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Abstract

Cardiac autonomic balance (CAB) indexes the ratio of parasympathetic to sympathetic activation 

(Berntson, Norman, Hawkley, & Cacioppo, 2008), and is believed to reflect overall autonomic 

flexibility in the face of environmental challenges. However, CAB has not been examined in 

depression. We examined changes in CAB and other physiological variables in 179 youth with a 

history of juvenile onset depression (JOD) and 161 healthy controls, in response to two 

psychological (unsolvable puzzle, sad film) and two physical (handgrip, and forehead cold 

pressor) challenges. In repeated measures analyses, controls showed expected reductions in CAB 

for both the handgrip and unsolvable puzzle, reflecting a shift to sympathetic relative to 

parasympathetic activation. By contrast, JOD youth showed increased CAB from baseline for both 

tasks (ps<.05). No effects were found for the forehead cold pressor or sad film tasks, suggesting 

that CAB differences may arise under conditions requiring greater attentional control or sustained 

effort.
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Abnormalities in autonomic nervous system functioning have been associated with 

depression. More specifically, there is qualified support for an association between major 

depression in adults and low resting parasympathetic nervous system (PNS) activity, as 

indexed by resting levels of respiratory sinus arrhythmia, with mostly positive (RSA; 
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Rottenberg, 2007; Udupa et al., 2007; Kemp, Guitana, Gray, Felmingham, Brown & Gatt, 

2010; Kikuchi et al., 2009) but some negative results (e.g., Licht et al., 2008; Yeragani et al., 

1991; Lehofer et al., 1997). More consistent findings have been observed for RSA reactivity 

in response to laboratory tasks, with depressed adults exhibiting blunted RSA withdrawal to 

a laboratory speech stressor (Rottenberg, Clift, Bolden, & Salomon, 2007; Bylsma, 

Salomon, Taylor-Clift, Morris & Rottenberg, 2014), as well as a handgrip task (Nugent, 

Bain, Thayer, Sollers, & Drevets, 2011). These patterns are postulated to relate to poorer self 

regulation. Elsewhere, we have found that atypical patterns of resting RSA and RSA 

reactivity in youths with a history of juvenile onset depressed predicted deficits in mood 

repair, where mood repair refers to behaviors that decrease feelings of sadness or dysphoria 

(e.g., Josephson, Singer, & Salovey, 1996), as assessed by both trait measures and 

laboratory probes (Yaroslavsky et al., 2015)..). We have also found that atypical patterns of 

resting RSA and RSA reactivity are more highly concordant in siblings with a history of 

depression, suggesting that aspects of autonomic functioning may be heritable (Yaroslavsky, 

Rottenberg & Kovacs, 2014).

To a lesser extent, abnormalities in sympathetic nervous system (SNS) activity have also 

been observed in depressed adults. For example, Salomon, Clift, Karlsdottir & Rottenberg 

(2009) and Salomon, Bylsma, White, Panaite, & Rottenberg (2013) found blunted 

sympathetic nervous system (SNS) reactivity to a laboratory stressor task, as indexed by 

lengthened pre-ejection period (PEP), although others have found shorter PEP in individuals 

with depressive symptoms (Light, Kothandapani & Allen, 1998). Overall, research thus far 

reveals mixed evidence of PNS and SNS deficits in depression.

To date, depression research has focused almost exclusively on individual parasympathetic 

or sympathetic indices. This exclusive focus is unfortunate in light of recent theory argues 

arguing for the critical importance of integrating sympathetic and parasympathetic control to 

provide a comprehensive understanding of behavioral and affective reactivity and regulation 

(Berntson, Cacioppo, & Quigley, 1991). In fact, the historical views of reciprocally 

determined activity in both branches of the autonomic nervous system (e.g., activity 

increases in one branch would be accompanied by invariable decreases in the other) have 

been largely overturned by new theory and data, which indicate that both autonomic 

branches can react either independently or together, resulting in complex physiological 

patterns, including co-activation and co-inhibition (Berntson, et al., 1991; Berntson et al. 

2008). Importantly, theory and empirical evidence have indicated that reciprocal 

sympathetic activation (increases in sympathetic activity in conjunction with decreases in 

parasympathetic activity) during stress responses are ordinarily adaptive, whereas reciprocal 

parasympathetic activation would be most adaptive in calm and relaxed states (Berntson et 

al., 1994; El-Sheikh et al., 2009). Thus, examination of the balance of parasympathetic and 

sympathetic activity may lead to a more complete picture of regulatory functioning and risk 

for depression.

