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ABSTRACT

The spectral energy density of the internal waves in the open ocean is considered. The Garrett and Munk

spectrum and the resonant kinetic equation are used as the main tools of the study. Evaluations of a resonant

kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is not in fact slow are

reported. Instead, nonlinear transfers lead to evolution time scales that are smaller than one wave period at

high vertical wavenumber. Such values of the transfer rates are inconsistent with the viewpoint expressed in

papers by C. H. McComas and P. Müller, and by P. Müller et al., which regards the Garrett and Munk

spectrum as an approximate stationary state of the resonant kinetic equation. It also puts the self-consistency

of a resonant kinetic equation at a serious risk. The possible reasons for and resolutions of this paradox are

explored. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. Conse-

quently, this inclusion shows a tendency of improving of self-consistency of the kinetic equation approach.

1. Introduction

Wave–wave interactions in stratified oceanic flows have

been a fascinating subject of research in the last four

decades. Of particular importance is the existence of a

‘‘universal’’ internal wave spectrum, the Garrett and

Munk (GM; Garrett and Munk 1972, 1975, 1979) spec-

trum. It is generally perceived that the existence of a

universal spectrum is, at least in part and perhaps even

primarily, the result of nonlinear interactions of waves

with different wavenumbers. Because of the quadratic

nonlinearity of the underlying primitive equations and

the fact that the linear internal wave dispersion relation

can satisfy a three-wave resonance condition, waves inter-

act in triads. Therefore, the question arises, how strongly

do waves within a given triad interact? What are the

oceanographic consequences of this interaction?

Wave–wave interactions can be rigorously character-

ized by deriving a closed equation representing the slow

time evolution of the wave field’s wave action spectrum.

Such an equation is called a kinetic equation (Zakharov

et al. 1992), and significant efforts in this regard are listed

in Table 1.

A kinetic equation describes, under the assumption of

weak nonlinearity, the resonant spectral energy transfer

on the resonant manifold. The resonant manifold is a set

of wave vectors p, p1, and p2 that satisfy

p 5 p1 1 p2, vp 5 vp
1
1 vp

2
, (1)

where the frequency v is given by a linear dispersion

relation relating wave frequency v with wavenumber p.

The reduction of all possible interactions between three

wave vectors to a resonant manifold is a significant sim-

plification. Even further simplification can be achieved by

taking into account that, of all interactions on the reso-

nant manifold, the most important are those that involve

extreme scale separations (McComas and Bretherton

1977) between interaction wave vectors. It is shown in
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McComas (1977) that the high-frequency portion of the

Garrett and Munk internal wave spectrum is stationary

with respect to one class of such interactions, called in-

duced diffusion (ID). Furthermore, a comprehensive

inertial-range theory with constant downscale transfer

of energy was obtained by patching these mechanisms to-

gether in a solution that closely mimics the empirical

universal spectrum (GM) (McComas and Müller 1981a).

It was therefore concluded that that Garrett and Munk

spectrum constitutes an approximate stationary state of

the kinetic equation.

In this paper, we revisit the question of relation be-

tween Garrett and Munk spectrum and the resonant

kinetic equation. At the heart of this paper (section 6a)

are numerical evaluations of the Lvov and Tabak (2004)

internal wave kinetic equation demonstrating changes in

spectral amplitude at a rate greater than an inverse wave

period at high vertical wavenumber for the Garrett and

Munk spectrum. This rapid temporal evolution implies

that the GM spectrum is not a stationary state and is

contrary to the characterization of the GM spectrum as

an inertial subrange. This result gave us cause to review

published work concerning wave–wave interactions and

compare results. The product of this work is presented in

sections 3 and 4. In particular, we concentrate on four

different versions of the internal wave kinetic equation:

d a noncanonical description using Lagrangian coordi-

nates (Olbers 1974, 1976; Müller and Olbers 1975),
d a canonical Hamiltonian description in Eulerian co-

ordinates (Voronovich 1979),

d a dynamical derivation of a kinetic equation without

use of Hamiltonian formalisms in Eulerian coordinates

(Caillol and Zeitlin 2000), and
d a canonical Hamiltonian description in isopycnal co-

ordinates (Lvov and Tabak 2001, 2004).

We show in section 3 that, without background rotation,

all the listed approaches are equivalent on the resonant

manifold. In section 4, we demonstrate that the two ver-

sions of the kinetic equation that consider nonzero rota-

tion rates are again equivalent on the resonant manifold.

This presents us with our first paradox: if all these kinetic

equations are the same on the resonant manifold and ex-

hibit a rapid temporal evolution, then why is GM con-

sidered to be a stationary state? The resolution of this

paradox, presented in section 7, is that (i) numerical

evaluations of the McComas (1977) kinetic equation dem-

onstrating the induced diffusion stationary states require

damping in order to balance the rapid temporal evolution

at high vertical wavenumber and (ii) the high-wavenumber

temporal evolution of the Lvov and Tabak (2004) kinetic

equation is tentatively identified as being associated with

the elastic scattering (ES) mechanism rather than in-

duced diffusion.

Having clarified this, we proceed to the following ob-

servation: Not only do our numerical evaluations imply

that the GM spectrum is not a stationary state, the rapid

evolution rates correspond to a strongly nonlinear system.

Consequently, the self-consistency of the kinetic equa-

tion, which is built on an assumption of weak nonlinearity,

is at risk. Moreover, reduction of all resonant wave–wave

TABLE 1. A list of various kinetic equations. Results from Olbers (1976), McComas and Bretherton (1977), and Pomphrey et al. (1980)

are reviewed in Müller et al. (1986), who state that Olbers (1976), McComas and Bretherton (1977), and an unspecified Eulerian rep-

resentation are consistent on the resonant manifold. Pomphrey et al. (1980) utilizes Langevin techniques to assess nonlinear transports.

Müller et al. (1986) characterizes those Langevin results as being mutually consistent with the direct evaluations of kinetic equations

presented in Olbers (1976) and McComas and Bretherton (1977). Kenyon (1968) states (without detail) that Kenyon (1966) and

Hasselmann (1966) give numerically similar results. A formulation in terms of discrete modes will typically permit an arbitrary buoyancy

profile, but obtaining results requires specification of the profile. Of the discrete formulations, Pomphrey et al. (1980) use an exponential

profile and the others assume a constant stratification rate.

Source Coordinate system Vertical structure Rotation Hydrostatic Special

Hasselmann (1966) Lagrangian Discrete No No

Kenyon (1966, 1968) Eulerian Discrete No No Non Hamiltonian

Müller and Olbers (1975)a Lagrangian Continuous Yes No

McComas (1975, 1977) Lagrangian Continuous Yes Yes

Pelinovsky and Raevsky (1977) Lagrangian Continuous No No Clebsch

Voronovich (1979)b Eulerian Continuous No Yes Clebsch

Pomphrey et al. (1980) Lagrangian Discrete Yes No Langevin

Milder (1982) isopycnal — No No

Caillol and Zeitlin (2000)b Eulerian Continuous No No Non Hamiltonian

Lvov and Tabak (2001)b Isopycnal Continuous No Yes Canonical

Lvov and Tabak (2004)c Isopycnal Continuous Yes Yes Canonical

a This kinetic equation is investigated in sections 3, 4, and the appendix.
b This kinetic equation is investigated in section 3.
c This kinetic equation is investigated in sections 3, 4, 5, and the appendix.
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interactions exclusively to extreme scale separations is

also not self-consistent.

However, we are not willing to give up on the kinetic

equation. Our second paradox is that, in a companion

paper (Lvov et al. 2010), we show how a comprehensive

theory built on a scale-invariant resonant kinetic equa-

tion helps to interpret the observed variability of the

background oceanic internal wave field. The observed

variability, in turn, is largely consistent with the induced

diffusion mechanism being a stationary state.

Thus, the resonant kinetic equation demonstrates

promising predictive ability, and it is therefore tempting

to move toward a self-consistent wave turbulence theory

of internal waves. One possible route toward such theory

is to include to the kinetic equation near-resonant in-

teractions, defined as

p 5 p1 1 p2, jvp 2 vp
1
2 vp

2
j , G,

where G is the resonance width. We show in section 6b

that such resonant broadening leads to slower evolution

rates, potentially leading to a more self-consistent de-

scription of internal waves.

We conclude and list open questions in section 8. Our

numerical scheme for evaluating near-resonant interac-

tions is discussed in section 5. An appendix contains the

interaction matrices used in this study.

2. Background

A kinetic equation is a closed equation for the time

evolution of the wave action spectrum in a system of

weakly interacting waves. It is usually derived as a central

result of wave turbulence theory. The concepts of wave

turbulence theory provide a fairly general framework for

studying the statistical steady states in a large class of

weakly interacting and weakly nonlinear many-body or

many-wave systems. In its essence, classical wave turbu-

lence theory (Zakharov et al. 1992) is a perturbation ex-

pansion in the amplitude of the nonlinearity, yielding, at

the leading order, linear waves, with amplitudes slowly

modulated at higher orders by resonant nonlinear in-

teractions. This modulation leads to a redistribution of

the spectral energy density among space and time scales.

