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Abstract

The aim of the present work is to shed light on the extensive debate about
expectations in financial market. We analyze the behavior of subjects in an exper-
imental environment in which it is possible to directly observe expectations since
the sole task of each player is to predict the future price of an asset. We investi-
gate the mechanism of expectation formation in two different contexts: in the first,
the fundamental value is constant; in the second, the fundamental price increases
over repetitions. First of all we observe if, according to the main results shown in
Palestrini and Gallegati (2015), there is a convergence to the rational equilibrium
even if agents have adaptive expectations. Moreover, we concentrate on the accu-
racy of aggregate forecasts compared with the individual forecasts. We find that
there is collective rationality instead of individual rationality. In the context of
increasing fundamental value, contrary to the theoretical predictions, players are
able to capture the trend but they underestimate that value. This implies that if
all agents make their forecasts according to an adaptive scheme, there is no full
convergence to the rational expectations equilibrium.
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1. Introduction

The recent financial crisis highlighted the importance of agents’ behaviour in
the financial market and, in turn, the impact of individual financial choices in the
real economy. Agents make their everyday choices based on their expectations. As
suggested in Assenza et al. (2014), we should think of an economy as an expectation
feedback mechanism in which expectations influence individual decisions and these
choices define the realisation of the main macro or financial variables.
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The present work analyses individual behaviour in an experimental asset mar-
ket in which the sole task of each player is to predict the future price of an asset,
based on two sources of information: i) the past realization of the asset price in
the market, which is a function of the average individual expectations, and ii) the
current information about the mean dividend and the interest rate. We run two
different treatments in which the only difference is the fundamental price. Each
treatment involves six groups of six players. In the Treatment 1 the fundamental
price is constant and equal to 60, while in Treatment 2 the fundamental price
increases over repetitions. The aim of this work is to understand how agents form
their expectations about future prices and we seek to understand if, even in ab-
sence of communication, aggregate expectations are unbiased. The key difference
with respect to the existing literature is that we analyse expectation formation
in a context characterised by price instability. The only contribution in which an
increasing fundamental is presented is the work by Noussair and Powell (2010) but
their focus is bubble formation in an asset market with trade. We take into account
a dividend with a drift in order to analyse the mechanism of the error correction
bias. This theoretical approach is based on the evidence that Rational Expecta-
tions are mean-zero expectation schemes. On the contrary, even though adaptive
expectation schemes often seem to be an accurate representation of actual agent
behaviours in an empirical analysis (see Chow (2011)), this scheme does not seem
to satisfy the unconditional mean-zero requirements, i.e., the necessary condition
for rationality. The idea behind the error correction is to include a term in the
adaptive expectation scheme to fulfil the requirement of the zero unconditional
mean. We discuss this approach in more detail in Section 2.

We use the Learning-to-Forecast Experiment to analyse not only the forecast
ability of players but also the level of coordination in the group. Indeed, each
player must predict the price that, in turn, depends on the expectations of other
players. This means that players should forecast an endogenous price and, to do
so, they must be able to infer the predictions of other participants.

The Rational Expectation Hypothesis (REH), firstly introduced by Muth (1961)
and then analysed in detail by Lucas Jr and Prescott (1971), is the bearing-wall
of the mainstream approach. According to this hypothesis, agents make no sys-
tematic errors in forecasting, taking into account the entire set of available infor-
mation2. Muth takes into account the early work of Galton (1907) in which it is

2In Muth the analysis is based on 3 assumptions: 1) Information is scarce, and the economic
system generally does not waste it; 2) The way expectations are formed depends specifically on
the structure of the relevant system describing the economy; 3) A ”public prediction”, in the
sense of Grunberg and Modigliani (1954), will have no substantial effect on the operation of the
economic system (unless it is based on inside information). Muth at pg. 317 stresses, in a sense,
that the rational expectation hypothesis is made only to represent the heterogeneous behaviours
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pointed out that individual expectations are wrong, but that aggregating individ-
ual predictions can render unbiased expectations. Recent studies, based on both
simulation and experimental evidence, show that this approach is often unrealistic,
that is agents do not have sufficient capabilities to make rational predictions (see,
for example, (Sargent, 1993), Evans and Honkapohja (2001) and Branch (2004)).
An alternative hypothesis is that agents form their expectations based on an adap-
tive rule, namely that the forecast is a function of both past expectations and past
realisation.

The mainstream approach does not deem the adaptive expectation scheme to
be appropriate to forecast models since it may not satisfy the necessary condition
for rationality. This condition is based on the assumption that agents make non-
systematic prediction errors and, as a result, the errors’ unconditional mean is
equal to zero. The increasing experimental evidence (Hommes (2011), Anufriev
and Hommes (2012)) shows that individuals make forecasting errors in predicting
the future value of an assets or the price of a commodity. Moreover, it has been
shown that a combination of different forms of adaptive expectation rules produces
a process that fits very well with the experimental data.

In this work we introduce the possibility of revising the classical adaptive ex-
pectation scheme in order to achieve the condition of zero unconditional mean. We
propose a theoretical model to prove that, if we introduce bias correction parame-
ters in the baseline scheme, then the unconditional mean is equal to zero. Indeed,
it can be proved that this correction does not alter the stability of the system, but
rather increases the volatility of variables. This mechanism introduce a a trade- off
between volatility and bias that can be analyzed in detail in the model validation
step of an economic analysis.

The paper is organised as follows: in Section 2 we introduce the error correction
approach, in Section 3 we describe the experiment and the main results. Expec-
tations are analysed in Section 4, while in Section 5 we check the error correction
bias in our setting. Finally, a conclusion is provided in Section 6 whilst Appendix
A describes the experimental instructions.