Berntson et al. 2008 has previously defined two useful indices for describing complex 

patterns in autonomic space: Cardiac Autonomic Balance (CAB) and Cardiac Autonomic 

Regulation (CAR). These indices are derived from a parasympathetic index, RSA, and a 

sympathetic index, PEP. RSA is a parasympathetically-mediated variation in heart rate that 
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is germane to individual differences in emotional functioning and regulation capacity in 

adults and youth (e.g., Beauchaine, 2001; Musser et al., 2011; Yaroslavsky, Bylsma, 

Rottenberg, & Kovacs, 2013; Yaroslavsky et al., 2014). PEP is a sympathetically mediated 

index that reflects the time between left ventricular depolarization and ejection of blood 

through the aorta, with smaller values indicating greater SNS activity (Berntson et al., 1994). 

PEP has been viewed as an index of effort mobilization needed to meet environmental 

demands (with decreases in PEP reflecting increased effort mobilization) required for 

behavioral approach (Gendolla, 2012; Kelsey, 2012; Richter, Friedrich & Gendolla, 2008; 

Richter & Gendolla, 2009), and it has been validated as a SNS index in children and 

adolescents (e.g., Matthews, Salomon, Kenyon, & Allen, 2002; McGrath & O’Brien, 2001; 

Quigley & Stifter, 2006).

CAB is computed as the difference between standardized values of parasympathetic control 

(RSA) and sympathetic control (PEP) along a bipolar model of autonomic balance. 

Therefore, higher CAB values reflect greater parasympathetic relative to sympathetic 

activation. CAR reflects the coactivation or coinhibition of PNS and SNS activity and is 

computed as the normalized sum of RSA and PEP. Autonomic dysregulation is often 

described as overactive SNS and hypoactive PNS (i.e., lower CAB), which has been 

associated with coronary artery disease, increased mortality (for a review, see Thayer, 

Yamamoto & Brosschot, 2010), increased risk of metabolic syndrome (Licht, de Geus & 

Penninx, 2013), diabetes (Berntson & Cacioppo, 2008) and chronic stress states (Lampert, 

Ickovics, Horwitz & Lee, 2005), and may serve as a link between negative affect and 

disease states (Thayer et al., 2010). High CAR (high PNS and CNS coactivation) has also 

been associated with increased risk for metabolic syndrome (Licht, de Geus & Penninx, 

2013) and prior occurrence of myocardial infarction (Berntson & Cacioppo, 2008).

While CAB and CAR represent potentially useful indices of autonomic system functioning 

that reflect autonomic flexibility, they have not yet been examined in the context of 

depression or depression risk. Prior depression-related work with joint autonomic indices 

used metrics that have limited interpretability, such as LF/HF ratio (the ratio of low to high 

frequency heart rate variability; Malliani, 2005; Malliani & Montano, 2002). While 

depressed and depression-vulnerable persons have been found to have a higher LF/HF ratio 

(Nugent et al., 2011; Udupa et al., 2007; Chang et al., 2012), LF is an ambiguous 

sympathetic index because, as it is currently defined, LF is contaminated by parasympathetic 

activity (Berntson et al., 1997; Eckberg, 1997; Reyes del Paso, Langewitz, Mulder, van 

Roon & Duschek, 2013). Further, as Heathers (2014) explains, there is no sound 

mathematical basis to directly compare LF and HF power, as these measures are only 

internally consistent (i.e., examining changes over time within an individual), so that 

comparing their relative proportions is questionable. In addition, possible co-activations in 

the sympathetic and parasympathetic branches are also not taken into account for the LF/HF 

ratio (Pagani, 2012).

CAB has been studied once in a depression-relevant sample: Miller, Wood, Lim, Ballow & 

Hsu (2009) found that children with asthma who were high on depression symptoms showed 

greater increases in CAB in response to films depicting distressing scenes of loss, death, and 

dying (greater increases in PNS relative to SNS activity). In contrast, asthmatic children low 
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on depressive symptoms showed the normative pattern of response to stress (greater 

decreases in CAB—greater increase in sympathetic relative to parasympathetic activity), 

which the authors indicated would be most adaptive for airway functioning in these patients. 

CAR, which reflects the co-activation of sympathetic and parasympathetic activity, has yet 

to be studied in depression.

