See-saw, etc.) above this scale. On the other hand, if one
wants to have the right handed singlets which are then integrated out (as
we have considered in our work), one can take the scale of HSMU(R) to
be higher, while keeping the scale of new physics below that. Then using
the See-saw model, both RGs run, while below that, the right handed field
will be integrated out and to run the RGs one only runs the Yukawa of
the left handed neutrinos in the context of MSSM. In fact, studies which
have included the See-saw mechanism along with the HSMU hypothesis
have found a small correction to those of the model independent case [31].
To check the stability of our results, we have also done the calculations in
the frame of type one See-saw. To include the right handed singlets at the
high scale, we use the package M SSM rather than MSSMON which does
not include the right handed neutrinos and we find that results are in fact
stable with small changes as expected.
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The Third Paper (see Chapter @

Motivation

As it was discussed earlier, the HSMR parametrization can explain the
observed pattern of the neutrino mixing assuming they are Majorana in
nature. In the third paper, we investigate the consequences of the HSMR
parametrization using the RG evolution of Dirac neutrinos. In fact, the
nature of neutrinos is still unknown. They could be equally Dirac or Ma-
jorana in nature. Hence, from the phenomenological point of view, Dirac
neutrinos are as important as Majorana neutrinos. There are many ongoing
important experiments to test the nature of neutrinos [5,61]. Cosmological
data do not prefer Majorana or Dirac neutrinos either [62]— [68].

Although, the RG evolution of Majorana neutrinos is extensively studied
in the literature, attention is being paid less to the RG evolution of Dirac
neutrinos. It was first showed in Ref. [33] that RG evolution for Dirac
neutrinos can explain the large neutrino mixing assuming the HSMU hy-
pothesis. However, as we shall show later, these results are ruled out by
new updated data [21-23] and due to an improved algorithm used in the
package REAP [69].

In this paper we investigate first, if there exists a parameter space with
the HSMR parametrization where the RG evolution of Dirac neutrinos can
satisfactorily yield an explanation for the large neutrino mixing along with
the observation of a small #13. Second, what is the status of the HSMU
hypothesis for Dirac neutrinos? And third, what is the status of the leptonic
CP violating phase in this respect?

The Method

The method is quite similar to the one for Majorana neutrinos, described
in the previous section. That is, we will need both the SM and the MSSM
to run the RG equations apart from the fact that now we use the RG
equations describing the evolution of the neutrino mixing parameters for
Dirac neutrinos. For the standard parametrization of the leptonic and quark
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mixings they can be written as:

—Cy2 i+ m3

b2 = 202 13— m? sin(2612) sin? fa3 + O(013) | (3.94)
o _ —Cu L
O = (N e ey

X {(mg - m%) m3 cosd cos O3 sin(2619) sin(2ha3)
+ {mg — (m% — m%) m3 cos(2619) —m? m%}

X cos? B3 sin(2 913)} (3.95)

. —Cy2 [mi —m2m2+ (m2 — m2?)m?2 cos(26 .
fos 3/27 [ 3 1 22 ( 22 21) 32 ( 12)} sm(2 023)
327 (m3z —mf) (m5 —m3)
+ 6(913) , (3.96)

where the dot is the logarithmic derivative with respect to the renormal-
ization scale, and

o _{ 1, (MSSM) , (3.97)

-3/2, (SM).
The RG evolution of the Dirac phase § is given by the following equation:
§ = Vo +6© 450 4 0(62,) . (3.98)

The first two coefficients §*) read,

. C 2 (m} — m?) m2
(-1 _— Yr 2 1)m3 . (2 (2
) 39 12 (m% —m%) (m%—m%) sin(d) sin(2612) sin(26s3) ,
0@ =o0. (3.99a)
The third coefficient is given as
. Cy? m3 (mz—m2)2
o = — =T 23 1 t(612) sin(203) sin 6
T B T N e R
+ . (3.99b)
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This term becomes relevant for not too small 3. The crux of the equations
can be captured as following;:

2

0‘ m
x —
12 Am%l
2
. . m
013, 0 3.100
13, V23 X Am%z ) ( )

where Am?j =m? —m? (i, = 1,2, 3) represents the mass square differences
and m is average neutrino mass. We have used the MATHEMATICA based

package REAP for the computation of the RG evolution at two-loops [58].

Results

The main achievement of this work is that the RG evolution of Dirac neu-
trinos could explain the large neutrino mixing including the observation of
a small and non—zero value of the mixing angle 613.

— The mixing angle 623 is non-maximal and lies in the second octant
for the SUSY breaking scale 2 TeV and the unification scale at the
GUT scale. For the variation of the SUSY breaking scale and the
unification scale, the mixing angle #o3 is non-maximal and lies in the
first octant. The predictions for the mass square difference Am%, are
also well constrained and testable in experiments.

— The Dirac phase ¢ is not known from experiments. Hence, any predic-
tion of this important observable is of great interest. Our prediction
for this observable is 80 to 287 degrees excluding some part of the
allowed parameter space of this quantity. The allowed range for the
Jarlskog invariant Jop is —0.27 to 0.27. Thus, a large CP violation is
possible in our analysis.

— We predict the Dirac C'P phase d to be zero for the SUSY breaking
scale 5 TeV. Furthermore, the Dirac C' P phase has a precise range
168.7° — 180° at the unification scale 102 GeV.

— The unification scale beyond the GUT scale is ruled out by our inves-
tigation. This fact could be useful for the GUT theories having Dirac
neutrinos [70]- |78§].

— We obtain strong correlations among different experimental observ-
ables. Our predictions for the mixing angles 613, 623, averaged electron
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neutrino mass mg, Dirac C'P phase J and the sum of the three neu-
trino masses, > m; are precise and easily testable at some ongoing and
future experiments like INO, T2K, NOvA, LBNE, Hyper-K, PINGU
and KATRIN [79]- [84].

— We remark that we have investigated the RG evolution of neutrino
mixing parameters at two loops. This is a crucial input since the RG
evolution at one-loop is insufficient to provide the required enhance-
ment of the mixing angles which in turn, cannot yield the results ob-
tained in this work.

— One of the main consequences of our investigation is that the HSMU
hypothesis is not compatible with Dirac neutrinos due to updated
experimental data [21-23] and a better algorithm used in the pack-
age REAP [69]. The HSMU hypothesis is a particular realization of
the HSMR parametrization when we choose oy = s = ag = 1 for
k1 = k9 = k3 = 1. Hence, the HSMR parametrization is one of the
preferable frameworks to study the RG evolution of Dirac neutrinos
now.
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[Physics Letters B, Volume 751, Published 17 December 2015]

A method to find relations between the operators in the mesonic Lagrangian
of Chiral Perturbation Theory at order p® is presented. The procedure can
be used to establish if the basis of operators in the Lagrangian is minimal.
As an example, we apply the method to the two-flavour case in the absence
of scalar and pseudo-scalar sources (s = p = 0), and conclude that the
minimal Lagrangian contains 27 independent operators.
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Introduction

The global chiral symmetry of the QCD Lagrangian for vanishing quark
masses, and its spontaneous breaking to the diagonal group, characterize the
strong interactions among the lightest hadronic degrees of freedom —the peu-
doscalar mesons— at low energies. The Nambu-Goldstone nature of these mesons
and the mass gap that separates them from the rest of the hadronic spectrum,
allows one to build an effective field theory (EFT) containing only these modes,
with a perturbative expansion in powers of momenta and masses. The frame-
work, called Chiral Perturbation Theory (ChPT), was introduced in its modern
form by Weinberg [1], and Gasser and Leutwyler [2,3].

At the lowest order, O(p?), the effective ChPT Lagrangian Ls depends only
in two low-energy couplings. One-loop contributions built from the lowest-order
vertices generate O(p*) divergences that are absorbed by the operators of the
next-to-leading order £4 Lagrangian [2], introducing seven (ten) additional cou-
pling constants for the two (three) quark flavours case. In the same way, taking
the computations to the next-to-next-to leading order requires the construction
of the effective Lagrangian at O(p%). This task was first performed systemati-
cally in Ref. [4], and later revisited in [5]. Through the use of partial integration,
the equations of motion, Bianchi identities and the Cayley-Hamilton relations for
SU(n) matrices, the authors of Ref. [5] managed to write down a basis of operators
for L in the even-intrinsic-parity sector for n = 2 (n = 3) light flavours consisting
of 53 (90) terms plus 4 (4) contact terms (i.e. terms not containing the pseudo-
Goldstone fields, which are only needed for renormalization). In recent years,
an additional relation among the operators in the basis of [5] for the n = 2 case
was proven [6], where no additional manipulations but those already used in [5]
were required. This showed that the derivation of an algorithm to exhaust all
possible algebraic conditions among the Lg operators imposed by partial integra-
tion, equations of motion, Bianchi identities and, particularly, Cayley-Hamilton
relations, is a nontrivial task.

Therefore, the question about the minimality of the O(p®) chiral Lagrangian
is proper and, to the best of our knowledge, remains unanswered. It is the aim of
the present work to describe a method that provides necessary conditions for the
existence of additional relations between the operators of the Lg Lagrangian, and
to show its application to the two-flavour case when massless quarks are consid-
ered. Our approach does not try to exploit the algebraic conditions mentioned
above (and used in [5]), but is rather based on the analysis of Green functions
built from arbitrary linear combinations of the operators in the basis. The re-
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quirement that the matrix elements built from the latter Green functions must
vanish for an arbitrary kinematic configuration is a necessary condition for the
linear combination to be true at the operator level. From the method one can
conclude that the basis is minimal when the necessary conditions provide no
freedom for the existence of new relations. On the other hand, if the method
allows for new relations, it cannot immediately answer the question about the
minimality of the set, but it has the advantage that it gives the precise form that
the (potential) new relations among the operator must have. With the latter
information at hand, an algebraic proof of the relation at the operator level shall
be greatly simplified.

The method involves the computation of tree-level matrix elements of order p°.
Despite being tree-level, the large number of operators in Lg and their involved
Lorentz structure, containing vertices with up to six derivatives, produce rather
long expressions. The latter can nevertheless be handled easily with the help of
computer tools, and the method lends itself easily to automatization.

The structure of the paper is the following. In Sec.[£.2] we provide the basic in-
gredients of ChPT needed for our analysis. The method that searches for further
relations among the O(p%) operators is described in Sec. where details about
the calculation of the matrix elements which provide the necessary conditions are
given through specific examples. Its application to the two-flavour case in the
chiral limit with scalar and pseudo-scalar sources set to zero is then presented in
Sec. [£4] Finally, we give our conclusions in Sec.

Chiral perturbation theory

The effective Lagrangian that implements the spontaneous breaking of the
chiral symmetry SU(n)zx SU(n)g to SU(n)y in the meson sector is written as an
expansion in powers of derivatives and masses of the pseudo-goldstone fields [1-3],

L= Lo (4.1)

n>1

The lowest order reads )

F
Lo = {u + 1), (42)

where F' is the pion decay constant in the chiral limit and (...) stands for the
trace in flavour space. The chiral tensor u,,

Uy =1 {’LLT (O —iry) u—u(0y —ily) uq , (4.3)
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is built from the Goldstone matrix field

U = exp <\/%F¢> , (4.4)

and the left and right n xn-dimensional matrix fields in flavour space, ¢, = v,—a,
Ty = vy +ay, with v, a, reproducing the couplings of the quarks to the external
vector and axial-vector sources, respectively. On the other hand, the tensor x4
in is built from x = 2B(s + ip), with s and p the scalar and pseudo-
scalar external matrix fields and B a low-energy parameter. Quark masses are
introduced in the ChPT meson amplitudes through the scalar matrix s. Since
we restrict ourselves in the specific examples given later to the chiral limit and in
addition set p as well as other contributions to s to zero, we can drop all operators
containing the y tensor in what follows.

In the two flavour-case, which will be used for a specific application of our
method, the matrix ¢ collects the pion fields,

1.0 +
o= V2" . (4.5)
T —ﬁﬂ'o

The vector and axial-vector external fields are general traceless 2 x 2 matrices,

v v a a
vy = e and a, = 1t , (4.6)
vt v ) a1 —au

since we do not confine ourselves to the Standard Model vector and axial-vector
currents, but allow for the parametrization of other possible beyond-the-Standard-
Model currents.

The general structure of the O(p®) ChPT Lagrangian was studied in [4,[5];
adopting the notation of the latter reference, in the n = 2 case it reads

53
£§U(2) = Z ¢iP; + 4 contact terms , (4.7)
i=1

where P; are the basis elements and ¢; are the corresponding low energy constants.
In the massless limit with scalar and pseudo-scalar sources set to zero, 27 + 2 of
the 5344 operators in remain. For completeness, we give their explicit form
in the Appendix.
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4.3 Outline of the method

Outline of the method

We describe next the method used to determine the minimal set of monomials
of O(p%) in the ChPT Lagrangian. It is based on the trivial observation that if
a set of operators P; from Lg satisfies a linear relation © = >, o; P; = 0, with
a; real or complex numbers, then the matrix elements of (on-shell) pions and
currents obtained from the Green functions

OIT ¢(a1) - d(n) -G (Y1) - G g (Ym) [0)e (4.8)

_ =)™ ot . o V(i f dha ©(2)) giScnrrls i
= S 5] Pt o) (i d're)

fi=0

must also vanish. The Green functions are built fromn = 0,1... pion fields
(¢) and m = 0,1... vector, axial-vector, scalar or pseudodoscalar currents (jy,),
which derive from the ChPT action by functional differentiation with respect
the external field sources (f; = v, a, s, p respectively). The precise definition is
given by the path-integral representation provided in the second line of : the
action Scppr, built from the ChPT Lagrangian , is a functional of the pion
fields and the currents, and the term [d*z ©(x) in the integrand entails that
the perturbative expansion of the Green function has © in one of the interac-
tion vertices. The normalization N is fixed such that the Green function with
m =n = 0 equals one. The corresponding matrix elements involving m currents
and n pions are obtained by Fourier transforming into momentum space and
then amputating the external pion lines and putting them on-shell. Let us note
that the vanishing of the matrix elements from when the relation © = 0
has been obtained using the pion-field equation of motion is only guaranteed if
the momenta of the pions are taken on the mass shell. This is because the use of
the equations of motion at the operator level can be shown to be equivalent to a
redefinition of the pion field in the generating functional [4,5,/7], which leaves on-
shell S-matrix elements invariant. For off-shell matrix elements, operators that
vanish upon use of the equations of motion can give however a non-zero contri-
bution. For our purposes it is sufficient to consider the perturbative computation
of the Green function at the leading order in the momentum expansion, which is
O(p®) because the P; operators in the linear combination © are already of that
order.

The perturbative calculation consists of tree-level diagrams, of the form of
a contact interaction, which we shall refer to as “local" in what follows, as well
as with intermediate pion exchange (“non-local"); see Fig. for an example.

85



On the Minimality of the Order p® Chiral Lagrangian

Local contributions contain an P; operator at the vertex, whereas non-local con-
tributions have in addition any number of O(p?) vertices, which do not change
the chiral order of the amplitude. The amplitudes for the matrix elements are
rational functions of the momenta, with a pole structure given by the propagators
present in the diagrams and a numerator which is a polynomial in the kinematic
invariants. If a relation between operators holds, the matrix element must vanish
for any arbitrary momentum configuration of the fields. This requires that all the
coeflicients of the terms in the polynomial built from the kinematic invariants are
zero, and conditions for the «; are thus obtained. By requiring that a sufficiently
large number of matrix elements computed in this way with increasing number
of fields vanish, we obtain a set of conditions for the numerical coefficients «; in
©; when these conditions yield non-zero solutions, relations between the opera-
tors which are fulfilled for all the processes computed are thus found. One may
wish to prove that the relations found hold for matrix elements with an arbitrary
number of pions and currents. In that case, the fact that we already know the
precise numerical coefficients in the relation between the operators simplifies the
task of proving it at the operator level using partial integration, equations of
motion, and the Bianchi and Cayley-Hamilton identities. Note also that such a
proof may be more a formal matter than one of practical relevance; processes
with 6 mesons legs or involving more than two vector or axial-vector currents are
rather remote experimentally, so just knowing the relations satisfied among the
operators for the phenomenologically relevant processes could be enough.

In order to illustrate how the method works let us consider the computation
of the matrix element for two specific cases. The first one involves with one
external vector (v11), one external axial (a12) and one charged pion field (77),
which is simple enough to provide explicit formulas. We shall refer to the latter
with the abridged notation (vijajem™).

The perturbative computation of this matrix element at O(p®) is given by
the diagrams in Fig. The operators in © contributing to diagram [4.1p are
Paa, P50, Ps1, Ps2 and Pss. For diagram [4.Ib, operators Psi, Ps2 contribute in
one of the vertices, whereas the other vertex corresponds to an O(p?) interaction.
To calculate the amplitude, we take the momenta of the fields incoming and use
energy-momentum conservation. We thus have two independent momenta, which
we take to be that of the pion, p1, and that of the axial current, ¢q. In addition
we have the “polarization" vectors from the external fields v1; and ai2, €, and ¢,
respectivelyﬂ Taking into account the on-shell condition for the (massless) pion,

!The introduction of polarization vectors for the external fields is not strictly necessary: we
could work with the tensor amplitude with Lorentz indices of the external sources p, v left open
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V11

(a) T (b)

Figure 4.1: a) Local and b) non-local contributions to the (vijajem™) matrix
element.

p? = 0, the amplitude can then be written in terms of seven different kinematic
invariants, p1 - q, p1 - €v, P1 - €4, ¢ €v, G- €a, € - €q and ¢>. Adding the result from
the diagrams with operators P; multiplied by corresponding coefficients «;, the
perturbative amplitude reads

1

M = ?{4(0451 —ass)| e qeq - q(p1-q)?

—e-prea-q(p1-9)?+q’ € prea-pip-q]

+ (2050 — as1 + ase + a53) ¢t €y €ap1 - g

+ (as1 — as2—053) > €0 - Gea - qp1 - q

+ (204 — 2051 — 52 + 3053) @7 [ €0 PL€a - qPL G — @ €v - P1Ea- P
— (2au4 + 31 — 2050 — 2053) ¢° € - €q (p1 - ¢)°

+ (2044 — 51 — 2052 + 2053) ¢ €5 - G €q - P1D1 G

+2a50q4[q2€v'€a_€v'q€a'p1_Ev'qea'Q]}v (4.9)

up to a global constant factor, and we have also dropped the Dirac delta func-
tion with the momentum conservation. The 1/¢* factor arises from the scalar
propagator in diagram Fig. [{.Th; since we have factored out it globally, the re-
sulting polynomial in the numerator is of order z,fl in the kinematic invariants
Zi =p1-4q, p1- €y, ..., with the restriction that all monomials must contain both
polarization vectors €, and ¢,. The resulting amplitude is therefore of chiral or-

and require that the coefficients of all tensor structures vanish. The contraction of the tensor
amplitude with arbitrary vectors €., €, allows to work with a scalar function, which simplifies
handling the long expressions that are obtained for the amplitudes of Green functions with more
fields.
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as 70

asy ™

(a) (b) (c)

Figure 4.2: (a) Local and (b), (c) non-local contributions to the (aj2a27°7")
matrix element.

der pb; recall that the polarization vectors count as O(p), just like the external
fields v, a,. The requirement that must vanish if a relation between the
O(p®) operators holds forces the coefficients of all monomials in the numerator
to vanish. This translates into the following set of conditions for the «;:

a50 = 052 — 0 s 5] = 053 = —20[44 . (410)

The first condition in implies that no relation involving operators Psg
and Pso can be satisfied by the matrix element chosen in this example. Since
an operator relation must be true for any process we can already conclude that
the operators 50 and 52 belong to the minimal basis of the Lagrangian. The
second condition in translates into the relation Py — 2P51 — 2P53 = 0
being satisfied for this process. By analysing other processes we shall conclude
in Sec. [4.4] that the latter relation is actually part of a larger one involving more
terms, that holds exactly for the operators in ﬁgU@).