2. Error correction mechanism

In this Section we show how the adaptive expectation scheme, under certain
assumptions, should satisfy the rationality condition, i.e. the zero unconditional
mean. Usually people show behaviour consistent with the Adaptive expectation
(Nerlove (1958)). This means that agents adjust expectations in t + 1 comparing

of entrepreneurs: ”It does not assert that the scratch work of the entrepreneurs resembles the
system of equations in any way; nor does it state that predictions of entrepreneurs are perfect
or that their expectations are all the same”.
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expectations in t with the price information set available in period t. In the classic
Nerlove’s work the price information set is the realized price at time t whereas,
in our experiment, we follow the Hommes et al. (2005) line of research in which
agent’s information set is the realized price at time t−1. In the rest of this Section,
for the sake of explanation, we follow the Nerlove’s convention. In this case, agents
look at the past realisation of the price (pt) and try to correct their forecasting
errors (pet−1) in each period. The expected price can be written as

pet+1 = pet + λ(pt − pet ) 0 < λ ≤ 1 (1)

or it can be rewritten as a linear combination of past realisation and past
prediction:

pet+1 = λpt + (1− λ)pet (2)

The formulation in Equation 1 suggests that agents make systematic forecasting
error (pt − pet−1) and, moreover, that they include this error in their own future
predictions. This implies that individuals should underestimate (overestimate)
the realized price because of this correction mechanism. Taking into account this
definition, it is possible to assert that adaptive expectation schemes may generate
a bias3. Indeed, adaptive expectation are backward looking because they only take
into account past information to predict future values. For example, if agents use
as an expectation of variable xt the mean of the past 3 periods is:

xet+1 =
1

3
(xt + xt−1 + xt−2)

and the variable has a drift, say ∆xt+1 = d, then the error/bias Ξt+1 = xet+1−xt+1

is

Ξt+1 =
1

3
((xt−2 + 2d) + (xt−2 + d) + xt−2)− (xt−2 + 3d)

Ξt+1 = (xt−2 + d)− (xt−2 + 3d) = −2d

By analysing this simple example, two interesting aspects4 that will be tested
emerge:

1. The bias is negative (expectation is below if variable trends up and above if
trends down)

3This is the reason for introducing rational expectations in macroeconomic models within the
determinate parametric space (Blanchard and Kahn (1980)).

4Notice that, even if we consider a different timing, meaning xet+1 = 1
3 (xt−1 + xt−2 + xt−3)

the main results remain unchanged. In fact, we obtain that Ξt+1 = −3d.
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2. The bias has an order of magnitude comparable to the drift.

On the contrary, as discussed in the introduction, Galton’s discovery suggests
that agents, collectively and in simple situations, are able to estimate unconditional
means.

This condition of a mean-zero error may be a problem in adaptive expectations
schemes, as the above simple example suggests, since it could produce agent’s
expectation that over or underestimates the future value of economic variables;
i.e., with a non-zero bias.

Consider the time process of the error

Ξt = xet − xt = λxt−1 + (1− λ)xet−1 − xt (3)

that, adding and subtracting xt−1 from the RHS and rearranging terms, may
be written as

Ξt = xet − xt = (1− λ)[xet−1 − xt−1]−∆xt (4)

with the following recursive AR(1) structure

Ξt = (1− λ)Ξt−1 −∆xt. (5)

Now it is easy to see that even in situations in which the xt variable follows a
very simple deterministic process, ∆xt = d (as is the case in Treatment 2 described
in Section 3), the error process

Ξt = (1− λ)Ξt−1 − d (6)

does not go to zero, but converges to Ξ = −d/λ.
Furthermore, many econometric studies show that even in situations in which

the adaptive expectation process seems to be a reasonable representation of agents’
behaviour (Chow (2011)), the parameter λ may be time variant.

What do agents have to do to correct for this bias? Following the analysis
in Palestrini and Gallegati (2015), consider the following generalisation of the
adaptive scheme

xet+1 = λtxt + (1− λt)xet + ζt. (7)

Equation (7) generalizes the standard adaptive scheme in two respects: i) It has
a time varying learning parameter λt following an i.i.d. random process (between
0 and 1) with mean 1− λ, and ii) there is a bias correction parameter, ζ.

As before, we can compute the error process as:

Ξt+1 = xet+1 − xt+1 = λtxt + (1− λt)xet + ζt − xt+1 (8)
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and add and subtract xt to the RHS,

Ξt+1 = −(1− λt)xt + (1− λt)xet + ζt −∆xt+1 (9)

that simplifies to5

Ξt+1 = (1− λt)Ξt + ζt −∆xt+1. (10)

Equation (10) is a stochastic random difference process that has a stationary
solution provided that the stability conditions are met6.

If an unconditional expectation exists we can take the unconditional expecta-
tion operator on both sides and equate to zero by searching for a solution with
E[Ξt+1] = 0, that is

(1− λ)0 + ζt − E[∆xt+1] = 0. (11)

Solving for ζt we get
ζt = E[∆xt+1], (12)

showing that, to perfectly correct for the bias, agents individually (time series
dimension) or collectively (cross series dimension) must estimate the drift of the
economic variable for which there are expectations.

Summing up, if agents are able to estimate the trend of the variable, they
should take into account this information to form their expectations. Including an
unbiased estimated value of the drift in the expectation process, i.e. the term ζt,
leads to unbiased forecasts even in the case of adaptive expectations.

3. Learning to Forecast in a financial market

3.1. Description of the Experiment

We run a Learning to Forecast experiment based on Asset Pricing Model
(Campbell et al. (1997)) to understand the mechanism of expectation formation in
a financial market. In this model there is a single security with a dividend dt and a
price pt, and a risk-free asset that pays a constant rate R = 1 + r units per period.
The dividends are usually7 an i.i.d. variable with mean d̄, so the fundamental price
is represented by pf = d̄

r
.

Following the approach proposed in Hommes et al. (2005), we include stabiliz-
ing fundamentalist robots. The sole task of players is to predict the future price
of the asset knowing the mean dividend d̄ and the interest rate r. In particular, in

5In the case in which λt = 1 (static expectation), the error process is, obviously, Ξt+1 =
ζt −∆xt+1.

6See Babillot et al. (1997), and Bhattacharya and Majumdar (2007) p. 304.
7In our experiment the dividend is an i.i.d. process only in the first treatment.
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the first and second periods, participants have no information about the market
price and about their profit. In these two periods we impose an upper bound of
100 to their predictions. From the third repetition, participants are able to see
the realised price until period t− 1 and their own forecast and they must predict
the future price of the option pet+1. Moreover, the upper bound we set up at the
beginning was taken out so that subjects could insert any value. Figure 1 depicts
the experimental computerized screen. We consider a small group of investors, i.e.
6 people, who make predictions over 51 periods.

