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Abstract 

The success of a dental implant depends on its osseointegration, an important feature of 

the implant biocompatibility. In this study, two distinct sol-gel hybrid coating 

formulations (50% methyltrimethoxysilane:50% 3-glycidoxypropyl-trimethoxysilane 

(50M50G) and 70% methyltrimethoxysilane with 30 % tetraethyl orthosilicate 

(70M30T)) were applied onto titanium implants. To evaluate their osseointegration, in 

vitro and in vivo assays were performed. Cell proliferation and differentiation in 

vitro did not show any differences between the coatings. 50M50G-treated implant 

developed a fibrous capsule between the coating and the bone when implanted in vivo. 

The 70M30T coating resulted in good osseointegration, 8 weeks after implantation. The 

correlation between the in vitro and in vivo results was very poor; there was no 

explanation for the 50M50G failure in vivo. The protein layer adhered to the surface 

may have direct implication in implant osseointegration. These proteins may 

determine in vivo outcome. Therefore, we studied the protein layer adhering to the 

surface involving direct implications for the tissue response. Proteomic analysis, using 

mass spectrometry (LC/MS/MS), of serum proteins adsorbed onto the two surfaced was 

carried out. 171 proteins were identified; 8 of these were enriched on the 70M30T-

coated dental implant, and 30 proteins were enriched on the 50M50G implant surface. 

The latter group included several proteins of the immune complement and blood 

clotting system. This result suggested that these proteins might trigger the cascade 

leading to the formation of the fibrous capsule. The implications of these results could 

open up the possibility to predict the biocompatibility problems in vivo. 

Keywords: sol-gel coatings, immune system, C-reactive protein, fibrous capsule, 

proteomics, osteoimmunology 

 



1. Introduction 

In the design of implantable devices, the foreign body reaction, stress shielding, 

biocompatibility and (recently introduced) bioactivity and osteoinduction are the 

required features of the selected biomaterials and surface treatments (Navarro et al. 

2008). 

Titanium (Ti) and its alloys are commonly used in dental implants with very good 

results due to their biocompatibility and biochemical properties. However, an increasing 

number of new biomaterials are being developed and applied to Ti surfaces as coatings 

(Juan-Díaz et al. 2016; Martínez-Ibáñez et al. 2016) to improve their existing properties 

or add new useful features (e.g., osteoinduction). 

New approaches must be assessed using reliable and comparable methods (in vitro and 

in vivo testing) to be rapidly translated into the clinical practice. Thus, there is an urgent 

need for proven in vitro assays to reduce the burden of animal testing. Unfortunately, 

the correlation between the in vitro and in vivo assessments of biomaterials is 

surprisingly poor, reinforcing the need for further development of relevant in vitro 

assays (Hulsart-Billström et al. 2016). 

Given the dense vascularization of organs and tissues, the first fluid to come in contact 

with an implant is the blood (Drinker et al. 1922), accounting for the formation of the 

first hydration layer covering the implant surface (Puleo & Nanci 1999). Examination of 

the constitution of the adsorbed protein layer and its effect on the bone-tissue-implant 

microenvironment might be crucial in the assessment of the success of an implant 

(Horbett 2013). The type and characteristics (hydrophobicity, microtopography, 

chemical properties) of the constitutive material of the implant (Molino et al. 2012) and 

the first protein layer on the implant surface will ultimately determine osseointegration, 



involving processes like the blood coagulation, inflammation, and humoral immune 

response (Arvidsson et al. 2007). Hong et al. have studied the Ti properties in terms of 

its thrombogenic potential; it is one of the metals with high biocompatibility even 

though it lacks the bioactive properties (Hong et al. 2005). On the other hand, in 

previous studies of our group using mass spectrometry (LC/MS/MS), we have shown 

that two different Ti surface treatments, with slightly different in vivo behaviour, 

display variations in the adsorbed first protein layer (Romero-Gavilán et al.). These 

studies open up the exciting possibility of predicting the body reaction after 

implantation. It is possible that protein deposition studies might provide a major 

breakthrough in the understanding and prediction of biomaterial behaviour in in vivo 

environments (Kaneko et al. 2011; Dodo et al. 2013). 