Although the route to deriving the spectral evolution

equation from wave amplitude is fairly standardized

(section 2b), there are substantive differences in obtain-

ing expressions for the evolution equations of wave am-

plitude a. Section 2a describes how it is done in isopycnal

coordinates in Lvov and Tabak (2001, 2004) and in the

appendix for all other methods discussed in the present

paper.

a. Hamiltonian structures and field variables in
isopycnal coordinates

Lvov and Tabak (2001, 2004) start from the primitive

equations of motion written in isopycnal coordinates,

›

›t

›z

›r
1 $ � ›z

›r
u

� �
5 0,

›u

›t
1 f u? 1 u � $u 1

$M

r0

5 0,

›M

›r
2 gz 5 0, (2)

representing mass conservation, horizontal momentum

conservation under the Boussinesq approximation, and

hydrostatic balance. The velocity u is then represented

as (Lelong and Riley 1992, 2000)

u 5 $f 1 =?c,

with =? 5 (2›/›y, ›/›x), and a normalized differential

layer thickness is introduced,

P 5 (r0/g)›2M/›r2 5 r0›z/›r. (3)

Because both potential vorticity and density are con-

served along particle trajectories, an initial profile of

the potential vorticity that is a function of the density will

be preserved by the flow. Hence it is self-consistent to

assume that the potential vorticity q is function of r

only, independent of x and y,

q(r) 5 q0(r) 5
f

P0(r)
, (4)

where P0(r) 5 2g/N(r)2 is a reference stratification

profile with background buoyancy frequency, N 5

[2g/(r›z/›rjbg)]1/2, independent of x and y. The variable

c can then be eliminated by assuming that potential

vorticity is constant on an isopycnal so that f 1 Dc 5 q0P

and one obtains two equations in P and f,

Pt 1 $ � fP[$f 1 =?D21(q0P 2 1)]g5 0,

ft 1
1

2
j$f 1 =?D21(q0P 2 1)j2 1 D21$ � fq0P[=?f

2 $D21(q0P 2 1)]g1
g

r2
0

ðrðr9 P 2 P0

r1

dr1 dr9 5 0.

(5)

Here, D21 is the inverse Laplacian and r9 represents a

variable of integration rather than perturbation. Seren-

dipitously, the variable P is the canonical conjugate of f,
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›P

›t
5

dH
df

,
›f

›t
5 2

dH
dP

, (6)

under a Hamiltonian H,

H 5

ð
dx dr

(
2

1

2
[P0 1 P(x, r)]

����$f(x, r)

1
f

P0

=?D21P(x, r)

����2 1
g

2

����
ðr

dr9
P(x, r9)

r0

����2
)

, (7)

that is the sum of kinetic and potential energies.

Switching to Fourier space and introducing a complex

field variable ap through the transformation

fp 5
iN

ffiffiffiffiffiffi
vp

p
ffiffiffiffiffi
2g

p
jkj

(ap 2 a
2p
* ),

Pp 5 P0 2
NP0jkjffiffiffiffiffiffiffiffiffiffiffi

2gvp

q (ap 1 a
2p
* ), (8)

where the frequency v satisfies the linear dispersion

relation

vp 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1

g2

r2
0N2

jkj2

m2

s
, (9)

the equations of motion (3) adopt the canonical form

i
›

›t
ap 5

dH
dap*

, (10)

with the Hamiltonian

H 5

ð
dp vpjapj

2

1

ð
dp012[dp1p

1
1p

2
(Up,p

1
,p

2
ap
* ap

1

* ap
2

* 1 c. c. )

1 d
2p1p

1
1p

2
(Vp

p
1
,p

2
ap

*ap
1
ap

2
1 c. c. )]. (11)

Equation (10) is Hamilton’s equation and (11) is the

standard form of the Hamiltonian of a system dominated

by three-wave interactions (Zakharov et al. 1992). Cal-

culations of interaction coefficients U and V are a tedious

but straightforward task, completed in Lvov and Tabak

(2001, 2004). The result of this calculation is also pre-

sented in the appendix in Eq. (A21).

We emphasize that (10) is, with simply a Fourier de-

composition and assumption of uniform potential vorticity

on an isopycnal, precisely equivalent to the fully non-

linear equations of motion in isopycnal coordinates (2).

All other formulations of an internal wave kinetic equa-

tion considered here depend upon a linearization prior

to the derivation of the kinetic equation via an as-

sumption of weak nonlinearity.

The difficulty is that, in order to utilize Hamilton’s

equation (10), the Hamiltonian (7) must first be con-

structed as a function of the generalized coordinates and

momenta (P and f here). It is not always possible to do

so directly, in which case one must set up the associated

Lagrangian (L in the appendix) and then calculate the

generalized coordinates and momenta.

b. Wave turbulence

Here, we derive the kinetic equation following

Zakharov et al. (1992). We introduce wave action as

np 5 hap
*api, (12)

where np 5 n(p) is a three-dimensional wave action

spectrum (spectral energy density divided by frequency)

and the interacting wave vectors p, p1, and p2 are given by

p 5 (k, m)

(i.e., k is the horizontal part of p and m is its vertical

component). Furthermore, h. . .i indicates the averaging

over the statistical ensemble of many realizations of the

internal waves.

To derive the time evolution of np we multiply the

amplitude equation (10) with the Hamiltonian given by

(11) by ap
* and then multiply the conjugate of this

equation by ap. We then subtract the two equations and

average h. . .i the result. We get

›np

›t
5 J

ð
[Vp

p
1
p

2
Jp

p
1
p

2
d(p 2 p1 2 p2) 2 V

p
2

pp
1
J

p
2

pp
1
d(p2 2 p 2 p1) 2 V

p
1

pp
2
J

p
1

pp
2
d(p1 2 p2 2 p)] dp1dp2, (13)

where J denotes the imaginary part, and we introduced

a triple correlation function,

Jp
p

1
p

2
d(p1 2 p 2 p2) [ hap

*ap
1
ap

2
i. (14)

If we were to have noninteracting fields (i.e., fields with

V
p
p1p2

being zero), this triple correlation function would

be zero. We then use perturbation expansion in smallness

of interactions to calculate the triple correlation at first
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order. The first-order expression for ›np /›t therefore re-

quires computing ›J
p
p1p2

/›t to first order. To do so we take

definition (14) and use (10) with Hamiltonian (11) and

apply h. . .i averaging. We get

�
i
›

›t
1 (vp

1
2 vp

2
2 vp

3
)

�
J

p
1

p
2
p

3

5

ð�
2

1

2
(V

p
1

p
4
p

5
)* J

p
4
p

5
p

2
p

3
d( p1 2 p4 2 p5) 1 (V

p
4

p
2
p

5
)* J

p
1
p

5
p

3
p

4
d( p4 2 p2 2 p5) 1 V

p
4

p
3
p

5
J

p
1
p

5
p

2
p

4
d( p4 2 p3 2 p5)

�
dp4 dp5.

(15)

Here we introduced the quadruple correlation function

J
p

1
p

2
p

3
p

4
d(p1 1 p2 2 p3 2 p4) [ hap

1

* ap
1

* ap
3
ap

4
i. (16)

The next step is to assume Gaussian statistics and to

express J
p1p2
p3p4

as a product of two two-point correlators as

J
p

1
p

2
p

3
p

4
5 np

1
np

2
[d(p1 2 p3) d(p2 2 p4)

1 d(p1 2 p4) d(p2 2 p3)].

Then,

�
i
›

›t
1 (vp

1
2 vp

2
2 vp

3
)

�
J

p
1

p
2
p

3

5 (V
p

1
p

2
p

3
)*(n1n3 1 n1n2 2 n2n3). (17)

Time integration of the equation for J
p1
p2p3

will contain fast

oscillations due to the initial value of J
p1
p2p3

and slow

evolution due to the nonlinear wave interactions. Con-

tribution from the first term will rapidly decrease with

time, so we neglect these terms. We also add infinitesimal

damping to the waves linear dispersion relation to

take into account dissipation effects in the system,1

vp/ vp 1 i~gp. (18)

The result is given by

J
p

1
p

2
p

3
5

(V
p

1
p

2
p

3
)* (n1n3 1 n1n2 2 n2n3)

vp
1
2 vp

2
2 vp

3
1 i~Gp

1
p

2
p

3

, (19)

where we introduced the nonlinear damping of the tri-

ads of waves ~Gp1p2p3
as

~Gp
1
p

2
p

3
5 ~gp

1
1 ~gp

2
1 ~gp

3
. (20)

The physical interpretation of this formula is that the

total width of the resonance is the sum of individual

widths of each frequency. The width of each frequency

is directly related to the damping of that frequency, as

in the case of the simple harmonic oscillator. We will

return to this question in more detail in section 5a.

We now substitute (19) into (13) and take a limit of
~Gp1p2p3

/0 (i.e., assume for now that the damping of the

wave is small2), and we use

lim
~G/0

J

�
1

� 1 iG

�
5 2pd(�). (21)

We then obtain the three-wave kinetic equation (Zakharov

et al. 1992; Lvov and Nazarenko 2004; Lvov et al. 1997),

dnp

dt
5 4p

ð
jVp

p
1
,p

2
j2fp12dp2p

1
2p

2
d(vp 2 vp

1
2 vp

2
)dp12

2 4p

ð
jVp

1
p

2
,pj2f12pdp

1
2p

2
2pd(vp

1
2 vp

2
2 vp)dp12

2 4p

ð
jVp

2
p,p

1
j2f2p1dp

2
2p2p

1
d(vp

2
2 vp 2 vp

1
)dp12,

with fp12 5 np
1
np

2
2 np(np

1
1 np

2
). (22)

We assume the wave vectors are signed variables and

wave frequencies vp are restricted to be positive. The

magnitude of wave–wave interactions J
p2
p,p1

is a matrix

representation of the coupling between triad members.