Let us now choose a matrix element with one pion field more, for instance
(a2 a217r07r0>, which involves two axial-vector currents. This example shall give us
an idea of the increasing complexity brought by diagrams with more legs. Fig.
shows the diagrammatic contributions to the corresponding matrix element. The
pure local term, Fig. [1.2h, stems from the operators 1—3,36—44 and 50—53. The
non-local contributions include two different type of diagrams: in Figs. [4.2p, an
axial-37 vertex from operators 1 — 3,36 — 38 and 51 — 53 of the O(p®) Lagrangian
is combined with the axial-pion vertex from £§U(2) whereas in Fig. , We
need the O(p®) 47 vertices from operators P;_3. The amplitudes for (a2a2,7°7")

)

2We note that there is no axial—m vertex in ESU(Q with massless pions.
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depend on 11 independent kinematic invariants, namely p; -pa, ¢, p1-q, p2-q, p1-
€12, P2 €12, - €12, P1 €21, P2 €21, q-€21 and €19- €21, and we have again considered
massless pions. The number of monomials of order pb which can be built out of
the kinematic invariants is therefore large, and handling the amplitude in order to
find out the conditions for the «; requires automatisation. For this task, we have
implemented the computation of the tree-level matrix elements at O(p®) and the
extraction of the relations for the «; in a MATHEMATICA code. In the case at
hand, {aj2a2177"), one obtains an amplitude with 132 independent monomials in
the numerator, whose coeflicients yield the equations for «;: 50 of these equations
are non-trivially identical, but only 10 turn out to be independent. The solution
to this system then provides 10 relations among the coefficients «; of the 16
operators that contribute to (aja as;7070):

agg =a50 =0 , a1 =—4ay = 308 = Q36 = —Qz7 ;51 = Q53

3(11 — 20&41 — 20&42 + 40(43 — 40(51 =0
a1 + 8azg — 8aygg + 6vg1 + 6ays — 120043 — 8argy = 0
o1 + 2039 — 2040 + o1 + oz — 2043 — a5y =0 . (4.11)

Taking into account these conditions together, one thus finds that the linear
combination

1 3 3 1
@Zal(Pl—ZP2+Z733+7’36*7337*17740*7341*7742+17343

— Paa + 2P51 + 27753)

+ a9 (7339 —Pao —2Ps1 +Paz — Paa+2Ps51 +2 7’53) (4.12)
makes the amplitude <a12a217r07r0> vanish for arbitrary values of a; and asg,
implying that the two relations among the P; operators between parenthesis in
are equal to zero for this particular process. We can proceed in the same
way for other matrix elements and require a simultaneous vanishing of all of
them by solving for the «;. The latter is a necessary condition for the existence
of a relation between the O(p®) operators. In the next section we show that the
procedure eventually allows for just two relations in the SU(2) case without scalar
and pseudo-scalar external fields.
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SU(2) case with s =p=0

As a proof of concept we show in this section how the method described
above applies to the two-flavour ChPT Lagrangian in the chiral limit and without
additional external scalar or pseudo-scalar sources (s = p = 0) but v,,a, #
0. This simplified framework does not lack of phenomenological relevance: it
provides a very good approximation to the low-energy interaction of the pions
in the presence of electroweak currents, since mass corrections in the u, d quark
sector are small and there are no other contributions to the external sources s
and p in the Standard Model]

Within this framework, we have computed the matrix elements from (4.8) with
the generic field content as listed in the first column of Tab. [6.1] The notation
(va 3r), for instance, stands for all processes involving three pion fields (charged
or neutral) and one vector and one axial-vector field component, and similarly for
the rest. The second column indicates which O(p®) operators contribute to the
Green functions. The relations among the operators satisfied for each process,
obtained as in the examples of Sec. [£.3] by solving a system of equations for the
coefficients «;, are then given in the third column. We have not written the
equations for the «; for each process except for the cases where they require
some of the «; to vanish; the condition «; = 0 obtained for a given matrix
element already implies that the corresponding operator P; cannot be part of
any relation, which is an important information. We note that the relations
written in Tab. guarantee that all matrix elements with arbitrary charge (or
isospin) configuration of the pion and ChPT currents vanish. For a given charge
(isospin) channel additional relations among the operators that contribute can
exist, which we do not provide in Tab. [6.1]

The relations satisfied for a set of processes can be obtained by combining
the equations for the coefficients «; from each process and looking for a compat-
ible solution. From the table one sees that the combination of matrix elements
(vv), (vaa), (vv2m), (aa2m), (v4r) and (67) already involve all the operators in
the SU(2) ChPT Lagrangian with s = p = 0. The fact that operators P45 and Pss
only appear in (vaa) requires a further matrix element depending on Py5 in order
to fix it completely. That is why the matrix element (vvar) is also computed.
The results for the rest of processes in Tab. [6.1] is given for completeness; their
computation also serves us as a check of the relations found with the minimal set
of processes.

3Let us recall that at low energies the scalar ¢g interaction with the Higgs produces terms in
the amplitude suppressed by 1/mj}.
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Gree.n P; Operator relations
function
(vv) 56 as6 =0
<U 27T> 51,53 P51+ Ps3 =0
<Ua7T> 44, 50—53 a50:a52:0
Py —2P51 —2P53 =0
(vaa) 44,45, aso=0o52=0
50—53, 55 3Pss + 8Ps5 =0
Pas — Pas — 2P51 — 2P53 =0
(4m) 1-3 4P — P2+ 3P3=0
{(vv 27r) 29—33, 44, a0 =0o52=0
50—53 Pog — P3o + 2P31 — 4P30 + P33 — Pag + 2P51 + 2P53 =0
<(L(I 27T> 1—3, 36—44, 38 = 50 — O52 = 0
50—53 Psg — Pag — 2Ps1 + Paz — Paa + 2P51 +2P53 =0
4Py — Pa + 3P3 + 4P3s — 4P37 — 4P3g + Pao + 4Ps1
—4Pyo — 3Ps3 =0
<a37r> 1-3,36—38, azg =0
51,53 4P1 — P+ 3P3 +4P3g — 4P37 =0
P51+ Psz =0
(vva ) 29—33,44, as0 = agy =0
Pag — P3o + 2P31 — 4P32 + P33 — Pag + Pus
45,5053 b b b
(v dr) 1-3,27-28 s = 0
36—38,51—-53 4P — Po + 3P3 — 6Poy — 14Pog + 4P3g — 4P37 =0
2Pa7 + 2Pog — P51 — P53 =0
(va37r) 1—3, 27—44, 38 = (50 = (k52 = 0
50—53 Pag + P3g =0
P31+ Pso + Pa1 +Paz =0
8P — 2Py + 6P3 — 12Po7 — 28Pog + 8P36 — 8P3r
—8P39 + 2P0 + 8Py1 — 8Pys — 6P43 =0
4Pa7 + 4P2g + P3o — 2P31 + 4P32 — P33 + Pao + 2Pas
—Py3 + Pag — 2P51 — 2P53 =0
<67r> 1-3,24—-26 4P1 — Po 4 3P3 — 10P24 4+ 4Po5 + 6Pog = 0

Table 4.1: Relations among O(p®) operators satisfied for each of the Green func-
tions computed. The second column lists the operators that contribute in each

case.
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Combining the equations for «; found for the different matrix elements we
get that all the latter vanish provided

Qgg = a0 = Q52 = Qss = a6 =0,

a1 (81— 2P + 6P — 20 Py + 8 Pas + 12Pog — 16 Pag — 3Pg +3Pao — 6 Py
+12P32 — 3P33 + 8Pss — 8Par — 11 P39 + 5Psg + 14 Pyy — 8Pag — 9Pus
+37344—37745—67751—67353)

+ a9y (8P27+87728 —2Pog+2P30 —4P31 +8P3a — 2P33 — 2 P39 + 2Py

+4Ps1 — 2Psg +2Paa — 2Pas — 4 P51 — 4 Ps3) =0, (4.13)

which holds for whatever values of a; and g7, meaning that the two linear combi-
nations among the operators P; between parenthesis must vanish independently.
The relations obtained can be simplified if one uses the second linear combination
into the first one. In this way we find:

4Po7 +4Pag — Pag + Pso —2Ps1 +4Ps2 — Pag — Pag + Pao+2Pu
—Pag + Pag — Pas —2P51 —2P53 =0, (4.14)
8Py — 2Py + 6Py — 20 Pyy + 8Pas + 12Pag — 12Par — 28 Pag + 8 Pag — 8 Pz
—8P3g+ 2Psg + 8 Par — 8Pay — 6Pss = 0. (4.15)

The result agrees with a relation which is known to hold among the O(p?)
operators when the scalar and pseudo-scalar sources are set to zero [8]@ Likewise,
matches the additional relation found for the SU(2) case in [6], once the
operators depending on scalar and pseudo-scalar tensor source x are neglected in
the latter. Since relations were proven algebraically in these references,
they are of course satisfied for all matrix elements with any number of pions and
currents. We can moreover state that these are the only two relations between
the SU(2) ChPT operators of O(p%) in the limit s = p = 0; otherwise any further
relation of the form > o/P; = 0 would have been obtained from the analysis
of the functions of Tab. with our method (let us recall that the vanishing

“Ref. [8] provided relation (6.3)) for a number of flavors n = 3 using the SU(3) operator num-
bering introduced in [5|. The corresponding relation for SU(2) can be obtained by translating
into the SU(2) numbering scheme for the operators, and further using that the operator Psz in
the two-flavor case is equal to —Psg — Ps1 (i.e. to —Pa27 — Pag in the SU(2) numbering scheme).
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of any matrix element with an insertion of Y «/P; is a necessary condition for
the existence of the relation). We therefore conclude that the set of minimal
operators of the SU(2) ChPT Lagrangian of O(p%) with scalar and pseudo-scalar
sources set to zero reduces from the 2742 operators initially written down in [5]
to 2542 (note that the contact terms do not take part in any of the relations
above). Egs. can be used to drop two of the 27 basis elements of the set
of [5].

The application of our method to the general two- and three-flavour cases is
straightforward. For SU(2) including scalar and pseudo-scalar sources, if a similar
analysis does not yield additional relations to that of Ref. [6], it would ascertain
that the basis of O(p%) operators from [5] is minimal up to one term. The case
of SU(3) is more involved at the technical level, since we have to consider an
octet of pseudo-goldstone bosons and many more matrix elements can be built.
Starting the analysis of processes with less number of fields, one could expect
that the space of solutions for the coefficients «; is either very much constrained,
and eventually no solution is allowed after computing a few matrix elements, or
that it actually allows for one (or more) relations among the operators. In the
former case one could already conclude that the basis of LEU(:)’) is minimal. In the
latter, one may try to check if the relations found from the analysis of the simpler
processes also hold at the level of the operators (i.e. for any matrix element with
an arbitrary number of fields) by using the same algebraic manipulations as in [5],
with the great advantage that one would know beforehand the coefficients that
the operators participating in the relation must have. The study of the general
two- and three-flavour cases with the automated tools developed in this work will
be the subject of future investigation.

Summary

The large number of low-energy constants in the mesonic chiral Lagrangian
of order p% makes their determination by direct comparison with the experiment
rather difficult. To simplify this task, one would like to eliminate possible re-
dundancies by establishing the minimal set of independent operators in Lg, that
parametrize the rational part of the O(p®) chiral amplitudes.

We have described in this paper a method to search for additional relations
among the basis operators that build the O(p%) SU(n) chiral Lagrangian. It relies
on the computation of tree-level amputated Green functions with insertions of the
Lg operators, which are then required to vanish on-shell for an arbitrary kinematic
configuration. The method can be used to establish the minimal basis of operators

93



On the Minimality of the Order p® Chiral Lagrangian

in the Lagrangian. This has been done in the present work for the two-flavour
O(p®) Lagrangian without scalar and pseudo-scalar external sources. For this
case we have shown that the original basis of 27 measurable terms plus 2 contact
terms written in [5] in the even-intrinsic-parity sector has 2542 independent
terms, where the two additional relations between operators that emerge from
our method had been already noticed in the literature [6,8].

As a next step, the method shall be applied to determine the minimal basis
of operators in the SU(2) case with general scalar and pseudo-scalar sources, as
well as in SU(3). Furthermore, one can expect that the method extends naturally
to other relevant effective actions containing a large number of operators, and in
particular to the linear and non-linear effective theories that describe the breaking
of the electroweak symmetry.
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Appendix

We provide in this appendix the explicit form of the operators in the O(p®)
ChPT Lagrangian in the SU(2) case without scalar and pseudo-scalar sources.
The expressions are read off from the list given in the appendix C of Ref. [5] by
discarding terms containing the x tensor.

Besides the chiral tensors already written in Sec. the following building
blocks are needed to construct the operators in Tab.

hyw = VP, + V¥, ,

) Ny OV (4.16)
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with the non-abelian field strength tensor built from the right and left external
fields,

Ff” = oMy — 9eH — i [er 0]
Fp¥ = otr? — 0"k —i[rt,r"] (4.17)
and the covariant derivative defined as
VX =0, X+ Ty, X], (4.18)

where .
r,= i{uT(au —ir)u+u(dy, — il )u'}. (4.19)
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7 Pi ‘ Matrix element ‘
1 (u - why W) (4)
2 (huvuphtuf) (4)
3 (hpw (uph?Pu” + u? h*Pu,)) (47)
24 ((w-u)?®) (67)
25 (u - uuyuy utu’) (67)
26 (upuyuputu’ul) 67)
27 i (fwuputu?uP) (v 47)
28 i (frputu - uu®) (v4m)
29 (w-ufyuwfi) (vv 2mr)
30 (fmupfiur) {vo 2m)
31 (fru [P u"up) (vv 2m)
32 <f+,wf+ upu”) (vv 27)
33 (frmw (upf“p Vaur +pup)> {(vv 27)
36 (f=pw (WPu u? + utu,hP)) (a3m)
37 (f—h?P) (utu,) (a3m)
38 (f—pw (u“h"pup + u,hPPut)) (a 37)
39 (w-uf_p 1) (aa 2m)
40 (f-pupfiuP) (aa 2)
41 (fo fEPu ) (aa 2T)
42 (fop [HPupu?) {aa 2)
43 (fopw (up fHPu” + u” f2Pu,)) (aa 2m)
1 (Falr, 1) (var)
1 ol ) (vaa)
50 (Vo V9 ) (aa)
51 LV L [PFP,u”]) {v2m)
5 (Va7 ) (var)
5 (VA 0,0, (v2r)
contact terms

55 i (Fru FPFY,)+L— R (vaa)
56 (DpFrDPF!Y)y+ L — R (vv)

Table 4.2:  O(p®) operators for SU(2) with s = p = 0, in the basis of [5].

The

label in the first column refers to the SU¢2) numbering scheme used in the latter
reference. The last column indicates the simplest process to which the operator

contributes.
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June 2016]

The origin of small mixing among the quarks and a large mixing among the
neutrinos has been an open question in particle physics. In order to answer this
question, we postulate general relations among the quarks and the leptonic mixing
angles at a high scale, which could be the scale of Grand Unified Theories. The
central idea of these relations is that the quark and the leptonic mixing angles
can be unified at some high scale either due to some quark-lepton symmetry or
some other underlying mechanism and as a consequence, the mixing angles of
the leptonic sector are proportional to that of the quark sector. We investigate
the phenomenology of the possible relations where the leptonic mixing angles
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are proportional to the quark mixing angles at the unification scale by taking
into account the latest experimental constraints from the neutrino sector. These
relations are able to explain the pattern of leptonic mixing at the low scale and
thereby hint that these relations could be possible signatures of a quark-lepton
symmetry or some other underlying quark-lepton mixing unification mechanism
at some high scale linked to Grand Unified Theories.

14.60.Pq, 11.10.Hi, 11.30.Hv, 12.15.Lk

Introduction

The quark mixing matrix, Vo s, parametrizes the misalignment in the diag-
onalisation of the up and down type quark mass matrices. It is well known that
Vox ar is almost close to a unit matrix. This implies that the quark mixing angles
are small. On the other hand, analogous misalignment in the leptonic sector is
encoded in the neutrino mixing matrix, Upasng. It turns out that Uppsng is not
close to a unit matrix. The mixing angles in the neutrino sector are large except
013 [52-54]. The origin of small mixing among quarks and a large mixing in the
neutrino sector poses an intriguing open question.

Among many approaches to explain the mixing pattern of the leptons, the
assumption of family or flavor symmetries is a popular one. These symmetries
differentiate among the members of different families and are usually discrete,
finite and non-abelian, for reviews see Refs. [4,5]. This approach has been inten-
sively used to study the mixing in the leptonic sector [415}9./30]. In addition to
the leptonic mixing, there are also considerable efforts to understand the quark
mixing through family symmetries [6-8]. The family symmetries can also be a
built-in characteristic of the Grand Unified Theories (GUT) [9).

The quark-lepton unification is one of the most attractive features of the GUT
theories |[1H3]. The GUT symmetry group contains quarks and leptons in a joint
representation. The weak interaction properties of the quarks and the leptons
therefore get correlated. Hence it is possible in these theories, to derive the origin
of the small and the large mixing in the quark and the lepton sectors respectively,
along with any relation between them, if it exists.

There are also reasons to speculate about the quark-lepton unification even
on the experimental side. The so-called quark-lepton complementarity (QLC)
relation [17,/18] between the leptonic mixing angle 615 and the Cabibbo angle 6

b12 + bc ~ %, (5.1)
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can be a footprint of a high scale quark-lepton unification [17-21]. Another
interesting observation is due to the recent non-zero measurement of leptonic
mixing angle 63 [22H26] which is

913 ~ (52)

75
This relation also hints a possible link between the quark and leptonic mixing, and
it can be an artifact of some high scale quark-lepton symmetry in an underlying
GUT theory [27].

Therefore, the present state of the measured leptonic mixing angles provide
the theoretical motivation for a common origin of the quark and leptonic mixing
at some high scale. In fact, the idea that the quark and lepton mixing can be
unified at some high scale, referred to as “high scale mixing unification" (HSMU)
hypothesis, was first proposed in Ref. [11H14]. In recent studies [15}/17}33] it has
been shown that HSMU hypothesis ‘naturally’ leads to nonzero and a small value
for the leptonic mixing angle 613 and predicts a non-maximal 623 ( cf. [15,[17] for
details). This hypothesis has been studied in the context of Dirac neutrinos as
well ( cf. [16] for details). The central idea of this hypothesis is that the quark
mixing angles become identical to that of the leptons at some high scale (referred
to as the unification scale) which is typically taken as GUT scale (cf. [15,[16}33]
for details). In other words, at the unification scale

012 = 0y, 013 =015, 023 =653, (5.3)

where 6;; (with i,j = 1,2,3) are leptonic mixing angles and 19% are the quark
mixing angles. This hypothesis nicely explains the pattern of mixing in the
neutrino sector including the recent observation of nonzero and a small value
of 613 [22-26]. The large leptonic mixing angles at the low scale are obtained
through the renormalization group (RG) evolution of the corresponding mixing
parameters from the unification scale to the low scale.

The implementation of the HSMU hypothesis requires the minimum super-
symmetric standard model (MSSM) as an extension of the standard model (SM).
The working of the HSMU hypothesis is as follows. We first evolve the quark
mixing angles from the low scale (mass of the Z boson) to the supersymmetry
(SUSY) breaking scale using the SM RG equations. After that, from the SUSY
breaking scale to the unification scale, evolution of quark mixing angles is gov-
erned by the MSSM RG equations. In the next step, the quark mixing angles at
the unification scale, are put equal to that of the neutrinos following the HSMU
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hypothesis. The leptonic mixing parameters are then run from the unification
scale to the SUSY breaking scale using the MSSM RG equations. From the SUSY
breaking scale to the low scale, mixing parameters are evolved through the SM
RG equations.

In addition to SUSY, we also need a large tan 3 to realize the HSMU hy-
pothesis [1533]. The only free parameters during the top-down running of the
leptonic mixing parameters are masses of the three light neutrinos. They are
chosen at the unification scale in such a manner that we recover all the mixing
parameters at the low scale within the 3¢ limit of the global fit. It turns out
that the chosen masses of neutrinos must be quasi-degenerate (QD) and normal
hierarchical [15,33]

In this work, inspired by the HSMU hypothesis, we postulate the most general
relations among the quark and the leptonic mixing angles at the unification scale.
In a compactified form the most general relation among the leptonic and the quark
mixing angles within the same generations is as following

O1o = ot 0%y, 013 = ab? 0%, 63 = ak?0d,. (5.4)

where k;, with ¢ = (1,2,3) are real exponents. We refer to this relation as the
“high scale mixing relation" (HSMR). We have chosen (k1, k2, k3) to be (1,1,1)
for the simplicity of our analysis. The relations within the same generations are
the simplest generalization of the HSMU hypothesis. In principle, we can also
construct the most general HSMR, relations among different generations com-
pletely independent of the HSMU hypothesis. The analysis of these relations is
beyond the scope of this work and could be studied elsewhere.

There will be different possibilities depending on the relations among the
proportionality factors. We firstly list below the different possible cases with the
maximum and the minimum allowed values of the three independent proportion-
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ality factors «;,

912 = arlnaoc 9(1]2, 913 = agnax 9(1

Case A :

23 (5.5)
Case B: 0o =a" 0,, 613 =ay" 0;, 023 = a§"™ 045, (5.6)
Case C: O = a7 0%, 6015 =l 0%, Oyy = a9 0%, (5.7)
Case D: 010 =a@ 0%, 0O13=0ad"™ 0%, 6Oo3 =™ 01, (5.8)
Case E:  O1p=0a" 0],, 013=0a5"0];, 03 =a" 04, (5.9)
Case F: 0pp=a" 0}, 013=0a0" 0%, 63 =a"" 03, (5.10)
Case G: 019 =] min 01, 013 = a5 min 615, 023 = 5" 045, (5.11)
Case H: 615 =" 0%y, 613 = agn 0y, O3 = amm 04, (5.12)

In this work, we have presented our results for the maximum and minimum
allowed values of «a; for all the above cases, Egs. . We then move on to
scenarios, assuming relations among the «;’s. There can be more general HSMR
where two proportionality constants can be identical and the third one is different.
However we will discuss in this work more simplified scenerios, where the three
proportionality constants are equal.