Our present study focuses on the characterisation of the protein layer adsorbed onto Ti 

discs (blasted and acid-etched) coated with two distinct sol-gel hybrid coating 

formulations (Juan-Díaz et al. 2016; Martínez-Ibáñez et al. 2016); 50% 

methyltrimethoxysilane : 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% 

methyltrimethoxysilane : 30 % tetraethyl orthosilicate (70M30T) and the correlation 

between their in vitro and in vivo behaviour. Our results show that the biomaterial that 

induces scar tissue in in vivo implants is associated with a distinct map of adsorbed 

proteins. Most of these proteins are related to the immune response, suggesting that this 

protein layer might be responsible for the formation of the fibrous capsules. 

  



2. Materials and methods 

2.1 Preparation of coated titanium discs 

Ti discs (12 mm in diameter, 1-mm thick) were made from a bar of commercially 

available, pure, grade-4 Ti (Ilerimplant SL, Lleida, Spain). Sandblasted acid-etched 

(SAE) Ti discs were abraded with 4 μm aluminium oxide particles and acid-etched by 

submersion in sulfuric acid for 1 h, to simulate a moderately rough implant surface. The 

discs were then washed with acetone, ethanol and 18.2 Ω purified water (for 20 min in 

each liquid) in an ultrasonic bath and dried under vacuum. Finally, all Ti discs were 

sterilised using UV radiation. 

2.2 Sol-gel synthesis and sample preparation 

The silica hybrid coatings were obtained using the sol-gel route. The synthesised sol-gel 

compounds were 70% MTMOS: 30% TEOS (70M30T) and 50% MTMOS: 50% 

GPTMS (50M50G) (Sigma-Aldrich, St. Louis, MO, USA) (molar percentages). 2-

propanol (Sigma-Aldrich , St. Louis, MO, USA) was used as a solvent at a volume ratio 

of alcohol to siloxane of 1:1. Hydrolysis of alkoxysilanes was carried out by adding (at 

a rate of a drop per second) the corresponding stoichiometric amount of acidified 

aqueous solution 0.1M HNO3 (Panreac, Barcelona, Spain). The solution was stirred for 

1 h and then left to rest for 1 h. The samples were prepared immediately afterwards. 

SAE Ti discs were used as a substrate. The coating was performed employing a dip 

coater (KSV instrument-KSV DC). Discs were immersed in a sol-gel solution at a speed 

of 60 cm min
-1

, left for one minute, and removed at a 100 cm min
-1

. Finally, 70M30T- 

and 50M50G-coated samples were cured for 2 h at 80 ºC and 140 ºC, respectively. 

 

 

 



2.3 Physicochemical characterisation of coated titanium discs 

The contact angle was measured using an automatic contact angle meter (DataPhysics, 

OCA 20). An aliquot of 10 µl of ultra-pure water W04 was deposited on the sol-gel 

coated surface at a dosing rate of 27.5 μl s
-1

 at room temperature. Contact angles were 

determined using SCA 20 software. Five discs of each material were studied after 

depositing two drops on each. The surface topography of the coatings was characterised 

by scanning electron microscopy (SEM) using a Leica-Zeiss LEO equipment under 

vacuum. Platinum sputtering was applied to make the samples more conductive for the 

SEM observations. 

 

2.4 Cell culture 

MC3T3-E1 (mouse-calvaria osteosarcoma cell line) cells were cultured on the 70M30T- 

and 50M50G-coated Ti discs, at a concentration of 1×10
4
 cells/well. The culture took 

place in Dulbecco’s Modified Eagle’s Medium (DMEM) with phenol red (Thermo 

Fisher Scientific, Waltham,  MA, USA), 1% 100× penicillin/streptomycin (Biowest 

Inc., Riverside, KS, USA) and 10% Fetal Bovine Serum (FBS) (Thermo Fisher 

Scientific, Waltham, MA, USA). After an incubation for 24 h at 37 ºC in a humidified 

(95%) atmosphere of 5% CO2, the medium was replaced with an osteogenic medium 

composed of DMEM with phenol red 1×, 1% penicillin/streptomycin, 10% FBS, 1% 

ascorbic acid (5 mg mL
-1

) and 0.21% β-glycerol phosphate. The cells were incubated 

again under the same conditions. The culture medium was changed every 48 hours. 

Cells at the same concentration were used as a control of culture conditions on each 

plate. 

  



2.5 Cytotoxicity 

The biomaterial cytotoxicity was assessed following the ISO 10993-5 norm, using the 

96-cell Titter Proliferation Assay (Promega®, Madison, WI, USA) according to 

manufacturer’s guidelines. Cells only (blank well) is considered maximal viability. 