The present study focused on Cardiac Autonomic Balance (CAB) in youths with histories of 

early onset depression and healthy controls with no history of depression. We examined 

CAB during baseline (viewing a neutral film) and across two physical and two 

psychological stressor tasks. We expected that the tasks (unsolvable puzzles, handgrip, sad 

film, and forehead cold pressor) would uncover group differences in psychophysiological 

reactivity. In studies with healthy individuals, the typical normative response to most 

laboratory stressors is a decrease in RSA accompanied by an increase in sympathetic relative 

to parasympathetic activity (Key, Campbell, Bacon, & Gerin, 2008; Lackschewitz, Hüther & 

Kröner-Herwig, 2008; O'Donnell, Brydon, Wright, & Steptoe, 2008). However, since the 

forehead cold pressor task elicits a “dive reflex”, which is typically accompanied by 

activation of the PNS system (Heath and Downey, 1990), we would expect increases in RSA 

(and likely increases in CAB) in response to this task. Since previous findings have 

suggested that abnormalities in PNS and SNS activation are associated with depression, we 

predicted that youth with such a history will fail to show appropriate changes in CAB in 

response to the stressor tasks. In other words, we expected that healthy controls would show 

decreases in CAB for the sad film, puzzle, and handgrip tasks or increases in CAB for the 

forehead cold pressor, while youth with a history of depression would fail to show these 

changes. As a point of comparison, we also examined effects for the LF/HF ratio, which has 

been considered another index of autonomic balance. Finally, we included Cardiac 

Autonomic Regulation (CAR) as a secondary, exploratory measure, given the lack of prior 

empirical literature.

Method

Subjects

This study included 216 probands whose histories of childhood onset major depressive 

disorder (MDD) were previously established (e.g., Baji et al, 2009; Kiss et al 2007). The 

probands are a subset of a larger sample, which were gathered in Hungary from 

approximately 1997–2006 for a prior genetic and clinical study (e.g., Baji et al., 2009; 

Dempster et al., 2009; Tamás et al., 2007). Probands for the original study were recruited at 

23 child mental health and guidance facilities across Hungary and met several study entry 

criteria, including having current or recent DSM-IV (American Psychiatric Association, 

2000) depressive disorder, being 7–14 years old at initial screen, and not mentally retarded. 

Six probands who came from families with a history of mania were excluded from analyses. 

Mean age of the proband sample at the current assessment was 17.0 (SD=1.40, Range=11.6–

19.1) and 64.1% were male. Mean age at onset of first MDD episode in the proband youth 

was 9.07 years (SD= 1.89 years). At the diagnostic assessment for the current study, 58.6 % 

had one MDD episode, 31.9% had 2 episodes, and 9.5% had 3 or more episodes; 179 

subjects were in full remission from their most recent MDD episode, while 31 (14.8%) were 
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currently in a depressive episode. Rates of comorbid psychiatric disorders of probands were 

as follows: 18.6 % dysthymic disorder, 39% any anxiety disorder, 37.6% any behavioral 

disorder (e.g., ADHD, oppositional defiant disorder). Overall, 71% had at least one 

comorbid psychiatric disorder. Seven probands were taking psychotropic medications at the 

time of the psychophysiological assessment.

The current study also includes 161 healthy control peers who never had any major 

psychiatric disorder. Controls were identified in medium size public elementary and 

secondary schools in the 3 cities in which most of the proband in the current study resided. 

Controls were recruited to approximate the sex and age distribution of probands. Mean age 

of the control sample at the current assessment was 16.1 (SD=1.40, Range=11.2–19.0) and 

64.1% were male (see Table 1).

Procedure Overview

This study was approved by the institutional review boards of the University of Pittsburgh 

and the Hungarian clinical research sites. Parents provided written informed consent, and 

youth provided either assent or consent (depending on their ages) before any data were 

gathered. Study visits included a psychiatric-psychosocial evaluation, the completion of self- 

and parent- rated questionnaires, and an experimental protocol with psychophysiological 

recordings. Following the questionnaires, the adolescent was familiarized with the 

experimental procedures and equipment. All procedures, schedules, rating scales, and 

instruments used in this study were first developed in English, were translated into 

Hungarian, and then back translated by bi-lingual child psychiatrists and clinical 

psychologists. Original and back-translated versions were compared, with any discrepancies 

resolved using an iterative procedure.

Diagnostic Assessment

As described previously (e.g., Kiss et al., 2007; Tamás et al., 2007), caseness for each 

proband was established during the original study via a stringent procedure that included 

standardized psychiatric diagnostic evaluations (involving the youth and a parent informant) 

by trained interviewers (child psychiatrists and psychologists), each of whom generated 

DSM-IV mood-disorder diagnoses, and a final best-estimate diagnosis (Maziade et al., 

1992). DSM-IV diagnoses were based on the ISCA-D, a semi-structured interview derived 

from the ISCA (Sherrill & Kovacs, 2000), which has been described in detail in previous 

publications (Baji et al., 2009; Kiss et al., 2007). We have previously reported acceptable 

inter-rater reliability coefficients on the ISCA-D symptom ratings (.63–.92 for current MDD 

from child interviews and .65-.87 from parent interviews; Kiss et al., 2007).