012 = a* 0%y, 013 = a2 05, 093 = oF36,. (5.13)
As explained before we have restricted to values of k; as either 0 or 1. We note
that the value (ki,ka,k3) = (0,0,0) will reduce HSMR to HSMU hypothesis
making Eq. a specific form of HSMR, Eq. . We present below the
seven different possible cases, where the quark mixing angles are assumed to be
proportional to the corresponding leptonic mixing angles.

Case 1: 612 = a 6%, 613 = 05, 023 = 0, (5.14)
Case 2 : 012 = 0, b3 = o 65, 023 = 0, (5.15)
Case 3 : 612 = 0, 613 = 0, 023 = v 0, (5.16)
Case 4 : 012 = a 0, b3 = o 65, O23 = 03, (5.17)
Case 5 : 612 = 615, b3 = a 65, O3 = v 0, (5.18)
Case 6 : 012 = o 0, 613 = 05, 023 = v 0, (5.19)
Case T : 612 = o 615, b3 = o 65, O3 = v 0. (5.20)
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The proportionality constant « in the above Egs. (5.1445.20) is taken as real
parameter. We have carried out a detailed study for these cases in this work.

We note that there exist GUT models in the literature where proportionality
between the quark and the leptonic mixing angles are explicitly shown. For
example, the proportionality relation observed between the leptonic mixing angle
013 and the Cabibbo angle 6¢ in Eq. can arise naturally in SU(5) GUTs
and Pati- Salam models. For more details, see [27]. Further more, it is shown in
Ref. [18] that the relations between the quark and the leptonic mixing angles are
possible and they support the idea of grand unification. However, non-abelian
and abelian flavor symmetries are essential to make this happen [1§] .

There is two-fold importance of the HSMR, hypothesis. The first remarkable
feature is that these relations provide a very simple way to achieve a large neu-
trino mixing. We shall see that predictions of these relations are easily testable in
present and forthcoming experiments. The second importance is that if predic-
tions of HSMR hypothesis are confirmed by experimets, like neutrinoless double
beta decay, this would be a strong hint of quark-lepton unification at high scale.

The plan of the paper is as follows. In section [6.3] we present the required
RG equations for the running of the neutrino mixing parameters. The SUSY
threshold corrections and the neutrino mass scale are discussed in section
The results are presented in section using dimensional-5 operator as well as
in the framework of type-1 seasaw. In section for the sake of illustration, we
discuss two models where HSMR hypothesis can be realised. We summarize our
results and conclude in section 5.6

RG evolution of the leptonic mixing parameters

In this section, we briefly discuss the RG evolution of the leptonic mixing
parameters. The most often studied scenario is the one where the Majorana mass
term for the left handed neutrinos is given by the lowest dimensional operator [36]

1 P
L= JFof (el tf 4, +he. (5.21)
in the SM. In the MSSM, it is given by
IMSSM = | e = — 1wy L8R LI P), Fhe.,  (5.22)

where x4 has mass dimension —1, Ef is the charge conjugate of a lepton doublet
and a, b, ¢,d € {1,2} are SU(2)y, indices. The double-stroke letters L and h denote
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the lepton doublets and the up-type Higgs superfield in the MSSM. Using this
mass operator, we introduce neutrino masses in a rather model independent way
since it does not depend on the underlying mass mechanism.

The evolution of the above dimensional-5 operator below the scale where
it is generated is provided by its RG equation. The one loop equation is as
follows [37-40]

16726 = C(VJY) Tk + Cr (YY) +ar, (5.23)

where i = fl—’z, t =In(u/po) and p is the renormalization scale and

C = 1 inthe MSSM,
c - —; in the SM . (5.24)

The parameter & in the SM and MSSM is given by

v = —363+ 202 +yp+vD)+6 (vl ui R bl ul) + A,
) 6
dussu = —=gf 695 +6 (v +9Z +ui) - (5.25)

The quantities y¢ (f € {e,d,u}) represent the Yukawa coupling matrices of the
charged leptons, down- and up-type quarks respectively, g; (i = 1,2) denote the
gauge couplings and A is the Higgs self coupling. For more details see Ref. |36].

We are interested in the RG evolution of parameters that are the masses, the
mixing angles and the physical phases. The mixing angles and the physical phases
are described by the PMNS matrix. This matrix is parameterized as follows

Upuns = VU, (5.26)
where
-6
€12€13 512€13 s13€
_ 5 5
V = | —co3s12 — 523513¢12€°  C23C12 — 523513512€ 82313 | » (5.27)
1 1
823812 — C23813C12€°  —S823C12 — €23513512€°  C23C13
and

e/ 0 0
U = O e_<p2/2 O
0 0 1
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with ¢;; and s;; defined as cos6;; and sin6;; (7,7 = 1,2,3), respectively. The
quantity ¢ is the Dirac phase and 1, @9 are the Majorana phases. The global
experimental status of the leptonic mixing parameter is summarized in Table

Quantity Best Fit 30 Range
Am3; (1072 eV?) | 7.54 6.99 — 8.18
Am3, (1073 eV?) | 2.39 2.20 — 2.57

12 33.71 30.59 - 36.81
053 41.38 37.7 - 52.3
13 8.8 7.63 —9.89

Table 5.1: The global fits for the neutrino mixing parameters [53|.

Here we would like to remark that the RG equations for Yukawa cou-
plings matrices are parametrization independent. The main aim is to probe if
there is any connection between the quark and the leptonic mixing. For this
purpose, we have chosen the standard parametrization which is the most studied
and also commonly used in the literature. In principle, one could use an alter-
native parameterization to work and test the reality of HSMR. The results can
be always interpreted as a possible indication of a connection between quark and
leptonic mixing.

We now summarize the RG equations used for running the leptonic mixing
parameters from high to the low scale. For a detailed discussion of these equa-
tions, see Ref. [36]. These equations are derived using the lowest dimensional
neutrino mass operator as discussed above and are given by the following analyt-
ical expressions [36]

. Cy2 . o |mieft +mye??|?
015 = Cy; $in 2015 Sin 2023 — o x
137 39,2 12 23 Am3, (1+¢)

X [mq cos(¢1 — ) — (1 4 ¢) ma cos(pa — ) — (mg cosd]
+0(013) , (5.29)
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9 2
: vz 1 [my e#! + mg|
O3 = — 327:'2 sin 2053 m?,g C%Q |mo 9% + m3|2 + 5%2 T
+0(613) | (5.30)

where 6;; = dgz]- (with 4,5 = 1, 2, 3), t = In(u/po), p being the renormalization

scale and

2

¢ o= Ams,
= 5
Ams,

Am =m3 —m2,  Am3, = m3 —m3. (5.31)

For the masses, the results for y. = y, = 0 but arbitrary 6,3 are

16721, = [d + Oy? (25%2 52 + F1)] my , (5.32a)
1672y = |6+ Cy2 (2535 + Bo) | ma (5.32b)
1672y = |+ 202 ¢ty cdy| ms (5.32c)

where 1h; = % (i =1, 2, 3) and Fy, F» contain terms proportional to sin 613,

Fi = —513 sin261 sin 2093 cosd + 2573 €3y ¢33 (5.33a)
Fy = 513 sin 2019 sin 26053 cosd + 28%3 3%2 653 ) (5.33Db)

In this work, we are working in the CP conserving limit which means Majorana
and Dirac phases are assumed to be zero. Therefore, we have not provided the
RG equations for them. The non-zero phases are expected to have non-trivial
impact on the parameter space. However, this study is beyond the scope of the
present work and will be presented in a future investigation. Furthermore, we also
study the effect of the new physics which could generate the above dimensional-
5 operator. For this purpose, we present our analysis within the framework of
type-1 seesaw.

Now, we briefly discuss the evolution of the leptonic mixing angles. In the
SM as can be seen from Eq. , only tau Yukawa coupling will dominate the
evolution which is already very small. Hence the running of the neutrino masses
is governed by a common scaling factor and the evolution of leptonic mixing
angles can only be enhanced for QD mass pattern. In the MSSM the value of
tau Yukawa coupling can be larger with respect to the value in the SM for a
large value of tan 5. Hence the evolution of the leptonic mixing parameters can
be enhanced in addition to the enhancement coming from the QD neutrino mass
pattern as discussed below.
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scale

It is interesting to note from Eqgs. (5.28] [5.29(and [5.30)) that the major contri-
bution to RG evolution of the mixing angles arises due to following enhancement
factors

f12 o &1, 013, 023 o &, (5.34)

where

m? m2

51 = N2 0 52 = A2
Ams, Amg,

(5.35)
and m is the average neutrino mass with m = (mj + mg + mg3)/3. It is clear
that we need masses of the neutrinos to be QD to explain the largeness of mixing

angles at the low scale.

The low energy SUSY threshold corrections and the
absolute neutrino mass scale

We discuss the required low energy SUSY threshold corrections for the mass
square differences and the significance of the absolute neutrino mass scale in this
section.

The low energy SUSY threshold corrections

It is well established in the previous works on HSMU hypothesis that among
the five mixing parameters, one of the mass square differences (Am3,) lies outside
the 30 global range |[L11H15]. As shown in the previous works, this mass square
difference can be brought well within the 30 global limit, if the low energy SUSY
threshold corrections are incorporated to the mass square differences [11}{15].
The importance of SUSY threshold corrections for QD neutrinos is discussed in
Refs. [41-44). These corrections are given by the following equations [12]

(Amg1)th = 2m?cos 2012[—2T. + T, + T,],
(Amgg)th = 2m?sin%0o[—2T, + T, + T,],
(Amg)m = 2m®cos® 1o[~2Te + T, + T4]. (5.36)
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where m is the mean mass of the QD neutrinos and the one loop factor T (& =
e, i, T) is given by [41}44]

2 [z2 — g2 2 _1 2_1q
T, = 922 K <4 (Wa 5 )ln(wi) — L“ 5 )ln(xi) . (5.37)
327 | YuYa Vi (]

where g5 is the SU(2) coupling constant and ys = 1 —22 with 4 = Ma/Mg; My
stands for wino mass, My represents the mass of charged sleptons. We work with
an inverted hierarchy in the charged-slepton sector where the mass of selectron
is defined through the ratio R = MLET The mass of the wino is chosen to be 400

GeV following the direct searches at the LHC [58].

The absolute neutrino mass scale

The scale of the neutrino mass is one of the open questions, ever since it has
been confirmed that the neutrinos are massive. In case of QD and the normal
hierarchical spectra, we have

my S me S mg > mg (5.38)

with
mo > \/Am3, ~ 5 x 1072 V. (5.39)

There are three complementary ways to measure the neutrino mass scale. The
first one, a model independent method, is to use the kinematics of S-decay to
determine the effective electron (anti) neutrino mass (mg). It is given by

mg =/ |Ueil?m?. (5.40)

The mg has an upper bound of 2 €V from tritium beta decay [66,/67]. In future,
the KATRIN experiment has sensitivity to probe mg as low as 0.2 eV at 90%
CL [65]. We note that mg in the QD regime for CP conservation is approximately
equal to the effective beta decay mass mg. Hence QD mass pattern is well within
the sensitivity of the KATRIN.

The second method to extract the neutrino mass is neutrinoless double beta
decay which assumes that neutrinos are Majorana particles [49|50]. The observ-
able parameter M.., the double beta decay effective mass is given as following
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Mee = ‘Z Ue22- my;

= ‘mlcﬂ Cl3e 71 L mgsty cla €72 4 mgsis 67126’ . (5.41)

I

For quasi-degenerate neutrinos
~ 2 2 —i 2 2 i 2 —i26
Mee ~ my ‘C12 C13€ w1 + S19C13€ #2 + S13€ ‘ . (542)

Since the contribution of ms is suppressed by the small sin? ;3 coefficient, we
obtain

1— _
Moo ~ myg \/1 _ gin? 29, L= CS(P1 = ¢2)). (5.43)

2

For CP conserving case where the Majorana and Dirac phases are zero, Me. ~ my.
For M., ~ 0.1 eV, the above expression corresponds approximately to half-life in
the range of 10% to 10%° yrs [49] which makes the QD mass scheme testable in
present and future experiments . In the QD regime, the neutrino mass can be
written as [49]

1 + tan2 6
< (Mo )P -
mo < ( ee)max 1 — tan2 O10 — 2 |Ue3|2

(Mee)max f(012,013) - (5.44)

Using inputs from Table the function f(6;2,613) has a range from 2.2 to 4.1
at 30. The most stringent upper limit on the effective mass M., provided by the
GERDA experiment is 0.4 eV [23]. Hence my < 1.64 €V and sum of the neutrino
masses Xm; = 3mg < 4.91 eV.

The third determination of neutrino masses is provided by the cosmological
and astrophysical observations. The sum of the neutrino masses, ¥m;, has a
range for upper bound to be 0.17 — 0.72 eV at 95% CL [68]. This limit is not
model independent and depends on the cosmological model applied to the data.

Results

We present our results in this section for the different cases listed in Eqs. @
- and for limiting cases of the most general HSMR as shown in Egs. @
- . As discussed earlier, we need MSSM as an extension of the SM for
the implementation of HSMR and HSMU hypothesis. In the first step, we run
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quark mixing angles, gauge couplings, Yukawa couplings of quarks and charged
leptons from the low scale to the SUSY breaking scale. The evolution from the
SUSY breaking scale to the unification scale is done through the MSSM RG
equations. After evolving up to the unification scale, we obtain quark mixing
angles 01, = 13.02°, 6], = 0.17° and 64; = 2.03°. In the next step, quark
mixing angles are used to calculate the leptonic mixing angles using HSMR at
the unification scale. After this, we run down the MSSM RG equations up to
the SUSY breaking scale. The SM RG equations take over the evolution of
mixing parameters beyond the SUSY breaking scale. The SUSY breaking scale
is chosen to be 2 TeV following the direct LHC searches [58]. We also need a
large tan S which is chosen to be 55. The unification scale where HSMR can
exist is chosen to be 10'* GeV which is consistent with present experimental
observations [53]. We have used the MATHEMATICA based package REAP [57]
for the numerical computation of our results. We have done a rigorous, thorough
and comprehensive in this work. For this pupose, we have written an interface
code which together with public code can be used to scan whole parameter space.

RG evolution of HSMR

HSMU hypothesis
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Figure 5.1: The change in the RG evolution of the enhancement factors (;2),
for the HSMU case as a function of the RG scale u when « deviates from
unity.

We study the RG evolution of HSMR as given in Egs. (5.14] - |5.20) and
compare our results with respect to the HSMU hypothesis. In Fig. we show
how enhancement factors & and & evolve from the unification scale to the low
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Figure 5.2: The change in the RG evolution of the enhancement factors (;2),
for the different cases of HSMR as a function of the RG scale y when «
deviates from unity.

scale, as a deviates from unity for the HSMU. The results are displayed for all
the HSMR cases in Fig. [5.2] It can be seen from Fig. [5.2] that the evolution in
Case 1 at @ = 1.1 is similar to HSMU hypothesis. However, as «a approaches
to lowest value on the left panel of Case 1, & changes sufficiently. Similarly for
the upper limit of & = 1.962, the evolution again becomes very different from
the HSMU hypothesis. This explains why the RG evolution of the PMNS mixing
angles change when « deviates from unity. The same argument follows for all the
other cases of HSMR and can be checked from Fig.

We next show the evolution of the mixing angles for the HSMU in Fig. [5.3]
The results are displayed for all the HSMR cases in Fig. We observe from
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HSMU hypothesis
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Figure 5.3: The evolution of the mixing angles for the HSMU case

Figs. and along with Figs. and that the evolution of HSMR is
similar to the HSMU hypothesis when « deviates slightly from unity. However,
when « is very far from unity, RG evolution undergoes dramatic changes. There
is another interesting phenomenon that can be observed from Fig. [5.4] It can
be easily seen that the RG evolution of the mixing angles, for Cases 3 and 5 are
similar, with 612 and 693 almost similar at the low scale at the lower end of a. The
difference between them at the low scale increases with the increase in value of a.
The pattern is exactly opposite in the other cases of HSMR, with the difference
between 012 and 023 at the low scale decreasing as one goes from the lower to the
upper end of «. This in a way tells us beforehand that the phenomenology of
Case 3 and 5 will be similar, which will be discussed in detail afterwards.

Phenomenology of HSMR

In this subsection, we discuss in details the phenomenological implications
of HSMR. Our aim is to investigate the behavior of « as it deviates from unity
and its phenomenological consequences taking into account all the experimental
constraints of Table and the GERDA limit [23]. The common observation
among all HSMR is the emergence of the strong correlations among Am3,, M.,
023, 913 and Zmi.
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Figure 5.4: The evolution of the mixing angles for the different HSMR, cases

HSMU hypothesis

As observed earlier, the value o = 1 will reduce all cases of HSMR to HSMU
hypothesis. We present a full parameter scan of the HSMU hypothesis using
dimensional-5 operator. It should be noted that this analysis was absent in the
previous works on HSMU hypothesis [15,/17,|33] and is reported in this work for
the first time. We present a correlation in Fig. which is not studied in the
previous investigations. We show here the variation of Am%z with respect to M.
The M, has an upper bound of 0.4 eV from the GERDA experiment [23]|. Using
this limit, we are able to put an upper bound on the allowed range of Am§2.
The allowed range for Am3, is (2.21 — 2.45) x 1073 eV? as observed from Fig.
The lower bound on M., is 0.384 eV for the HSMU hypothesis. Hence, our
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work on the HSMU hypothesis will be ruled out if GERDA crosses this number
in the future. The effective 8 decay mass mg is another interesting observable
since it does not depend on whether the neutrinos are Majorana or Dirac. The
prediction for mg coincides with the effective double beta decay mass M, in the
QD regime and for CP conservation. Hence, the allowed range for mg is identical
to that of M. in our work.
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Figure 5.5: The variation of Am%,

In Fig. we show the variation of #o3 with respect to #13. We observe a
strong correlation between 013 and #23. The difference between this investigation
and that of presented in Ref. [15] is the variation of #12. In the previous work,
this correlation was reported for a chosen value of the angle 615 at the low scale in
the context of type 1 seesaw. In this work, we do not choose any particular value
of 612 at the low scale. We obtain a band for this correlation and previous results
are a specific case of our present results. We observe that 3 is non maximal
and always lies in the second octant. This confirms the predictions of our earlier
work [15]. The allowed range of 013 is 7.63° — 8.34° and that of 03 is 49° — 52.3°.

We next present variation of 615 against M., in Fig. This correlation
is also a new prediction of our work and do not exist in previous studies. The
whole 30 global range for the angle 6,5 is allowed for the M., < 0.4 eV, However,
as can be observed from Fig. the range 34.4° < #12 < 36.81° is ruled out
for 0.384 eV < M. < 0.393 eV. The precise predictions for all observables are
provided in Table In the end, we also have a new correlation between the
sum of neutrino masses and M., which is not studied previously. This correlation
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is shown in Fig. Our prediction for sum of neutrino masses is 1.16 — 1.2 eV
using the upper bound on M., given by the GERDA.

The most general HSMR within the same generations

The most general HSMR within the same generations for (k1, ko2, k3) = (1,1, 1)
as defined before is given by the following equation

912 = 9(1]2, (913 = (9 9%3, 923 = Q3 9(2]3 (5.45)

We present the results for the maximum and the minimum values of «o; for
Egs. , taking into account all the experimental constriants. In the Table
we present the allowed values of «; along with the the respective physical
masses and the mixing angles.