Cells incubated in latex were the control for highly toxic compound. Cell viability of 

70% was considered the limit. 

2.6 Alkaline phosphatase (ALP) activity 

The protocol of conversion of p-nitrophenylphosphate (p-NPP) to p-nitrophenol was 

used to assess the ALP activity at the indicated times. Aliquots of 0.1 mL were used to 

measure the ALP activity. One hundred µl of p-NPP (1 mg mL
-1

) in the substrate buffer 

(50 mM glycine, 1mM MgCl2, pH 10.5) was added to 100 µl of the supernatant 

obtained from the lysate. After 2 h of incubation in the dark (37 ºC, 5% CO2), the 

absorbance was measured in a microplate reader at a wavelength of 405 nm. ALP 

activity was read from a standard curve obtained using different solutions of p-

nitrophenol and sodium hydroxide (0.02 mM). The results were presented as millimoles 

of p-nitrophenol/h (mmol PNP h
-1

), and the data were expressed as ALP activity 

normalised to the total protein content (µg µL
-1

). Protein concentration was quantified 

using Pierce BCA assay kit (Thermo Fisher Scientific, Waltham, MA, USA).  

2.7 Statistical analysis 

The data were submitted to one-way analysis of variance (ANOVA) and to a Newman-

Keuls multiple comparison post-test, when appropriate. Differences with p ≤ 0.05 were 

considered statistically significant. 

  



2.8 In vivo experiments 

To evaluate the histological response to the biomaterials described, the implants were 

surgically placed in the tibia of New Zealand rabbits (Oryctolagus cuniculus). This 

implantation has been widely used in the studies of osseointegration of dental implants 

(Mori et al. 1997). All our experiments were performed in accordance with the 

protocols of Ethical Committee at the University of Murcia (Spain), European 

guidelines and the legal conditions formulated in R. D. 223/1988 of March 14th and the 

Order of October 13rd, 1988, of the Spanish Government law on the protection of 

animals used for experimentation and other scientific purposes. Briefly, 20 rabbits (2-

3Kg) were kept under 12-h span darkness-light cyclic conditions; room temperature was 

set at 20.5 ± 0.5 °C and the relative humidity ranged between 45 and 65%. The animals 

were individually caged and fed a standard diet and filtered water ad libitum. The dental 

implants were supplied by Ilerimplant SL (Lleida, Spain). The implants were internal-

connection made with Ti grade IV, trademark GMI dental implants, 3.75 mm in 

diameter, 8-mm long, Frontier model with ADS (Advanced Doubled-Grip Surface) 

treatment, a combination of white corundum micro-bubble treatment and acid etching 

with nitric acid and sulfuric acid solution. 40 implants were used, 20 uncoated as 

controls, and 5 coated as test samples for each material and each time. 5 rabbits were 

used for each material and time. The implantation periods of the experimental model 

were 4 and 8 weeks. Implants were inserted in the left and right proximal tibiae (one 

control and one test sample). Animals were anesthetized with chlorpromazine 

hydrochloride and ketamine chlorhydrate. The periosteum was removed, and the 

osteotomy was performed using a low-revolution micromotor and drills of successive 

diameters of 2, 2.8 and 3.2 mm, with continuous irrigation. Implants were inserted and 

press-fit and the surgical wound was sutured, washed with saline solution and covered 



with plastic spray dressing (Nobecutan, Inibsa Laboratories, Barcelona, Spain). After 

each examined implantation period, the animal was euthanized by carbon monoxide 

inhalation, to retrieve the screws and study the surrounding tissues. 

 

2.9 Histological examination and quantification 

Four samples for histological examination were processed following the methodology 

described previously (Martínez-Ibáñez et al. 2016). Briefly, the samples were embedded 

in methyl methacrylate, and 25–30 µm sections were obtained using EXAKT technique 

(EXAKT Technologies, Inc., Oklahoma, USA). For optical microscopy examination, all 

the sections were stained using Gomori Trichrome solution. 

Fibrous connective tissue was quantified using ImageJ software 

(https://imagej.nih.gov/ij/).  The results are expressed as the estimate area occupied by 

fibrous connective tissue per area in mm
2
.  