Physiological Protocol

This study was part of a larger physiological protocol that included a variety of stress 

reactivity and mood induction tasks. Here we report on a portion of the protocol that 

included a neutral film (baseline comparison for all tasks), two psychological stressors (sad 

film, unsolvable puzzle) and two physical stressors (handgrip, forehead cold pressor), 

described in detail below. In other work with this sample, we examined RSA patterns of 

resting RSA and RSA reactivity associated trait mood repair and mood repair success in the 
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lab following the sad film (Yaroslavsky et al., 2014). The order of the stressors (task order) 

was randomized into four possible orders with buffer periods in between. Participants were 

asked to avoid any allergy, cold/flue, or asthma medications the morning of the 

physiological protocol, and to refrain from drinking any caffeinated beverages, smoking or 

engaging in heavy exercise within 2 hours of beginning the physiological protocol.

Neutral Film—In order to provide an estimate of physiological functioning at rest 

(Jennings, Kamarck, Stewart, Eddy, & Johnson, 1992), participants viewed a 180s neutral 

film that depicted fish swimming in an aquarium.

Sad Film—We administered a 164s sad film clip from the movie “The Champ” that depicts 

a grief-stricken child observing the death of his boxer champion father after a boxing match 

(Rottenberg, Gross & Gotlib, 2005; Rottenberg et al., 2007).

Unsolvable Puzzle—Subjects completed a task where they tried to re-recreate a pattern 

on a computer screen. Specifically, subjects had to move pieces (horizontally or vertically) 

containing letters of the alphabet to duplicate a displayed pattern. A practice puzzle that was 

easily solvable was first given to ensure that subjects understood the task (15s). Next, two 

different unsolvable puzzles were given, which were programmed in such a way that the 

solution was impossible (i.e., mirroring Cole et al., 2007; Nolen-Hoeksema, Wolfson, 

Mumme & Guskin, 1995). Unsolvable puzzle tasks have been shown to induce negative 

affect (sadness, frustration) and parasympathetic withdrawal (e.g., Perry, Calkins, Nelson, 

Leerkes & Marcovitch, 2012). Subjects were given 360s to work on the unsolvable puzzles 

(180s for each unsolvable puzzle).

Handgrip—Subjects were asked to squeeze a hand dynamometer at 30% Maximum 

Voluntary Contraction for 120s. This task elicits a reduction in parasympathetic activity 

(RSA withdrawal), which may also occur in combination with increased sympathetic 

activity (e.g., Miller, 1994; Freyschuss, 1970; Martin et al., 1974, Nutter, Schlant & Hurst, 

1972, Pollak & Obrist, 1988) and has been used successfully in our age group (e.g., 

Matthews, Woodall, & Stoney, 1990; Kelsey, Patterson, Barnard, Alpert, 2000).

Forehead cold pressor—We administered a 60s forehead cold pressor as follows: While 

the participant was receiving the instructions for the forehead cold pressor, an ice bag was 

prepared by filling a plastic bag (25 × 18 cm) with 2 dl of room temperature tap water and 4 

ice cubes (approximately 3.5 cm in diameter each). The room air temperature was held at a 

consistent temperature across study sites, between 22–24°C. The ice bag sat on top of the 

cooler with the water and ice mixture for approximately 5 minutes before applying it to the 

participant’s forehead. The temperature of the ice bag at the time of application was 

approximately 8–10°C. This version of the forehead cold pressor been used successfully 

with children in previous studies (Matthews, Salomon, Kenyon, & Allen, 2002). This task 

evokes parasympathetically-mediated heart rate deceleration and is an effective means to 

stimulate the “dive reflex” (e.g., Heath & Downey, 1990; Reyners et al., 2000).
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Psychophysiological recording

Physiological data were recorded continuously throughout the protocol. The ECG signal was 

acquired according to published guidelines (Jennings et al., 1981) using Cleartrace LT 

disposable Ag/AgCL electrodes (Conmed Andover Medical, Haverhill, MA) placed in a 

modified Lead II configuration on the chest. We collected impedance cardiography using 

spot electrodes according to the guidelines outlined by Sherwood et al. (1990). All ECG and 

dZ/dt signals were sampled online at 1000Hz using a Mindware BioNex system with 

associated BioLab software. The dZ/dt signals were ensemble-averaged over the length of 

the experimental epochs defined for each task. The data were screened for artifact by visual 

inspection. Psychophysiological data were processed and analyzed as a single epoch for 

each task.