It is remarkable that in the Case E, all the mixing parameters are within 3o
global range without adding threshold corrections. If we add threshold correc-
tions, the predictions are Am3, = 2.35 x (1073eV?) and Am3;= 7.01 x (107°eV?)
for R = 1.0. Thus, threshold corrections at this point are effectively negligible.
We further notice that the different combinations of the allowed end points of
«;, leads to M, around 0.35 eV - 0.4 eV. This most general case with different
«;, alone will not suffice, when the value of M., will be further constrained by
the future experiments. We then have to look for more specific cases, where the

115



High Scale Mixing Relations as a Natural Explanation for Large Neutrino

Mixing
a; | az [ az [ Masses at unification scale (eV) [ Sm; (eV) | 65, | 655 [ 055 [ Am3, (1073eV?) [ Am3, (107°eV?) [ M., (eV) [my (V) [ R
my ma ms

Case A | 1.46 | 2.54 | 1.19 | 0.458 | 0.461 0.519 1.16 36.52 | 9.88 | 41.14 2.5 8.06 0.385 0.385 | 2.29
Case B | 1.45 | 1.68 | 0.91 | 0.4757 | 0.478 0.538 1.20 30.61 | 8.79 | 37.97 2.25 8.12 0.40 0.399 1.8
Case C | 1.38 | 0.71 | 1.28 | 0.489 | 0.493 0.5527 1.24 36.8 | 9.87 | 50.83 2.22 8.14 0.411 0.411 5.3
Case D | 1.14 | 0.92 | 0.94 | 0.475 | 0.478 0.537 1.20 31.18 | 7.70 | 45.31 2.20 8.14 0.40 0.399 1.69
Case E | 0.8 | 22 | 1.15| 041 |0.412 0.462 1.04 32.77 | 7.65 | 48.13 2.35 7.01 0.344 0.344

Case F | 0.89 | 1.61 | 0.82 | 0.475 | 0.477 0.5361 1.20 30.6 | 7.65 | 43.66 2.22 7.37 0.40 0.399 1.06
Case G | 0.92 | 0.98 | 1.03 | 0.442 | 0.445 0.499 112 32.37 | 7.64 | 52.19 2.22 7.86 0.372 0.371 1.48
Case H | 0.88 | 0.95 | 0.86 | 0.476 | 0.479 0.537 1.20 30.99 | 7.63 | 51.97 2.22 7.55 0.40 0.4 1.29

Table 5.2: The allowed predictions for the different cases of the most general
HSMR for minimum and maximum allowed values of «;, Eqgs. (5.515.11]).

a;’s will not be different, but have some relations among them. We consider
the simplified scenario, where the a;’s are equal. We have carried out a detailed
analysis for all the possible seven cases in this scenario in the next subsections.

Case 1: 012 =« 9‘112, 913 = 0(1]3, 923 = (933

The first case of HSMR is the one where leptonic mixing angle 65 is propor-
tional to 6], and the other two angles are identical. In Fig. [6.5] we show how
the correlation between Am3, and M, changes as a deviates from unity. We
observe on the left panel of Fig. that the lowest allowed value of « is 0.902.
This value is derived by the 3¢ global limit of the leptonic mixing angles. On
the right panel of Fig. the upper bound on « is shown. For the upper bound
on «, in principle, one can go up to 1.962 with all mixing parameters within the
global range. This value of a belongs to M. > 0.4 €V and hence is ruled out by
the GERDA limit. The allowed upper bound on « is 1.28 which is derived using
the GERDA limit.

We compare Fig. with Fig. of the HSMU hypothesis (o = 1) to study
the phenomenological behavior of a.. As obvious from the left panel of Fig. [6.5],
M., has its maximum allowed range at the lowest value of .. This is because the
absolute neutrino mass decreases for < 1 and increases for o > 1 in the case un-
der study. Hence, at a = 0.902 on the left panel of Fig. we obtain 0.365 eV <
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Figure 5.10: The variation of 63

Figure 5.9: The variation of Am3,
with respect to 613 for Case 1 of

with respect to M., for Case 1 of
HSMR. HSMR.

M. < 0.40 eV corresponding to whole 30 global range of Am3,. The same pre-
diction for the HSMU hypothesis in Fig. (=1)is 0.385 eV < M, < 0.418
eV which belongs to Am3, = (2.21 — 2.45) x 1073 V2. The prediction when «
slightly deviates from unity (o = 1.1) is 0.384 eV < M, < 0.435 €V corresponding
to Am3, = (2.22 — 2.57) x 1073 eV2. At the upper allowed value of o = 1.28, we
have 0.4 eV < M., < 0.45 eV which belongs to Am%z = (2.20 —2.57) x 1073 eV2.
We observe that the uppermost value of @ = 1.962 has 0.571 eV < M., < 0.625
eV belonging to Am3, = (2.23 — 2.57) x 1073 eV2. This value of « is already
ruled out by the GERDA limit.

This case can be ruled out if GERDA reaches M, < 0.365 eV. There is
an apparent overlap between predictions of the case under study and the HSMU
hypothesis. This can be discriminated using the SUSY ratio R. For a clear picture
of the phenomenological consequences, we provide values of mixing parameters
and other observables belonging to minimum and maximum allowed values of «
for each case and the HSMU hypothesis in Table

The variation of #3 with respect to 613 is shown in Fig. The mixing
angles reach their 3¢ limits at their lower and upper ends. For example, at
a = 0.902, #13 is at its minimum of the 30 global limit while 53 is at its maximum
independent of the upper bound of M... On the other hand, at & = 1.962, the
predictions are reversed but this value is already rejected by the GERDA limit
of M... The allowed ranges of 613 and 633, at o = 1.1, are 7.62° — 9.1° and
46.09° — 52.2° respectively. Compared to Fig. for the HSMU hypothesis where
the allowed range of #93 is always in the second octant, 623 has its minimum value
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44.04° at o = 1.28 which belongs to M., = 0.4 eV and lies in the first octant.
The corresponding value of 013 is 8.16°.

We next show the behavior of 615 with respect to M., in Fig. We
observe that at a = 0.902, 015 is at its global minimum 30.6°. On the left
panel of Fig. at a = 1.1, #12 has an allowed range of 30.6° — 35.65° for
Mee < 0.4 eV. For the HSMU hypothesis in Fig. 012 has the whole 3o global
range with some higher values ruled out for M., < 0.393 eV. For a = 1.28, the
value of 615 is 32.82° for M., = 0.4 €V as can be seen from the right panel of the
figure. For a = 1.962, 615 reaches to the maximum of its 3o global limit.

Finally in Fig. the variation of sum of the neutrino masses with respect
to Mee is presented. For lowest value of o = 0.902, on the left panel, the range
of ¥m; is 1.12 — 1.2 eV for M, < 0.4 eV. At o = 1.1, it is 1.16 — 1.2 €V for
Mee < 0.4 eV. On the right panel, the value of sum at a = 1.28 is 1.2 eV and the
region Xm; > 1.2 eV belongs to M., > 0.4 eV.

Case 2: 012 = 0(112, 013 =« 0g3, 923 = 0(213

The second case which we consider has leptonic mixing angle 613 proportional
to 6%;. In this case, the lower bound on « is 0.45 which is derived using global
limits on the mixing angles. The a on the upper side, however, is remarkably
bounded by the ratio R. This theoretical bound arises because we work with an
inverted hierarchy in the charged-slepton sector and at a = 2.5, we have R = 1.
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In principle, a has a range up to 3.5 satisfying all experimental constraints with
R <1.

In Fig. we show the behavior of Am2, versus M., for different values of
a. For the a = 0.45 on the right panel, we have 0.382 eV < M., < 0.418 eV which
corresponds to the whole 30 global range of Am3,. In case of a = 1.1 on the left
panel, 0.38 eV < M., < 0.428 eV belongs to Am3, = (2.2 — 2.57) x 1073 &V2.
The range of M., at the upper end o« = 2.5 is 0.342 eV < M, < 0.378 eV
corresponding to Am2, = (2.2 —2.53) x 1073 eV2. A remarkable feature emerges
in this case. Unlike case 1, the absolute neutrino mass scale increases for a < 1
and decreases for @ > 1. Now, at the upper allowed value of o = 2.5, M., is
sufficiently below the GERDA limit. We would emphasize that one of the main
observations of this case is that « is not constrained by the GERDA limit on
either side. These results can easily be tested by GERDA in the near future.
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Figure 5.14: The variation of 633
with respect to 613 for Case 2 of
HSMR.

Figure 5.13: The variation of Am3,
with respect to M., for Case 2 of
HSMR.

We show the variation of 63 with respect to 613 in Fig. As can be
seen, for the lowest possible value of a = 0.45, the allowed range is just a point
which is located at 613 = 7.65° and 23 = 52.5°. As a = 1.1, the range of 3
is 7.65° — 8.4° and that of f93 is 48.5° — 52.5°. Finally for the highest value of
a = 2.5, 013 has almost the whole 30 range 7.92° — 9.88° and the range of 63
is 36.8° — 48°. These results can be contrasted to case 1 where the minimum
of the mixing angle f23 = 44.04° also happens for the upper value of a namely
a = 1.28 and in both cases, the value of #23 can be in the first octant, contrary
to the HSMU hypothesis. Also in both cases, the maximum of the mixing angle
of fs3 corresponds to the lower value of alpha.
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HSMR.

The next to be considered is the variation of 015 versus M,. as is shown in
Fig. In the right panel it can be observed that o = 0.45 corresponds to the
minimum 615 = 30.8° and 0.384 eV < M, < 0.42 eV. For a = 1.1 on the left
panel, the whole 30 range for 612 is allowed for 0.39 eV < M., < 0.4 eV and for
M < 0.39 eV the allowed range of 615 decreases. The upper value of @ = 2.5,
on the left panel, corresponds 615 = 36.02° while 0.344 eV < M., < 0.366 €V.

In Fig. we show the behavior of the sum of the neutrino masses with
respect to M,.. As can be seen in the right panel, for the lowest value of o = 0.45,
>m; lies in the range 1.16 —1.2 eV which corresponds to 0.383 eV < M., < 0.4 eV.
For M., > 0.4, the range of ¥m; is 1.2 — 1.26 eV. For the upper value of a = 2.5,
we have Ym; = 1.05—1.12 eV while 0.342 eV < M, < 0.366 €V. On the left panel,
for @« = 1.1, the range of ¥Xm; is 1.13 — 1.2 eV which corresponds to 0.36 eV <
M. < 0.4 eV and the rest of the data point corresponds to M., > 0.4 eV.

Case 3: 912 = 9;12, 013 = 9;13, 023 =« 033

We now consider the final case where two of the leptonic mixing angles 612, 013
are identical to the quark mixing angle 67,, 67, and the third leptonic mixing
angle 6a3 is proportional to the quark mixing angle 64,. The correlation between
Am3, and M, is shown in Fig. The minimum allowed value of o, with all
the mixing parameters within the global range, is 0.324. However in this case as
can be seen from the right panel of Fig. we have 0.62 eV < M., < 0.66 eV.
This value of « corresponds to the entire 3o range of Am%Q and violates the upper
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limit from GERDA. Therefore we also consider the lower value of o = 0.89, with
all the mixing parameters within the global range and 0.4 eV < M., < 0.43 €V.
This value corresponds to the entire 30 range of Am2,. The prediction of M.
at @« = 1.118 0.372 eV < M, < 0.41 eV corresponding to the entire 30 range of
Am2,. The upper allowed value of « in this case is 1.52, (left panel of Fig. [5.17))
with 0.3 eV < M., < 0.34 eV and having the entire 30 range of Am%,. Hence, the
allowed range of « in this case covers the entire 30 range of Am3,. The absolute
neutrino mass scale increases for a < 1 and decreases for a > 1 similar to Case 2.
The behavior of « in this case, Fig. is different from Case 1, Fig. with
the lower end of a constraining M,.. In this case it is possible to reach values of
M., as low as 0.3 eV compared to Cases 1, 2 and the HSMU hypothesis, and will
only be ruled out if the limit from GERDA reaches M., < 0.3 eV.
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We next show the correlation of 853 with respect of #13 in Fig. [5.18] The 023
and 6013 reach their 30 global limits at the lowest and upper most end of a. The
value of A13 is 8.56° and that of 0y3 is 52.4° for lower allowed value of o = 0.89,
corresponding to M. = 0.4 eV. The allowed ranges of #13 and 3 for a = 1.1
in this case are much more constrained compared to Cases 1, 2 and the HSMU
hypothesis. They are 7.62° — 8.05° and 50.1° — 52.1° respectively. The upper
end of o = 1.52, results in a minimum value of #,3, whereas o3 is at maximum
with 023 = 52.4°. The behavior of o here is different from Cases 1 and 2 with
the lower end of « resulting in the upper end point of 613 and lower end point of
0a3.
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In Fig. [5.19] we show the variation of #1» with M... We observe that the
lower (30.78°) and upper (36.7°) 30 global limits of 02, are reached at the upper
most and the lowest ends of « respectively. In case of o = 0.89, the value of 815 is
30.62° which belongs to M., = 0.4. The whole 3o global range of 6,5 is allowed
for a = 1.1.

Finally we show in Fig. [5.20] the variation of the sum of the neutrino masses
with respect to Me.. The region with M., > 0.4 eV for o = 0.324, has ¥m; in
the range of 1.84 — 2 eV and for av = 0.89 it is in the range 1.2 — 1.38 eV. In case
of a = 1.1, with M., < 0.4 eV, ¥m; is in the range 1.12 — 1.2 ¢V. The upper end
of @ = 1.52 has the sum in the range of 0.93 — 1.01 eV. It is seen that >m,; and
M., is much more relaxed compared to the HSMU and Cases 1, 2.

Case 4: 912 =« 9(1]2, 913 =« 9%, 923 = 6’33

We now consider the case where the leptonic mixing angles 612, 613 are propor-
tional to the corresponding quark mixing angles 6{,,6%; and the leptonic mixing
angle 093 is identical to the quark mixing angle 03,. The lowest allowed value of
« for Case 4 is 0.92 which is derived using the 3o global limits on mixing angles.
The upper allowed value of «, respecting the GERDA limit, is 1.67. When we
relax the GERDA limit then « turns out to be 1.77 satisfying the 3o global lim-
its. We show, the correlation between Am3, and M., in Fig. [5.21, The lowest
value of @ = 0.92, covers the range 0.38 eV < M., < 0.4 eV which corresponds
to Am3, = (2.30 — 2.50) x 1073 eV? (cf. left panel of Fig. . The prediction
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of M. for @« = 1.1 is 0.384 eV < M., < 0.41 eV corresponding to the whole 30
global range of Am%,. On the right panel, the upper allowed end of o = 1.67 has
0.4 eV < M, < 0.42 eV with Am2, = (2.30 — 2.49) x 107 V2. The upper most
end « = 1.77 where the GERDA limit is not satisfied, has 0.46 eV < M., < 0.48
eV corresponding to Am3, = (2.37 — 2.53) x 1073 eV?, as shown in the right
panel of Fig. The behavior of « is similar to Case 1 with the upper values
of a being constrained by the GERDA limit. The first distinction that this case
offers, with the others considered before is that the whole 30 range of Am3, is
not covered in Case 4 for all the allowed values of a.

Rl B R RN

52

———o| A
o
S
|

] R
o
N
NS
1
ol

Qe

o

N =

=3

1

0.0026 | — -1 0.0026

50

48 E

0.0025 — -{ 0.0025— = E 1
r 1 46 =

% [ ] = aaf E
800024 - 00024 — 3 E
e r 1 a2f e
t R 40 ; é
0.0023}~ 1 o002l 4 3 E
[ 1 a8 ° 3
[ 36 E
0.0022 - | / L 0'0022_| ) ‘ ) L “716‘“‘71{;H‘éuuslz‘“‘au“‘816‘“‘8153“‘915““912‘“;‘{“‘916‘“‘91{;“‘170
038 039 0.4 041 04 042 044 046 048 : ’ ’ ’ e, ’ ’ : ’
M, (eV) M, (eV s
Figure 5.21: The variation of Am3, Figure 5.22: The variation of 623
with respect to M., for Case 4 of with respect to 613 for Case 4 of
HSMR. HSMR.

Next, we show the correlation between 63 and 613 as illustrated in Fig.
The lower end of a@ = 0.92 reaches to the minimum of its 3o global limit for 63
and the maximum of the 3o limit for #23. The situation for the upper most end
of a = 1.77, is just opposite to the lower end, i.e. #;13 is at the maximum of the
30 global limit whereas 033 is at its global minimum. This observation is just
opposite to Case 3, where 013 (623) reaches the global minimum (maximum), at
the upper end of a. The allowed ranges of 613 and o3, at o = 1.1 for this case
are 7.62° — 9.2° and 45.41° — 52.17°, respectively. The value of 613 is 9.59° and
that of fo3 is 37.71° — 37.76°, for o = 1.67.

The variation of 612 with respect to M, is shown in Fig. The lower
and upper 3o global limits of 812 are obtained at the lower and upper most end
of « respectively. This observation is in contrast with Case 3 and Case 5 (to be
discussed later). We get the full range of 612 (cf. Fig. for details) for @ = 1.1,
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Figure 5.24: The variation of Ym;
Figure 5.23: The variation of 612 with respect to M, for Case 4 of
with respect to M., for Case 4 of HSMR.

HSMR.

with some higher values of 612 being ruled out for M., < 0.394 e¢V. The value of
f12 at o = 1.67 is 30.59° — 30.66°.

Finally, we show the variation of the sum of neutrino masses with respect to
M., in Fig.[5.24] We find that for the lowest value of & = 0.92, the sum of neutrino
mass ranges between 1.15—1.20 eV for 0.38 eV < M, < 0.4eV. In case of a = 1.1,
¥m; has a range of 1.157 — 1.23 eV corresponding to 0.38 eV < M. < 0.41
eV as can be seen from the left panel of Fig. A close look at the right
panel of Fig. reveals that for a = 1.67, ¥m; is in the range 1.22 — 1.27 eV
corresponding to 0.4 eV < M., < 0.42 eV. The range for ¥m; turns out to be
1.4 —1.45 eV for a = 1.77 which corresponds to M., > 0.4 eV.

Case 5: 912 = 0(1]2, 913 =« 9(113, 923 =« 953

We now look at the case of the leptonic mixing angle 615 being identical with
its CKM counterpart and the other two leptonic mixing angles being proportional
to the quark mixing angles. The correlation between Am2, and M, is shown in
Fig. as « deviates from unity. The minimum allowed value of «, with all
the mixing parameters within the global range, is 0.06. However in this case as
can be seen from the right panel of Fig. we have 2.24 eV < M, < 2.28 €V,
which violates the upper limit from GERDA. Therefore including the constraints
of GERDA, the lowest possible value of o becomes 0.89. For a = 0.89, as can
be seen from the right panel of Fig. we obtain 0.40 eV < M, < 0.42 eV
corresponding to Am2, = (2.20 — 2.48) x 1073 V2. The prediction of M., for
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a=1.1 from the left panel of Fig. is 0.36 eV < M., < 0.41 ¢V which belongs
to the whole 30 range of Am3,. The upper allowed value of « in this case is
3.18, (left panel of Fig. @ with 0.214 eV < M., < 0.223 eV corresponding to
Am3, = (2.28 —2.46) x 1073 eV2. The absolute neutrino mass scale increases for
a < 1 and decreases for o > 1 similar to Cases 2 and 3. The behavior of « in this
case is similar to Cases 2 and 3, with the lower end of a being constrained by the
GERDA limit. It can also be seen from Fig. that as we move towards the
upper and lower ends of a, the whole 30 range of Am3, is not covered.
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Figure 5.26: The variation of 6o3

Figure 5.25: The variation of Am3,
with respect to 613 for Case 5 of

with respect to M., for Case 5 of
HSMR. HSMR.

We next show the correlation of 63 with respect of 613 in Fig. The 30
global end point limits of A3 and 613, are reached at the lowest and upper ends
of a. The values of 613 and o3 for lowest value of @ = 0.89 are 8.40° and 52.23°
respectively. These values belong to M. = 0.4 V. The allowed ranges of 613 and
f23, at a = 1.1 for this case are 7.62° — 8.31° and 49.0° — 52.3° respectively. The
upper end of a = 3.18, results in a global minimum value of 613 and a global
maximal value of f3, similar to Case 3. The lower end of «a results in a global
maximum value of 013 and a global minimum value of f»3.

We next show the variation of 615 with M., in Fig. The lower (30.62°)
and the upper (36.81°) 30 global limits of 612, correspond to the upper and
the lowest ends of a. However, for case of @ = 1.1, the whole 30 range of 62
(30.62° — 36.81°) is covered.

Finally we show in Fig. [5.28] the variation of the sum of the neutrino masses
with respect to M,.. The region with M., > 0.4 eV, for a = 0.06, has ¥m; in
the range of 6.73 — 6.85 eV and for v = 0.89 it is in the range 1.20 — 1.28 V.
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For a = 1.1, with M., < 0.4 €V, ¥m; is in the range 1.07 — 1.22 eV. The upper
end of @ = 3.18 has the sum in the range of 0.65 — 0.67 eV which is remarkably
lower than the previous cases. We note that the ¥m; is below the cosmological
upper bound [68]. The further discussion on the cosmological constraints on our
work will be provided in the last section of this paper. It is observed that Case
5 behaves almost similarly to Case 3, and is the most relaxed one in terms of
Mece. We can go to values of M. as low as 0.21 eV, consistent with the upper
end of a. Hence, this case is partially beyond the reach of GERDA sensitivity
which is maximum 0.3 eV. However, this is well within the reach of KATERIN
experiment [65].