It serves as a multiplier in the nonlinear convolution term

in what is now commonly called the Zakharov equation,

an equation in the Fourier space, for the wave field var-

iable. This is also an expression that multiplies the cubic

convolution term in the three-wave Hamiltonian.

We reiterate that typical assumptions needed for the

derivation of kinetic equations are

d weak nonlinearity;
d Gaussian statistics of the interacting wave field in

wavenumber space; and
d resonant wave–wave interactions.

1 Note that we could have added the damping gp to the Hamil-

tonian equation of motion (10). 2 We will revisit this assumption in section 5a.
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We note that the derivation given here is schematic. A

more systematic derivation can be obtained using only an

assumption of weak nonlinearity.

c. The Boltzmann rate

The kinetic equation allows us to numerically estimate

the lifetime of any given spectrum. In particular, we can

define a wavenumber-dependent nonlinear time scale pro-

portional to the inverse Boltzmann rate,

tNL
p 5

np

_np

. (23)

This time scale characterizes the net rate at which the

spectrum changes and can be directly calculated from the

kinetic equation.

One can also define the characteristic linear time scale,

equal to a wave period

tL
p 5 2p/vp.

The nondimensional ratio of these time scales can char-

acterize the level of nonlinearity in the nonlinear system,

�p 5
tL

p

tNL
p

5
2p _np

npvp

. (24)

We refer to (24) as a normalized Boltzmann rate.

The normalized Boltzmann rate serves as a low-order

consistency check for the various kinetic equation deriva-

tions. An O(1) value of �p implies that the derivation of the

kinetic equation is internally inconsistent. The Boltzmann

rate represents the net rate of transfer for wavenumber p.

The individual rates of transfer into and out of p (called

Langevin rates) are typically greater than the Boltzmann

rate (Müller et al. 1986; Pomphrey et al. 1980). This is

particularly true in the induced diffusion regime (defined

below in section 3) in which the rates of transfer into and

out of p are one to three orders of magnitude larger than

their residual and the Boltzmann rates we calculate are not

appropriate for either spectral spikes or potentially for

smooth, homogeneous but anisotropic spectra (Müller

et al. 1986). Estimates of the individual rates of transfer

into and out of p can be addressed through Langevin

methods (Pomphrey et al. 1980). We focus here simply on

the Boltzmann rate to demonstrate inconsistencies with the

assumption of a slow time evolution. Estimates of the

Boltzmann rate and �p require integration of (22). In this

manuscript, such integration is performed numerically.

3. Resonant wave–wave interactions:
Nonrotational limit

How can one compare the function of two vectors p1

and p2 and their sum or difference? First one realizes

that, out of six components of p1 and p2, only relative

angles between wave vectors enter into the equation for

matrix elements. That is because the matrix elements

depend on the inner and outer products of wave vectors.

The overall horizontal orientation of the wave vectors

does not matter: relative angles can be determined from

a triangle inequality and the magnitudes of the horizontal

wave vectors k, k1, and k2. Thus, the only needed com-

ponents are jkj, jk1j, jk2j, m, and m1 (m2 is computed from

m and m1). Further note that, in the f 5 0 and hydrostatic

limit, all matrix elements become scale-invariant func-

tions. It is therefore sufficient to choose an arbitrary

scalar value for jkj and m, because only jk1j/jkj, jk2j/jkj,
and m1/m enter the expressions for matrix elements. We

make the particular (arbitrary) choice that jkj5 m 5 1 for

the purpose of numerical evaluation,3 and thus the only

independent variables to consider are jk1j, jk2j, and m1.

Finally, m1 is determined from the resonance conditions,

as explained in the next subsection below. As a result,

we are left with a matrix element as a function of only two

parameters, k1 and k2. This allows us to easily compare

the values of matrix elements on the resonant manifold

by plotting the values as a function of the two parameters.

a. Reduction to the resonant manifold

When confined to the traditional form of the kinetic

equation, wave–wave interactions are constrained to the

resonant manifolds defined by

p 5 p1 1 p2

v 5 v1 1 v2

,

�
(25a)

p1 5 p2 1 p

v1 5 v2 1 v
, and

�
(25b)

p2 5 p 1 p1

v2 5 v 1 v1

.

�
(25c)

To compare matrix elements on the resonant manifold,

we are going to use the above resonant conditions and the

internal wave dispersion relation (A4). To determine

vertical components m1 and m2 of the interacting wave

vectors, one has to solve the resulting quadratic equa-

tions. Without restricting generality, we choose m . 0.

There are two solutions for m1 and m2 given below for

each of the three resonance types described above.

3 To derive the interaction matrix elements in the hydrostatic

balance, we assumed that k � m. Once derivation is completed,

values of k and m appear only as products, so it is consistent to

make the choice jkj 5 m 5 1. This choice is made only in the

present section.

674 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



Resonances of type (25a) give

m1 5
m

2jkj

�
jkj 1 jk1j 1 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj1 jk1j1 jk2j
	 
2

2 4jkjjk1j
q �

m2 5 m 2 m1

and

8><
>: (26a)

m1 5
m

2jkj jkj 1 jk1j 1 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj1 jk1j1 jk2j
	 
2

2 4jkjjk1j
q� �

m2 5 m 2 m1

.

8><
>: (26b)

Note that, because of the symmetry, (26a) translates to (26b) if wavenumbers 1 and 2 are exchanged.

Resonances of type (25b) give

m2 5
m

2jkj

�
jkj 2 jk1j 2 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 jk1j2 jk2j
	 
2

1 4jkjjk2j
q �

m1 5 m 1 m2

and

8><
>: (27a)

m2 5
m

2jkj

�
jkj 1 jk1j 2 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj1 jk1j2 jk2j
	 
2

1 4jkjjk2j
q �

m1 5 m 1 m2

.

8><
>: (27b)

Resonances of type (25c) give

m1 5
m

2jkj

�
jkj 2 jk1j 2 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 jk1j2 jk2j
	 
2

1 4jkjjk1j
q �

m2 5 m 1 m1.

and

8><
>: (28a)

m1 5
m

2jkj jkj 2 jk1j 1 jk2j 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 jk1j1 jk2j
	 
2

1 4jkjjk1j
q� �

m2 5 m 1 m1

.

8><
>: (28b)

Because of the symmetries of the problem, (27a) is

equivalent to (28a) and (27b) is equivalent to (28b) if

wavenumbers 1 and 2 are exchanged.

b. Comparison of matrix elements

As explained above, we assume f 5 0 and hydrostatic

balance. Such a choice makes the matrix element scale-

invariant functions that depend only upon jk1j and jk2j.
As a consequence of the triangle inequality, we need to

consider matrix elements only within a ‘‘kinematic box’’

defined by

kk1j 2 jk2k , jkj , jk1j1 jk2j.

The matrix elements will have different values depend-

ing on the dimensions so that isopycnal and Eulerian

approaches will give different values (A2) and (A3). To

address this issue in the simplest possible way, we multi-

ply each matrix element by a dimensional number chosen

so that all matrix elements are equivalent for some spe-

cific wave vector. In particular, we choose the scaling

constant so that jV(jk1j5 1, jk2j5 1)j2 5 1. This allows a

transparent comparison without worrying about dimen-

sional differences between various formulations.

1) RESONANCES OF THE SUM TYPE [(25A)]

Figure 1 presents the values of the matrix element

jVp
p1,p2(26b)j

2 on the resonant submanifold given explic-

itly by (26b). All approaches give equivalent results. This

is confirmed by plotting the relative ratio between these

approaches, and it is given by numerical noise (not
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shown). The solution in (26a) gives the same matrix el-

ements but with jk1j and jk2j exchanged because of their

symmetries.

2) RESONANCES OF THE DIFFERENCE TYPE

[(25B) AND (25C)]

We then turn our attention to resonances of difference

type (25b) for which (25c) could be obtained by symmet-

rical exchange of the indices. All the matrix elements

jVp1

p2,p(27a)j
2 on the resonant submanifold (27a) are shown in

Fig. 2. All the matrix elements are equivalent. The relative

differences between different approaches are given by nu-

merical noise (not shown). Finally, jVp1

p2,p(27b)j
2 on the res-

onant submanifold (27b) is shown in Fig. 3. Again,

all the matrix elements are equivalent. The solutions (28a)

and (28b) give the same matrix elements but with jk1j and

jk2j exchanged as the solutions (27a) and (27b) because of

their symmetries.

3) SPECIAL TRIADS

Three simple interaction mechanisms are identified by

McComas and Bretherton (1977) in the limit of an ex-

treme scale separation. In this subsection, we look in

closer detail at these special limiting triads to confirm

that all matrix elements are indeed asymptotically con-

sistent. The limiting cases are as follows:

d The vertical backscattering of a high-frequency wave by

a low-frequency wave of twice the vertical wavenumber

into a second high-frequency wave of oppositely signed

FIG. 1. Contours of matrix elements jVp
p1,p2(26b)j

2 given by the solution (29): (top left) jVp MO
p1,p2(26b)j

2 according to Müller and

Olbers (1975); (top right) jVp V
p1,p2(26b)j2 according to Voronovich (1979); (bottom left) jVp CZ

p1,p2(26b)j
2 according to

Caillol and Zeitlin (2000); and (bottom right) jVp H
p1,p2(26b)j

2 according to Lvov and Tabak (2001).
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vertical wavenumber and nearly the same wavenumber

magnitude. This type of scattering is called elastic

scattering. The solution (26a) in the limit jk1j / 0

corresponds to this type of special triad.
d The scattering of a high-frequency wave by a low-

frequency, small-wavenumber wave into a second,

nearly identical, high-frequency large-wavenumber

wave. This type of scattering is called induced diffusion.