Measures

Body mass index (BMI)—Since BMI is known to impact SNS reactivity and CAB, we 

measured it to include as a covariate in analyses. Subjects’ height and weight were obtained 

at the beginning of the physiological assessment. BMI was calculated as weight in kg/

(height in m2). BMI raw scores were Z-transformed for analyses. See Table 1 for descriptive 

information.

Respiratory Sinus Arrhythmia (RSA) and LF/HF Ratio—RSA was calculated using 

MindWare HRV 3.0.21 software (MindWare Technologies, Ltd., Gahanna, OH). R-wave 

markers in the ECG signal were processed with the MAD/MED artifact detection algorithm 

(Berntson, Quigley, Jang & Boysen, 1990) implemented by the MindWare software. The 

signals were manually inspected and suspected artifacts were corrected. Our approach 

accords with current guidelines for frequency domain methods to determine heart rate 

variability and is well suited for short-term recordings (Berntson et al., 2008; Lombardi & 

Malliani, 1996). To estimate heart rate and RSA during baselines and tasks (using the entire 

task epoch for each task), a time series of interbeat intervals (IBIs: the time in milliseconds 

between sequential ECG R-spikes) was created from an interpolation algorithm. This IBI 

time series was (a) linearly-detrended, (b) mean-centered, and (c) tapered using a Hanning 

window. Spectral-power values were determined (in ms2/Hz) with fast Fourier 

transformations, and the power values in the 0.15–0.50 Hz spectral bandwidth were 

integrated (ms2). These spectral-power values were natural-log transformed prior to 

statistical analyses because of distributional violations. Our indicator of RSA was defined as 

the Natural-logged (ln) spectral-power value in the high frequency (HF) 0.15–0.50 Hz 

bandwidth, and LF was defined by the spectral power in the low frequency .04-.15Hz 

bandwidth (see Berntson et al., 1997). For purposes of comparison, LF/HF ratio was 

computed using the ratio of the raw LF and HF values.

Pre-Ejection Period (PEP)—The impedance-derived measure of PEP was derived using 

MindWare IMP 3.0.1 software (MindWare Technologies, Ltd., Gahanna, OH) based on the 

dZ/dt signal. Specifically, PEP was quantified as the time interval (in milliseconds) from the 

onset of the ECG Q wave to the B point (corresponding to the opening of the aortic value) of 

the dZ/dt wave (Sherwood et al., 1990). The max slope method was used to place the B 

point, which was adjusted manually based upon visual inspection.
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Cardiac Autonomic Balance (CAB) and Cardiac Autonomic Regulation (CAR)
—CAB and CAR were computed based on Berntson et al. (2008). Following Berntson’s 

procedure, we first normalized RSA and PEP by transforming these values to z-scores, due 

to the differences in scaling of these measures. Because greater sympathetic activity is 

associated with shortened (lower) PEP values, PEP was multiplied by −1 in order to invert 

the relationship to a positive association (where greater PEP values indicate greater 

sympathetic activity, just as greater RSA values indicate greater parasympathetic activity). 

Since CAB provides a measure of the balance of parasympathetic to sympathetic activation, 

CAB was computed using the formula: CAB = RSAz - ( − PEPz). Consequently, greater 

CAB values indicate greater parasympathetic relative to sympathetic activation, and lower 

CAB values indicate greater sympathetic relative to parasympathetic activation. Since CAR 

reflects the co-activation of the parasympathetic and sympathetic systems, CAR was 

computed as: CAR = RSAz + ( − PEPz). As a result, greater CAR values indicate greater 

co-activation.

Statistical Analyses—First, in preliminary analyses to determine whether there were any 

group baseline differences, we used one-way ANCOVAs for each physiological variable 

(RSA, PEP, CAB, CAR, and LF/HF) during the neutral film, with group and sex as between 

subjects factors and age and BMI as continuous covariates (see Table 1). The effects of age, 

sex, and BMI were statistically controlled in all analyses based on previous literature 

showing that PNS and SNS activity are significantly influenced by these individual 

characteristics (Berntson et al., 2008). Age and BMI were entered as continuous covariates, 

while sex was added as a between-subjects categorical factor in all models. Next, we 

conducted a series of repeated measures 2 (proband vs. control) x 4 (sad film, forehead cold 

pressor, handgrip, unsolvable puzzles). ANCOVAS were used for each task for each 

physiological dependent variable. First we examined RSA, LF/HF Ratio, and PEP as the 

dependent physiological variables. Then we examined CAB and CAR as the dependent 

variables (as these are computed using RSA and PEP). In these analyses, we also included 

means of the physiological variables during the baseline neutral film to adjust for baseline 

effects, as well as task order (4 possible task orders) to account for potential confounding by 

task order effects. Subjects lacking analyzable data for all tasks included in the analyses for 

a particular physiological variable (i.e., due to data acquisition issues or noisy data) were 

dropped from analyses as follows: RSA=4 missing, PEP=8 missing, LF/HF=8 missing). 