Case 6: 012 =« 9(112, 913 = Gfg, 923 =« 933

We next consider the case where the leptonic mixing angle ;3 is identical with
its CKM counterpart and the other two leptonic mixing angles are proportional
to the quark mixing angles. The correlation between Am3, and M, is shown
in Fig. [5.29] The minimum allowed value of «, with all the mixing parameters
within the global range, is 0.86. It can be seen from the left panel of Fig. [5.29]
for this value of o, M, has a range 0.397 eV < Mg, < 0.42 eV corresponding
to Am3, = (2.20 — 2.48) x 1073 eV2. In case of a = 1.1, we have 0.36 eV <
M. < 0.424 ¢V which corresponds to the whole 30 range of Am3,. At the upper
allowed value of @ = 2.11 as seen from the right panel of Fig. we have
0.41 eV < M. < 0.45 eV with the whole 30 range of Amgg covered. We have
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0.64 eV < M., < 0.67 eV corresponding to Am3, = (2.22 — 2.54) x 1073 eV? for
the uppermost value of = 2.19. This end is already rejected by the GERDA
limit. In this case, it is worth mentioning that the absolute neutrino mass scale
increases for both < 1 and o > 1.
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Figure 5.29: The variation of Am%,
with respect to 613 for Case 6 of

with respect to M., for Case 6 of
HSMR. HSMR.

The behavior of « in this case Fig. is different from Case 5, Fig.
Unlike Case 5 considered before, in this case for both lower and upper end values
of @ we get M., close to its upper limit. This is because unlike the previous
cases, in this case the limit on lower value of o comes not from M., but from
the neutrino oscillation parameters. Also, although the upper limit of o = 2.11
is constrained by M., but this value is quite close to the upper limit of 2.19
obtained without the M., constraint.

In Fig. we show the correlation of f235 with respect of 613. The 30 global
end point limits of #23 and 13, are reached at the lowest and uppermost end of
«. The allowed ranges of 613 and a3, at @ = 1.1 for this case are 7.62° — 8.90°
and 47.0° — 52.3° respectively. At a = 2.11, the value of 613 is 9.4° — 9.76° and
that of 53 is 38.7° — 38.8°.

We next show the variation of 615 with M. in Fig. The lower (30.60°)
and upper (36.81°) 30 global limits of 619, is reached at the lowest and the
uppermost end of a. This behavior is quite the opposite of the behavior shown in
Fig.[5.27for Case 5. In case of a = 1.1, the whole 30 range of 612 (30.60°—36.81°)
is covered. The value of 615 at o = 2.11 is 34.57° — 35.02°.

Finally we show in Fig. the variation of the sum of the neutrino masses
with respect to Mg.. In case of &« = 0.86 the sum of neutrino masses Xm; is in
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Figure 5.32: The variation of Xm;

Figure 5.31: The variation of 6o with respect to M,. for Case 6 of
with respect to M. for Case 6 of HSMR.
HSMR.

the range of 1.19 — 1.27 eV. Next for a = 1.1, ¥m; has a range of 1.1 — 1.27
eV for M. < 0.4 eV and when o« = 2.11 it is in the range 1.26 — 1.36 eV for
0.4eV < M, <0.48 €V.

Case T: 912 =« 9?2, 913 =« 9(113, 923 =« 933

We finally consider the case where all the leptonic mixing angles are propor-
tional to the quark mixing angle by the same proportionality constant (a)). We
find that the upper bound on «, is constrained by the mass limit (M) from
GERDA, whereas the lower limit on « is constrained by the 3o global limit of
the leptonic mixing angles. The lowest value of « is 0.89 and the highest value
of a relaxing the GERDA limit is 2.09, whereas by taking into account the M.,
limit, the highest value is 2.

We next discuss the behavior of the neutrino mass and mixing parameters
in Case 7, with the variation of « in the allowed range. Firstly like all the
previous cases, the variation of Am3, with M., is shown in Fig. As seen
from the left panel of Fig. for the lowest value of o = 0.895, we have
0.391 eV < M, < 0.425 eV which corresponds to the whole 30 global range of
Am%Q. At a = 1.1, the range of M., is 0.362 eV < M., < 0.405 eV which again
corresponds to the whole 30 global range of Am3,. The range of M, at a = 2
is 0.4 eV < M, < 0.42 eV which corresponds to the whole 30 global range of
Am%Q. The uppermost end of a = 2.09 has 0.42 eV < M. < 0.452 eV which
corresponds to the whole 3o global range of Am2, and is rejected by the GERDA
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limit. Hence, the entire allowed range of a covers the whole 30 range of m3,.
The absolute neutrino mass scale increases for both o < 1 and a > 1 similar to
Case 6. The behavior of a resembles to Case 6 with the upper and lower ends of
a having values close to M.
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We show the range of 623 and 613 covered by the different allowed values of «
in Fig. The 30 global limits on the mixing angles are reached at the lower
and uppermost ends of a. The allowed ranges of #13 and A3 for o« = 1.1 are
7.76° — 9.02° and 46.3° — 52.26° respectively. For a = 2.0, the value of 63 is
9.44° and that of Ao3 is 37.8° which belongs to M., = 0.4 €V. The uppermost end
of a = 2.09, gives the value of 613 at its global upper limit, whereas 23 is kept
at its global lower limit. The converse is true for the lower end of o with 613, 012
at its lower value and fy3 at its maximum.

The variation of the third mixing angle 61, with respect to M., is next plotted
in Fig. The pattern obtained is similar to Case 6, with the lower and upper
end of a giving the 30 global end points of 012 respectively. The whole 30 global
range of 019 is allowed, for a = 1.1. The value of #12 at a = 2 is 36.6°.

Finally we plot the sum of the neutrino masses as a function of M., in
Fig. For o = 0.895, range of Ym,; is 1.18 — 1.28 €V corresponding to
0.391 < M, < 0.425 eV. The range of ¥m; at @ = 1.1 is 1.09 — 1.18 eV for
Mo < 0.4 eV. At the upper allowed value of @ = 2.0, it is 1.2 — 1.28 eV for
0.4 < M, < 0.425 eV. The sum of the neutrino masses is 1.27 — 1.38 eV for
0.42 < M. < 0.452 eV, in case of the uppermost value of @ = 2.09. This range
is not allowed by the GERDA limit.
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Lastly as a completion, in order to give a clear picture of all the cases discussed
here along with their phenomenological consequences, we summarize our results
in Table The upper and lower ends of « allowed by the experiments for all
the cases are presented along with the corresponding values of masses and mixing
angles of the neutrino sector.

The effects of new physics within type-1 seesaw framework

In this sub-section, we discuss the possible effects of the new physics which
could generate dimensional-5 operator. For sake of illustration we take type-1
seesaw as the mechanism responsible for generating the effective dimensional-5
operator. The RG equations for type-1 seesaw can be found in the Ref. [57]. In
table we show results for different cases of HSMR with a seesaw scale equals
4 x 10'3 GeV which is slightly lower than the scale of the dimensional-5 operator.
We have chosen this scale to demonstrate and differentiate the effects of type-
1 mechanism from the results obtained using dimesional-5 operator. Since the
major part of RG magnification happens at scales much lower than the typical
seesaw scales, the results obtained from dimension-5 operator and those obtained
form type-I seesaw mechanism are not very different over a large range of pa-
rameters [11H16]. Our results for type-I seesaw are as shown in Table To
take the effect of type-I seesaw thoroughly, we have done the RG running from
the GUT scale (2 x 10'®) GeV to the seesaw scale using the full RG equation
for type-I seesaw mechanism. Below the seesaw scale the right handed neutrinos
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a Masscs at_unification scalc (V) Sim; (V) T, 05 0, Am3, (10°V7) | Amd, (10°V7) | M. (V) |y (V) R
my s s
HSMU | 1 | 0457-0476 | 046-048 | 05150538 | 1.16-1.2 |30.59-36.81 | 7.63-8.34 | 49-52.3 221-2.45 6.99-8.18 0.384-0.4 0.383 1518
2*Case 1| 0.902 | 0.442-0.478 | 0445-0481 | 0.498- 0.539 | 1.12-1.2 30.6 7.62 52.20 2.20-2.55 6.99-8.18 036504 | 040155 1.39-1.42
1.28 0.476 0.478 0.538 1.2 32.82 8.16 44.05 2.20 7.196 0.4 0.399 2.1
2*Case 2 | 0.45 0.41 - 0.445 | 0.411 - 0.448 | 0.464 - 0.54 1.16-1.2 30.8 7.65 52.3 2.20-2.57 7.00-8.18 0.38-0.42 0.345-0.375 1.70-1.95
25 | 0415 - 0.444 | 0.416 - 0.445 | 0.468- 0.5 | 1.05-1.12 | 3L.89-36.6 | 7.02-0.88 | 37.7-48 220253 TO00S.18 | 0.312-0378 | 0.318-0.373
2*Case 3 | 0.89 0.48 0.48 0.5384 1.2 30.6 8.56 523 2.20 6.99 0.4 0.401 144
T.52 [ 0.369-0399 | 0.373-0.403 | 0.418-0.451 | 0.93-1.01 30.78 762 523 220256 609818 0.31-0.336 | 0.310-0335 | 2.16-2.21
2*Case 4 | 092 | 0.455-0.475 | 0.458-0478 | 0.513-0.536 | 1.15-1.20 30.6 7.65 52.28 2.30-2.50 6.99-8.01 0.382-040 | 0.3823-0.309 | 1.463-1479
T.67 | 04820502 | 0.485-0.505 | 0.546-0.568 | 1.22-1.27 | 30.50-30.66 | 9.59 | 37.71-37.76 | 2.20-2.49 708818 | 0.405-0.422 | 04050422 | 2.822.86

2%Case 5| 0.89 | 0.475-0.505 0.478-0.508 1.20-1.28 30.72 8.40 52.23 2.20-2.48 7.00-7.97 0.4-0.42 0.399-0.424 1.465-1.485
3.18 | 0.255-0.265 0.26-0.27 0.65-0.67 30.62 7.62 523 2.27-2.45 6.99-8.12 0.214-0.223 | 0.214-0.222 3.542-3.672
2*Case 6 | 0.86 0.47-0.50 0.474-0.504 | 0.531-0.565 | 1.19-1.27 30.61 7.62 52.3 2.20-2.48 6.99-8.17 0.396-0.421 | 0.396-0.421 1.241-1.268
2.11 | 0.494-0.533 | 0.502-0.542 | 0.567-0.612 | 1.26-1.36 | 34.57-35.02 | 9.64-9.76 | 37.70-37.8 2.20-2.57 6.99-8.18 0.416-0.450 | 0.414-0.448 | 246.94-251.84
2*Case 7| 0.895 | 0.468-0.505 | 0.471-0.508 0.528-0.57 | 1.185-1.22 30.68 7.63 52.28 2.20-2.31 6.99-8.18 0.393-0.4 0.393-0.404 1.34-1.37
2 0.474 0.48 0.5413 118 36.6 9.44 37.8 2.20 7.248 0.39 0.398 81.7-82.11

Table 5.3: The allowed predictions for HSMU and the different cases of the HSMR
for lower and upper allowed values of a, Eqs. ([5.1415.20)).

are integrated out and as before, the subsequent RG running is done with effect
dimension-5 operator. Here we will like to remark that since in this case the RG
running is done from a higher scale i.e. GUT scale so we expect small deviations
from the previous results primarily due to the larger range of RG running. The
dependence of RG evolution on the chosen high scale is studied in [15,/16].

We observe from comparing Tables [6.3] and [6.2] that for case 1 of the HSMR,
the lower allowed end of « effectively does not change. As expected, there are
slight changes in the value of the observables. For example, the M., decreases
and reaches to the value 0.349 eV compare to the prediction given in table
Similar observation for the mass of the lightest neutrino. The upper end of «
changes after introducing seesaw scale, primarily due to increased RG running
range. In Table the upper allowed end for case 1 is 1.28. As we observe in
Table [6.3] it is now 1.71 and parameter space is bit expanded. However, there is
no significant qualitative change in our results which are same as before.

Similarly, for case 2, one can observe from the Tables [6.3] and [6.2] that the
lower end of « does not change much. The results are stable and similar to Table
[6.2l The upper end of a changes slightly and is 2.59 now. Again as before, there
is no significant qualitative change in our results which are same as before.

In case 3 of Table [6.3] the lower value of « has shifted a bit from that of
Tabld6.2] that is from 0.89 to 0.75, but the higher value remains intact being
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1.52. The parameters also cover more or less the same span as before and show
a stable situation .

The observed pattern in case 4 is same as the case 1, as we see that the lower
end does not change while the upper end changes from 1.67 to 1.76 after the
inclusion of type-I seesaw (see Table and Table for comparison). The
value of M. and the mass of lightest neutrino decreases compare to the values
given in Table and attain the values 0.3508 eV and 0.3506 eV, respectively.

The observed pattern in case 5 is also same as that obtained in Table
Comparing the results with Table we find that the value of o at the lower
end changes slightly. The lower end saturates the bound for M., whereas at the
upper end the value of M., turns out to be 0.205 eV, which is slightly smaller
than the value quoted in Table

In case 6, the upper value of a changes very slightly compared to Table [6.2]
whereas the lower value remains the same. In this case both the lower and upper
end saturates the bound for M.

As expected, the results for case 7 are stable as can be observed from Ta-
bles [6.2] and [6.3], where the lower end of « is now 0.896 instead of 0.895 and the

higher end remains the same, namely a = 2.

a Masses at unification scale (0V) Sm; (V) 7, s A A, (10°0V7) | Ang, (10°6V9) | M. (V) (V) R
[ s ms
2*Case 1 | 0.903 0.465 0.469 0.538 104 3106 7.63 52.30 2.200 8.00 0.349 0344 148
T71 | 05100512 | 05150516 0.625-0.63 T203 1.205 | 30.52 - 33.38 | 8.08-087 | 37.75-10.25 2201-2.26 705-7.00 039904 030515 189
2*Case 2 | 047 | 0.486-0.486 0.49 0.562 - 0.562 1.08-1.08 30.66-30.92 7.62 52.15-52.19 22223 7.65-8 0.359 1.96-1.99
250 | 0478-04%0 | 0.481- 0.453 0.55 - 0.554 .06 30.65-31.2 51016 12.96-43.51 25250 Tl 0351 T
2*Case 3 | 0.75 | 0.542 - 0.5420 | 0.545 - 0.546 | 0.625782 - 0.627092 | 1.20171 - 1.204 | 30.607 - 32.73 | 8.746 - 8.952 | 51.33 - 52.285 22224 6.99-8.16 0399-04 | 0399-04 |1351-1374
152 0302 0397 0.155 0.8 30.7133 7630 52.208 238 705 0.292 0.201 252
2*Case 4 | 092 04744 0478 0.5487 106 3098 7.64 52.27 2.266 8.081 0.351 0.3506 1.55
T76 | 051505511 | 05520558 0.636-0.6135 122123 3600-3655 | 080087 | 37713783 22012207 71017837 | 0.1015-0.1088 | 0.1030-0.1083 | 1.7-1.85
2*Case 5 | 0.80 0.537 0.540 0.621 1191 32.68 7.79 49.17 220 8.09 0.396 0.396 1.532
318 0271 0.250 0321 0.623 30.65 763 523 245 722 0.205 0.205 1582
2*Case 6 | 0.86 0.497 0.500 0.574 1104 3109 7.62 52.3 220 7.86 0.367 0.367 1.301
214 0511 0555 0,612 122 35.06 958 37T 221 518 0.102 0100 07
2*Case T | 0.896 0.49 0.50 0.57 1104 3065 - 3141 7.62 52.20 2.24 7181 0.36 036 142
2 05 0.19-051 058 112 3130-3660 | 952-081 | 37.80- 3807 | 228 - 247 708 - 721 037 037 1555

Table 5.4: The allowed predictions for the different cases of the HSMR for lower
and upper allowed values of a, Eqgs. within the framework of type-1
seesaw for sea-saw scale 4 x 10" GeV. It should be noted that RG evolution
begins from GUT scale which is 2 x 10'® GeV.

Thus, as expected the results obtained with the framework of type-I see-
saw mechanism are qualitatively same as those obtained using only dimension-5
effective operator. The general observation is that the absolute mass scale is de-
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5.5 Theoretical models for high scale mixing relations

creasing due to the RG evolution starting from GUT scale (2 x 10'® GeV) which is
higher than the scale of dimensional-5 operator. This leads to a slight change in
the allowed end of o that is constrained by the observable M... That is why, we
observe a slight change in the values of mixing angles. We remark that if the high
scale from where RG evolution begins, is chosen to be 10'* GeV with a seesaw
scale equals 4 x 10 GeV, we recover the results obtained with dimensional-5
operator which is naturally expected.

Theoretical models for high scale mixing relations

In this section, we address the theoretical implementation of HSMR hypoth-
esis from the model building point of view. The only aim of this section is to
illustrate that the HMSR hypothesis can be simply realized in models based on
flavor symmetries. We follow the same line of argument as presented in Ref. [11].

Now we discuss a simple realization of HSMR relations using abelian Z7 flavor
symmetry. To realize the HSMR relations we add three SU(2) triplet scalars &;
1 = 1,2, 3 to the particle content of MSSM. The smallness of neutrino masses can
then be explained by the type-2 seesaw mechanism. Let the quarks and leptons
and scalars transform under Z7 as follows

[y

Qp ~
L
1 2 3 3
L; ~ 1, L} ~w, L; ~w’, epg~1, pur~w, TR ~w
H’LHHd ~

3

—_

where w = 7 is the seventh root of unity. In the above equation QiL, i;
t = 1,2,3 are the quark and the lepton doublets respectively whereas ug, dg,
CR,SR, tR, bR, eR, R, Tr are the quark and the charged lepton singlets. Moreover,
H,, H; are the two scalar doublets required to give mass to the up and down type
quarks respectively.

It is easy to see from Eq. that the Z7 symmetry leads to diagonal mass
matrices for both the quarks and the leptons leading to Uoxy = Upuns = 1.
To obtain the realistic CKM and PMNS matrices as well as the HSMR relations,
we allow for small Z7 symmetry breaking terms as done in Ref. [71] albeit for A4
symmetry. Such corrections can arise from soft supersymmetry breaking sector
as shown in Ref. [72-74]. Allowing for symmetry breaking terms of the form
|nY| << |h}| << |hi| << |hi| where h; are the terms invariant under Z; symmetry
and R}, hY and h}” are the symmetry breaking terms transforming as w, w? and
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w3 respectively under Z7 symmetry. Following the approach of Ref. [71] one can

then easily realize the HSMR relations. Here we want to emphasize that owing to
quite different masses of quarks and charged leptons, this analysis will in general
lead to HSMR relations and not to HSMU relations. To obtain HSMU relations
from such an approach one has to invoke a symmetry or mechanism to ensure
that the symmetry breaking terms are exactly same in both quark and lepton
sectors.

Before, ending this section we would like to further remark that although
we have only discussed realization of HSMR relations through the Z7 symmetry,
they can also be quite easily and naturally realized using other flavor symmetries
and also using other type of seesaw mechanisms. For example, one can also real-
ize HSMR relations within the framework of type-1 seesaw mechanism using Z7
symmetry. For this, instead of adding triplet scalars we add three right handed
neutrinos which transform as N1z ~ 1, Noap ~ w, N3g ~ w? under the Z; sym-
metry. We also add three heavy singlet scalars ¢;; i = 1,2,3 transforming as
di ~ 1,09 ~ W, ¢3 ~ w under Z7; symmetry. Following computations analogous
to those done above, one can again easily obtain the HSMR relations. Thus, it
is clear that HSMR relations are very natural and can be easily realized using
discreet flavor symmetries. In this work we do a model independent analysis of
the consequences of the HSMR relations assuming they are realized at the high
scale by appropriate flavor symmetries.

Summary

The very small mass of the neutrinos along with a large mixing among them
is arguably a remarkable observation. This phenomenon is starkly different from
the mixing in the quark sector which is small in the SM. The quest to understand
the origin of a large mixing among the neutrinos and a small mixing among the
quarks has led to many interesting theoretical ideas. Many beyond the standard
model scenarios have been constructed, trying to understand the major theoreti-
cal challenge posed by the neutrino mixing. GUT theories with the quark-lepton
unification have been extensively used in the literature to understand the neu-
trino sector at low energies. The postulated HSMR in this work is another effort
to understand this extraordinary observation of neutrino mixing. We have shown
from a model building point of view, how the HSMR can be naturally realized us-
ing different flavor symmetries and seesaw mechanisms. We have first considered
the most general relation among the leptonic and the quark mixing angles, with
different proportionality constants («;). We then list the different possible cases
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5.6 Summary

which arise, for the maximum and minimum allowed values of «;. It is found
that for the allowed range of «;, M. is between 0.35 eV - 0.4 eV. The future
experiments from GERDA will severely constrain these scenarios. We then look
into more simplified cases to have a clear physical picture and therefore consider
the a; to be equal for the three generations and vary k; to 0 or 1. We then
list the seven possible ways the quark and the leptonic mixing angles can be
proportional to each other (cf. Egs. ) It is remarkable that these
relations naturally explain the difference between Vo and Uppasns at the low
scale. Furthermore, the QLC relation and the observation in Eq. can be
easily recovered by these relations.

