


### MACRO AND TRACE ELEMENTS BIOAVAILABILITY IN VEGETABLE AND HERBAL SPECIES FROM POLLUTED AND CONTROL AREAS

#### **Biljana Balabanova<sup>1</sup>**, Trajče Stafilov<sup>2</sup>, Liping Fan<sup>3</sup>, Meicong Wang<sup>4</sup>, Yanqiu Liang<sup>4</sup>, Minxiu Yan<sup>4</sup>

<sup>1</sup>Faculty of Agriculture, Goce Delčev University, Krste Misirkov No. 10-A, 2000 Stip, Republic of Macedonia

<sup>2</sup>Institute of Chemistry, Faculty of Science, Ss. Cyril and Methodius University, POB 162, 1000 Skopje, Macedonia

<sup>3</sup>College of Information Engineering, Shenyang University of Chemical Technology, Shenyang University of Chemical Technology, No.11 street, TieXi economic and technological development zone, Shenyang City, Liaoning Province, China

<sup>4</sup>College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Economic and technological development zone No. 11 street, Shenyang city, Liaoning Province, P. R.

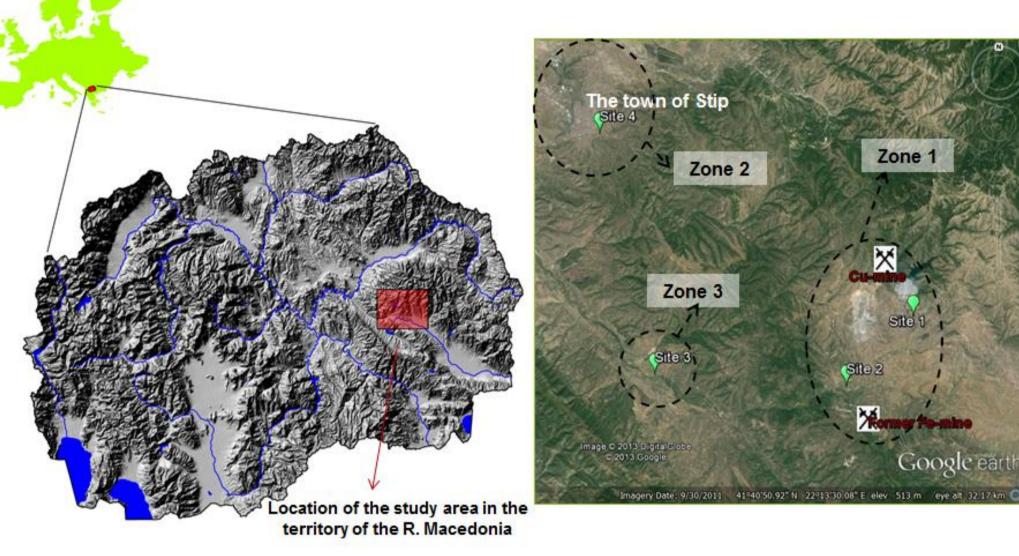
China

25

ξġ

bu

# INTRODUCTION


Mining and processing metal ore can be a significant source of HEAVY METAL CONTAMINATION of the environment. The environmental concern in mining areas is primarily related to physical disturbance of the surrounding landscape, spilled mine tailings, emitted dust and acid mine drainage transported into rivers. Excessive accumulation of heavy metals in agricultural soils around mining areas, resulting in elevated heavy metal uptake by plant food, is of great concern because of **POTENTIAL HEALTH RISK** to the local population.

The consumption of plants produced in contaminated areas, as well as ingestion or inhalation of contaminated particles is two principal factors contributing to HUMAN EXPOSURE TO METALS. Cultivation of crops for human or livestock consumption on contaminated soil can potentially lead to the uptake and accumulation of trace metals in the edible plant parts with a resulting risk to human health. Increasing evidence shows that heavy metal pollution of mined areas caused health damage to the local inhabitants.