The solution (26b) in the limit that jk1j/ 0 corresponds

to this type of special triad.
d The decay of a low-wavenumber wave into two high

vertical wavenumber waves of approximately one-half

the frequency. This is called parametric subharmonic

instability (PSI). The solution (27a) in the limit that

jk1j/ 0 corresponds to this type of triad.

To study the behavior of the matrix elements in the

special triad cases, we need to construct a triad that be-

longs to one of the special cases. There are many ways

one can do that; that is, there are many ways to param-

eterize (jk1j, jk2j) in such a way that they span a special

triad case. We choose one such particular parameteriza-

tion; that is, we choose

(jk1j, jk2j) 5 (�, � /3 1 1)jkj.

This line is defined in such a way so that it originates

from the corner of the kinematic box in Figs. 1–3 at (jk1j,
jk2j) 5 (0, jkj) and has a slope of 1/3. The slope of this line

is arbitrary. We could have taken �/4 or �/2. The matrix

elements here are shown as functions of � in Fig. 4.

FIG. 2. Contour lines of values of matrix elements jVp1

p2,p(27a)j
2 given by the solution (27a): (top left)

jVp1 MO

p2,p(27a)j
2 according to Müller and Olbers (1975); (top right) jVp1 V

p2,p(27a)j
2 according to Voronovich (1979);

(bottom left) jVp1 CZ

p2,p(27a)j
2 according to Caillol and Zeitlin (2000); and (bottom right) jVp1 H

p2,p(27a)j
2 according to Lvov and

Tabak (2001).
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We see that all four approaches are again equivalent on

the resonant manifold for the case of special triads.

In this section, we demonstrated that all four approaches

we considered produce equivalent results on the reso-

nant manifold in the absence of background rotation. This

statement is not trivial, given the different assumptions

and coordinate systems that have been used for the vari-

ous kinetic equation derivations.

4. Resonant wave–wave interactions: In the
presence of background rotations

In the presence of background rotation, the matrix

elements lose their scale invariance because of the

introduction of an additional time scale (1/f ) in the

system. Consequently, the comparison of matrix ele-

ments is performed as a function of four independent

parameters.

We perform this comparison in the frequency–vertical

wavenumber domain. In particular, for arbitrary v, v1, m,

and m1, v2, and m2 can be calculated by requiring that

they satisfy the resonant conditions v 5 v1 1 v2 and m 5

m1 1 m2. We then can check whether the corresponding

horizontal wavenumber magnitudes k, given by

ki 5
miNro

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i 2 f 2

q
(isopycnal coordinates) and

ki 5 mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i 2 f 2
q

N
(Lagrangian coordinates) (29)

FIG. 3. Contour lines of values of matrix jVp1

p2,p(27b)j
2 given by the solution (27b): (top left) jVp1 MO

p2,p(27b)j
2 according to

Müller and Olbers (1975); (top right) jVp1 V

p2,p(27b)j
2 according to Voronovich (1979); (bottom left) jVp1 CZ

p2,p(27b)j
2 according

to Caillol and Zeitlin (2000); and (bottom right) jVp1 H

p2,p(27b)j
2 according to Lvov and Tabak (2001).

678 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



satisfy the triangle inequality. The matrix elements of

the isopycnal and Lagrangian coordinate representa-

tions are then calculated. We have performed this com-

parison for 1012 points on the resonant manifold. After

being multiplied by an appropriate dimensional number

to convert between Eulerian and isopycnal coordinate

systems, the two matrix elements coincide up to machine

precision.

One might, with sufficient experience, regard this as an

intuitive statement. It is, however, far from trivial given

the different assumptions and coordinate representa-

tions. In particular, we note that derivations of the wave

amplitude evolution equation in Lagrangian coordinates

(Olbers 1976; McComas 1975; Meiss et al. 1979) do not

explicitly contain a potential vorticity conservation state-

ment corresponding to assumption (4) in the isopycnal

coordinate (Lvov and Tabak 2004) derivation. We have

inferred that the Lagrangian coordinate derivation con-

serves potential vorticity as that system is projected upon

the linear modes of the system having zero perturbation

potential vorticity.

5. Resonance broadening and numerical methods

a. Nonlinear frequency renormalization as a result
of nonlinear wave–wave interactions

The resonant interaction approximation is a self-

consistent mathematical simplification, which reduces

the complexity of the problem for weakly nonlinear

systems. As nonlinearity increases, near-resonant in-

teractions become more and more pronounced and need

to be addressed. Moreover, near-resonant interactions

play a major role in numerical simulations on a discrete

grid (Lvov et al. 2006), for time evolution of discrete

systems (Gershgorin et al. 2007), in acoustic turbulence

(Lvov et al. 1997), surface gravity waves (Janssen 2003;

Yuen and Lake 1982), and internal waves (Voronovich

et al. 2006; Annenkov and Shrira 2006).

To take into account the effects of near-resonant in-

teractions self-consistently, we revisit section 2b. Now we

do not take the limit ~Gpp1p2
/0 in Eq. (19). Then, instead

of the kinetic equation with the frequency-conserving

delta function, we obtain the generalized kinetic equation

dnp

dt
5 4

ð
jVp

p
1
,p

2
j2fp12dp2p

1
2p

2
L(vp 2 vp

1
2 vp

2
Þdp12

2 4

ð
jVp

1
p

2
,pj2f12pdp

1
2p

2
2pL(vp

1
2 vp

2
2 vp)dp12

2 4

ð
jVp

2
p,p

1
j2f2p1dp

2
2p2p

1
L(vp

2
2 vp 2 vp

1
)dp12,

with fp12 5 np
1
np

2
2 np(np

1
1 np

2
), (30)

FIG. 4. (top) Matrix elements jVp
p1,p2ESj

2 given by the solution

(26a). (middle) Matrix elements jVp
p1,p2IDj

2 given by the

solution (26b). (bottom) Matrix elements jVp
p1,pPSIj

2 given by

the solution (27a), which gives PSI as jk1j / 0 (� / 0). The

matrix elements here are shown as functions of « such that (jk1j,
jk2j) 5 (�, �/3 1 1)jkj. All four versions of the matrix elements are

plotted here: the appearance of a single line in each panel testifies

to the similarity of the elements on the resonant manifold.
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where L is defined as

L(Dv) 5
Gk12

(Dv)2
1 G2

k12

. (31)

Here, Gk12 is the total broadening of each particular

resonance and is given below in (32) and (33).

The difference between kinetic equation (22) and the

generalized kinetic equation (30) is that the energy-

conserving delta functions in (22), d(vp 2 vp1
2 vp2

), was

‘‘broadened.’’ The physical motivation for this broadening

is the following: When the resonant kinetic equation is

derived, it is assumed that the amplitude of each plane

wave is constant in time or, in other words, that the life-

time of single plane wave is infinite. The resulting kinetic

equation nevertheless predicts that wave amplitude

changes. Consequently, the wave lifetime is finite. For a

small level of nonlinearity, this distinction is not signifi-

cant, and resonant kinetic equation constitutes a self-

consistent description. For larger values of nonlinearity,

this is no longer the case, and the wave lifetime is finite

and amplitude changes need to be taken into account.

Consequently, interactions may not be strictly resonant.

This statement also follows from the Fourier uncertainty

principle. Waves with varying amplitude cannot be rep-

resented by a single Fourier component. This effect is

larger for larger normalized Boltzmann rates.

If the nonlinear frequency renormalization tends to

zero (i.e., Gk12 / 0), L reduces to the delta function

[compare to (21)],

lim
G

k12
/0
L(Dv) 5 pd(Dv).

Consequently, in the limit resonant interactions (i.e., no

broadening), (30) reduces to (22).

If, on the other hand, one does not take the ~Gpp1p2
/0

limit, then one has to calculate Gpp1p2
self-consistently.

To achieve this, we realize that by deriving the gen-

eralized kinetic Eq. (30) we allow changes in wave

amplitude. The rate of change can be identified from

Eq. (30) in the following way: Let us go through (30)

term by term and identify all terms that multiply the np

on the right-hand side. Those terms can be loosely in-

terpreted as a nonlinear wave damping acting on the

given wavenumber,

gp 5 4

ð
jVp

p
1
,p

2
j2(np

1
1 np

2
)dp2p

1
2p

2
L(vp 2 vp

1
2 vp

2
)dp12

2 4

ð
jVp

1
p

2
,pj2(np

2
2 np

1
)dp

1
2p

2
2pL(vp

1
2 vp

2
2 vp)dp12

2 4

ð
jVp

2
p,p

1
j2(np

1
2 np

2
)dp

2
2p2p

1
L(vp

2
2 vp 2 vp

1
)dp12. (32)

The interpretation of this formula is the following:

Nonlinear wave–wave interactions lead to the change of

wave amplitude, which in turn makes the lifetime of the

waves to be finite. This, in turn, makes the interactions to

be near resonant.

Replacement of ~gp in (18) by gp in (32) corresponds to

the renormalization or dressing of bare dumping by the

nonlinear dumping that appears as a result of wave–wave

interactions. This methodology is well studied in the

context of diagrammatic technique (Lvov et al. 1997).