The existing literature devoted to the analysis of expectations in the lab should
be divided into three main categories. The first, proposed by Smith et al. (1988),
consists of a double auction market in which players buy and sell assets. From
this kind of experiment, proposed also in Noussair et al. (2001), Dufwenberg et al.
(2005) and Kirchler (2009), two main results emerges: 1) players usually follow an
adaptive rule to form their forecasts; 2)a lot of bubbles emerge if players have no
experience in this setting. The main disadvantage of this method is that expec-
tations are inferred and not directly observable. The pioneer work of the second
category is that by Dwyer et al. (1993). In this experiment players predict the fu-
ture price of an exogenous series, i.e. the time series of the asset price is generated
ex ante and the individual predictions do not influence the realization of the series.
Bloomfield and Hales (2002) and Dwyer et al. (1993) propose an experiment in
which the series is a random walk, while Hey (1994) proposed an autoregressive
process. Results of this kind of analysis are mixed, meaning that some players
behave rationally while other use an adaptive expectation scheme. The limitation
of this setting is related to the independence of individual expectations and the
realisation of the future price. Finally, the third category includes the so-called
Learning to Forecast experiments proposed by Marimon et al. (1993) in which
the task is to forecast the future price of an endogenous series. This means that
the realized price is a function of the individual forecasts, i.e. the market is an
expectations feedback mechanism. The literature provides numerous contribu-
tions in this field, using both negative (Hommes et al. (2007), Bao et al. (2012))
and positive (Hommes et al. (2005), Bottazzi et al. (2011), Anufriev and Hommes
(2012)) feedback system. Moreover, a more recent strand of literature propose the
so-called ”Learning to Optimize” (Bao et al. (2013), Bao et al. (2014)) in which
subjects make the best choice in terms of productions (for a comparison of these
methods see Duffy (2010)). Evidence from these experiments suggests that, in
general, there is strong coordination in the group and that there is convergence
to the rational equilibrium only if we consider negative feedback. See Hommes
(2014) for an exhaustive review of the main results of the Learning to Forecast
experiments.

In our experiment we consider two different treatments: i) Treatment 1 in
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Figure 1: The screen-shot of the experiment in Treatment 1

8



which the mean dividend, and so the fundamental price, remains constant over
repetition; ii) Treatment 2 in which the mean dividend follows an increasing linear
trend. In both treatments we assume that agents are myopics so that they know
the only the dividend of the current period.

Participants in the experiment are divided into groups of six and receive only
qualitative information. Players know that they are advisor of a pension fund
and these funds take into account their predictions to decide how best to invest
their money between a risk-free asset and a risky option. They do not know the
equation that determines the price but do know that the price is provided by the
equilibrium between supply and demand and they are informed about the mean
dividend and the interest rate. Taking into account this information, agents can
compute, and hence predict, the fundamental price. Moreover, they also know
that the higher their predictions, the higher the realised price will be.

According to Brock and Hommes (1998), the equation for determining the mar-
ket price corresponds to the market clearing equilibrium. The theoretical model
suggests that each agent, in each period, chooses how much to invest in the risky
asset according to a maximization of his/her own future expected wealth. This
means that the demand for the risky asset derives from utility maximization. By
equating supply and demand, we obtain the equilibrium price given by:

pt =
1

1 + r

[
p̄et+1 + d̄t + εt

]
(13)

where r is the interest rate, p̄et+1 is the average predicted price, d̄t is the mean
dividend and εt is a small normal shock.

Following the same approach in Hommes et al. (2005), we consider a fraction
of computerized fundamentalist computer traders nt in our setting. The equation
used for the determination of price is the following :

pt =
1

1 + r

[
(1− nt)p̄

e
t+1 + ntp

f
t + d̄t + εt

]
(14)

where nt is the share of fundamentalist robots in each period. This means that
the price is a weighted average between the predicted price by each group and the
fundamental price, plus a small shock.

The share of robot traders8 is a function of the absolute distance between the
realised market price and the fundamental price. According to Hommes et al.

8According to Assenza et al. (2014), robot fundamentalists are useful to avoid there being an
explosive price increase, as the large bubbles shown in Hommes et al. (2008). Moreover, since
this kind of traders asserts that the deviation from the fundamental price is only temporary, the
share of fundamentalists increases with the distance between the realised price and the rational
equilibrium.
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(2005), the share of these traders is defined by the following equation:

nt = 1− exp
(
− 1

200

∣∣pt−1 − pf
∣∣) (15)

According to Equation (15), as the price diverges from the fundamental, the
number of fundamentalists increases. This mechanism is useful to avoid the cre-
ation of bubbles in the market9.

Following the approach of Hommes (2013), the payoff function depends on the
distance between the individual prediction and the realised market price, as in
equation (16): 

πit =
(

1− (pt−peit)
2

7

)
if |pt − peit| < 7

πit = 0 otherwise

(16)

The experiment involves in total 72 participants (37 female), half of which plays
in Treatment 1. In both treatments we randomly allocate players in groups of 6.
We consider r = 5% and the small shock is such that ε ∼ N(0, 0.25). In Treatment
1, the mean dividend is constant d̄ hence the fundamental price is equal to pf = 60.
In Treatment 2, the mean dividend increases step-by-step by 0.02. This means
that d̄t ∈ [3, 4] and so the fundamental price ranges from 60 to 80. As we said, we
assumed that agents are myopics and this implies that they are not aware of the
whole trend from the beginning of the game. On the contrary, they are able to see
only the single period increase equal to 0.02. The experiment was conducted in
October 2014 in the lab of the Faculty of Economics of the Polytechnic University
of Marche using the software z-tree (Fischbacher (2007)). We randomly drew 72
Economics students from a population of 390 registered participants sending an
invitation e-mail. The students were invited to show-up in the Laboratory of the
Faculty of Economics to participate in the experiment. Each session lasted for
about 90 minutes and participants were paid in cash at the end of each session.
During the game, prices were expressed in ECU (Experimental Currency Unit).
At the beginning of each session, the organizers read aloud the general instructions
and the players read the specific instructions on their respective screen. The final
payment depended on the final gains earned in the game. The mean earning per
player was equal to 15 Euro (the exchange rate being 1 Euro = 4 ECU), including

9Hommes et al. (2005) ran the same experiment with and without the robot traders and
they demonstrated that there is no significant difference between these settings. Moreover, the
manner in which bubbles emerge in the financial markets emerge is an interesting topic that is,
unfortunately, out of the scope of this analysis.
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Table 1: Test of comparison between the realized price and the fundamental value

Treatment 1 Treatment 2

Group t p-value z p-value Groups t p-value z p-value

1 -14.89 < 0.01 -13.411 < 0.01 1 -41.45 < 0.01 -15.079 < 0.01
2 -28.23 < 0.01 -15.162 < 0.01 2 -17.80 < 0.01 -13.427 < 0.01
3 14.25 < 0.01 11.000 < 0.01 3 -66.20 < 0.01 -15.162 < 0.01
4 7.73 < 0.01 -6.098 < 0.01 4 -56.78 < 0.01 -15.162 < 0.01
5 27.70 < 0.01 14.225 < 0.01 5 -43.85 < 0.01 -15.162 < 0.01
6 42.19 < 0.01 14.880 < 0.01 6 -73.71 < 0.01 -15.162 < 0.01

the show-up fee10. A summary of the instructions and and the average payment
per group is provided in the Appendix A.