# Methodology

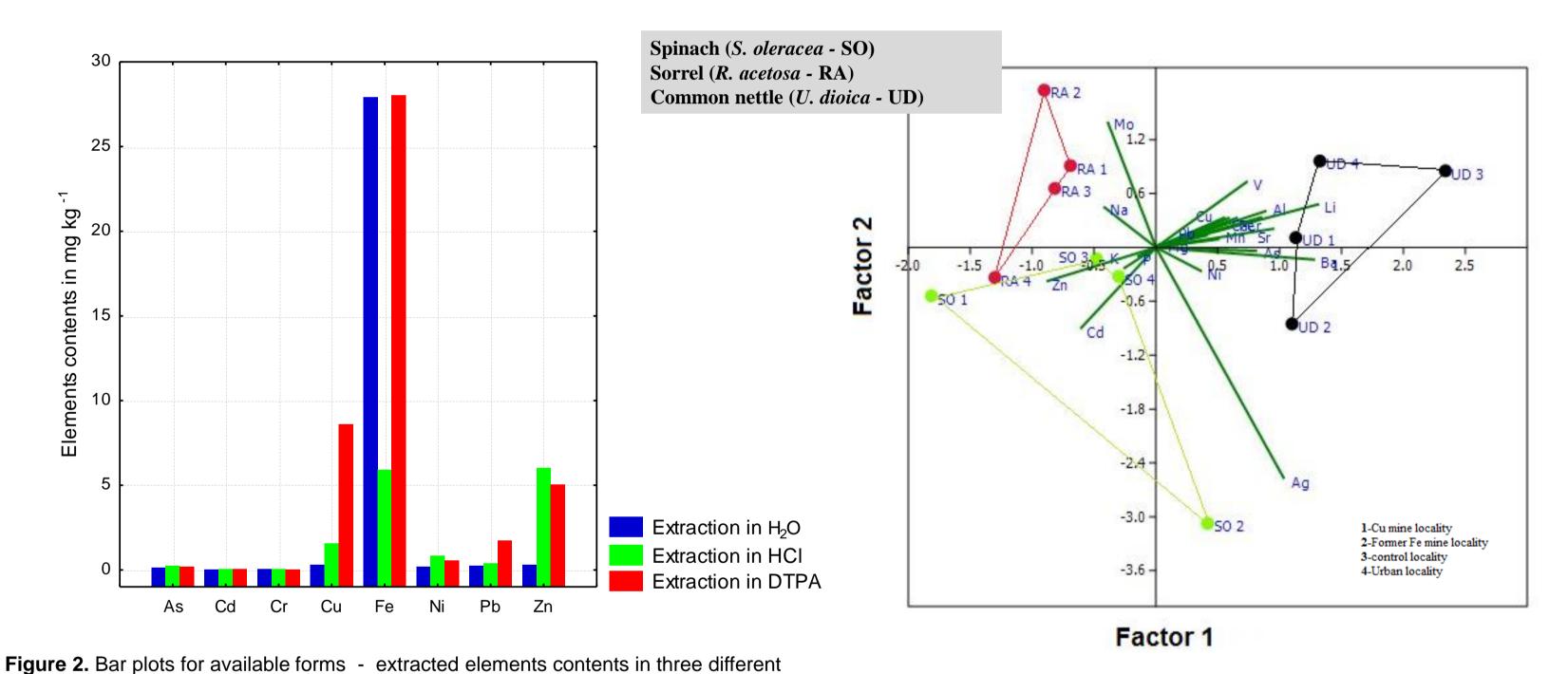
**SOIL PRETREATMENT -** Three methods were applied for the study of the plant-availability of the elements: (1) Extraction with deionized  $H_2O$ , that provides information on the actual availability of eleme into from the soil solution;

(2) Extraction with 0.1 M HCI for 1 h and filtered with an acid-resistant filter, displacing potentially available