 

2.10 Adsorbed protein layer 

Ti discs coated with 70M30T (n = 4) and 50M50G (n = 4) were incubated in a 24-well 

plate for 180 min in a humidified atmosphere (37 ºC, 5% CO2), after the addition of 2 

mL of human blood serum from male AB plasma (Sigma-Aldrich, St. Louis, MO, 

USA). After removing the serum, to remove the remaining non-adhered proteins, the 

discs were rinsed five times with ddH2O and once with 100 mM NaCl, 50 mM Tris-

HCl, pH 7.0. The adsorbed protein layer was collected by washing the discs in the 

solution of 4% SDS, 100 mM DTT and 0.5M TEAB. The experimental method was 

adapted from a previous study by Kaneko et al. (Kaneko et al. 2011). Four replicates of 

each biomaterial were obtained. Total protein content was quantified before the 

https://imagej.nih.gov/ij/


experiment (Pierce BCA assay kit (Thermo Fisher Scientific, Waltham, MA, USA)), 

obtaining the value of 51 mg mL
-1

. 

2.11 Proteomic analysis 

The eluted protein samples were resolved on 10% polyacrylamide gels, using a Mini-

Protean II electrophoresis cell (Bio-Rad®, Hercules, CA, USA). A constant voltage of 

150 V was applied for 45 min. The gel was then stained using SYPRO Ruby stain (Bio-

Rad
®
, Hercules, CA, USA) following the manufacturer’s instructions. The gel was 

washed, and each lane was cut into 4 slices. Each of these slices was digested with 

trypsin following a standard protocol (Anitua et al. 2015). The resulting peptides were 

resuspended in 0.1% formic acid, separated using online NanoLC and analysed using 

electrospray tandem mass spectrometry. Peptide separation was performed on a 

nanoACQUITY UPLC system (Waters, Milford, MA, USA) connected to a SYNAPT 

G2-Si spectrometer (Waters,  Milford, MA, USA) Samples were loaded onto a 

Symmetry 300 C18 UPLC Trap column   with 5 μm, 180 μm × 20 mm connected to a 

BEH130 C18 column with 1.7 μm, 75 μm × 200 mm (Waters,  Milford, MA, USA). 

The column was equilibrated in 3% acetonitrile and 0.1% FA. Peptides were eluted at 

300 nl min
-1

 using a 60-min linear gradient of 3−50% acetonitrile. 

 A SYNAPT G2-Si ESI Q-Mobility-TOF spectrometer (Waters,  Milford, MA, USA) 

equipped with an ion mobility chamber (T-Wave-IMS) for high definition data 

acquisition analyses was used for the analysis of the peptides. All analyses were 

performed using electrospray ionization (ESI) in a positive ion mode. Data were post-

acquisition lock-mass corrected using the double charged monoisotopic ion of [Glu
1
]-

fibrinopeptide B. The accurate LC-MS data were collected in HDDA mode, which 

enhances the signal intensities using the ion mobility separation. 



Progenesis LC-MS software (Nonlinear Dynamics, Newcastle, UK) was used for 

differential protein expression analysis. Raw files were imported into the programme, 

and one of the samples was selected for a reference run to which the precursor masses in 

all the other samples were aligned. Abundance ratio between the run to be aligned and 

the reference run were calculated for all features at given retention times. These values 

were then logarithmised and the programme, based on the analysis of the distribution of 

all ratios, automatically calculated a global scaling factor. Once normalised, the samples 

were grouped into the appropriate experimental categories and compared. A peak list 

containing the detected peptides in all samples was searched against the Swiss-Prot 

database using the Mascot Search engine (www.matrixscience.com). Peptide mass 

tolerance of 10 ppm and 0.2-Da fragment mass tolerance were used for the searches. 

Carbamidomethylation of cysteines was selected as the fixed modification and 

oxidation of methionine as a variable modification for tryptic peptides. Proteins 

identified with at least two peptides with an FDR < 1% were kept for further 

examination. Proteins were quantified based on the intensity of their 3 most abundant 

peptides, when available. Proteins with ANOVA p < 0.05 and a ratio higher than 1.3 in 

either direction were considered significantly different. 

Finally, the data were entered in the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) Bioinformatics Resources to classify the Progenesis 

differential protein list into functionally related clusters. 



3. Results 

3.1 Synthesis and physicochemical characterisation 

The synthesis conditions described here allowed us to obtain the different coatings. 