3.2. Summary of the main results

On the left panel of Figures 2, 3, 4 and 5 we observe agents’ predictions with
respect to the realised price. On the right panel we show the predictions after
period 15, i.e. after the learning period11.

It should be noted that, under the Rational Expectation Hypothesis, individ-
ual predictions should be equal to the value of pf , which is represented by the
continuous grey line in all of the Figures. At a glance, none of the groups converge
to the fundamental price in both treatments12. We ran a t-test and a Wilcoxon
test to investigate whether the difference between the fundamental value and the
realised price is statistically significant. Results are shown in Table 1. Both the
parametric and non-parametric tests confirm that the realised price is different
from the fundamental value in all groups.

In Treatment 1, two groups converge quickly to an equilibrium price that is
very close to the fundamental value. Three groups overestimate the fundamental
price and Group 4 converge very slowly to a price close to the fundamental value.
In Treatment 2 agents make their predictions following the increasing trend of the
fundamental price, but systematically underestimate the magnitude of the drift. In
particular, Group 5 and Group 6 show the highest and quickest coordination, and
the series of realised prices in Group 5 is very close to the fundamental price. In
Groups 1, 2 and 3 there is at least one player who makes odd predictions also after

10We give also an extra- bonus to participants who collect perfect prediction in each peri od.
11In Figure 3, subfigure (b) and in Figure 4, subfigure (d) we omitted the extreme predictions

for a better view of the individual behaviour.
12It is important to underline that the role of the fundamentalist robot traders was marginal

since the maximum share was equal to 15%.
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the learning phase, i.e. even after the twentieth period. Despite these anomalous
predictions, it seems that there is a good level of coordination. These results are
similar to the main finding in Heemeijer et al. (2009) in which they compare the
behavior in two different contexts: negative and positive feedback system. They
find out that in the negative feedback system there is a fast convergence to the
rational equilibrium but poor coordination. On the other hand, positive feedback
system shows strong coordination and lack of convergence to the fundamental
value.

From the graphical inspection a certain degree of heterogeneity both within and
between groups emerges. According with Yalçın (2010), one of the assumptions
of the Efficient Market Hypothesis (Fama (1970)) is that agents have rational
expectations and they are able to predict the fundamental price. Our results
show the failure of convergence to the fundamental price and different individuals’
prediction strategies. There are two possible explanations for these results. First,
in our setting, there is a positive feedback system and this means that individual
strategies are strategic complements, i.e. if player i increases her own prediction,
player j has an incentive to follow the same strategy (Bulow et al. (1985), Camerer
and Fehr (2006)). Second, we consider a payoff function that depends on the
realised price instead of on the fundamental price.

As Haltiwanger and Waldman (1985) and Haltiwanger and Waldman (1989)
pointed out, players have different capabilities to form expectations. Indeed, some
players, “the sophisticated agents”, are able to compute the fundamental value,
while other players use rules of thumb to make their predictions. In a context
characterised by strategic complimentarity, the share of rational agents are crowed
out by the bounded rational agents. This means that agents who have the ca-
pability of computing the fundamental price adjust their behaviour to maximize
their profits and there is no incentive for rational players to predict the funda-
mental value when the others are moving away from it. Fehr and Tyran (2008)
experimentally tested the different behavior in the case of strategic complements
and substitutes. Their results show that there is a slow adjustment, or inertia,
in the case of strategic complementarity while a quick convergence in the context
of strategic substitutes. Similar conclusion are shown in Hommes et al. (2014).
This confirms that complementarity leads to an irrational behaviour due to the
incentive to follow the crowd.

Two key features emerge from this inspection. First, there is strong coordi-
nation among players despite the absence of any form of communication13. We

13For the sake of completeness we run a Wilcoxon test for each individual series in order
to compare the difference between each pair of agents and the difference between individual
predictions and the realized price. Results are shown in Appendix B.
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analyse in detail this aspect in the next section. Second, players face the same
situation and start the game with the same information but reach a very different
equilibrium. This means that the common knowledge of the dividend, the interest
rate and the market price is not a sufficient condition to induce the same expec-
tation among agents and, hence, there is heterogeneity both within and between
groups.

4. Individual versus aggregate expectations

In the early 1900s, Galton (1907) observed two phenomena emerging from a
competition. The first observation concerns the concept called The Wisdom of
Crowd, in which the median of the collective forecast is equal to the realised value.
This is the cornerstone of the REH proposed by Muth (1961). Even though he does
not refer directly to Galton’s work, Muth formalised the idea that heterogeneous
uncorrelated expectations may be represented by aggregated expectations with
bias on average equal to zero. The second observation is that the distribution of
the forecast is skewed with respect to the median.

Lucas Jr and Prescott (1971) provides the definition of Individual Rational Ex-
pectation which is quite different from collective rational expectations. According
to Lucas Jr and Prescott (1971), each agent is able to predict the future value of
a variable without systematic errors because he/she takes into account all of the
feasible information at time t, i.e.

pet+1 = E(pt+1|Ωt) = Etpt+1

where Ωt is the information set. The key feature of this approach is that the
expected value of future forecasting error is equal to zero:

Et(pt+1 − Etpt+1) = 0

Figure 6 shows the comparison of the probability distribution of the realized
price and the predicted price in each treatment, and Figure 7 shows the same
relation between the realized price and the average price of groups. The q-q plot is
a useful tool to compare the distributions of two variables. If the two distributions
being compared are similar, the points in the plots will approximately lie on the
bisector. It easy to see that in the case of individual predictions (Figure 6) the plot
highlights a linear relation between the variables, but the points are not perfectly
aligned on the bisector, in particular in Treatment 1. On the other hand, in
the distribution of the average predictions is close to that of the realised price,
especially concerning Treatment 2.