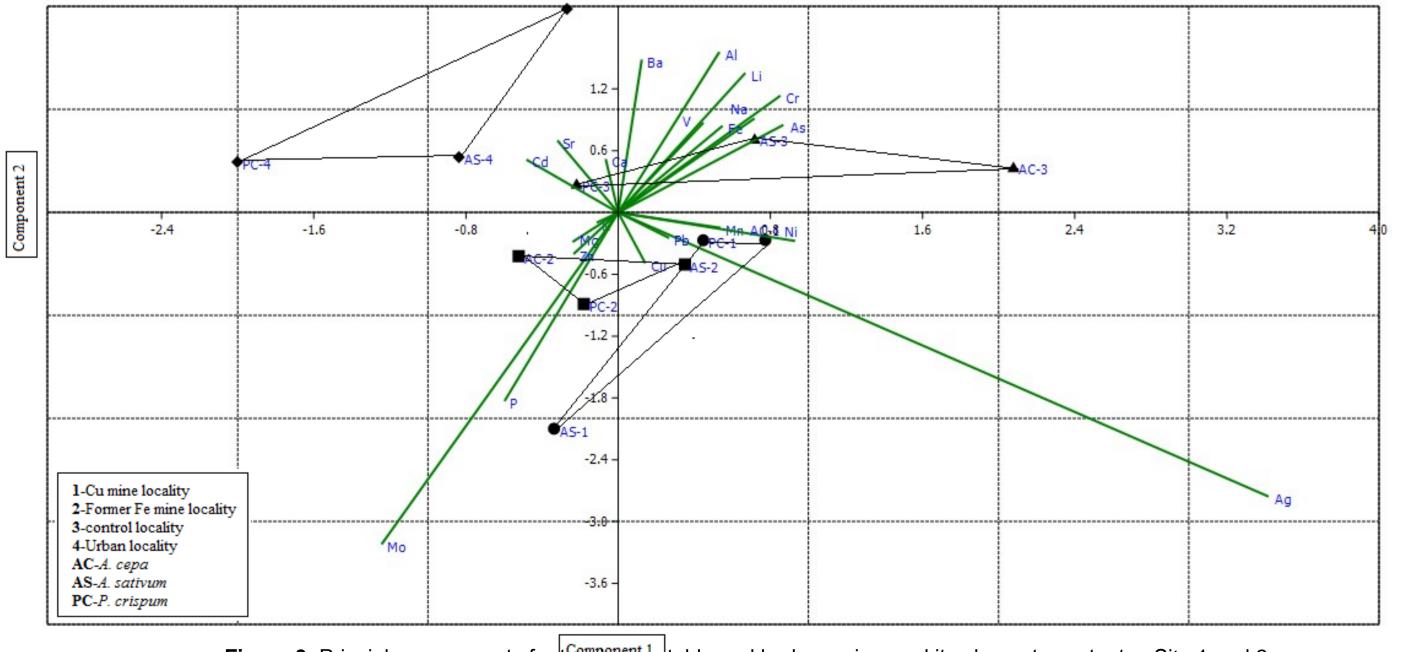







forms that are not easily extracted. Total digestion was applied for determining of total elements contents. (3) Extraction of the soluble species of trace elements in a mixed buffered solution (pH = 7.3) of triethanolamine (0.1 mol  $I^{-1}$  TEA) with CaCl<sub>2</sub> (0.01 mol  $L^{-1}$ ) and diethylenetriaminepentaacetic acid (DTPA, 0.005 mol L<sup>-1</sup>), that is often recommended for the extraction of toxic or biogenic metals. DTPA extracting solution was preparing in this way: 0.005 M DTPA (diethylenetriaminepentaacetic acid), 0.01 M CaCl<sub>2</sub> and 0.1 M TEA (triethanolamine) was adjusted to pH to 7.30±0.05 with 1:1 HCI.

**PLANTS PRETREATMENT** – Plants samples were totally digested with application of closed wet digestion method using HNO<sub>3</sub> and  $H_2O_2$  for total tissue digestion.