SEM micrographs of 70M30T (Fig. 1a) and 50M50G (Fig. 1b) coatings show distinct 

topographies.70M30T surface conserves the SAE-Ti roughness properties and is 

rougher than the 50M50G surface. In the latter, the initial SAE-Ti irregularities are 

covered, possibly due to an increased thickness. The contact angle measurements gave 

values of 50.78 ± 1.82º and 67.59 ± 1.03º for 70M30T and 50M50G coatings, 

respectively. These data indicate that the 70M30T biomaterial is more hydrophilic than 

50M50G. 

3.2 In vitro culture 

Neither of the materials was cytotoxic (Figure 2a). The mineralisation analysis, 

performed by measuring ALP activity, showed that in vitro, 70M30T and 50M50G did 

not affect the osteoblast cell differentiation significantly, at 7 and 14 days (Figure 2b). 

The two biomaterials behaved similarly in terms of the metabolic and differentiation 

processes of MC3T3-E1 cells in vitro. 

3.3 In vivo assay 

Four and eight weeks after the implantation, some differences between the materials 

were observed (Figure 3a). Whereas 70M30T-coated screws displayed good 

osseointegration on the implant-cortical bone interface, the 50M50G-coated implants 

were surrounded by a thick fibrous capsule. This result is support by the graph on 

Figure 3b displaying that the area occupied by fibrous connective tissue is 

approximately 4-fold higher on the 50M50G material, compared to the 70M30T, for 

both times. In light of these results, we can conclude that 50M50G-coated implants 



provoked an immune/inflammatory response, which might prevent implant integration, 

bone formation and ultimately cause the implant rejection. 

3.4 Proteomic analysis 

The protein layers absorbed onto 70M30T and 50M50G coatings were analysed by LC-

MS/MS, which identified 171 different proteins. The data were also analysed (n = 4) 

using the Progenesis QI software, to find out which proteins were differentially 

predominant on the two materials. Moreover, the DAVID was used to obtain a 

functional classification of the proteins. Table 1 shows eight enriched proteins identified 

in the 70M30T film. Keratins, hornerin, filaggrin-2 and tropomyosin alpha-3 chain were 

substantially more abundant on this material. All these proteins are related to peptidase 

activity and/or the integrity of the cytoskeleton. However, 30 serum proteins adhered 

differentially to the 50M50G material (Table 2). Proteins related to tissue regeneration 

and bone metabolism such as plasminogen (Mao et al. 2014; Kanno et al. 2016), 

proteoglycan 4 (Novince et al. 2012), vitronectin (Salasznyk et al. 2004), Apo E 

(Newman et al. 2002; Dieckmann et al. 2013), kininogen-1 (Tsuruga et al. 2006; 

Yamamura et al. 2006) and complement C3 (Maekawa et al. 2014; Matsuoka et al. 

2014; Kuo et al. 2015) were more abundant on that coating. Increased amounts of many 

proteins related to the immune system and inflammatory response were also found on 

this material. Complement C1r subcomponent, complement factor H, C4b-binding 

protein alpha chain, C-reactive protein, complement C3, complement C5, complement 

component C7, serum amyloid P-component, complement C1q subcomponent subunits 

A, B and C, complement C1s subcomponent and plasma protease C1 inhibitor proteins 

were found and classified by DAVID database analysis  belonging to a protein cluster 

related to an acute inflammatory response. 

  



4. Discussion 

This study focused on the characterisation of the protein layer adsorbed onto the Ti 

discs (blasted and acid-etched) coated with two distinct biomaterials, 

70MTMOS:30TEOS (70M30T) and 50MTMOS:50GPTMS (50M50G). Moreover, it 

was analysed the correlation between their in vitro and in vivo behaviour. The 

application of these biomaterials onto the disc surfaces changed the biological and 

physicochemical properties of Ti. 

Distinct precursors were used to synthesise the two coatings. Both materials are 

composed by MTMOS, being the main chemical difference between them the presence 

of TEOS and GPTMS. GPTMS is an organo-modified alkoxysilane with an epoxy 

group. In contrast, the TEOS does not possess that group (Schottner 2001). The more 

pronounced organic features of 50M50G sol-gel matrix increase the hydrophobic 

properties of this material, reflected in the contact angle results. These differences in the 

chemical, hydrophilic and morphologic characteristics might affect the response and 

behaviour of the material in a biological context. However, in vitro experiments show 

no significant differences between the two types of coated discs. Both materials were 

found to be non-cytotoxic or/and even did influence nor positively nor negatively the 

ALP activity compared to non-coated SLA titanium. Nonetheless, it was observed 

drastic differences between the in vivo behaviour of these coatings. Our results showed 

the formation a layer of fibrous connective tissue surrounding the 50M50G, between the 

bone and the implant, which was not found on the 70M30T surface. 