Consequently, the ~Gp1p2p3
in (19) defined in (20) gets

renormalized to

Gk12 5 gp 1 gp
1

1 gp
2
. (33)

It means that the total resonance broadening is the sum of

total broadenings of all individual frequency broadening

and can be thus seen as the ‘‘triad interaction’’ frequency.

We also note that dumping is intrinsically related to broad-

ening, just as in the case of simple harmonic oscillator.

A rigorous derivation of the kinetic Eq. (30) with

a broadened delta function (31)–(33) is given in detail for

a generic three-wave Hamiltonian system in Lvov et al.

(1997). The derivation is based upon the Wyld diagram-

matic technique for nonequilibrium wave systems and

utilizes the Dyson–Wyld line resummation. This resumma-

tion permits an analytical resummation of the infinite series

of reducible diagrams for Greens functions and double

correlators. We emphasize however that the approach is

perturbative in nature and that there are neglected parts

of the infinite diagrammatic series.

A self-consistent estimate of gp requires an iterative

solution of (30) and (32) over the entire field: The width

of the resonance (32) depends on the lifetime of an in-

dividual wave [from (30)], which in turn depends on the

width of the resonance (33). This numerically intensive

computation is beyond the scope of this manuscript. In-

stead, we make the uncontrolled approximation that

gp 5 Cvp, (34)
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where C is the dimensionless constant that defines how

strongly a particular frequency gets broadened by non-

linear wave–wave interactions.

We note the choice (34) is made for illustration

purposes only, we certainly do not claim it to be self

consistent. Below, we will take C to be 1023, 1022, and

1021. These values are rather small; therefore, we remain

in the closest proximity to the resonant interactions. To

show the effect of strong resonant manifold smearing, we

also investigate the case with C 5 0.5.

We note in passing that the near-resonant interactions

of the waves were also considered in Janssen (2003).

There, instead of our L(x) function, given by (31), the

corresponding function was given by sin(px)/x. We have

shown in Kramer et al. (2003) that the resulting kinetic

equation does not retain positive definite values of wave

action. To get around that difficulty, self-consistent

formulas for broadening should be used. Here we dis-

cuss such formulas, which are based upon a rigorous

diagrammatic resummation.

b. Numerical methods

Estimates of near-resonant transfers are obtained by

assuming horizontal isotropy and integrating (30) over

horizontal azimuth,

›np

›t
5 4p

ð
k1k2

Sp12

jVp
p

1
,p

2
j2fp12dp2p

1
2p

2
L(vp 2 vp

1
2 vp

2
) dk1 dk2 dm1

2 4p

ð
k1k2

S12p

jVp
1

p
2
,pj2f12pdp

1
2p

2
2pL(vp

1
2 vp

2
2 vp) dk1 dk2 dm1

2 4p

ð
k1k2

S2p1

jVp
2

p,p
1
j2f2p1dp

2
2p2p

1
L(vp

2
2 vp 2 vp

1
) dk1 dk2 dm1, (35)

where Sp12 is the area of the triangle k 5 k1 1 k2. We

numerically integrated (35) for p that have frequencies

from f to N and vertical wavenumbers from 2p/(2b) to

260p/(2b). The limits of integration are restricted by

horizontal wavenumbers from 2p/105 to 2p/5 m21, ver-

tical wavenumbers from 2p/(2b) to 2p/5 m21, and fre-

quencies from f to N. The integrals over k1 and k2 are

obtained in the kinematic box in k1–k2 space. The grids in

the k1–k2 domain have 217 points that are distributed

heavily around the corner of the kinematic box. The

integral over m1 is obtained with 213 grid points, which

are also distributed heavily for the small vertical wave-

numbers whose absolute values are less than 5m, where m

is the vertical wavenumber.

To estimate the normalized Boltzmann rate, we need

to choose a form of spectral energy density of internal

waves. We utilize the Garrett and Munk spectrum as

commonly used representation of the internal waves,

E(v, m) 5
4f

p2m*
E0

1

1 1
m

m*

� �2

1

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 2 f 2

p . (36)

Here, the reference wavenumber is given by

m* 5 pj*/b, (37)

in which the variable j represents the vertical mode

number of an ocean with an exponential buoyancy

frequency profile having a thermocline scale height of

b 5 1300 m.

We choose the following set of parameters:

d b 5 1300 m in the GM model;
d the total energy is set as

E0 5 30 3 1024 m2 s22;

inertial frequency is given by f 5 1024 rad s21, and

buoyancy frequency is given by N0 5 5 3 1023 rad s21;
d the reference density is taken to be r0 5 103 kg m23; and
d a rolloff wavenumber m* 5 N/Nopj*/b equivalent to

mode 3, j* 5 3.

We then calculate the normalized Boltzmann rate (24)

using four values of C in (34): C 5 1023, C 5 1022, C 5

1021, and C 5 0.5.

Our simulations do show some sensitivity to the spec-

tral boundaries and show significant sensitivity for the

choice of gp, especially for relatively large values of gp.

Sorting out these sensitivities and finding a self-consistent

value of gp is the subject of current research.

6. Time scales

a. Resonant interactions

Here, we present evaluations of the kinetic equation

(35) with a broadened delta function (31) and (34). These

estimates differ from evaluations presented in Olbers
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(1976), McComas (1977), McComas and Müller (1981a),

and Pomphrey et al. (1980) in that the numerical algo-

rithm includes a finite breadth to the resonance surface,

whereas previous evaluations have been exactly resonant.

Results discussed in this section are as close to resonant as

we can make (C 5 1 3 1023).

Results are presented in Fig. 5 for different values of C.

We see that for small vertical wavenumbers the normal-

ized Boltzmann rate is of the order of a tenth of the wave

period. This can be argued to be relatively within the

domain of weak nonlinearity. However, for increased

wavenumbers the level of nonlinearity increases and

reaches the level of wave period (red or dark blue). There

is also a white region indicating values smaller than

minus one.

We also define a ‘‘zero curve’’: It is the locus of

wavenumber–frequency where the normalized Boltz-

mann rate and time derivative of wave action is exactly

zero. The zero curve clearly delineates a pattern of

energy gain for frequencies f , v , 2f, energy loss for

frequencies 2f , v , 5f, and energy gain for frequencies

5f , v , N0. We interpret the relatively sharp boundary

between energy gain and energy loss across v 5 2f as

being related to the parametric subharmonic instability

and the transition from energy loss to energy gain at v 5

5f as a transition from energy loss associated with the pa-

rametric subharmonic instability to energy gain associated

with the elastic scattering mechanism. See section 7 for

further details about this high-frequency interpretation.

The O(1) normalized Boltzmann rates at high vertical

wavenumber are surprising given the substantial litera-

ture that regards the GM spectrum as a stationary state.

We do not believe this to be an artifact of the numerical

scheme for the following reasons: First, numerical eval-

uations of the integrand conserve energy to within nu-

merical precision as the resonance surface is approached,

consistent with energy conservation property associated

with the frequency delta function. Second, the time scales

FIG. 5. Normalized Boltzmann rates (24) for the Garrett and Munk spectrum (36) calculated via (30). Figures

represent normalized Boltzmann rate calculated using Lvov and Tabak (2004), Eq. (A21) with (top left) C 5 1023,

(top right) C 5 1022, (bottom left) C 5 1021, and (bottom right) C 5 0.5. The white region corresponds to extremely

fast time scales, faster than a linear time scale. The horizontal axis is vertical wavenumber expressed as the equivalent

mode number of a buoyancy-scaled basin 1300 m deep.
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converge as the resonant width is reduced, as demon-

strated by the minimal difference in time scales using C 5

1 3 1023 and 1 3 1022. Third, our results are consistent

with approximate analytic expressions (e.g., McComas

and Müller 1981b) for the Boltzmann rate. Finally, in

view of the differences in the representation of the wave

field, numerical codes, and display of results, we interpret

our resonant (C 5 0.001) results as being consistent with

numerical evaluations of the resonant kinetic equations

presented in Olbers (1976), McComas (1977), McComas

and Müller (1981a), and Pomphrey et al. (1980).

As a quantitative example, consider estimates of the

time rate of change of low-mode energy appearing in

Table 1 of Pomphrey et al. (1980), which is repeated as

row 3 of our Table 24. We find agreement to better than

a factor of 2. To explain the remaining differences, one

has to examine the details: Pomphrey et al. (1980) use

a Coriolis frequency corresponding to 308 latitude; neglect

internal waves having horizontal wavelengths greater

than 100 km (same as here); and exclude frequencies v .

No/3, with No 5 3 cph. We include frequencies f , v , No

with Coriolis frequency corresponding to 458 latitude. Of

possible significance is that Pomphrey et al. (1980) use a

vertical mode decomposition with exponential stratifica-

tion with scale height b 5 1200 m (we use constant N and

assume an ocean depth equivalent to b 5 1300 m). Table

2 presents estimates of the energy transfer rate by taking

the depth-integrated transfer rates of Pomphrey et al.

(1980), assuming _E } N2 and normalizing to N 5 3 cph.

Although this accounts for the nominal buoyancy scaling

of the energy transport rate, it does not account for

variations in the distribution of _E(m) associated with

variations in N via m* 5 (N/N
o
)pj*/b in their model.