As we noted, it is important to consider individual rationality, as suggested by
Lucas Jr and Prescott (1971), or the concept of collective rationality, which is the
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Figure 6: Quantile plot of the individual price by treatment
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Figure 7: Quantile plot of the average price by treatment
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foundation of Galton’s conjecture. The former suggested that each agent can over-
estimate or underestimate the objective variable, in our case the market price, but
the average of the individual forecasting error should be equal to zero. Conversely,
the latter concept suggests that each individual makes systematic forecasting er-
rors but, if we consider the average aggregate predictions, we are able to obtain
unbiased forecasts. We compute the average of the individual forecasting error
and the average forecasting errors of the group by using the following equations:

Individual error: Ξi =
1

T

T∑
t=1

(peit − pt)2 (17)

Aggregate error: Ξj =
1

nT

T∑
t=1

n∑
i=1

(peit − pt)2 (18)

with T = 51 and n = 6. The analysis at the individual level is useful to test
the hypothesis of individual rationality while the aggregate measure can be used
to test the Galton’s hypothesis. The results are shown in Figure 8 and Figure 9
and

Looking at Figure 8, we observe that some agents overestimate and others
underestimate the realised price, but the mean value for each player is different
from zero. This result discards the hypothesis of individual rationality. In Figure
9, we show the difference between the average group forecast and the realized price.
It is easy to see that these errors are close to zero. We therefore test whether the
average errors with respect to the realised price are statistically different from
zero, running a t-test and a Wilcoxon test. The results are shown in Table 2. The
test result highlights that the mean Treatment 1 is equal to zero, while the mean
in Treatment 2 is significantly negative. Kirman (1993), in fact, suggests that
it is an oversimplification to look only at the individual behaviour and that we
should consider the aggregate outcome that emerges from the agents’ interactions.
Moreover, Kirman (2010) and Chen and Yeh (2002) highlight that the rational
equilibrium can be seen as an emergent property of a system with interactive
bounded rational agents.

We can conclude that, in our sample, the Lucas concept of rationality is not
verified. Moreover, the concept of collective rationality is true only in the case in
which the variable to be estimated is constant over time, while there is also a bias
at the aggregate level if the value to be estimated changes over time.

As suggested in Kirman (2014), in some situations it is rational to not be fully
rational. In our context this results in a situation in which it is more convenient to
“follow the crowd” than to predict the fundamental price. This means that each
agent tries to understand the expectations of other players and seeks to coordinate
to obtain more profits. We analyse the level of coordination in each group by
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Figure 8: Average of the forecasting errors computed for each subject by using eq.
(17).
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Figure 9: Average of the aggregate forecasting errors computed for each group by using
eq. (18).

Table 2: Average forecasting errors with respect to the realized price (t-test and
Wilcoxon test).

t-test Wilcoxon

Mean t p-value z p-value

Treatment 1 0.098 0.9110 0.36 3.833 < 0.01
Treatment 2 -0.640 -5.177 < 0.01 -13.000 < 0.01
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Figure 10: Average of the standard deviation of individual prediction for each period.

Table 3: Mean and standard errors of forecasts in Treatment 1

Groups Average 1-10 Std.Dev. Average 11-20 Std.Dev. Average 21-30 Std.Dev. Average 31-40 Std.Dev. Average 41-51 Std.Dev.

1 58.31 9.35 59.02 1.66 59.25 0.91 58.93 0.38 59.19 0.28
2 57.80 3.42 58.83 0.46 58.89 0.29 58.76 0.31 58.83 0.29
3 56.65 6.88 63.23 1.87 64.99 0.88 65.67 0.88 65.72 0.57
4 37.19 12.92 51.16 4.24 58.89 8.19 62.57 1.54 64.57 10.81
5 59.44 13.81 71.01 7.81 71.33 1.45 69.65 1.11 65.53 1.06
6 63.65 6.84 68.50 1.69 67.87 0.94 66.51 0.61 64.79 0.62

looking at the volatility of predictions made during the repetitions, with an eye to
investigating the process of individual learning. As stressed in the previous Section,
the level of coordination is good in almost all of the groups. In order to have a
quantitative measure of this coordination, we use as a proxy the standard deviation
of individual predictions. First of all we compute the average variance of individual
predictions in both treatments. Figures 10 shows the evolution over time of this
variable. It is easy to see that there is a strong reduction in volatility, especially
in Treatment 1. Moreover, we split the entire series of 51 periods in different sub-
samples of ten periods and then computed the mean and the standard deviation of
subjects’ predictions in order to analyse whether there was a convergence through
the fundamental value and to examine the volatility of the process. The results
are shown in Table 3 and Table 4.

Table 4: Mean and standard errors of forecasts in Treatment 2

Groups Average 1-10 Std.Dev. Average 11-20 Std.Dev. Average 21-30 Std.Dev. Average 31-40 Std.Dev. Average 41-51 Std.Dev.

1 55.43 16.91 58.44 11.25 60.98 1.34 63.87 1.19 67.48 1.44
2 60.71 5.77 66.09 4.59 66.00 2.32 63.78 11.53 68.08 1.70
3 53.88 7.95 56.78 1.98 58.32 1.98 59.62 1.85 62.96 1.97
4 47.88 13.95 50.54 9.41 57.35 2.57 63.34 2.33 70.69 3.17
5 58.36 4.17 64.02 1.24 67.10 1.09 70.37 1.23 73.70 1.20
6 57.33 3.72 61.47 0.91 63.96 1.00 66.90 1.30 70.74 1.36
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First, the volatility is higher in the second Treatment, which is due to the
variability of the fundamental value. Except for a few groups, i.e. Group 4 in
Treatment 1 and Group 2 in Treatment 2 14, we can observe a strong reduction in
the volatility from the starting period to the end of the game, in line with the results
shown in Figure 10. This means that players coordinate on a common strategy
after, at least, 10 periods. This analysis confirms Galton’s assertion regarding the
accuracy of aggregate predictions over the individual ones.

5. Is there evidence for the correction bias?

As mentioned in the previous section, we can consider the individual rationality
or the collective one. In general, the REH implies that agents, using all feasible
information, are able to understand the real mechanism of the economy and are
able to update and correct their forecasts. This implies that agents do not need a
learning period or to adapt to new conditions; since they know the true behaviour
of the market, their one step ahead forecasting error is on average zero. In our
setting, since that the mean dividend and the interest rate are common knowledge,
the rational expectations predictions should be:

peit = pf

in each period. Within this framework, the possibility that a share of investors
has imperfect information, or a lower “degree” of rationality, is ignored on the
basis that they would be ruled out - via market selection - by “smart money”
investors, and/or assuming that their impact on aggregate dynamics is negligible
(Friedman, 1953; Lucas, 1978).