CAB and CAR analyses only included subjects with complete RSA and PEP data.

Results

Physiological variable means and standard deviations are reported in Table 2 by group and 

task. Preliminary analyses revealed no statistically differences between probands and 

controls for any of the physiological variables during the neutral film baseline: (PEP: 

F(1,394)=.96, p=.32; RSA: F(1,397)=1.89, p=.17; LF/HF Ratio: F(1,397)=2.67, p=.10; 

CAB: F(1,394)=.06, p=.81; CAR: F(1,394=1.29, p=.26), although there was a trend effect 

for LF/HF Ratio with probands having slightly higher values relative to controls.

Next, we used repeated measures ANCOVA (described in detail above) to examine whether 

group status predicted changes in RSA and PEP. For RSA (Figure 1), the linear group by 
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time interaction did not reach significance (F(1.385)=2.24, p=.135), indicating that the 

groups did not differ in their change in RSA across the tasks. Similarly, for LF/HF Ratio 

(Figure 2), the linear group by time interaction did not reach significance (F(1,385)=.029, 

p=.87). There were also no quadratic or cubic effects for RSA or LF/HF. By contrast, for 

PEP (Figure 3), analyses yield significant group by time linear (F(1,373)=7.51, p=.006) and 

cubic (F(1,373)=8.01, p=.005) effects. Follow-up LSD pairwise comparisons revealed that 

controls exhibited greater decreases in PEP relative to probands to the handgrip (mean 

difference=3.10, 95% CI: 1.30–4.9, p=.001), indicating that controls had greater increases in 

SNS in response to the handgrip task.

We then conducted repeated measures ANCOVA to examine whether group status predicted 

changes in CAB and CAR. The analysis for CAB (Figure 4), yielded a significant linear 

group by time interaction (F(1,373)=8.71, p=.003). Follow-up LSD pairwise comparisons 

revealed significant group differences for both the unsolvable puzzles (mean 

difference=0.217, 95% CI: 0.039–0.395, p=.017) and handgrip tasks (mean 

difference=0.428, 95% CI: 0.048–0.428, p=.014), such that probands exhibited increased 

CAB relative to controls. Specifically, for both unsolvable puzzle and handgrip tasks, 

controls showed task-appropriate decreases in CAB, while probands showed unexpected 

increases (greater PNS relative to SNS activation. For CAR (Figure 5), there was a 

marginally significant quadratic group by time interaction (F(1, 373)=3.50, p=.062). Follow-

up LSD pairwise comparisons revealed a significant group difference for the handgrip task 

only (mean difference=-.197, 95%CI: -.379 - -.014, p=.034), such that probands exhibited 

reduced CAR to the handgrip relative to controls. More specifically, controls showed an 

increase in CAR to the handgrip (reflection greater SNS and PNS coactivation), while 

probands showed a reduction in CAR (reflecting less SNS and PNS coactivation). There 

were no significant group differences on CAR for any of the other tasks.

Because some probands were currently in a depressive episode, we conducted follow-up 

analyses of CAB and CAR to examine the impact of current depression by modeling it as a 

dummy coded variable (0=no current depression, 1=current depression). Current depression 

status was significantly related to changes in CAR (F(1,372)=6.61, p=.011). Although the 

follow up pairwise comparisons did not reach significance, the pattern of results suggests 

that probands with current depression showed greater differences in their changes in CAR in 

comparison to controls relative to probands without current depression. Further, the 

quadratic group by time interaction lost significance with current depression status in the 

model (F=2.05, p=.15). In contrast, current depression status was not related to changes in 

CAB (F(1,372)=.168, p=.682), and the linear group by time interaction remained significant 

(F(1,372)=8.65, p=.003), as well as the follow-up pairwise comparisons for handgrip (p=.