Finally, their estimates of _E(m) are arrived at by in-

tegrating only over regions of the spectral domain for

which _E(m, v) is negative.

b. Near-resonant interactions

Substantial motivation for this work is the question of

whether the GM76 spectrum (Cairns and Williams 1976)

represents a stationary state. We have seen that numerical

evaluations of a resonant kinetic equation return O(1)

normalized Boltzmann rates and hence we are led to

conclude that GM76 is not a stationary state with respect

to resonant interactions. The next natural question to ask

is whether the GM76 could be a stationary solution of the

kinetic equation with the self-consistent broadening

function gp.

Our investigation of this question is currently limited

by the absence of an iterative solution to (30) and (32)

and consequent choice to parameterize the resonance

broadening in terms of (34). As we go from nearly reso-

nant evaluations (1023 and 1022) to incorporating signif-

icant broadening (1021 and 0.5), we find a significant

decreases in the normalized Boltzmann rate. The largest

decreases are associated with an expanded region of en-

ergy loss associated the parametric subharmonic insta-

bility, in which minimum normalized Boltzmann rates

change from 23.38 to 20.45 at (v, mb/2p) 5 (2.5f, 150).

Large decreases here are not surprising given the sharp

boundary between regions of loss and gain in the resonant

calculations. Smaller changes are noted within the induced

diffusion regime. Maximum normalized Boltzmann rates

change from 2.6 to 1.5 at (v, mb/2p) 5 (8f, 260). Broadening

of the resonances to exceed the boundaries of the spectral

domain could be making a contribution to such changes.

We regard our calculations here as a preliminary step to

answering the question of whether the GM76 spectrum

represents a stationary state with respect to nonlinear

interactions within wave turbulence methodology. Com-

plementary studies could include comparison with anal-

yses of numerical solutions of the equations of motion.

7. Discussion

a. Resonant interactions

Several loose ends need to be tied up regarding the

assertion that the GM76 spectrum does not constitute

a stationary state with respect to resonant interactions.

The first is the interpretation of McComas and Müller’s

(1981a) inertial-range theory with constant downscale

transfer of energy. This constant downscale transfer of

energy was obtained by patching together the induced

diffusion and parametric subharmonic instability mech-

anisms and is attended by the following caveats: First, the

inertial-subrange solution is found only after integrating

over the frequency domain and numerical evaluations of

the kinetic equation demonstrate that the inertial-subrange

TABLE 2. Numerical evaluations of
ÐN

f E(m, v)dv for vertical mode numbers 1–8. The sum is given in the rightmost column.

_E 3 10210 W kg21 Mode 1 2 3 4 5 6 7 8 S

Lvov and Tabak (2004) GM76 21.46 21.72 21.76 21.69 21.57 21.40 21.08 20.81 211.5

Pomphrey et al. (1980) GM76 21.83 22.17 22.17 21.83 21.67 21.00 210.7

4 A potential interpretation is that this net energy flow out of the

nonequilibrium part of the spectrum represents the energy re-

quirements to maintain the spectrum.
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solution also requires dissipation to balance energy gain

at high vertical wavenumber. It takes significant effort

to analyze their figures to understand how figures in

McComas and Müller (1981a) plots relate to the initial

tendency estimates in Fig. 5. Second, Pomphrey et al.

(1980) argue that GM76 is a near-equilibrium state be-

cause of a one to three order of magnitude cancellation

between the Langevin rates in the induced diffusion re-

gime. However, this is just the v2/f 2 difference between

the fast and slow induced diffusion time scales. It does not

imply small values of the slow induced diffusion time

scale, which are equivalent to the normalized Boltzmann

rates. Third, the large normalized Boltzmann rates de-

termined by our numerical procedure are associated with

the elastic scattering mechanism rather than induced

diffusion. Normalized Boltzmann rates for the induced

diffusion and elastic scattering mechanisms are

�id 5
p2

20

m

mc

m2

m2 1 m2
*

v2

f 2

and

�es 5
p2

20

m

mc

m2

m2 1 0:25m2
*

,

in which m* represents the low-wavenumber rolloff of the

vertical wavenumber spectrum (vertical mode-3 equiva-

lent here); mc is the high-wavenumber cutoff, nominally at

10-m wavelengths; and the GM76 spectrum has been as-

sumed. The normalized Boltzmann rates for ES and ID

are virtually identical at high wavenumber. They differ

only in how their respective triads connect to the v 5 f

boundary. Induced diffusion connects along a curve whose

resonance condition is approximately that the high-

frequency group velocity match the near-inertial vertical

phase speed, v/m 5 f/mni. Elastic scattering connects

along a simpler m 5 2mni. Evaluations of the kinetic

equation reveal nearly vertical contours throughout the

vertical wavenumber domain, consistent with ES, rather

than sloped along contours of v } m emanating from m 5

m* as expected with the ID mechanism.

The identification of the ES mechanism as being re-

sponsible for the large normalized Boltzmann rates at

high vertical wavenumber requires further explanation.

The role assigned to the ES mechanism by McComas and

Bretherton (1977) is the equilibration of a vertically an-

isotropic field. This can be seen by taking the near-inertial

component of a triad to represent p1, assuming that the

action density of the near-inertial field is much larger than

the high-frequency fields, and taking the limit (k, l, m) 5

(k2, l2, 2m2) [ p2. Thus,

fp12 5 np
1
np

2
2 np(np

1
1 np

2
) ffi np

1
[np2 2 np],

and transfers proceed until the field is isotropic, np2 5 np.

However, this is not the complete story. A more precise

characterization of the resonance surface takes into ac-

count the frequency resonance requiring v 2 v2 5 v1ffi f

and requires O(v/f ) differences in m and 2m2 if k 5 k2

and O(v/f ) differences in k and k2 if m 5 2m2. For an

isotropic field,

fp12 5 np
1
np

2
2 np(np

1
1 np

2
) ffi np

1
[np1dp 2 np]

ffi np
1
[dp � $np],

with dp 5 p2 2 p.

b. Near-resonant interactions

The idea of trying to self-consistently find the smear-

ing of the delta functions is not new. For internal waves,

it appears in DeWitt and Wright (1982), Carnevale and

Frederiksen (1983), and DeWitt and Wright (1984).

DeWitt and Wright (1982) set up a general framework

for a self-consistent calculation similar in spirit to Lvov

et al. (1997), using a path-integral formulation of the di-

agrammatic technique. DeWitt and Wright (1982) make

an uncontrolled approximation that the nonlinear fre-

quency renormalization S(p, v) is independent of v and

show that this assumption is not self-consistent. Lvov

et al. (1997) present a more sophisticated approach to

a self-consistent approximation to the operator S(p, v).

In particular, DeWitt and Wright (1982) suggest

S(p, v) 5 S(p, vp),

whereas Lvov et al. (1997) propose a more self-consistent

S(p, v) 5 S[p, vp 1 iJS(p, vp)].

DeWitt and Wright (1984) evaluate the self-consistency

of the resonant interaction approximation and find that,

for high frequency and high wavenumbers, the resonant

interaction representation is not self-consistent. A possi-

ble critique of these papers is that they use resonant ma-

trix elements given by Müller and Olbers (1975) without

appreciating that those elements can only be used strictly

on the resonant manifold.

Carnevale and Frederiksen (1983) present similar ex-

pressions for two-dimensional stratified internal waves.

There the kinetic equation is (7.4) with the triple corre-

lation time given by Q (our L) of their (8.7).

The main advantage of our approach over Carnevale and

Frederiksen (1983) is that we use systematic Hamiltonian

structures that are equivalent to the primitive equations of

motion rather than a simplified two-dimensional model.
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c. Direct numerical simulations of the dynamical
equations of motion

Direct numerical simulations of the dynamical equations

of motion are not limited by the dynamical assumptions

inherent in the weakly nonlinear resonant or near-resonant

representations. They are however subject to other com-

putational restrictions and do significantly depend upon

details of forcing.

D’Asaro (1997) present spindown simulations based

upon the GM76 spectrum with varying amplitude. The

domain considered there consists of a rectangular box

80 km 3 10 km 3 1 km on a side with resolved wave-

lengths of 1 km in the horizontal and 50 m in the verti-

cal. Note that this domain does not include regions in

Fig. 5 exhibiting large values of the normalized Boltz-

mann rate. Interactions in the resolved domain may be

dominated by PSI transfers as discussed in McComas

and Müller (1981a).

Forced nonrotating simulations are presented in Furue

(2003). The computational domain is a box of horizontal

size 100 m 3 100 m 3 128 m height. The forcing is iso-

tropic in wavenumber and peaks at a horizontal wave-

length of 25 m. The forcing is controlled so that amplitudes

are consistent with GM76 and the resulting dissipation is

a significant fraction of that associated with GM76.

It is an interesting task for the future research to relate

these numerical simulations with evaluations of the ki-

netic equations we are performing here. The first steps in

this direction were performed in Lvov and Yokoyama

(2009).

8. Conclusions

Our fundamental result is that the GM spectrum is not

stationary with respect to the resonant interaction ap-

proximation. This result is contrary to the point of view

expressed in McComas and Müller (1981a) and Müller

et al. (1986) and gave us cause to review published results

concerning resonant internal wave interactions. We also

arrived at the point where we can say that the resonant

kinetic equation does not constitute a self-consistent ap-

proach. We then included near-resonant interactions and

found significant reductions in the temporal evolution of

the GM spectrum.

This is the first step in building a self-consistent theory

of the interactions of internal waves. The main point of

this paper is that we reopen the challenge of how to cal-

culate from first principles the spectral energy density of

internal waves.