RESULTS

**Table 1.** Basic statistics for elements contents in soil (contents are given in mg/kg) [1]

|    |                  | 0.1 mol/L HCI   | DTPA–CaCl <sub>2</sub> –<br>TEA | TOTAL CONTENTS      |                     |                               |                        |
|----|------------------|-----------------|---------------------------------|---------------------|---------------------|-------------------------------|------------------------|
|    | H <sub>2</sub> O |                 |                                 | Cu mine<br>(site 1) | Fe-mine<br>(site 2) | Reference<br>area<br>(site 3) | Urban area<br>(site 4) |
| Ag | <0.01            | 0.02±0.01       | <0.01                           | 0.47                | 0.76                | 0.46                          | 1.09                   |
| ΑΙ | 23.9±16.5        | 62.9±46.2       | $0.78\pm\!\!0.88$               | 58992               | 61061               | 59467                         | 59643                  |
| As | <0.25            | <0.25           | <0.25                           | 26.9                | 23.4                | 18.9                          | 48.7                   |
| Ва | 0.18±0.05        | 10.9±5.81       | 0.71±0.40                       | 311                 | 403                 | 343                           | 437                    |
| Ca | 104±47.7         | 3421±430        | 1222±197                        | 22677               | 20447               | 21954                         | 35394                  |
| Cd | 0.01±0.001       | 0.05±0.03       | 0.05±0.03                       | 1.06                | 0.96                | 0.86                          | 0.59                   |
| Cr | 0.04±0.02        | 0.06±0.03       | 0.01±0.003                      | 63.6                | 41.9                | 55.8                          | 54.2                   |
| Cu | 0.30±0.06        | 1.57±1.97       | 8.60±6.65                       | 100                 | 63.7                | 34.3                          | 79.0                   |
| Fe | 27.9±18.1        | 4.43±4.84       | 28.0±33.4                       | 43025               | 32629               | 32646                         | 31242                  |
| Κ  | 56.2±15.6        | 155±47.2        | 81.6±26.6                       | 23716               | 19805               | 16173                         | 20290                  |
| Li | 0.01±0.004       | 0.04±0.006      | 0.006±0.005                     | 7.79                | 5.70                | 7.74                          | 9.81                   |
| Mg | 21.7±6.15        | <b>305±79.6</b> | 103±28.7                        | 10676               | 6583                | 8956                          | 8629                   |
| Mn | 0.47±0.31        | 44.4±28.5       | 10.6±2.82                       | 521                 | 577                 | 575                           | 567                    |
| Мо | 0.04±0.04        | 0.04±0.02       | 0.03±0.03                       | 4.0                 | 3.2                 | 2.8                           | 2.5                    |
| Na | 6.91±4.67        | 9.73±5.94       | 6.06±5.35                       | 8582                | 9248                | 8506                          | 7956                   |
| Ni | 0.18±0.05        | 0.84±0.54       | 0.55±0.22                       | 19.6                | 39.0                | 23.9                          | 34.0                   |
| Ρ  | 16.6±3.75        | 177±24.8        | 5.19±1.41                       | 1385                | 931                 | 995                           | 2184                   |
| Pb | 0.25±0.07        | 0.38±0.26       | 1.71±1.15                       | 24.4                | 44.8                | 36.8                          | 83.9                   |
| V  | 0.08±0.03        | 0.10±0.08       | 0.06±0.04                       | 93.8                | 72.2                | 82.7                          | 67.9                   |
| Zn | 0.28±0.11        | 6.02±5.34       | 5.02±5.10                       | 78.8                | 72.9                | 73.2                          | 181                    |



**Figure 1.** Principle components for type's vegetable species and its elements contents; Site 1 and 2 – polluted area; Site 4 – urban area; Site 3 – control area



 $(H_2O, 0.1 \text{ M HCI and DTPA-CaCl}_2-TEA)$ 

extracts solutions [2]