The analysis in the previous sections suggests that there is no evidence for
rational expectations, either individually or collectively. Observing the graphical
results, it seems that almost all agents do not use rational expectation to make
their prediction, but they probably use some kind of adaptive expectation. Indeed,
especially in Treatment 2, they systematically underestimate both the fundamental
value and the realized price.

As pointed out, if players form their expectations using an adaptive scheme,
they introduce a correction based on their own previous errors. As in equation
(1), agents assign the weight λ to their previous forecasting errors. This obviously
implies that there is a correlation among individual forecasting errors. On the
other hand, under the REH, since that the rationality condition holds, we should
expect an absence of correlation.

14The standard deviation of the price is strongly influenced by the very high and low predictions
of one player in the group.
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Table 5: Output Regression: Correlation of forecasting errors

Treatment 1 Treatment 2

Ξit−1 .359∗∗∗ .508∗∗∗

0.000 0.000
Constant .077 -0.321∗∗∗

.520 .000

N 1764 1764

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

In order to test whether there is serial independence for the forecasting errors,
we run the following regression:

Ξit = β0 + β1Ξit−1 + εit (19)

where Ξit is the difference between the predicted and the realised price for each
agent, i.e., the individual forecasting error. Under the REH we should observe
β1 = 0. The estimation15 results for each treatment are shown in Table 5.

The t ratio associated with the β1 coefficients suggests that the REH is strongly
rejected while there is evidence that players use an adaptive scheme.

Once established that expectations are adaptive, we were interested in the
analysis of the error correction bias as described in Section 2.

First, we compute the absolute distance between the predicted price and the
fundamental price in Treatment 2 and we compute a regression including only
the period dummy (|Ξit| = γ0 + γ1Period1 + γ2Period2 + ... + γ51Period51 +
εit). The results in Table 6 show that as the time increases the distance between
individual predictions and the fundamental value decreases. This evidence suggests
two aspects: first, it confirms that players take into account the fundamental value
to form their expectations; second, in Treatment 2, this result supports the theory
of error correction.

To better investigate the latter point, we make the assumption that agents
use the simplest adaptive rule described by equation (20) and we estimate the
following equation for Treatment 2 16:

15We run a dynamic panel estimation to take into account the problem with the lagged de-
pendent variable.

16Since we are interested in understanding whether players are able to understand, and correct
the trend, we only take into account data for Treatment 2.
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Table 6: Output Regression: Forecasting errors with respect to the fundamental price

Treatment 2 Treatment 2

Period 1 0.000 Period 26 -4.302***
(.) (1.509)

Period 2 -1.188 Period 27 -4.152***
(1.509) (1.509)

Period 3 -1.726 Period 28 -4.216***
(1.509) (1.509)

Period 4 -5.405*** Period 29 -4.093***
(1.509) (1.509)

Period 5 -3.006** Period 30 -4.140***
(1.509) (1.509)

Period 6 -7.229*** Period 31 -3.809**
(1.509) (1.509)

Period 7 -6.101*** Period 32 -4.061***
(1.509) (1.509)

Period 8 -7.188*** Period 33 -3.597**
(1.509) (1.509)

Period 9 -5.879*** Period 34 -3.755**
(1.509) (1.509)

Period 10 -4.958*** Period 35 -3.538**
(1.509) (1.509)

Period 11 -5.934*** Period 36 -1.495
(1.509) (1.509)

Period 12 -3.239** Period 37 -1.302
(1.509) (1.509)

Period 13 -5.828*** Period 38 -2.334
(1.509) (1.509)

Period 14 -3.562** Period 39 -1.973
(1.509) (1.509)

Period 15 -6.083*** Period 40 -2.550*
(1.509) (1.509)

Period 16 -5.514*** Period 41 -2.970**
(1.509) (1.509)

Period 17 -5.481*** Period 42 -2.843*
(1.509) (1.509)

Period 18 -6.131*** Period 43 -2.801*
(1.509) (1.509)

Period 19 -5.506*** Period 44 -3.209**
(1.509) (1.509)

Period 20 -5.671*** Period 45 -2.926*
(1.509) (1.509)

Period 21 -4.971** Period 46 -3.453**
(1.509) (1.509)

Period 22 -4.999*** Period 47 -3.283**
(1.509) (1.509)

Period 23 -4.889*** Period 48 -3.527**
(1.509) (1.509)

Period 24 -4.581*** Period 49 -3.404**
(1.509) (1.509)

Period 25 -4.756*** Period 50 -3.717**
(1.509) (1.509)

Period 51 -3.354**
(1.509)

Constant 12.074***
(1.067)

R2 0.057
N 1836

Standard error in parentheses; ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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Table 7: Output Regression: Adaptive expectation estimation

Treatment 2

pit 0.366***
(0.057)

pit−1 0.647***
(0.058)

(pe − pf) 0.087*
(0.045)

N 1476
Sargan χ2

11 = 126.31
(p-value) 0.000
Hansen χ2

11 = 2.33
(p-value) 0.997
AR(1) z = −1.74
(p-value) 0.082

Standard error in parentheses; ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

peit+1 = β1p
e
it + β2pit−1 + β3(peit − pft) + εit (20)

using the Blundell and Bond estimator (Blundell and Bond (1998)). We con-
sider the lagged values of the predicted price, the realised price and the fundamen-
tal value as instruments17.

The estimation results shown in Table 7 suggest that the model of the sim-
ple adaptive rule seems to fit well with the behaviour in our game; in fact, the
coefficients β1 and β2 are strongly significant. Similar conclusions emerges in the
analysis carried out in Heemeijer et al. (2009) where they estimate a similar re-
gression for any subject. Also in that case, the predominant forecasting rule is the
adaptive one.

Based on the theoretical assumption described in Section 2, in order to under-
stand if a “correction bias” exists, we are especially interested in the value of the
coefficient β3. This coefficient turns out to be is small but significant. A positive
and significant coefficient means that, as the distance between the predictions and

17Both the predicted and the realised series are stationary. We run the unit root test for
panel with serial correlation (Pesaran (2007)). The results are z = −6.229, p − value = 0.000
for Treatment 1 and z = −6.699, p − value = 0.000 for Treatment 2. Consequently the null
hypothesis of integration is strongly rejected.
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the fundamental price increases, subjects adjust their forecasts to fill the gap.
Mixing results from the descriptive statistics and from the econometric analysis,

we can conclude that players are able to understand that there is an up-ward trend
in the fundamental price but they systematically underestimate the trend. This
supports the notion that there is some sort of correction in expectation formation
but we are not able to prove that this error correction term fulfils the zero mean
condition.