We have thoroughly investigated the implications and the phenomenological
consequences of all the possible cases, taking into account the latest experimental
constraints. The whole analysis has been done with the assumption of normal
hierarchy and QD mass pattern. In general, we have discovered three new cor-
relations among Amgz, M., 012 and sum of neutrino masses. These correlations
are not investigated in previous studies.

We first discuss about the HSMU scenario, which is a special case of all the
HSMR scenarios in the a =1 limit. The behavior of the neutrino masses and
the mixing parameters at the low energy scale is discussed in detail for all the
cases in HSMR with the value of o deviating from unity in the allowed range.
The allowed range of « is bounded by the recent experimental results listed in
Table and the upper limit on M, provided by GERDA [23]. It is seen that
for all the cases except Case 2, the M., constraint from the GERDA results in
either upper (Cases 1, 4, 6 and 7) or lower (Cases 3 and 5) limit of @. Otherwise
the allowed value of « is mostly constrained by the 30 global limits on neutrino
mixing parameters.

An interesting feature is observed in Case 2, where the lower end is con-
strained by the 3¢ global limits of neutrino mixing parameters but the upper
end is constrained by the value of the ratio R, which contributes through thresh-
old corrections. We have worked here in the inverted hierarchy scheme in the
charged slepton sector, forcing the ratio to be either greater than or equal to one.
A common behavior has been observed for all the cases, where we always find a
strong correlation between 623 and 6,3, for all the allowed values of o except at
the end points which corresponds to a point in the o3 — 013 plane. It is also seen
that among all the experimental constraints M, is the most interesting one as
it mostly constrains the different cases as well as differentiates among them. If
in the future the upper limit from GERDA goes down to 0.35 eV, then HSMU,
Case 1, Case 4, Case 6 and Case 7 will be ruled out. The ones who will survive
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will be Cases 2, 3 and 5 which allows M. as low as 0.2 eV but with the value of
a > 1. The constraint on M., can automatically be reverted to the sum of the
neutrino masses. It will show a similar behavior while discriminating the various
cases. We also notice that if we take into account the GERDA limit of 0.4 eV,
then the allowed range of v in Cases 1, 3 and 5 is limited to a small region in the
093 — 613 plane (Figs. [5.10} [5.18] [5.26]). Therefore these cases along with HSMU
will be ruled out, if the best fit value of 623 becomes less than 44° or that of
013 becomes greater than 8.55° in the future. We further see that Cases 2 and
5 can survive longer, and the region of M, = 0.2 eV is beyond the sensitivity
of GERDA which is maximum 0.3 eV. The region of M., = 0.2 eV will easily be
probed by KATRIN [65] since mg is approximately identical to M, in this work.
Here, we pause to comment on the cosmological limit on the sum of the neutrino
masses [68]. Our predictions in all cases except Case 5 are slightly above the
upper cosmological bound of 0.72 eV. As commented earlier, this bound is model
dependent. Hence, it is preferred to test predictions of this work in a laboratory
based experiment, like GERDA [23].

We also observe that Cases 3 and 5 show similar behavior, this is mainly
because both consider the framework, where the neutrino mixing angle o3 is
equal to the quark mixing angle by a proportionality constant af4,. Although
Case 5 also has the condition of 613 = « 05, but at the GUT scale 0]; < 645,
therefore the effect of 63, dominates. The same pattern can be observed for Case
1 and Case 4, explained through the same argument, 67; < 6, at the GUT
scale. Continuing the same argument as expected we find that Case 7 displays
similar behavior as Case 6. The effect of the neutrino mixing angle 63 being
proportional to the quark mixing has many interesting results, as it leads to
the most optimistic case. However once the other angles become proportional,
this effect is subdued. Finally we note that all these interpretations have been
done with the assumption that the Dirac and the Majorana phases of the PMNS
matrix are zero and phenomenological consequences can change with nonzero
phases. The overall scenario depicting a quark-lepton symmetry at a high scale
through HSMR, can be narrowed down to a particular case or completely ruled
out, only from the future improved experimental constraints. These constraints
can be from the neutrinoless double beta decay |23|, or the LHC constraints on
the SUSY spectrum.

The different scenarios of the HSMR can be discriminated through measure-
ment of various observables like M., and by precise determination of the values
of the mixing angles, particularly 613 and f-3 mixing angles. As we have shown
in the figures for various cases as well in the tables, the allowed ranges for M.,
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and the angles are different for different cases and a precise determination of
these observables can be used as a way to distinguish various cases of HSMR. In
addition to neutrino observables one can also use other process like lepton-flavor
violation to distinguish the different allowed cases. The mass-splitting in the
charged-slepton sector is given by the ratio R = z\y We observe from tables
(.2 and [6.2] that the ratio R almost discriminate evgijy scenario. Hence the pro-
cesses like u — ey, 4 — eee and anomalous magnetic moment of the electron.
For example, the SUSY contribution to the anomalous magnetic moment of the
electron directly depends on the ratio R [58]. The detail study of this aspect of
the work is not possible in this paper.

Furthermore, for sake of completion, we also present our results in the frame-
work of the type-1 seesaw. The aim is to show how the predictions do not change
in any significant way and that the analysis done with effective dimension-5 op-
erator is quite robust. As argued before, this is not surprising as the major part
of RG magnification happens only at much lower scales closer to SUSY break-
ing scale. At such low scales, the effective dimension-5 operator provides a very
good approximation to the high scale seesaw mechanisms. The mass scale of the
right-handed neutrinos is chosen 4 x 1013 GeV which is close to the scale of the
dimensional-5 operator. We notice that parameter space increases very slowly
as we decrease the scale of new physics primarily due to increased span of RG
running. However predictions do not change in any significant manner and are

quite robust.

We also comment on a general theoretical view which is more general than
the HSMU hypothesis and the HSMR. Assuming that at some high scale, both
the mixing matrices (CKM and PMNS) are approximately unit matrices, but
some perturbation can mix the generations leading to the Wolfenstein form of
the mixing in both the quark and lepton sectors. This results in the mixing
between the first and the second generations to be A (a small number of order
0.2), the second and the third generations mixing to be second order in A i.e.
sin @3 ~ A? while the first and the third generations mixing to be third order
order in X i.e. sinf;3 ~ A3. Now after RG evolution the CKM mixing angles
do not change much but the PMNS mixing angles are dramatically magnified for
the reasons already mentioned in this as well as our earlier papers [15/17,33].

Finally, in short, crux of our paper is following.

o We have proposed and studied the HSMR hypothesis which is a more general
framework than the HSMU hypothesis.

e The HSMR hypothesis provides a very simple explanation of the observed
large neutrino mixing. The present and future neutrino experiments can
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easily test predictions of our work. If our predictions are confirmed by ex-
periments, like GERDA, it would be a good hint of quark-lepton unification
at high scale.

e We observe that the HSMU hypothesis represents o = 1 limit of the HSMR
hypothesis and is constrained by the lowest allowed value of M. which is
0.384 MeV. Therefore, if the HSMU hypothesis is ruled out by experiments,
like GERDA, the other HSMR cases with a # 1 may survive and their
confirmation would be itself a strong hint of the proportinality between
quark and leptonic mixing angles which is the basis of the HSMR hypothesis.

e We have done a rigorous, thorough and comprehensive study with the HSMR,
hypothesis which does not exist in the literature. All results reported in the
literature using the HSMU hypothesis, are very small subset of our results
with the HSMR hypothesis presented in our paper. Moreover, we have also
thoroughly compared HSMR hypothesis with respect to the HSMU.

e In our work, we have discovered new strong correlations among different
experimental observables for every limit of the HSMR hypthesis. These
correlations do not exist in the literature and are easily testable in present
ongoing experiments. For example, there is a strong correlation between
Am3, and M,.. This correlation can be easily tested by GERDA experiment.
There are two more such correlations namely among 612, M., ¥m; and
M, discussed in our work which are completely new and unexplored in the
literature.

e Furthermore, we have comprehensively studied a strong correlation between
f23 and 613 and predictions can be easily tested in present ongoing experi-
ments. This correlation was studied in a previous study in a specific limit.
Since we have done a comprehensive full parameter scan, this correlation
has become a robust band now.
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ments on the manuscript. GA dedicates this paper to I. Sentitemsu Imsong. The
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The neutrino mixing parameters are thoroughly studied using renormalization-
group evolution of Dirac neutrinos with recently proposed parametrization of the
neutrino mixing angles referred as ‘high-scale mixing relations’. The correlations
among all neutrino mixing and CP violating observables are investigated. The
predictions for the neutrino mixing angle 023 are precise, and could be easily
tested by ongoing and future experiments. We observe that the high scale mix-
ing unification hypothesis is incompatible with Dirac neutrinos due to updated
experimental data.

14.60.Pq, 11.10.Hi, 11.30.Hv, 12.15.Lk

Introduction

Neutrino mixing is one of the most fascinating and challenging discoveries.
This is starkly different from quark mixing which is small in the standard model
(SM). There are a number of ways to explain these two very different phenomena.
The quark-lepton unification, which is one of the main attractive features of the
grand unified theories (GUT) [1H3], could provide an explanation of the origin of
neutrino and quark mixing since quarks and leptons live in a joint represenation
of the symmetry group. Another interesting approach is to use flavor symmetries
[4-8]. These symmetries could also naturally appear in GUT theories [9).
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Precise Predictions For Dirac Neutrino mixing

To explain the origin of neutrino and quark mixing, recently a new parametriza-
tion of the neutrino mixing angles in terms of quark mixing angles was proposed
in Ref. [10]. The varoius simplified limits of this prameterization are referred
as ‘high-scale mixing relations’(HSMR). The parametrization is inspired by the
high scale mixing unification (HSMU) hypothesis which states that at certain
high scales the neutrino mixing angles are identical to that of the quark mixing
angles [11-14]. This hypothesis is studied in detail in Refs. |[15H19] .

The HSMR parametrization of the neutrino mixing angles assumes that the
neutrino mixing angles are proportional to those of quarks due to some underly-
ing theory which could be a quark-lepton unification or models based on flavor
symmetries. In fact, such models are also presented in Ref. [10]. The scale where
the HSMR parametrization could be realized is referred as unification scale. In
its most general form, the HSMR parametrization can be written as follows:

1o = ot 0%y, 013 = ab? 0%, 63 = ak?0d,. (6.1)

where 6;; (with i,j = 1,2,3) denotes leptonic mixing angles and ng are the
quark mixing angles. Exponents k; with i = (1,2, 3) are real. Predictions of the
HSMR parametrization could be a strong hint of the quark-lepton unification,
some flavor symmetry or both.

The HSMR parametrization is studied in the framework of the SM extended
by the minimum supersymmetric standard model (MSSM). The beginning point
is to run the quark mixing angles from the low scale (mass of the Z boson)
to the supersymmetry (SUSY) breaking scale using the renormalization-group
(RG) evolution of the SM. The RG equations of the MSSM govern the evolu-
tion of quark mixing angles from the SUSY breaking scale to the unification
scale. After obtaining quark mixing angles at the unification scale, the HSMR
parametrization is used to run neutrino mixing parameters from the unification
scale to the SUSY breaking scale via RG evolution of the MSSM. From the SUSY
breaking scale to the low scale, the SM RG equations are used to evolve the neu-
trino mixing parameters. The free parameters controlling the top-down evolution
of the neutrino mixing parameters are masses of the three light neutrinos, Dirac
CP phase and parameters «;. Masses of neutrinos must be quasidegenerate and
normal hierarchical. Furthermore, the large value of tan 8 is required [10].

On the other hand, the nature of neutrinos is still unknown. They could be
equally Dirac or Majorana in nature. Hence, from the phenomenological point of
view, Dirac neutrinos are as important as Majorana neutrinos. There are many
ongoing important experiments to test the nature of neutrinos [20-23]. However,
for the Dirac mass of neutrinos, the Yukawa couplings for neutrinos seem to
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6.2 RG evolution of the neutrino mixing parameters for Dirac neutrinos

be unnaturally small. The elegant way to explain this fine-tuning is see-saw
mechanism which assumes that neutrinos are Majorana in nature [24-28].

The smallness of masses for Dirac neutrinos could be explained in many mod-
els using heavy degrees of freedom [29-38]. There are also models based on extra
dimensions which explain the smallness of Dirac neutrino mass by a small over-
lapping of zero-mode profiles along extra dimensions [39-41]. Dirac neutrinos
seem to be a natural choice in certain orbifold compactifications of the heterotic
string where the standard see-saw mechanism is difficult to realize [42]. Cosmo-
logical data do not prefer Majorana or Dirac neutrinos either. For instance, the
baryon asymmetry of the Universe can also be explained for Dirac neutrinos in
various theoretical models [43}49].

Although the RG evolution of Majorana neutrinos is extensively studied in
the literature [11417,50,/51], less attention is being paid to the RG evolution of
Dirac neutrinos. In fact, as far as we know, it was shown for the first time in
Ref. |16] that RG evolution for Dirac neutrinos can explain the large neutrino
mixing assuming the HSMU hypothesis. However, as we show later, these results
are ruled out by new updated data [52-54] and due to an improved algorithm
used in the package REAP [55].

It is established that the HSMR parametrization can explain the observed
pattern of the neutrino mixing assuming they are Majorana in nature [10]. In
this paper, we investigate the consequences of the HSMR parametrization using
the RG evolution of Dirac neutrinos.

This paper is organized in the following way: In Sec. we present our
results on the RG evolution of the neutrino mixing parameters. In Sec. [6.3] we
present a model with naturally small Dirac neutrino masses, where the HSMR
parametrization discussed in Eql6.1]can be explicitly realized. We summarize our
work in Sec. [6.4

RG evolution of the neutrino mixing parameters for
Dirac neutrinos

Now we present our results. The RG equations describing the evolution of the
neutrino mixing parameters for Dirac neutrinos are derived in Ref. [56]. We have
used Mathematica- based package REAP for the computation of the RG evolution
at two loops [57]. The first step is to evolve quark mixing angles, gauge couplings,
Yukawa couplings of quarks, and charged leptons from the low scale to the SUSY
breaking scale. From the SUSY breaking scale to the unification scale, evolution
undergoes the MSSM RG equations. The quark mixing angles at the unification
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Precise Predictions For Dirac Neutrino mixing

scale after evolution are 0%, = 13.02°, 07, = 0.17° and 64, = 2.03°. Now, quark-
mixing angles are used by the HSMR parametrization at the unification scale
and neutrino mixing parameters are evolved down to the SUSY breaking scale
using the MSSM RG equations. After this, the evolution of mixing parameters
are governed by the SM RG equation. The value of tan S is chosen to be 55. For
simplification, we have assumed k1 = ko = k3 = 1 in the HSMR parametrization.
The global status of the neutrino mixing parameters is given in Table

Quantity Best fit | 30 range
Am3, (10 eV | 7.60 | 7.11 -8.18
Am?, (1073 eV?) | 248 | 2.30 - 2.65

°, 346 |31.8-37.8
03, 48.9 | 38.8-53.3
°, 8.6 7.9-9.3

Table 6.1: The global fits for the neutrino mixing parameters [52]

Results for the SUSY breaking scale at 2 TeV

In this subsection, we present our results for the SUSY breaking scale at 2 TeV
following the direct LHC searches [58]. The unification scale where the HSMR
parametrization could be realized is chosen to be GUT scale (2 x 10'6 GeV). The
free parameters of the analysis are shown in Table

Quantity | Range at the unification scale
a 0.7—-0.8
o9 2.12-2.78
Qs 1.002 — 1.01

my(eV) 0.49227 — 0.49825

my (eV) 0.494 — 0.5

ms (eV) 0.52898 — 0.53542

dDirac (—140, 140)

Table 6.2: The free parameters of the analysis chosen at the unification scale.

In Fig. we show a correlation between mixing angles 613 and f23. It
is obvious that our prediction for #o3 is precise. The allowed range of 63 is
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6.2 RG evolution of the neutrino mixing parameters for Dirac neutrinos

7.94° — 9.3°. The corresponding range of a3 is 51.5° — 52.64°. It is important to
note that the predictions for 613 include the best fit value. Another important
prediction is that fo3 is nonmaximal and lies in the second octant. Being precise,
this correlation is easily testable in future and ongoing experiments such as INO,
T2K, NOvA, LBNE, Hyper-K, and PINGU .

51.9

5181

517+

515+

3 S T T SR

Figure 6.1: The variation of 635 with respect to 675.

In Fig. we show the variation of “averaged electron neutrino mass” mg
with respect to Am3;. The allowed range of mg is 0.4633 — 0.4690 eV which
is precise. The upper bound on mg is 2 eV from tritium beta decay ,. The
KATRIN experiment is expected to probe mg as low as 0.2 eV at 90% C.L. .
Hence, our prediction for mg is well within the reach of the KATRIN experiment.
The allowed range for Am3; is (2.30 — 2.37) x 1073eV? which is bounded with
respect to the 30 range given by the global fit in Table [6.1] It should be noted
that the best fit value of Am2; given in Table is excluded by our results.

We show in Figl6.3] another important predictions of this work. This is the
variation of the C'P violating Dirac phase dp;.qc With respect to 613. The Dirac
phase 0 pirqc 18 not known from experiments. Hence, any prediction of this impor-
tant observable is of great interest. Our prediction for dp; qc is 80.01° to 287.09°
excluding a sufficient part of the allowed parameter space of this quantity. In
Figl6.4] we show the behavior of the Jarlskog invariant Jop with respect to Dirac
phase dpjrqc- The allowed range for this observable is —0.266 to 0.266. Thus, a
large C'P violation is possible in our analysis.

The variation of the sum of three neutrino masses, ¥m; with respect to Am3;
is shown in Figl6.5] The allowed range of ¥m; is 1.393 — 1.410 €V, which is
precise. We comment that our prediction for m; is a little higher than that
provided by the cosmological and astrophysical observations which is 0.72 eV at
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95%C.L. . However, cosmological limit on >m,; is highly model dependent.
For example, as shown in Fig. 29 of Ref. this could be as large as 1.6eV.
Furthermore, Ref. assumes degenerate neutrinos ignoring the observed mass
splittings whereas their model (ACDM) assumes two massless and one massive
neutrino with YXm; = 0.06eV. Moreover, ACDM is facing several challenges in
explaining structures on galaxy scales [69]. Hence, our predictions are aimed to
test in laboratory-based experiments like KATRIN .

We do not obtain any constraints on the mixing angle 612 and mass square
difference Am3;. The whole 30 ranges of global fit are allowed in this case for
these quantities.
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Figure 6.5: The variation of ¥m; with respect to Am3;.

Variation of the SUSY breaking scale

Now, we discuss the effect of variation of the SUSY breaking scale on our
predictions. In this case, we change the SUSY breaking scale to 5 TeV. However,
the unification scale is still at the GUT scale. Our results are summarized in
Tables and In Table we provide our free parameters which are
chosen at the GUT scale. Our predictions at the low scale are given in Table [6.4]

We observe that the mixing angle 612 and mass square difference Am3; were
unconstrained for the SUSY breaking scale at 2 TeV in the previous subsection.
Now, we observe that these quantities are bounded with respect to the 3o range
given by the global fit. The mixing angle #a3, unlike the investigation for SUSY
breaking scale 2 TeV, lies in the first octant and is non-maximal.
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Quantity Range
aq 0.88 —1.012
Qg 2.72 — 2.85
Qs 1.095
mi(eV) | 0.46878 — 0.47380
may (eV) 0.47 —0.475
ms (eV) | 0.50321 — 0.50857
5Dirac (_1407 140)

Quantity Range
012 32.85° — 37.74°
013 7.94° — 8.20°
O23 38.86° — 39.45°
mi(eV) 0.44458 — 0.44932

Am3; (107° eV?)
Am?, (1073 eV?)
mg (eV)
Ym; (eV)
5Dirac

Jep

7.15 —8.15
2.30 —2.34
0.4447 — 0.4468
1.337 —1.351

281.28° — 355.49° and

0 —89.14°
—0.2511 to 0.2511

Table 6.3: The free parameters of
the analysis chosen at the unification
scale for the SUSY breaking scale at
5 TeV. The first column showes the
parameters and the second column
showes their range at the unification

Table 6.4: Predictions of neutrino
mixing parameters and other ob-
servables at the low scale for the
SUSY breaking scale at 5 TeV. The
first column showes the parameters
and the second column showes their

scale. range at the low scale.

Variation of the unification scale

In this subsection, we investigate the variation of the unification scale. In
Tables |6.5] and we show our results when we choose the unification scale to
be 10'2 GeV which is well below the GUT scale. However, the SUSY breaking
scale is kept to 2 TeV. We show in Table the values of the free parameters
chosen at the unification scale. In Table we present our results. The first
remarkable prediction is the sum of neutrino masses which is well below the
cosmological bound. The Dirac C'P phase has a precise range. The mixing angle
612 and mass square difference Am2; are now relatively constrained. The mixing
angle fog lies in the first octant, and is nonmaximal.