Fe Ni

Pb

Cu

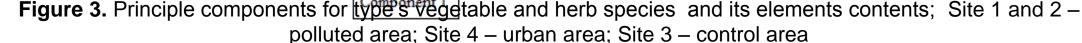
Cr

Cd

As

**Table 2.** Basic statistics for elements contents in shoots and roots of plant species
 (contents are given in mg/kg of dried matter)

|    | Rumex acetosa |       |               |       | Spir     | nacia |
|----|---------------|-------|---------------|-------|----------|-------|
|    |               |       | Urtica dioica |       | oleracea |       |
|    | Shoot         | Root  | Shoot         | Root  | Shoot    | Root  |
| Ag | 0.15          | 0.037 | 0.091         | 0.058 | 0.08     | 0.04  |
| ΑΙ | 55.8          | 328   | 223           | 494   | 172      | 308   |
| As | <0.25         | 0.76  | <0.25         | 0.89  | 0.44     | <0.25 |
| Ва | 3.49          | 10.7  | 13.2          | 10.6  | 4.40     | 9.90  |
| Ca | 3777          | 5526  | 21763         | 4773  | 4049     | 2819  |
| Cd | 0.039         | 0.053 | 0.01          | 0.08  | 0.13     | 0.17  |
| Cr | 0.22          | 0.66  | 0.40          | 1.01  | 0.49     | 0.83  |
| Cu | 8.07          | 12.9  | 15.3          | 10.0  | 7.74     | 6.45  |
| Fe | 79.2          | 238   | 154           | 459   | 133      | 272   |
| κ  | 21751         | 8493  | 14800         | 10181 | 30809    | 21854 |
| Li | 0.081         | 0.18  | 0.17          | 0.31  | 0.13     | 0.20  |
| Mg | 1521          | 1192  | 1237          | 809   | 1396     | 1237  |
| Mn | 17.7          | 11.5  | 23.8          | 31.4  | 23.3     | 19.9  |
| Мо | 0.76          | 0.57  | 1.26          | 0.09  | 0.51     | 0.15  |
| Na | 77.8          | 214   | 53.7          | 125   | 82.1     | 314   |
| Ni | 0.77          | 1.55  | 1.51          | 3.32  | 1.45     | 1.84  |
| Ρ  | 1927          | 1418  | 2506          | 2225  | 2810     | 3198  |
| Pb | 0.70          | 0.65  | 0.65          | 1.24  | 0.68     | 0.76  |
| Sr | 4.16          | 30.9  | 51.3          | 25.0  | 14.2     | 21.3  |
| V  | 0.091         | 2.91  | 0.32          | 1.93  | 0.32     | 0.95  |


#### CONCLUSIONS

Even in lower contents in partially contaminated soil As, Cd, Cu, Ni and Pb are very extractible and available from cultivated plants.

Present investigation suggested that common nettle (U. dioica), spinach (S. oleracea) and sorrel (R. acetosa) are mostly efficient for bio-accumulation of Cd and Pb in potentially polluted areas.

None of the species was specified as a hyper accumulator; nevertheless all three species show potential for phytoextraction and phytostabilization of Cd, Cu, Pb and Zn.

In addition, further studies are required to determine the growth performance, biomass production and metal accumulation of these species in metal contaminated soils for their better management, conservation and assurance of better food quality when growing on urban, industrial and agricultural land near







[1] B. Balabanova, T. Stafilov, K. Bačeva, (2015) Bioavailability and bioaccumulation characterization of essential and heavy metals contents in R. acetosa, S. olearacea, and U. diuoica form copper polluted and referent areas. Journal of Environmental Health Science and Engineering 13(2):1-13. [2] B. Balabanova, T. Stafilov, K. Bačeva (2015) Application of principal component analysis in the assessment of essential and toxic metals in vegetable and soil from polluted and referent areas. Bulgarian Journal of Agriculture Science, 21(3):536-544.