024) and unsolvable puzzles (p=.003), with results showing the same pattern of findings. In 

additional follow-up ANCOVA comparing currently depressed and remitted probands on 

changes in CAB and CAR, there was also no significant group by time interaction for CAB 

(F(1,202)=.20, p=.66). However, current and remitted probands did significantly differ on 

CAR (F=5.04, p=.026), although follow-up pairwise comparisons did not reach significance, 

which may have been due to lack of power to detect effects in the smaller sample subset.
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Discussion

Depression has been related to abnormal autonomic nervous system functioning and deficits 

in self-regulation. An adaptive, flexible autonomic nervous system should allow for rapid 

modulation of physiological and emotional states, including deployment of attention and 

effortful processes that are critical for effective emotion regulation. It has been proposed that 

examination of the balance of PNS and SNS activity may lead to a more complete picture of 

regulatory functioning (Berntson et al., 1991, 2008). Cardiac Autonomic Balance (CAB; 

Berntson et al., 2008) has been proposed as a useful index to capture the relative balance of 

PNS to SNS activation that may reflect autonomic control better than individual measures of 

PNS and SNS. In this study, we examined changes in CAB in response to a series of 

stressful laboratory tasks in youths with a history of juvenile onset depression and control 

peers. In exploratory analyses, we also examined Cardiac Autonomic Regulation (CAR; 

Berntson et al., 2008), another autonomic index that reflects the mutual co-activation of the 

PNS and SNS.

Partially consistent with predictions, we found that probands with a history of juvenile onset 

depression exhibited abnormalities in CAB relative to controls, when facing selected 

stressors. Specifically, probands exhibited increases in CAB to the handgrip and unsolvable 

puzzle tasks relative to baseline (reflecting relative parasympathetic activation and 

sympathetic withdrawal). In contrast, controls showed the expected normative pattern of 

decreases in CAB (reflecting relative parasympathetic withdrawal and sympathetic 

activation) to these tasks. Our findings are generally consistent with Miller et al. (2009), 

who reported a similarly atypical response pattern to a laboratory stressor among asthmatic 

youth with depressive symptoms, while nondepressed asthmatic youth showed the 

normative response. However, since Miller et al. (2009) observed the effect with emotional 

films, it is unclear why we did not also observe this effect to our sad film. Notably, Miller et 

al., (2009) also focused on children with asthma, a condition that may lead to vagal 

overactivity. Importantly, we also found that our group differences between probands and 

controls were not explained by current depression, suggesting that CAB may reflect an 

underlying vulnerability rather than a mood state dependent phenomenon.

Group differences were task specific, as our proband and control groups responded similarly 

to the sad film and cold face tasks. One possible explanation of this finding is that the sad 

film and cold face were passive tasks, while the handgrip and unsolvable puzzles required 

sustained effort and focused attention. Indeed, other researchers have interpreted blunted 

physiological reactivity in depression in term of deficient “effort mobilization” during 

performance of cognitive tasks, which may reflect deficits in the self-regulation of behavior 

(e.g., Brinkmann & Gendolla, 2008; Brinkmann & Franzen, 2015). Friedman and Thayer 

(1998) have suggested links between parasympathetic nervous system activity and enhanced 

attention and effective emotion regulation. Successful attention deployment is an important 

component of effective emotion regulation that involves selecting meaningful information 

from the environment and linking it with appropriate emotional responses (Gross, 1998; 

Appelhans & Luecken, 2006). Indeed, both the neurovisceral integration model (Thayer & 

Lane, 2000) and Porges’ Polyvagal theory (Porges, 1992) suggest that strong PNS activity at 

rest provides increased flexibility to rapidly adjust parasympathetic influence on the 
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autonomic nervous system as called for by task demands (i.e., to effectively deploy 

attentional engagement or disengagement). Sustained attention has been associated with 

PNS withdrawal and SNS activation, as well as task performance in tests of attention and 

working memory (Backs & Seljos, 1994; Hansen, Johnsen, Sollers, Stenvik & Thayer, 2004; 

Duschek, Muckenthaler, Werner, & Reyes del Paso, 2009; Luft, Takase, & Darby, 2009; 

Hansen, Johnsen & Thayer 2003). Therefore, it is possible that tasks involving sustained 

effort or focused attention elicit larger normative reductions in CAB, and therefore more 

readily distinguish proband and control cases. Future research should examine the impact of 

effort and attention on changes in CAB among depressed and nondepressed individuals. 

However, given that Miller et al. (2009) reported group differences in CAB changes to 

emotional films as a function of depression, it also may be that our sad film stimulus was 

insufficiently potent. Importantly, although CAB reflects the balance of parasympathetic 

(RSA) and sympathetic (PEP) indices, there were no group differences in RSA changes to 

either task, and PEP abnormalities in probands were only exhibited in response to the 

handgrip task, but not the unsolvable puzzle. Finally, we also did not find any effects for the 

LF/HF ratio, another index of the balance of SNS and PNS activity. It should be noted that 

the LF/HF ratio and may reflect a blend of PNS and SNS activity, limiting its interpretability 

(Berntson et al., 1997, Eckberg, 1997 and Goldstein, Bentho, Park, & Sharabi 2011).