Furthermore, there is a good deal of heterogeneity between and within groups.
Tables from 10 to 21 (Appendix B) show the pairwise Wilcoxon test within each
group for the two treatments. In the lower triangular matrix there are the z
statistics (and the p-values) comparing time series of expectations for each couple
of agents, whereas the last two columns of every table show the z statistics (and the
p-values) comparing the time series of expectations and the realised price for each
agent. The tables show different behaviours among agents and different abilities
to learn the realised price.

6. Final Remarks

In this work we investigate the individual behaviour in an experimental asset
market in which participants play in groups of six. In this market players see in
their screen the following information: i) the mean dividend, ii) the interest rate
and iii) the past realisation of the market price and their own past predictions.
The realised price is a function of the average forecasting of the group. We run
two treatments in which the only difference is the process that generates the fun-
damental price: in Treatment 1 both the mean dividend and the interest rate are
constant, while in Treatment 2 the mean dividend increases during repetitions.

By assuming that agents are myopic, the fundamental value is given by the
ratio between the mean dividend and the interest rate. Under the rational ex-
pectation hypothesis, subjects are able to predict the fundamental price and, if
this assumption holds, the realised price should converge to the fundamental one.
Our results show that groups in both treatments seek to coordinate a price that is
higher or lower than the fundamental one. In Treatment 2, in particular, players
systematically underestimate the fundamental price, but are able to understand
that the mean dividend follows an increasing trend.

The analysis in this paper is devoted to investigate two main features: 1) in-
dividual versus aggregate rationality; 2) the existence of a “correction bias” in
individuals’ predictions. First we investigate whether there is evidence for individ-
ual rationality. The results show that players fail to predict the fundamental value
and that agents have adaptive expectations rather than rational ones. One of the
main interesting results is the coordination among players, despite the absence of
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communication, which leads to the emergence of collective rationality. This con-
cept refers to the process whereby agents learn the prediction strategies of others
and they are able to coordinate on a price that is different from the fundamental
value.

Since the experimental results suggest that players use adaptive expectation
scheme, we analyze if, in a context in which the fundamental price follows a trend,
the error correction mechanism (Palestrini and Gallegati (2015)) works. First of
all, from the graphical analysis emerges that players are able to understand that
the fundamental price follows an increasing linear trend, but agents systematically
underestimate the magnitude of this trend. Estimation results confirm that players
take into account the increasing fundamental price in making their forecasting.
Thanks to these results we should conclude that there is a correction mechanism
but it does not satisfy the zero mean condition, i.e. the rationality condition.

This work shows also different behaviours between agents and different ability
to learn the realised price. The emergence of the heterogeneity both within and
between groups and the rejection of the rational expectation hypothesis suggest
that we need a model more sophisticated than the Neoclassical one. The next step
is to extrapolate the individual prediction strategy using individual estimation and
understand the mechanism of coordination that brought to the observed aggregate
result.
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AppendixA. General Instruction

You are a financial advisor to a pension fund that is seeking to invest an amount
of money to purchase an asset. The pension fund will allocate its money between
a bank account that pays fixed interest and a risky investment. The allocation
depends on the accuracy of your forecasts. Your task is to predict the price of the
risky asset for 51 periods. Your profit depends on your forecast accuracy. The
better your prediction, the higher the profit in each period. The final earning will
be given by the sum of the profit you gain in each period.

AppendixA.1. Instructions for the forecasting task

At the beginning of each period you must predict the price for the next period,
i.e. in period 1 you must predict the price of period 2 and so on. At the beginning
of the experiment you should predict the price of the first and the second periods.
Your forecasting for these periods must be between 0 and 100. To make these
predictions, you will only have two pieces of information: the mean dividend and
the interest rate. From period 3 until the end of the game you will have more
information18: besides the interest rate and the mean dividend, you will see a
graph with the time series of your past predictions and the series of the realised
price in the market. The green dots represent the series of the predicted price,
while the blue dots represents the realised price in each period. Moreover, you will
see the values of these series.

At period t the feasible information will be: the realised prices up to period
t−2, your past predictions up to period t−1 and your earnings up to period t−2.

Once each player has made his/her prediction for the first and the second pe-
riod, the realised price in period 1 and your prediction in period 1 and period 2
will be revealed. The same mechanism holds for the subsequent periods. After
you insert the forecasting your profit will be computed according to the forecasting
accuracy. In each period your profit ranges between 0 (bad forecast) and 1 (best
forecast). During the experiment your earning will be expressed in ECU (Experi-
mental Currency Unit) and at the end of the game the amount will be converted
into Euro (1 Euro = 4 ECU).

The market price will be determined by the equilibrium between the supply
and demand of the stock. The supply of stock is fixed for the duration of the
experiment. The demand for stock will be given by the aggregate demand of each
pension fund for which each participant is the advisor.

18During the initial phase we gave a sheet to each player with the screenshot of the game with
further information.
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AppendixA.2. Total profits

Table A.8 shows the total profit in Euro in each group. Table A.9 reports the
descriptive statistics of the cash earned in both treatments.

Table A.8: Average payment by group

Treatment 1 Treatment 2

Group 1 88.80 78.09
Group 2 110.07 86.08
Group 3 88.17 93.34
Group 4 77.81 80.56
Group 5 82.70 100.48
Group 6 105.84 101.49

Table A.9: Descriptive statistics of payment

Mean Std. Dev Min Max

Treatment 1 15.37 12.89 11.68 25.59
Treatment 2 15.00 9.99 9.81 25.59
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AppendixB. Tables

Table B.10: Wilcoxon test for Group 1 - Treatment 1

Group 1 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 1.547 0.122
2 1.611 0.107 -0.366 0.715
3 2.934 0.003 1.673 0.094 -0.75 0.066
4 2.252 0.024 1.263 0.207 -0.255 0.799 -1.837 0.4533
5 1.211 0.226 -0.017 0.9866 -1.396 0.162 -1.225 0.221 0.965 0.334
6 3.631 0.000 3.072 0.002 1.432 0.152 0.901 0.377 3.051 0.002 -3.356 0.001

1 2 3 4 5 6 Realized price

Table B.11: Wilcoxon test for Group 2 - Treatment 1

Group 2 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -2.493 0.013
2 -2.238 0.025 2.222 0.026
3 1.247 0.214 6.333 0.000 -3.852 0.000
4 -3.485 0.001 -1.351 0.177 -6.029 0.000 3.449 0.001
5 1.107 0.269 5.171 0 -0.411 0.681 5.661 0.000 -3.243 0.001
6 -0.279 0.78 2.493 0.013 -3.665 0.000 3.988 0.000 -2.776 0.006 -1.753 0.08