Although there is a considerable need for proven in vitro assays to reduce the burden of 

animal testing, a recent multicentre review has shown no significant overall correlation 

between the in vitro and in vivo effects of biomaterials used for bone regeneration. The 

inadequacies of the current in vitro assessments highlight the urgent need for novel 



approaches to the in vitro biomaterial testing and the lack of validated pre-clinical 

studies (Hulsart-Billström et al. 2016). 

Proteomic analysis using LC/MS-MS identified and quantified the proteins adsorbed 

onto the two surfaces (Tables 1 and 2). The results displayed a distinct cluster of 

proteins, closely related to the immune and/or inflammatory response, predominant on 

the 50M50G biomaterial (in comparison with 70M30T). This observation might explain 

the in vivo outcome. The formation of a fibrous connective tissue in in vivo experiments 

has been reported and attributed to the natural immune and inflammatory response to a 

foreign body (Varley et al. 1995; Kim et al. 2011). The increased abundance of bone 

regeneration/repair-related proteins like plasminogen (Mao et al. 2014; Kanno et al. 

2016), proteoglycan 4 (Novince et al. 2012), vitronectin (Salasznyk et al. 2004), Apo E 

(Newman et al. 2002; Dieckmann et al. 2013) and kininogen-1 (Tsuruga et al. 2006; 

Yamamura et al. 2006) observed on the 50M50G-coated implants might be required for 

osseointegration. Interestingly, it was also found increased levels of proteins of the 

classical complement system on this material in comparison with the 70M30T coating. 

The complement system plays a crucial role in an immediate immune response to the 

pathogens (Dunkelberger & Song 2010). We are prone to speculate that the first layer of 

the proteins adsorbed onto the surface induces a fast immune response. This response 

might be induced by the increased levels (7-fold) of CRP (C-reactive protein), a protein 

with an important role in the immune response pathways (Zhang et al. 2010; Du Clos 

2013). CRP is a well-documented risk factor for cardiac diseases (Zhang et al. 2010). It 

belongs to a family of serum proteins with a pentameric structure, pentraxins, which can 

recognize antigens, activate the immune system (e.g. immunoglobulins), and interact 

with the complement system. In fact, one of the first reported CRP functions is its 

ability to trigger the whole classical complement system (Siegel et al. 1974). It acts by 



direct binding of the C1q, the first component of this system; C1q levels were also 

augmented on the 50M50G coating (2-fold). The binding of C1q to CRP activates a 

cascade of complements. C1r and C1s are activated, activating C4 and C2 in turn, 

followed by the generation of C3 convertases. The C3 convertases cleave C3 into C3a 

and C3b. C3a has both pro- and anti-inflammatory effects. C3b functions as an opsonin 

and activates the cleavage of C5 into anaphylatoxins C5a and C5b, ultimately forming 

the C5b-9 complex (Engberg et al. 2015). Both C3a and C5b are responsible for the 

recruitment and activation of the immune cells, such as macrophages, to the activation 

site (Ricklin et al. 2010). The complement-activated macrophages regulate fibrogenesis 

by promoting the cytokine activity and cell migration, resulting in the fibroblast 

proliferation and collagen synthesis (Song et al. 2000). Specifically, they act by 

secreting pro-fibrogenic factors, increasing fibrogenesis by fibroblasts and inducing the 

formation and development of the fibrous capsule around the implanted material. The 

thickness of the formed fibrous capsule can interfere with the function of the 

biomaterial, depending on the intensity of the immune/inflammatory response 

(Anderson et al. 2008). 