We conclude that there is no parameter space beyond the GUT scale for Dirac
neutrinos so that we could recover the experimental data at the low scale using the
RG evolution. This is a strong prediction and could be useful in construction of
models (particularly GUT models) where Dirac neutrinos are the natural choice
[30-38].
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6.3 Model for the HSMR parametrization

Quantity Range
a1 0.67 — 0.85
Qg 19.9 — 20.92
Qs 7.41 —7.42
mi(eV) | 0.19815 — 0.20311
may (eV) 0.2 —0.205
ms (eV) | 0.21100 — 0.21628
5Dirac (_1007 180)

Quantity Range
012 32.35° — 37.34°
013 7.94° — 8.45°
O23 38.83° — 39.18°
mi(eV) 0.18321 — 0.18801

Am3; (107° eV?)
Am?, (1073 eV?)
mg (eV)
Ym; (eV)
5Dirac

Jep

707 —8.17
2.30 —2.42
0.1834 — 0.1880
0.556 — 0.570

182.66° — 203.43° and

0—120°
—0.1020 to 0.2336

Table 6.5: The free parameters of
the analysis chosen at the unification

scale of 1012 GeV and SUSY break-
ing scale of 2 TeV. The first column

Table 6.6: Predictions of neutrino
mixing parameters and other observ-
ables for the unification scale of 1012
GeV and the SUSY breaking scale at

2 TeV. The first column showes the
parameters and the second column
showes their range at the low scale.

showes the parameters and the sec-
ond column showes their range at
the unification scale.

Model for the HSMR parametrization

We have investigated the HSMR, parametrization for Dirac neutrinos in a
model independent way. However, for the sake of completeness, in this section
we discuss theoretical implementation of the HSMR. parametrization in a specific
model for Dirac neutrinos. Our model is based on a model presented in Ref.
[19,/70] which provides Dirac neutrinos with naturally small masses. This model is
a type of neutrinophilic SUSY extension of the SM which can easily be embedded
in a class of SU(5) models.

To obtain HSMR parametrization in the model given in Ref. [70], we impose a
Z5 discrete symmetry on this model. Under the Z3 symmetry the first generation
of both left- and right-handed quarks and leptons transforms as 1, while the
second generation transforms as w and the third generation transforms as w?,
where w denotes cube root of unity with w® = 1. All other fields transform
trivially as 1 under the Z3 symmetry. The Z3 symmetry ensures that the mass
matrices for both up and down quarks as well as for charged leptons and neutrinos
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are all simultaneously diagonal. This in turn implies that the Voxy as well as
VpMns are both unity and there is no generation mixing in either quark or lepton
sectors.

To allow for the mixing, we break Z3 in a way as done in Ref. [71]. Such
corrections can arise from the soft SUSY breaking sector |72(74]. For this pur-
pose, we allow symmetry breaking terms of the form |y)| << |yj| << |y;| where
ly;| are the terms invariant under Z3 symmetry, and |y;|, |y/| are the symmetry
breaking terms transforming as w,w? under the Z3 symmetry. This symmetry
breaking pattern is well established and is known to explain the CKM structure
of the quark sector [71]. Here, we have imposed this pattern on quarks as well as
leptons simultaneously.

Including these symmetry breaking terms, the mass matrices for quarks and
leptons become

Y1V Yhu Y3 YIu Yot Y3u
Myai=| yiv yv yyv |, M, = | ylu ypu ysu |, (6.2)
ViV Y3v  ysv YU yyu  y3u

where v stands for the vacuum expectation value (vev) of the usual H,, H; doublet
scalars of MSSM and wu is the vev of the neutrinophilic scalar H, as discussed in
Ref. [70]. Also, for the sake of brevity we have dropped the sub- and superscripts
on the various terms. The mass matrix in is exactly same as the mass
matrix obtained in Ref. [71] and can be diagonalized in the same way as done
in Ref. [71]. The mass matrices of lead to a “Wolfenstein-like structure”
for both CKM and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices, thus
leading to the HSMR parametrization given in Eq[6.1] Since this model is a
modification of model given in Ref. |[70] which can be embedded in a class of
SU(5) GUT models, therefore, it can also be easily embedded in the SU(5) GUT
model in a quite similar way as done in Ref. [70].

Summary

Neutrino mixing is remarkably different from small quark mixing. The aim
of the present work is to provide an insight into a common origin of neutrino as
well as quark mixing for Dirac neutrinos. Furthermore, we show that smallness
of neutrino masses can be explained through the RG evolution of Dirac neutri-
nos. The HSMR parametrization of neutrino mixing angles is one among many
other theoretical frameworks constructed for this purpose. The origin of this
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parametrization lies in the underlying concept of the quark-lepton unification or
flavor symmetries or both. Hence, the confirmation of predictions provided by
the HSMR, parametrization would be a strong hint of the quark-lepton unification
or a grand symmetry operating at the unification scale.

As far as our knowledge is concerned, it was shown for the first time in Ref.
[16] that the RG evolution can also explain the large neutrino mixing for Dirac
neutrinos. However, as we have shown in this work, these results are no longer
valid due to updated experimental data [52-54] and the improved algorithm used
in the package REAP [55].

In the present work, we have investigated the RG evolution of Dirac neutrinos
in the framework of the HSMR parametrization. To our knowledge, this is the first
thorough study on the RG behavior of Dirac neutrinos. The main achievement is
that the RG evolution of Dirac neutrinos could explain the large neutrino mixing
including the observation of a small and nonzero value of the mixing angle 6;3.
We obtain strong correlations among different experimental observables. Our
predictions for the mixing angles 613, 63, averaged electron neutrino mass mg,
Dirac C'P phase 0 pjrqc and the sum of three neutrino masses, Y¥m; are precise and
easily testable at ongoing and future experiments like INO, T2K, NOvA, LBNE,
Hyper-K, PINGU and KATRIN [59-65]. The mixing angle o3 is nonmaximal
and lies in the second octant for the SUSY breaking scale 2 TeV and unification
scale at the GUT scale. For the variation of the SUSY breaking scale and the
unification scale, the mixing angle f»3 is nonmaximal and lies in the first octant.
The predictions for the mass square difference Am32; are also well constrained
and testable in experiments. Furthermore, the Dirac C'P phase is found to be
lying in precise ranges in our analysis. The unification scale beyond the GUT
scale is ruled out in our investigation. This fact could be useful for the GUT
theories having Dirac neutrinos [30-38]. We remark that we have investigated
the RG evolution of neutrino mixing parameters at two loops. This is a crucial
input since the RG evolution at one loop is insufficient to provide the required
enhancement of the mixing angles which in turn, cannot yield the results obtained
in this work.

One of the main consequences of our investigation is that the HSMU hy-
pothesis is not compatible with Dirac neutrinos due to updated experimental
data [52-54] and a better algorithm used in the package REAP [55]. The HSMU
hypothesis is a particular realization of the HSMR parametrization when we
choose oy = a9 = a3 = 1 for k1 = k9 = k3 = 1. As can be observed from Tables
6.2} [6-3] and [6.5] the allowed range for «; excludes the a; = ay = ag = 1 case.
This result is rigorous and robust in the sense that changing the SUSY breaking

153



Precise Predictions For Dirac Neutrino mixing

scale and the unification scale does not change this conclusion. Hence, the HSMR
parametrization is one of the preferable frameworks to study the RG evolution
of Dirac neutrinos now.
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Spontaneous Symmetry Breaking (SSB) is a phenomenon where a symmetry
in the basic laws of physics appears to be broken. In the language of Quantum
Field Theory (QFT), a system is said to possess a symmetry that is spontaneously
broken if the Lagrangian describing the dynamics of the system is invariant under
these symmetry transformations, but the vacuum is not.

SSB is the corner stone of the Standard Model (SM) of particle physics, which
is based on the gauge group SU(3)cxSU(2), xU(1)y. It includes strong interac-
tions under SU(3)¢, and weak interactions and the electromagnetic interactions,
unified in the Electroweak interaction under the gauge group SU(2)r, x U(1)y.
Another building block of the SM is the Higgs mechanism through which, the
would-be Goldstone bosons associated to the SSB combine with the massless
gauge bosons and as result, the gauge bosons become massive. Furthermore, the
fermions of the SM also get mass via the Yukawa interaction with the Higgs field.
The only exception are neutrinos, which in the SM remain massless.

On the other hand, the Higgs mechanism is at work when the broken symme-
try is a local symmetry however, this does not need always to be the case. When
the symmetry is a global one, the Goldstone theorem takes the center stage which
states that: if a theory has a global symmetry of the Lagrangian, which is not
a symmetry of the vacuum, then there must exist one massless boson, scalar or
pseudoscalar, associated to each generator which does not annihilate the vacuum
and having its same quantum numbers. These modes are referred to as Nambu-
Goldstone bosons or simply as Goldstone bosons.

In part one of the thesis we have worked on an example of the Goldstone the-
orem. Due to the fact that the QCD Lagrangian in the limit m,,, mq, ms — 0 has
an SU(3)r x SU(3) g or chiral global symmetry in the flavor space, which is spon-
taneously broken in nature to the subgroup H = SU(3)y, one expects 8 Nambu-
Goldstone bosons to appear. These bosons can be recognized as the pseudo—scalar
mesons, which have acquired a small mass from the explicit symmetry breaking
due to the small quark masses. As the dynamics of the pseudo—scalar mesons
occurs in the energy range where the QCD coupling becomes non—perturbative,
one needs to use effective field theory methods to deal with their dynamics. One
such theory is ChPT. We have described ChPT and given an example of ChPT
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at order p® that is, as the number of O(p®) operators increases dramatically, com-
pared to the lower order Lagrangians, we have investigated if this Lagrangian is
minimal or there is redundancy in its basis, in the chiral SU(2) limit, without
external scalar and pseudo—scalar sources. We have concluded that out of 27
measurable terms plus 2 contact terms in the even-intrinsic-parity sector, 2542
terms are independent. The relations we have found are

4Por +4Pog — Pog+ P3g—2P31 +4P30 — Pz — P39+ Pag+ 2Psu1

—Paz+ Paa — Pas —2P51 —2Ps53 =0, (6.3)

8P1 —2Pa 4+ 6Ps — 20 Payg + 8Pas + 12Pag — 12Pay — 28 Pog + 8 P3g — 8 P3r
—8P39 +2Pag +8Py1 —8Pag —6Ps3 =0. (6.4)

Also, the fact that these relations were already shown to exist analytically, con-
firms our method. Even if using this method, one finds relations which are not
proved analytically, one can be sure that up to the given approximation, these
are the only relations, which may or may not hold at the operator level. This
simplifies a lot the task of the analytical proof, as these relations give a clue of
what the coefficients of the would—be—analytical relations should be.

As we mentioned, in the SM neutrinos remain massless however, observations
suggest that neutrinos oscillate in flavor space, and one introduces the PMNS
matrix, in parallel to the CKM matrix for quarks, to quantify this oscillation.
This on the other hand, dictates that neutrinos are massive and hence, one has
to find a manner to give them mass by extending the SM. This has been done
in two ways, assuming neutrinos are Dirac or Majorana particles and using the
Higgs mechanism.

In part two of this thesis, we have considered an example of each type of
neutrinos, namely Dirac and Majorana, in the context of the high scale mixing
relation (HSMR), which states that the PMNS matrix and the CKM matrix
are proportional at the high scale. In a compactified form a general relation
among the leptonic and the quark mixing angles within the same generations is
as following

1 = ot 0%, 013 = ab? 0, O3 = ab?0d, (6.5)

where k;, with ¢ = (1,2,3) are real exponents. We refer to this relation as
the HSMR. This is a generalization of the HSMU hypothesis, which suggest that
these two matrices are unified at high scale. The HSMU hypothesis is a particular
realization of the HSMR parametrization when we choose a; = ag = a3 = 1 for
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k1 = ko = k3 = 1. Then, running the RG equations for the parameters of the
PMNS and CKM matrices, we have been able to make some predictions for what
the value of these parameters should be at low scale, both for the case of Dirac
and Majorana neutrinos.

For the case when neutrinos are Majorana particles, we have some distinct
predictions for correlations among the parameters of the PMNS matrix, which can
be tested in the present and future neutrino experiments easily. If our predictions
are confirmed by experiments, like GERDA, it would be a good hint of quark-
lepton unification at high scale. Also, our analysis suggest that all results reported
in the literature using the HSMU hypothesis, are a very small subset of our results
with the HSMR hypothesis presented in our paper. In short the gist of our work
on Majorana neutrinos is:

The HSMR parametrization that we have proposed and studied is a more
general framework than the HSMU hypothesis which provides a very simple ex-
planation of the observed large neutrino mixing. It can be tested by ongoing and
future neutrino experiments, and if it is confirmed, it would be a good hint of
quark-lepton unification at the high scale.

More specifically, we observe that the HSMU hypothesis represents the a = 1
limit of the HSMR, hypothesis and is constrained by the lowest allowed value
of M., which is 0.384 MeV. Therefore, if the HSMU hypothesis is ruled out by
experiments, the other HSMR cases with a # 1 may survive.

All results reported in the literature using the HSMU hypothesis, are a very
small subset of our results with the HSMR, hypothesis presented in our paper.
Apart from that, we have discovered new strong correlations among different
experimental observables for every limit of the HSMR hypothesis which are easily
testable in present ongoing experiments. For example, there is a strong correlation
between Am3, and M,.. This correlation can be easily tested by the GERDA
experiment. There are two more such correlations namely among 612, >, m;
and M., discussed in our work which are completely new and unexplored in the
literature.

Furthermore, we have comprehensively studied a strong correlation between
A3 and 613, which was studied in a previous study in a specific limit. Since we
have done a comprehensive full parameter scan, this correlation has become a
robust band now. We have also repeated the calculation including the type one
seesaw mechanism and showed that the previous results are stable.

For the case when neutrinos are Dirac particles, apart from precise predic-
tions for the parameters of the PMNS matrix, our main achievement is that, the
HSMU hypothesis is not compatible with Dirac neutrinos. Hence, the HSMR
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parametrization as a more general realization of the HSMU hypothesis is the
preferable framework to study the RG evolution of Dirac neutrinos. Also, the
unification scale beyond the GUT scale is ruled out in our investigation, which
can be useful for the GUT theories having Dirac neutrinos. In short our results
can be summarized as follows:

We obtain strong correlations among different experimental observables. Our
predictions for the mixing angles 613, 23, the averaged electron neutrino mass
mg, the Dirac C'P phase ¢ and the sum of the three neutrino masses, > m; are
precise and easily testable at some ongoing and future experiments.

The mixing angle 23 is non-maximal and lies in the second octant for the
SUSY breaking scale 2 TeV and the unification scale at the GUT scale. For the
variation of the SUSY breaking scale and the unification scale, the mixing angle
A3 is non-maximal and lies in the first octant. The predictions for the mass
square difference Am3, are also well constrained and testable in experiments.

Furthermore, the Dirac C'P phase has a precise range 168.7° — 180° at the
unification scale 1012 GeV. At low scale our prediction for this observable is 80 to
287 degrees excluding some part of the allowed parameter space of this quantity.
Since the phase § is not known from experiments, any prediction of this important
observable is of great interest. For the SUSY breaking scale 5 TeV, the Dirac
CP phase 0 is zero. The allowed range for the Jarlskog invariant Jop is —0.27
to 0.27. Thus, a large CP violation is possible in our analysis.

And the last but not the least, the unification scale beyond the GUT scale is
ruled out by our investigation. This fact could be useful for the GUT theories
having Dirac neutrinos
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Fisica de ChPT

Objetivos

Debido al hecho de que los quarks y los gluones estan confinados en el interior
de los hadrones, son los hadrones los grados de libertad asintoticos que se observan
en la fisica macroscopica. Por lo tanto, los estados inicial y final en nuestros
experimentos de bajas energias no van a ser quarks y gluones sino hadrones sin
carga de color.

Todavia no se sabe una transformacion del lagrangiano de QCD y sus para-
metros y las propiedades de los hadrones. Un método ampliamente utilizado de
afrontar el problema ha sido a través de teorias efectivas. En el caso de QCD, se
llama ChPT.

Hay un teorema atribuido a Weinberg que dice [22]: Para un conjunto dado
de estados asintéticos, el Lagrangiano mas general que contiene todos los tér-
minos permitidos por las simetrias asumidas dara los elementos més generales
de la matriz S consistentes con la analiticidad, la descomposicién del cluster de
unitaridad perturbativa y las simetrias asumidas. En otras palabras, indepen-
dientemente de la teoria subyacente, cuando se conocen los grados de libertad
y las simetrias relevantes para la escala de energia real, el lagrangiano efectivo
construido a partir de ellos abordara la misma fisica de la teoria subyacente [23].
Asi, al estudiar un fenémeno especifico, es necesario aislar los ingredientes mas
relevantes del resto, de modo que se pueda obtener una descripciéon simple sin
tener que entender todo [24]. Si un pequeno pardmetro A, también se realiza en
la teoria efectiva, se pueden realizar cdlculos perturbativos sobre este pardmetro.

Sabiendo esto, uno seguiria adelante con la construccion de una teoria efectiva
de interacciones fuertes a energias bajas donde el lagrangiano original de QCD
se encuentra con el problema de que en el régimen, p?> < 1 GeV?, donde la
dinamica de los mesones tiene lugar, la constante de acoplamiento de QCD excede
la unidad. En este régimen energético, las particulas fundamentales son hadrones
en lugar de quarks y gluones. Para construir un Lagrangiano para un proceso
que ocurre a una escala p < A, se puede utilizar una expansién en potencias de
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p/A donde A es la energia de corte del modelo. Entonces, el Lagrangiano podria
organizarse como una serie de potencias crecientes, es como

L=Ly+Ly+ .. Loy, (7.1)

donde, el subindice indica el orden del lagrangiano.

Se dice que el lagrangiano de QCD tiene una simetria aproximada SU (3)r,
SU(3)r = G o simetria quiral. Por supuesto, los quarks son masivos y la simetria
quiral no se realiza plenamente en la naturaleza sin embargo, para los tres quarks
méas ligeros u,d, s, se podria suponer que se mantiene de forma aproximada.
Pero como esta simetria no es visible en el espectro de los hadrones ligeros [25],
debe estar espontaneamente rota en la naturaleza debido a algiin mecanismo
de ruptura de simetria espontdnea (SSB). Esto lleva a que la simetria global
SU(3)r, x SU(3)r = G se reduzca al subgrupo H = SU(3)y.

Siendo este el caso, el teorema de Goldstone dicta que la diferencia entre el
numero original y el final de generadores, deberia haberse convertido en bosones
de Goldstone. En el caso que nos ocupa, el nimero de bosones de Goldstone
es de 8. Como la simetria quiral también se rompe explicitamente debido a las
masas de quarks en el lagrangiano de QCD, los bosones podrian ser reconocidos
como los mesones pseudo escalares, que han adquirido una pequefia masa debido
a esta ruptura de simetria explicita.

En QCD la simetria quiral global se rompe a través de las fuertes interacciones
subyacentes, que conducen a un condensado de quarks. Este condensado formado
por un quark y un antiquark es el parametro de orden y se dice que el SSB
correspondiente es una ruptura de simetria dindmica.

Considerando tres sabores de quarks, u,d y s, el lagrangiano de QCD re-
stringido a estas condiciones es

- 1 )
£ = Z w] (Z’Yuall + gSG“’Y}L - m’b)wj - ZG,u,VGM 9 (72)

j:u7d7s

donde 1) es un vector en el espacio de sabores (u,d,s). Su descomposicién en
helicidades left y right responde a

Y, = %(1 — Y)Y Y= %(1 +5)1 . (7.3)

En primer lugar este lagrangiano es invariante bajo las simetrias discretas si-
guientes: paridad (P), conjugacién de carga (C), inversién del tiempo (T). Pero
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lo importante es que también presenta invariancia bajo la simetria quiral global
en el espacio de sabor SU(3)r x SU(3)g.

Como ChPT es la teoria efectiva de QCD, su lagrangiano debe satisfacer
las mismas simetrias. Es decir, invariancia bajo paridad, conjugacién de carga,
inversién temporal e invariancia bajo transformaciones, SU(3)y x SU(3)g.