1 2 3 4 5 6 Realized price
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Table B.12: Wilcoxon test for Group 3 - Treatment 1

Group 3 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 2.287 0.022
2 -0.907 0.645 3.759 0.000
3 -0.199 0.843 0.631 0.528 3.384 0.001
4 1-995 0.051 3.271 0.001 2.583 0.01 -2.821 0.005
5 1.6 0.11 3.254 0.001 2.274 0.023 -0.308 0.758 -2.025 0.043
6 -2.864 0.004 -2.375 0.018 -2.845 0.004 -4.928 0.000 -4.77 0.000 6.168 0.000

1 2 3 4 5 6 Realized price

Table B.13: Wilcoxon test for Group 4 - Treatment 1

Group 4 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -0.544 0.587
2 0.281 0.779 -1.322 0.186
3 0.034 0.973 -0.268 0.789 -0.084 0.933
4 1.272 0.204 0.716 0.474 1.272 0.203 -4.265 0.000
5 0.489 0.625 0.194 0.846 0.532 0.594 -0.492 0.623 -0.647 0.518
6 1.071 0.284 0.656 0.512 1.105 0.269 -0.057 0.955 0.308 0.758 -4.349 0.000

1 2 3 4 5 6 Realized price

Table B.14: Wilcoxon test for Group 5 - Treatment 1

Group 5 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 5.486 0.000
2 3.838 0.000 -2.953 0.003
3 3.779 .000 -0.097 0.923 -0.609 0.542
4 3.367 0.001 -0.840 0.401 -0.643 0.521 0.403 0.687
5 2.101 0.036 -1.989 0.047 -1.906 0.057 -1.322 0.186 1.275 0.202
6 0.345 0.73 -3.598 0.000 -3.323 0.001 -3.015 0.003 -2.025 0.043 4.265 0.000

1 2 3 4 5 6 Realized price
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Table B.15: Wilcoxon test for Group 6 - Treatment 1

Group 6 - Treatment 1

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 3.168 0.002
2 -0.482 0.623 3.421 0.001
3 -0.177 0.859 0.181 0.857 3.131 0.002
4 0.379 0.705 0.872 0.383 0.479 0.632 1.631 0.103
5 0.932 0.351 1.393 0.164 1.141 0.254 0.437 0.662 0.037 0.97
6 -2.807 0.005 -2.378 0.017 -2.596 0.01 -3.206 0.001 -3.475 0.001 6.125 0.000

1 2 3 4 5 6 Realized price

Table B.16: Wilcoxon test for Group 1 - Treatment 2

Group 1 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -1.64 0.101
2 -0.379 0.705 0.169 0.866
3 -0.937 0.349 -0.476 0.634 -0.225 0.822
4 0.673 0.501 1.159 0.247 -0.255 0.799 -4.387 0.000
5 -0.573 0.567 -0.08 0.936 -1.396 0.163 -1.225 0.221 -1.059 0.290
6 -0.556 0.578 0.097 0.923 1.432 0.152 0.901 0.368 3.051 0.002 -0.881 0.378

1 2 3 4 5 6 Realized price

Table B.17: Wilcoxon test for Group 2 - Treatment 2

Group 2 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -2.643 0.001
2 -0.95 0.342 0.347 0.729
3 -1.566 0.117 -0.704 0.482 0.0556 0.955
4 -2.079 0.038 -0.436 0.663 0.583 0.56 0.422 0.673
5 0.879 0.379 1.355 0.175 2.059 0.04 2.702 0.007 -3 0.003
6 -1.49 0.136 -0.121 0.904 0.949 0.343 0.422 0.673 -2.396 0.017 -0.909 0.363

1 2 3 4 5 6 Realized price
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Table B.18: Wilcoxon test for Group 3 - Treatment 2

Group 3 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 0.262 0.793
2 0.904 0.366 -1.734 0.083
3 0.241 0.81 -0.435 0.663 -1.659 0.097
4 3.427 0.001 2.436 0.015 2.848 0.004 -5.783 0.000
5 3.969 0.000 3.186 0.001 3.762 0.000 1.73 0.083 -5.549 0.000
6 0.151 0.88 -0.174 0.862 0.526 0.599 -2.296 0.022 -2.952 0.003 -2.09 0.037

1 2 3 4 5 6 Realized price

Table B.19: Wilcoxon test for Group 4 - Treatment 2

Group 4 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -2.818 0.005
2 -0.733 0.464 0.394 0.694
3 -0.489 0.625 0.281 0.779 0.206 0.837
4 -0.291 0.771 0.462 0.644 0.281 0.779 -2.418 0.016
5 0.947 0.344 1.349 0.178 1.359 0.174 1.252 0.211 -3.74 0.000
6 0.107 0.915 0.79 0.43 0.592 0.554 0.208 0.836 -0.783 0.434 -2.878 0.004

1 2 3 4 5 6 Realized price

Table B.20: Wilcoxon test for Group 5 - Treatment 2

Group 5 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -5.38 0.000
2 -0.157 0.875 -5.924 0.000
3 -0.552 0.581 -0.361 0.718 -1.697 0.09
4 -0.602 0.547 -0.452 0.651 -0.037 0.971 -1.331 0.183
5 -1.198 0.231 -0.997 0.319 -0.659 0.51 -0.669 0.503 5.015 0.000
6 -0.469 0.639 -0.318 0.751 0.06 0.952 0.141 0.888 0.803 0.422 -1.612 0.107

1 2 3 4 5 6 Realized price

37



Table B.21: Wilcoxon test for Group 6 - Treatment 2

Group 6 - Treatment 2

Subject z p-value z p-value z p-value z p-value z p-value z p-value z p-value

1 -5.933 0.000
2 -0.355 0.738 -4.509 0.000
3 -0.967 0.333 -0.732 0.47 1.828 0.068
4 -0.184 0.854 0.141 0.888 0.83 0.401 -5.737 0.000
5 -0.398 0.69 -0.127 0.899 0.679 0.497 -0.231 0.817 -5.362 0.000
6 -0.827 0.401 -0.331 0.74 0.455 0.649 -0.602 0.547 -0.204 0.838 -1.781 0.075

1 2 3 4 5 6 Realized price
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