We compared the interaction matrices for three differ-

ent Hamiltonian formulations and one non-Hamiltonian

formulation in the resonant limit. Two of the Hamiltonian

formulations are canonical and one (Lvov and Tabak

2004) avoids a linearization of the Hamiltonian prior to

assuming an expansion in terms of weak nonlinearity.

Formulations in Eulerian, isopycnal, and Lagrangian co-

ordinate systems were considered. All four representa-

tions lead to equivalent results on the resonant manifold in

the absence of background rotation. The two repre-

sentations that include background rotation, a canoni-

cal Hamiltonian formulation in isopycnal coordinates and

a noncanonical Hamiltonian formulation in Lagrangian

coordinates, also lead to equivalent results on the res-

onant manifold. This statement is not trivial given the

different assumptions and coordinate systems that have

been used for the derivation of the various kinetic equa-

tions. It points to an internal consistency on the resonant

manifold that we still do not completely understand and

appreciate.

We rationalize the consistent results as being asso-

ciated with potential vorticity conservation. In the

isopycnal coordinate canonical Hamilton formulation,

potential vorticity conservation is explicit. In the Lagrang-

ian coordinate noncanonical Hamiltonian, potential vor-

ticity conservation results from a projection onto the linear

modes of the system. The two nonrotating formulations

prohibit relative vorticity variations by casting the ve-

locity as the gradient of a scalar streamfunction.

We infer that the nonstationary results for the GM

spectrum are related to a higher-order approximation of

the elastic scattering mechanism than considered in

McComas and Bretherton (1977) and McComas and

Müller (1981b). Our numerical results indicate evolution

rates of an inverse wave period at high vertical wave-

number, signifying a system that is not weakly nonlinear.

To understand whether such nonweak conditions could

give rise to competing effects that render the system sta-

tionary, we considered resonance broadening. We used a

kinetic equation with broadened frequency delta function

derived for a generalized three-wave Hamiltonian system

in (Lvov et al. 1997). The derivation is based upon the

Wyld diagrammatic technique for nonequilibrium wave

systems and utilizes the Dyson–Wyld line resummation.

This broadened kinetic equation is perceived to be more

sophisticated than the two-dimensional direct interaction

approximation representation pursued in Carnevale and

Frederiksen (1983) and the self-consistent calculations of

DeWitt and Wright (1984), which utilized the resonant

interaction matrix of Olbers (1976). We find a tendency of

resonance broadening to lead to more stationary con-

ditions. However, our results are limited by an un-

controlled approximation concerning the width of the

resonance surface.

Reductions in the temporal evolution of the internal

wave spectrum at high vertical wavenumber were greatest
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for those frequencies associated with the PSI mechanism:

that is, f , v , 5f. Smaller reductions were noted at high

frequencies.

A common theme in the development of a kinetic

equation is a perturbation expansion permitting the wave

interactions and evolution of the spectrum on a slow time

scale (e.g., section 2b). An assumption of Gaussian sta-

tistics at zeroth order permits a solution of the first-order

triple correlations in terms of the zeroth-order quadruple

correlations. Assessing the adequacy of this assumption

for the zeroth-order high-frequency wave field is a chal-

lenge for future efforts. Such departures from Gaussian-

ity could have implications for the stationarity at high

frequencies.

Nontrivial aspects of our work are that we utilize the

canonical Hamiltonian representation of Lvov and

Tabak (2004), which results in a kinetic equation with-

out first linearizing to obtain interaction coefficients

defined only on the resonance surface and the so-

phisticated broadened closure scheme of Lvov et al.

(1997). Inclusion of interactions between internal waves

and modes of motion associated with zero eigenfre-

quency (i.e., the vortical motion field) is a challenge for

future efforts.

We found no coordinate-dependent (i.e., Eulerian,

isopycnal, or Lagrangian) differences between in-

teraction matrices on the resonant surface. We regard

it as intuitive that there will be coordinate-dependent

differences off the resonant surface. It is a robust obser-

vational fact that Eulerian frequency spectra at high ver-

tical wavenumber are contaminated by vertical Doppler

shifting: near-inertial frequency energy is Doppler

shifted to higher frequency at approximately the same

vertical wavelength. Use of an isopycnal coordinate

system considerably reduces this artifact (Sherman and

Pinkel 1991). Further differences are anticipated in

a fully Lagrangian coordinate system (Pinkel 2008).

Thus, differences in the approaches may represent

physical effects and what is a stationary state in one

coordinate system may not be a stationary state in an-

other. Obtaining canonical coordinates in an Eulerian

coordinate system with rotation and in the Lagrangian

coordinate system are challenges for future efforts. In

conclusion, the purpose of this paper is to show that the

first principle explanation of internal wave spectrum in

general and Garrett and Munk in particular are still yet

to come.
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APPENDIX

Historical Review of Other Matrix Elements

Our attention is restricted to the hydrostatic balance

case, for which

jkj � jmj. (A1)

A minor detail is that the linear frequency has different

algebraic representations in isopycnal and Cartesian co-

ordinates. The Cartesian vertical wavenumber kz and the

density wavenumber m are related as m 5 2g/(r0N2)kz,

where g is gravity, r is density with reference value r0, N is

the buoyancy (Brunt–Väisälä) frequency, and f is the

Coriolis frequency. In isopycnal coordinates, the disper-

sion relation is given by

v(p) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1

g2

r2
0N2

jkj2

m2

s
. (A2)

In Cartesian coordinates,

v(p) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 N2

jkj2

k2
z

s
. (A3)

In the limit of f 5 0, these dispersion relations assume

the form

vp }
jkj
jmj}

jkj
jkzj

. (A4)

a. Hamiltonian formalism in Clebsch variables in
Voronovich (1979)

Voronovich starts from the nonrotating equations in

Eulerian coordinates,

›u

›t
1 u � $u 5

21

r
$p 2 gz

$ � u 5 0

›r

›t
1 u � $r 5 0, (A5)

with unit vector z defining the vertical direction. The

Hamiltonian of the system is

H 5

ð�
(r0 1 r)

v2

2
1 P(ro 1 r) 2 P(ro) 1 rgz

�
dr,

(A6)

where r0(z) is the equilibrium density profile; r is the wave

perturbation; and P is a potential energy density function,
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P(ro 1 r) 2 P(ro) 1 rgz 5 g

ðh(r
o
)

h(r
o
1r)

[r0 1 r 2 r0(j)] dj,

(A7)

with h(j) being the inverse of ro(z). The intent is to use r

and Lagrange multiplier l as the canonically conjugated

Hamiltonian pair,

_l 5
›H
›r

5 2(v$)l 1 g[z 2 h(ro 1 r)] and (A8)

_r 5 2
›H
›l

5 2(v$)(ro 1 r), (A9)

with z 2 h(ro 1 r) being the vertical displacement of a

fluid parcel and the second equation representing conti-

nuity. The issue is to express the velocity v as a function

of l and r, and to this end one introduces yet another

function F with the harmonious feature

dH
dF

5 0 (A10)

and a constraint. That constraint is provided by

$ �v 5 2
dH
dF

5 0. (A11)

Voronovich (1979) then identifies the functional re-

lationship

v 5
1

r0 1 r
[$F 1 l$(r0 1 r)] ffi 1

r
[$F 1 l$(r0 1 r)],

(A12)

with the right-hand side representing the Boussinesq ap-

proximation. The only thing stopping progress at this point

is the explicit appearance of j in (A7), and to eliminate

this explicit dependence a Taylor series in density per-

turbation r relative to r0 is used to express the potential

energy in terms of r and l. The resulting HamiltonianH is

H 5

ð�
y2

2
1 P(ro 1 r) 2 P(ro) 1 rgz

�
dr ffi 1

2

ð(
l$(ro 1 r)[$F 1 l$(ro 1 r)] 2

g

r9o
r2 1

gr0o

r93
o

r3

3

)
dr,

(A13)

with primes indicating ›/›z.

The only approximations that have been made to

obtain (A13) are the Boussinesq approximation in the

nonrotating limit, the specification that the velocity be

represented as (A12), and a Taylor series expansion.

The Taylor series expansion is used to express the

Hamiltonian in terms of canonically conjugated vari-

ables r and l. Truncation of this Taylor series is the es-

sence of the slowly varying approximation that the vertical

scale of the internal wave is smaller than the vertical scale

of the background stratification, which requires, for con-

sistency’s sake, the hydrostatic approximation.

The procedure of introducing additional functionals

(F) and constraints [(A11)] originates in Clebsch (1859).

See Seliger and Witham (1968) for a discussion of Clebsch

variables and also section 7.1 of Miropolsky (1981).

Finally, the evolution equation for wave amplitude ap

is produced by expressing the cubic terms in the Hamil-

tonian with solutions to the linear problem represented

by the quadratic components of the Hamiltonian. This is

an explicit linearization of the problem prior to the for-

mulation of the kinetic equation.

Specifically, we formulate the matrix elements for

Voronovich’s Hamiltonian using his equation (A.1).

This formula is derived for general boundary conditions.

To compare with other matrix elements of this paper, we

assume a constant stratification profile and Fourier basis

as the vertical structure function f(z). That allows us to

solve for the matrix elements defined via (11) and above

it in his paper. Then the convolutions of the basis func-

tions give delta functions in vertical wavenumbers.