Con estas simetrias podemos construir el lagrangiano invariante més general
posible y organizarlo como una serie de potencias en momentos (i.e. en nimero
de derivadas). Debido a la invariancia bajo paridad los términos de la serie
corresponderan siempre a numeros de potencias pares. El primer término de este
desarrollo en serie es

F? F?
Ly = TTr(DMUT DHFU) + TTr(UXT +xU") (7.4)

Los diagramas a un loop con vértices de L9 dan lugar a contribuciones de
orden p*. Pero también tendremos contribuciones de orden p* provenientes di-
rectamente de L£4. Imponiendo las mismas simetrias que en el caso de Lo el
lagrangiano méas general posible de orden p?* es el siguiente:

Ly = Li(D,U'D"U)? + Ly(D,U'D,UY(D*UTD"U) + L3(D*U' D, UD"U'D,U)
+ Ly(D*U' DU XU + xUY) + Ls(D*UT DU (XU + U'x))
+ Le(xX'U 4+ xUN+L: (XU = xUN? + Ls (X 'UXTU + xUTXUT)

— iLy(FED*UDYUT + L, D*UT D" U)+L1 o (UTFLUFY) (7.5)
donde
Fﬁ, = OMrY = 0"rH —i[rt 1],
FL = oM —o"er —iler, 0", (7.6)

Como puede verse, el lagrangiano de O(p?) depende de dos acoplamientos
de baja energia, mientras que el lagrangiano de O(p*) introduce (siete) diez con-
stantes de acoplamiento para dos (tres) sabores de los quarks. Las predicciones de
los lagrangios anteriores estan en buen acuerdo con los experimentos. Por ejem-
plo, las predicciones de O(p*) para las constantes de desintegracion del mesén y el
radio electromagnético del mesén estan en bastante buen acuerdo con las observa-
ciones experimentales [24]. Ademads, las divergencias de las contribuciones de un
lazo se absorben con el lagrangiano de O(p*). Sin embargo, la precisiéon requerida
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en las aplicaciones fenomenolégicas lleva a tomar en cuenta las correcciones del
orden siguiente, O(p"%).

El lagrangiano de O(p®) para 2(3) sabores introduce 53(90) nuevos términos
y 4(4) términos de contacto, que en comparacién con los Lagrangianos de orden
inferior es un gran ntimero y los patrones muestran que al ir a érdenes superiores,
este niimero aumentara aun mas. Por completitud hemos mostrado los términos
de lagrangiano O(p®) en el Apéndice. La cuestién es, ahora que uno tiene que
lidiar con un niimero tan grande de términos, ;se sabe con seguridad que no hay
redundancia en la base del lagrangiano?

El objetivo del presente trabajo es presentar un método para encontrar rela-
ciones entre los operadores del lagrangiano mesénico de la Teoria de Perturbacién
Quiral de orden p®. El procedimiento se puede utilizar para establecer si la base
de los operadores en el Lagrangiano es minima. Como ejemplo, aplicamos el
método al caso de dos sabores en ausencia de fuentes escalares y pseudo-escalares
(s = p = 0), y concluimos que el Lagrangiano minimo contiene 27 operadores
independientes.

Metodologia

Para decirlo simplemente, calculamos las funciones de Green para una con-
figuracion cinematica arbitraria, a la cual contribuyen todos o algunos de los
operadores dados, es decir, los operadores que estan incluidos en la base elegida.
Entonces, exigimos que la funcién de Green desaparezca y por lo tanto, la base
es minima cuando no existe relacién entre los coeficientes de los operadores. Si se
encuentran nuevas relaciones para un proceso, solo son véilidas para ese proceso.
Al resolver las relaciones para todos los procesos juntos, se llega a relaciones ge-
nerales que incluyen a todos los operadores involucrados. Pero, aun asi, no hay
garantia de que esos operadores pertenezcan al subconjunto minimo hasta que
se dé la prueba analitica. Sin embargo, la ventaja es que la prueba algebraica se
simplifica grandemente, cuando los coeficientes son conocidos.

OIT (o) - frly) o) - ( [ d'a 3 i Pita)) o) =0,
(7.7)

donde «; son nimeros reales o complejos, ¢ un nimero arbitrario de campos
pibnicos y f; = v, a, s, p fuentes externas.
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Uno necesita calcular siete funciones de Green, a saber

(vv), (vaa), (vv2r), (aa2m), (vin), (67), (voar) . (7.8)

Resultados del Primer Articulo (el Capitulo

Combinando las ecuaciones para a; encontradas para las diferentes funciones
de Green obtenemos

4Po7 4+ 4Pag — Pag + P3g — 2 P31 +4 P32 — P33 — P3g + Pag +2Pur
—Paz+ Paa— Pas —2Ps51 —2Ps53 =0, (7.9)

8P1 —2Pa 4+ 6Ps — 20 Payg + 8Pas + 12Pag — 12 Pay — 28 Pog + 8 P3g — 8 P37

—8P39+2Psg+8Pg1 —8Pya —6Py3=0. (7.10)

Pero, estas relaciones ya se demostré que existen analiticamente en Refs. |26,
27] en el limite quiral SU(2). Por lo tanto, utilizando nuestro método hemos
concluido que éstas son las tinicas relaciones de operador que pueden existir en
el limite que hemos estudiado y la base original de 27 términos medibles més 2
términos de contacto, tiene 25 + 2 términos independientes. Ademads, el hecho de
que sean probados analiticamente también, confirma nuestro método. El punto
es que, incluso si las dos relaciones no hubiesen sido probadas analiticamente,
nuestro método deberia ser Util para asegurar que hasta esta aproximacion hay
dos relaciones y para asegurarse de que se mantienen en el nivel del operador.

También vale la pena mencionar que, los procesos con mas de 6 patas de
mesones o que implican més de dos vectores o vector y axial no son realizables
experimentalmente. Por lo tanto, el método puede utilizarse para reducir el
nimero de operadores que se utilizan para calcular funciones especificas de Green,
sin exigir la prueba analitica de las relaciones a nivel de operador.

Fisica de los Neutrinos

Objetivos

El Modelo Estandar (SM) de la fisica de particulas es uno de los modelos més
exitosos de la fisica moderna, basado en el grupo SU(3)c x SU(2)r, x U(1)y, que
describe las particulas fundamentales y sus interacciones. Incluye interacciones
fuertes bajo SU(3)¢, interacciones débiles y las interacciones electromagnéticas,
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unificadas en la interacciéon Electrodébil bajo el grupo SU(2)r x U(1)y. Una
revisiéon pedagdgica de SM se puede encontrar en la referencia [1]. También,
contiene tres familias de quarks y leptones, tres bosones masivos W=+, Z y el fotén
para el caso electrodébil, y ocho gluones sin masa para la interaccion fuerte. El
foton y los gluones no tienen masa, pero el resto de las particulas son masivas y
obtienen la masa a traves de sus interacciones con el campo escalar del Higgs.

Aunque el SM es muy exitoso, sabemos que no puede ser la descripcién final
de la naturaleza. A pesar de sus predicciones muy precisas, hay una serie de
observaciones que no entran dentro del alcance de lo que el SM puede describir.
El problema méas abrumador del SM es el hecho de que no contiene gravedad.

Otro tema que es mas relevante para nuestro trabajo es que no hay masas de
neutrinos en el modelo. Por otra parte, es necesario dar masas a los neutrinos
para describir las oscilaciones. Como predijo Bruno Pontecorvo [2] hace muchos
anos, cuando los neutrinos son masivos, la oscilacion del sabor ocurrird para los
neutrinos en el vacio. Esto significa que los autoestados del Hamiltoniano libre
no son los mismos que los del Hamiltoniano de interacciones. La probabilidad de
oscilacién es

Am?2, L
P(vy — vp; L) ~ Z U:UUB]'UA].CUEkE_z 22 . (7.11)
J.k

Este probabilidad depende del matriz de mezcla Pontecorvo-Maki-Nakagawa-
Sakata [2,3]. Para el caso de dos sabores de neutrinos se escribe como

Am2
P(ve — v,; L) = sin® 2981n2[%L]} (7.12)

Eso depende de las diferencias de masas de los neutrinos (Am?2, = m? —m3) y

de la energia F. Se ve que la probabilidad de oscilaciones de neutrinos no es
sensible a las masas absolutas de los neutrinos sino solo a sus diferencias. Los
resultados de varios experimentos demuestran que, Am%ol = Am32, = 107% eV,
Am2,, = Am3; = 1073 eV. Ademas, los tres angulos ya han sido medidos pero
la fase de CP permanece indeterminada. Aparte de esto, no se sabe cual es la
jerarquia de las masas, normal (NH) e invertida (IH), representadas en la Fig. 7.1

Muchos experimentos han sido planeados y construidos para medir estos
pardmetros y los resultados actuales se ven en la Tabla[7.1] De los experimentos
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' m—(m,)’ (m,)” e———
(Amz)sol
(rnl)2 ]
m v,
(Am),,,,
Vv,
g (Bm)
V'E
— m— (m,)’
(Amz)sol
4 m (m,)’ (m,)’m —
normal hierarchy inverted hierarchy

Figure 7.1: Representacion de las jerarquias normal (NH), invertida (IH).

Quantity Best Fit | 30 Range
Am3, (107° eV?) |  7.60 7.1-8.16
Am?, (1073 eV?) | 246 | 2.30 - 2.59

% 33.02 | 30-36.5
65, 489 | 38517
o 841 | 7.82-9.02

Table 7.1: Datos globales de ocilacion de neutrinos |\

como la desintegracién beta, se puede medir la masa absoluta de los neutrinos.

my, < 22eV [bla 20,
(7.13)

Si son de Majorana, M., < 0.4 eV .
El limite que proviene de analisis cosmoldgicos para la suma de masas de los
neutrinos es ﬂgﬂ

> m; <0.57eV. (7.14)
J
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Este limite es mas fuerte pero depende de los modelos que se usan.

Hay dos maneras de dar masa a los neutrinos, dependiendo de si son particulas
de Majorana o Dirac. El término de masa de Majorana se permite sélo para
particulas elétricamente neutras ya que de lo contrario violaria la conservacién
de la carga. Por lo tanto, se cree cominmente que los tinicos candidatos a tener
una masa de Majorana en el SM son los neutrinos. Por otra parte, en el contexto
del SM la masa de Majorana para los neutrinos zurdos no estd permitida debido
a la invariancia SU(2). Esto se puede resolver mediante el mecanismo de Higgs
y la introduccién del operador de Weinberg

1 _
L= rigf B oea o, +hec. . (7.15)

Este operador no es renormalizable. Por lo tanto para altas energias, se usa el
modelo seesaw que tiene varios tipos.
El lagrangiano que describe la masa de los neutrinos se escribe como

1 o
£Mass = _§MR7;Z)%¢R - MD¢R¢L + h.c. 5 (716)

donde el dltimo término es de masa de Dirac, y se genera cuando el campo de
Higgs obtiene su valor esperado de vacio, v, o sea, cuando se rompe la simetria
electrodébil. Sin embargo, la masa de Majorana puede existir, independintemente
de ello. De este lagrangiano se obtienen las masas M; y My

Mp | | M2
My = TR 1/ Mp, (7.17)

y asumiendo que Mg > Mp, los neutrinos ligeros tienen la masa:

M2
M, ~ L 7.18
=3l (7.18)
y los neutrinos pesados la masa
My ~ Mpg. (7.19)

Este es el mechanismo seesaw y significa que si la masa de Majorana Mp , es
suficientemente alta, se pueden explicar las masas tan pequenas de los neutrinos,
mientras que los acoplamientos de Yukawa pueden ser de O(1). Existe un experi-
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mento para saber si los neutrinos son de Majorana, que es la desintegraciéon beta
doble sin neutrinos (0vf3f), Fig.

d U
- -
%%
-
M
-
%%
- -
d U

Figure 7.2: La desintegracion beta doble sin neutrinos

Utilizando la analogia con el caso de los quarks, donde los autoestados débiles
son diferentes de los autoestados masivos y por lo tanto

d d
s | =vOEM | . (7.20)
v b
uno puede escribir
Ve V1
_ 1tPMNS
v, | =U Vo . (7.21)
Vr Vs
con
iy
c12€13 ‘ 512€13 . s13€
Upnmns =| —ca3s12 — s23513¢12€"0  ca3c1a — S93513512¢%0  sazciz | F/(7.22)
i i
893512 — C23513C12€"°  —S23C12 — €23513512€"°  C23C13

donde, ¢y = €08 Omn, Smn = sinf,, y § es el fase de Dirac. La matriz F/ =
Diag{e*t, €2 1} introduce las fases de Majorana.

Sabiendo todo eso, se puede preguntar, si Upyns v Vok v estan relacionadas
de alguna manera. En el Refs. [6l|7], suponiendo que la masa de los neutrinos es
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casi degenerada y jerarquica, sugirieron que en la escala de unificacién existe la
siguiente relacion entre los angulos de mezcla de los quarks y los neutrinos

015 = 0%y, 013 = 0%, Oa3 = 0%, (7.23)

donde 6;; (with 7,7 = 1,2,3) son los angulos lepténicos y 0% los de los quarks.
Luego, usando las écuaciones de RG, corriendo los parametros hasta la My,
obtienen sus valores, los cuales se pueden comparar con los datos experimentales
actuales.

Aqui, inspirados por la hipétesis HSMU, hacemos la pregunta: ;por qué la
relacion entre CKM y PMNS deberfa ser exactamente igual en la escala alta?
De hecho, no hay simetria para evitar que sean proporcionales. A partir de aqui
postulamos relaciones mas generales entre los dngulos de mezcla en la escala de
unificaciéon. La relacion méas general es

1o = ot 0%y, 013 = ab? 0%, 63 = ak?0d,. (7.24)

Donde k;, con ¢ = (1,2,3) son exponentes reales. Nos referimos a esta relacion
como la "relacién de mezcla a gran escala" (HSMR). Hemos elegido (k1, k2, k3) =
(1,1,1) para nuestro andlisis.

Metodologia

El funcionamiento de la hipotesis HSMR es el siguiente: La implementacién de
la hipétesis HSMR requiere el modelo estdndar supersimétrico minimo (MSSM)
como una extensién del modelo estandar (SM). Primero se desarrollan los angulos
de mezcla de los quark desde la escala baja (masa del bosén Z) hasta la escala de
ruptura de supersimetria (SUSY) usando las ecuaciones de RG de SM. Después de
eso, desde la escala de ruptura SUSY hasta la escala de unificacién, la evoluciéon
de los angulos de mezcla de los quarks se rige por las ecuaciones de RG de MSSM.
En el siguiente paso, los dngulos de mezcla de quarks en la escala de unificacion,
se ponen proporcionales a los de los neutrinos siguiendo la hipdtesis HSMR. Los
parametros de mezcla lepténica corren desde la escala de unificacién hasta la
escala de ruptura SUSY usando las ecuaciones de RG de MSSM. Desde la escala
de ruptura SUSY hasta la escala baja, los paradmetros de mezcla se desarrollan a
través de las ecuaciones de RG de SM.

De hecho, la naturaleza de los neutrinos es ain desconocida. Podrian ser
igualmente Dirac o Majorana en naturaleza. Por lo tanto, desde el punto de vista
fenomenoldgico, los neutrinos de Dirac son tan importantes como los neutrinos
de Majorana. Hay muchos experimentos importantes en curso para probar la
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naturaleza de los neutrinos [8|11]. Los datos cosmolégicos tampoco prefieren los
neutrinos de Majorana o Dirac [12]- [13].

En el primer trabajo, utilizando la parametrizacién de HSMR, hemos explicado
el patrén observado de la mezcla de neutrinos asumiendo que son de naturaleza
Majorana. Para los neutrinos de Majorana, hemos investigado los casos:

Case 1: 612 = a 0, 613 = 05, 023 = 03, (7.25)
Case 2: 612 = 0, b3 = o 65, O23 = 0, (7.26)
Case 3 : 612 = 0, 613 = 0, 023 = v 0, (7.27)
Case 4 : 012 = a 0, b3 = o 65, O23 = 03, (7.28)
Case 5 : 612 = 61,, b3 = o 65, O3 = v 0, (7.29)
Case 6:  Op=abl,  6i5=0%, Oy = a 0, (7.30)
Case T : 612 = o 61,, b3 = o 65, O3 = v 0. (7.31)

En el segundo trabajo, investigamos las consecuencias de la parametrizacién
de HSMR utilizando la evolucién RG de los neutrinos de Dirac y se investiga
en primer lugar si existe un espacio de pardmetros con la parametrizaciéon de
HSMR donde la evolucién RG de los neutrinos de Dirac puede dar una explicaciéon
satisfactoria para la mezcla de neutrinos grandes con la observacién de 613. En
segundo lugar, ;cudl es el estado de la hipétesis de HSMU para los neutrinos de
Dirac? Y en tercer lugar, jcudl es el estado de la fase lepténica de CP a este
respecto?

Para los neutrinos de Dirac no hay mucho espacio de pardmetros en la escala
alta.

Resultados del Segundo Articulo (el Capitulo D

e Hemos propuesto y estudiado la hipotesis HSMR que es mas general que la
hipétesis HSMU.

e La hipétesis de HSMR ofrece una explicacién muy simple de los pardmetros
de la mezcla de neutrinos observada. Los actuales y futuros experimentos
con neutrinos pueden facilmente probar las predicciones de nuestro trabajo.
Si nuestras predicciones son confirmadas por experimentos, como GERDA,
serfa un buen indicio de unificacién de quark-lepton a gran escala.

e Observamos que la hipétesis HSMU representa el limite o = 1 de la hip6te-
sis HSMR y estd limitada por el valor mas bajo permitido de M., que es
0.384 MeV'. Por lo tanto, si la hipétesis de HSMU es descartada por ex-
perimentos, como GERDA, los otros casos de HSMR con a # 1 pueden
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sobrevivir y su confirmacién seria un fuerte indicio de la proporcionalidad
de angulos de mezcla, que es el base de la hipdtesis HSMR.

e Hemos hecho un estudio riguroso, exhaustivo y completo con la hipdtesis
HSMR que no existe en la literatura. Todos los resultados publicados en la
literatura usando la hipétesis de HSMU, son un subconjunto muy pequefio
de nuestros resultados con la hipotesis de HSMR presentada en nuestro
articulo. Ademds, también hemos comparado a fondo la hipétesis HSMR
con respecto a la HSMU.

e En nuestro trabajo, hemos descubierto nuevas correlaciones fuertes entre
diferentes observables experimentales para cada limite de la hipétesis de
HSMR. Estas correlaciones no existen en la literatura y son facilmente com-
probables en los actuales experimentos en curso. Por ejemplo, existe una
fuerte correlacién entre Am3, y Me.. Esta correlaciéon puede ser facilmente
probada por el experimento GERDA. Hay dos correlaciones mas, a saber,
entre 012, Xm; y M., discutidas en nuestro trabajo que son completamente
nuevas.

e Ademads, hemos estudiado exhaustivamente una fuerte correlacion entre o3
y 013 y las predicciones pueden ser facilmente probadas en los actuales ex-
perimentos en curso. Esta correlacion se estudié en un estudio previo en un
limite especifico. Dado que hemos hecho un analisis completo de parametros
completo, esta correlacion se ha convertido en una banda robusta ahora.

Resultados del Tercer Articulo (el Capitulo @

e El principal logro de este trabajo es que la evolucién RG de los neutrinos de
Dirac podria explicar la mezcla de neutrinos incluyendo la observacion del
valor pequenio y no nulo del dngulo de mezcla 613. Se obtienen correlaciones
fuertes entre diferentes observables experimentales.

e Nuestras predicciones para los dngulos de mezcla 613, 023, "promedio de masa
de neutrino de electrones" mg, Dirac C'P fase 0 y las suma de tres masas de
neutrinos, Xm; son precisas y facilmente comprobables en los experimentos
en curso y futuros como INO, T2K, NOVA, LBNE, Hyper-K, PINGU y
KATRIN [14], [15]. El d4ngulo de mezcla 23 no es maximo y se encuentra
en el segundo octante para la escala de ruptura SUSY 2 TeV y la escala de
unificacién en la escala GUT.

e Para la variacion de la escala de ruptura SUSY y la escala de unificacién,
el angulo de mezcla f23 no es maximo y se encuentra en el primer octante.
Las predicciones para la diferencia cuadratica de masa Am§1 también estan
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bien restringidas y son comprobables en experimentos. Proponemos que la
fase dpirac Sea cero para la escala de ruptura SUSY 5 TeV. Ademas, la
fase de Dirac C'P tiene un rango preciso de 168.7° — 180° en la escala de
unificacién 10" GeV. La escala de unificacién més alld de la escala GUT
estd descartada en nuestra investigaciéon. Este hecho podria ser itil para las
teorias de GUT que tienen neutrinos de Dirac [16]- [17].

e Observamos que hemos investigado la evolucion RG de los pardametros de
mezcla de neutrinos. Es crucial ya que la evolucion de RG de un bucle es
insuficiente para proporcionar la mejora requerida de los dngulos de mezcla
que a su vez, no pueden producir los resultados obtenidos en este trabajo.

e Una de las principales consecuencias de nuestra investigaciéon es que la
hipétesis HSMU no es compatible con los neutrinos de Dirac debido a los
datos experimentales actualizados |18-20] y un mejor algoritmo utilizado
en el paquete REAP [21]. La hip6tesis HSMU es una realizaciéon particu-
lar de la parametrizacion HSMR cuando elegimos oy = oy = a3 = 1 para
k1 = k9 = k3 = 1. Por lo tanto, la parametrizacion HSMR es uno de los
marcos preferibles para estudiar la evolucién RG de los neutrinos de Dirac
ahora.
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