Given that CAB incorporates both parasympathetic and sympathetic activation, it provides a 

more comprehensive index of autonomic functioning that is more sensitive to autonomic 

changes that may reflect aspects of self regulation. Indeed, researchers have suggested that 

composite measures may be more reliable and sensitive metrics of autonomic functioning 

than individual indices (Kreibig, Gendolla, & Scherer, 2012). For example, Norman, 

Berntson & Cacioppo (2014) have observed that while averaged cardiovascular responses to 

orthostatic stress and standard psychological stressors tend to be very similar when analyzed 

at the group level, examination of SNS and PNS influences separately reveals a much more 

complex picture, particularly for psychological stressors.

These findings may also have relevance for physical health, as CAB has been associated 

with a number of poor health outcomes (Thayer et al., 2010; Berntson & Cacioppo, 2008; 

Licht et al., 2013). Our findings may be germane to the large literature documents 

relationships between depression and cardiovascular disease (Barth, Schumacher & 

Herrmann-Lingen, 2004; Nicholson, Kuper & Hemingway, 2006; Rugulies, 2002). Thus, 

elucidating the relationship between CAB and self regulation may also lead to a better 

understanding of the links between depression and poor health.

Given the lack of empirical literature on the relationship between CAR and depression, we 

did not have specific predictions about group performance. Notably, although CAR also 

incorporates sympathetic and parasympathetic indices, the only group difference we 

observed for this measure was for the handgrip task, which seemed to be driven by changes 

in PEP, rather than coactivation of both PNS and SNS measures. Further, the group 

difference in CAR for the handgrip task results did not withstand control for current 

depression status, suggesting the possibility that this variable may index mood state rather 

than trait vulnerability. The stronger results for CAB suggest that the balance of PNS and 

SNS activation is more relevant for self regulation and depression vulnerability than their 
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coactivation or coinhibition, which is consistent with prior literature (e.g., Nugent et al., 

2011; Udupa et al., 2007; Chang et al., 2012).

Strengths of our study include use of multiple psychological and physical stress tasks, a 

large well-characterized sample of high risk youth and healthy control peers, and a 

comprehensive assessment of autonomic functioning. At the same time, we were limited in 

our ability to assess aspects of effort mobilization or attention that may be relevant to group 

differences in CAB. In addition, while CAB and CAR may have interpretable advantages 

over prior indices, such as the LF/HF ratio, we are nevertheless limited by the assumption 

that CAB and CAR assume integrated control of chronotropic (i.e., related to heart rate) and 

inotropic (i.e., related to force of contraction of the heart) function and are assessing joint 

sympathetic and parasympathetic control (see Thayer & Uijtdehaag, 2001). In sum, the 

results from this study suggest that CAB may be a useful index that reflects the balance and 

flexibility of the autonomic nervous system to respond to aspects of the environment that 

may be sensitive to psychophysiological abnormalities reflecting depression vulnerability.
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Highlights

• We examine cardiac autonomic balance in youth with a history of depression.

• Changes in cardiac autonomic balance were measured using four laboratory 

tasks.

• Youth with a history of depression showed abnormalities in autonomic balance.

• Results may have implications for depression risk and self regulation.
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Figure 1. RSA changes from baseline across tasks by group
Note: Covariates appearing in the model are evaluated at the following values: Body Mass 

Z-Score = −.0790, Age Years = 16.6057, RSA Baseline = 6.6305.
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Figure 2. LF/HF Ratio changes from baseline across tasks by group
Note: Covariates appearing in the model are evaluated at the following values: Body Mass 

Z-Score = −.0790, Age Years = 16.6057, LF/HF Ratio Baseline = 1.3858.
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Figure 3. PEP changes from baseline across tasks by group
Note: Covariates appearing in the model are evaluated at the following values: Body Mass 

Z-Score = −.0781, Age Years = 16.5987, PEP Baseline = 124.8564.
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Figure 4. CAB changes from baseline across tasks by group
Note: Covariates appearing in the model are evaluated at the following values: Body Mass 

Z-Score = −.0781, Age Years = 16.5987, CAB Baseline = .0619.
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Figure 5. CAR changes from baseline across tasks by group
Note: Covariates appearing in the model are evaluated at the following values: Body Mass 

Z-Score = −.0781, Age Years = 16.5987, CAR Baseline = −.1337.
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Table 1

Characteristics of Sample

% Male Age (SD) BMI (SD)

Probands 64.1 17.0 (1.40) 22.12 (4.77)

Controls 64.1 16.1 (2.13) 21.57 (4.29)

Note: BMI=Body Mass Index in kg/m2, SD=Standard Deviation. Age and BMI are presented as means in each group.
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