Vornovich’s (A.1) transforms into

jVp
p

1
,p

2

Vj2 }
jkjjk1jjk2j
jmm1m2j

�
2m

�
1

jkjjmj
k � k1jm1j
jk1j

1
k � k2jm2j
jk2j

� �
1

v1 1 v2 2 v

v

�

1 m1

�
1

jk1jjm1j
k � k1jmj
jkj 1

k1 � k2jm2j
jk2j

� �
2

v1 1 v2 2 v

v1

�

1 m2

1

jk2jjm2j
k � k2jmj
jkj 1

k2 � k1jm1j
jk1j

� �
2

v1 1 v2 2 v

v2

�
2
.

��
(A14)
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Note that Eq. (A14) shares structural similarities with the

interaction matrix elements in isopycnal coordinates,

Eq. (A22) below.

b. Olbers, McComas, and Meiss

Derivations presented in Olbers (1974), McComas

(1975), and Meiss et al. (1979) are based upon the La-

grangian equations of motion,

€x1 2 f _x2 5
21

r
px

1
, €x2 1 f _x1 5

21

r
px

2
,

€x3 1 g 5
21

r
px

3
, ›(x1,x2,x3)/›(r1,r2,r3) 5 1, (A15)

expressing momentum conservation and incompressibility.

Here, r is the initial position of a fluid parcel at x: these

are Lagrangian coordinates. In the context of Hamiltonian

mechanics, the associated Lagrangian density is

L5
1

2
r( _xi

_xj 1 �jkl fi
_xk xl) 2 rgdj3xj 1 P(J 2 1),

where xj 5 xj(r, t) is the instantaneous position of the

parcel of fluid, which was initially at r; P(x) is a Lagrange

multiplier corresponding to pressure; and J 5 ›x/›r is the

Jacobian, which ensures the fluid is incompressible.

In terms of variables representing a departure from

hydrostatic equilibrium,

jj(r, t) 5 xj(r, t) 2 rj, p(r, t) 5 P(x, t) 2 Pk(r),

the Boussinesq Lagrangian density L for slow variations

in background density r is

L5
1

2

�
j2

i 1 �jkl fi
_jkjl 2 N2j2

3 1 p
›ji

›xi

1 Dii 1 D

� ��
,

(A16)

with ›j
i
/›x

i
1 D

ii
1 D representing the continuity equa-

tion where D 5 det(›ji/›xj).

This Lagrangian is then projected onto a single wave

amplitude variable a using the linear internal wave

consistency relationsA1 based upon plane wave solutions

[e.g., Müller 1976, (2.26)], and a perturbation expansion

in wave amplitude is proposed. This process has two

consequences: the use of internal wave consistency

relations places a condition of zero perturbation potential

vorticity upon the result, and the expansion places a

small-amplitude approximation upon the result with

ill-defined domain of validity relative to the (later)

assertion of weak interactions.

The evolution equation for wave amplitude is Lagrange’s

equation,

d

dt

›L
› _a0

2
›L
›a0

5 0, (A17)

in which a0 is the zeroth-order wave amplitude. After a

series of approximations, this equation is cast into

a field variable equation similar to (10). We emphasize

that to get there small displacement of parcel of fluid

was used, together with the built in assumption of res-

onant interactions between internal wave modes. The

Lvov and Tabak (2001, 2004) approach is free from

such limitations.

Specifically, matrix elements derived in Olbers (1974)

are given by jVp MO
p2,p j2 5 T1/(4p) and jVp1 MO

p2,p j2 5

T2/(4p). We extracted T6 from the appendix of Müller

and Olbers (1975). In our notation, in the hydrostatic

balance approximation, their matrix elements are

given by

jVp MO
p

1
,p

2
j2 5

(N2
0 2 f 2)2

32r0

vv1v2

jkjjk1jjk2j
vv1v2jpjjp1jjp2j

�����

3 2

2m1

k1 � k2 2 if k2 � k
?
1 /v1

k2
1

1 m2

 !
2m2

k1 � k2 2 if k1 � k
?
2 /v2

k2
2

1 m1

 !

m

2
64

2

2m2

k2 � k 1 if k2 � k
?/v2

k2
2

1 m

 !
2m

k2 � k 2 if k � k?2 /v

k2
1 m2

 !

m1

2

2m
k � k1 2 if k � k?1 /v

k2
1 m1

 !
2m1

k � k1 1 if k1 � k
?/v1

k2
1

1 m

 !

m2

�����
2

.

3
775

(A18)

Taking an f 5 0 limit reduces the problem to a scale-

invariant problem. We get the following simplified

expression:

A1 Wave amplitude a is defined so that a*a is proportional to

wave energy.
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jVp MO
p

1
,p

2
j2 }
jkjjk1jjk2j
jmm1m2j

"
2

1

m
2

m2k1 � k2

jk2j
2

1 m1

 !
2

m1k2 � k1

jk1j
2

1 m2

 !
1

1

m1

m2k � k2

jk2j
2

2 m

 !
2

mk2 � k
jkj2

1 m2

 !

1
1

m2

2
mk1 � k
jkj2

1 m1

 !
m1k � k1

jk1j
2

2 m

 !#2
. (A19)

This simplified expression is going to be used for com-

parison of approaches in section 3.

c. Caillol and Zeitlin

A non-Hamiltonian kinetic equation for internal

waves was derived in Caillol and Zeitlin (2000), their

(61), directly from the dynamical equations of motion,

without the use of the Hamiltonian structure. Caillol and

Zeitlin (2000) invoke the Craya–Herring decomposition

for nonrotating flows, which enforces a condition of zero

perturbation vorticity on the result.

To make it appear equivalent to more traditional form

of kinetic equation, as in Zakharov et al. (1992), we make

a change of variables, l / 2l in the second line and k /
2k in the third line of (61) of Caillol and Zeitlin (2000). If

we further assume that all spectra are symmetric, n(2p) 5

n(p), then the kinetic equation assumes traditional form,

as in Eq. (22) (see Müller and Olbers 1975; Zakharov

et al. 1992; Lvov and Tabak 2001, 2004).

The matrix elements according to Caillol and Zeitlin

(2000) are shown as Xk,l,p and Y6
k,l,p in their (62) and

(63), where jVp CZ
p1,p2
j2 5 Xp1,p2,p and jVp1 CZ

p2,p j2 5 Y1
p1,2p2,p.

In our notation, it reads as

jVp CZ
p

1
,p

2
j2 } [jkjsgn(m) 1 jk1jsgn(m1) 1 jk2jsgn(m2)]2 (m2 2 m1m2)2

jmjjm1jjm2jjkjjk1jjk2j

3

"
jkj2 2 jk1jsgn(m1)jk2jsgn(m2)

m2 2 m1m2

m 2
jk1j

2

m1

2
jk2j

2

m2

#2
. (A20)

This expression is going to be used for comparison of

approaches in section 3.

d. Kenyon and Hasselmann

The first kinetic equations for wave–wave interactions

in a continuously stratified ocean appear in Kenyon

(1966), Hasselmann (1966), and Kenyon (1968). Kenyon

(1968) states (without detail) that Kenyon (1966) and

Hasselmann (1966) give numerically similar results. We

have found that Kenyon (1966) differs from the four ap-

proaches examined below on one of the resonant manifolds

but have not pursued the question further. It is possible this

difference results from a typographical error in Kenyon

(1966). We have not rederived this non-Hamiltonian

representation and thus exclude it from this study.

e. Pelinovsky and Raevsky

An important paper on internal waves is Pelinovsky

and Raevsky (1977). Clebsch variables are used to obtain

the interaction matrix elements for both constant stratifi-

cation rates, N 5 constant, and arbitrary buoyancy profiles,

N 5 N(z), in a Lagrangian coordinate representation.

Not many details are given, but there are some similarities

in appearance with the Eulerian coordinate representa-

tion of Voronovich (1979). The most significant result is

the identification of a scale-invariant (nonrotating and

hydrostatic) stationary state, which we refer to as the

Pelinovsky–Raevsky in the companion paper (Lvov et al.

2010). It is stated in Pelinovsky and Raevsky (1977) that

their matrix elements are equivalent to those derived in

their citation [11], which is Brehovski (1975). Because

Brehovski (1975) and Pelinovsky and Raevsky (1977)

are in Russian and not generally available, we refrain

from including them in this comparison.

f. Milder

An alternative Hamiltonian description was developed

in Milder (1982), in isopycnal coordinates without as-

suming a hydrostatic balance. The resulting Hamiltonian

is an iterative expansion in powers of a small parameter,

similar to the case of surface gravity waves. In principle,

that approach may also be used to calculate wave–wave

interaction amplitudes. Because those calculations were

not done in Milder (1982), we do not pursue the com-

parison further.

g. Isopycnal Hamiltonian

Finally, in Lvov and Tabak (2004) the following wave–

wave interaction matrix element was derived based on a

canonical Hamiltonian formulation in isopycnal coordinates:
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. (A21)

Lvov and Tabak (2001) is a rotationless limit of Lvov and Tabak (2004). Taking the f / 0 limit, Lvov and Tabak

(2004) reduces to Lvov and Tabak (2001) and (A21) reduces to

jVp H
p

1
,p

2
j2 }

1

jkjjk1jjk2j
jkjk1 � k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� m

m1m2

����
s

1 jk1jk2 � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� m1

m2m

����
s

1 jk2jk � k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� m2

mm1

����
s !2

. (A22)

Observe that, in this form, these equations share struc-

tural similarities with (A14).
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