Thus, it is tempting to correlate the presence of these proteins with the in vivo response 

observed in this experimental work. Other authors have discussed the possibility of this 

binomial behaviour. Ekdahl et al. have reported that the binding of C3 protein on the 

surface of biomaterials might be negatively correlated with their biocompatibility 

(Nilsson-Ekdahl et al. 1993). Similarly, Engberg et al. have stablished a correlation 

between the absorption of proteins such as C3, C4, C5, C1q, factor H or C4BP and the 

inflammatory response induced by biomaterials. They have proposed the high C4/C4BP 

protein ratio as a predictor of low biocompatibility (Engberg et al. 2015). These studies 

have been carried out by pre-selecting the proteins to be detected. However, we believe 



that the proteomics methodology used in our study may improve our understanding of 

the role of proteins in the osseointegration processes. The results shown in Table 2 link 

the formation of the fibrous capsule with the cluster of proteins related to an acute 

inflammatory response. The presence of CRP within this cluster might be important in 

the activation of the immune reaction. Thus, within the limitations of this study, CRP 

might be proposed as a marker of poor biocompatibility, if it is found on the biomaterial 

surfaces at substantially increased levels. 

To summarise, we found that surfaces with distinct physico-chemical properties, such as 

70M30T and 50M50G sol-gel coatings, could produce different in vivo responses. 

These responses might depend on the bodily fluids (serum/blood) in contact with the 

implant surface. We showed that the majority of the specific serum proteins adhering to 

the 50M50G biomaterial belong to a cluster of proteins related to the 

immune/inflammatory response. Thus, it is plausible that the fibrous connective tissue 

surrounding the 50M50G material might be the consequence of the adsorption of 

various complement system proteins. The increased abundance of CRP, one of these 

proteins, might significantly affect the success of osseointegration. 
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TABLES 

 

Table 1. LC-MS/MS detected proteins differentially predominant in the film adsorbed 

to the 70M30T sol-gel biomaterial (Progenesis method). The averages are the result of 4 

independent replicates.  Differences were considered significant with an ANOVA p-

value < 0.05. DAVID classification functions were inflammatory/immune response (1), 

hydroxylation (2), blood coagulation (3), apoptosis regulation (4), metal binding (5), 

phosphorylation (6), carbohydrate binding (7), peptidase activity (8) and cytoskeleton 

integrity (9). 

 

 

 

 

 

 

 

Description 

Ratio 

50M50G/

70M30T 

Ref. bone metabolism 

or/and immune 

response 

DAVID 

Tropomyosin alpha-3 chain 0,06 - 9 

Filaggrin-2 0,35 - 5,8 

Hornerin 0,40 - 5,8,9 

Keratin, type II cytoskeletal 1b 0,49 - 9 

Keratin, type II cytoskeletal 71 0,51 - 9 

Keratin, type II cytoskeletal 78 0,60 - 9 

Keratin, type I cytoskeletal 10 0,61 - 9 

Keratin, type II cytoskeletal 2 epidermal 0,63 - 9 



 

 

 

Table 2. LC-MS/MS detected proteins differentially predominant in the film adsorbed 

to the 50M50G sol-gel biomaterial (Progenesis method). The averages are the result of 

4 independent replicates. Differences were considered significant with an ANOVA p-

value < 0.05. DAVID classification functions were inflammatory/immune response (1), 

hydroxylation (2), blood coagulation (3), apoptosis regulation (4), metal binding (5), 

phosphorylation (6), carbohydrate binding (7), peptidase activity (8) and cytoskeleton 

integrity (9).  

Description 

Ratio 

50M50G/

70M30T 

Ref. bone metabolism 

or/and immune 

response 

DAVID 

Complement C1r subcomponent 1,38 (Conway, 2015) 1,2,5,8 

Plasminogen 1,49 
(Kanno et al., 2016; 

Mao et al., 2014) 
3,4,5,8 

Ig kappa chain V-II region Cum 1,63 - - 

Apolipoprotein A-IV 1,67 - 5 

Hemopexin 1,70 (Lin et al., 2015) 5,6 

Ig lambda-2 chain C regions 1,73 - - 

Proteoglycan 4 1,79 (Novince et al., 2012) 7 

Complement factor H 1,82 (Fedarko, 2000) 1 

Ig kappa chain V-III region VG 

(Fragment) 
1,90 - - 

Ig kappa chain V-III region SIE 1,93 - - 

Kininogen-1 2,02 

(Tsuruga et al., 2006; 

Yamamura et al., 

2006) 

1,2,3,4,5,7 

C4b-binding protein alpha chain 2,06 (Conway, 2015) 1 

Complement C1s subcomponent 2,07 (Conway, 2015) 1,2,5,8 

Ig kappa chain V-IV region Len 2,08 - - 

Vitronectin 2,21 (Salasznyk et al., 2004) 7 

Complement component C7 2,22 (Conway, 2015) 1 

Complement C1q subcomponent 

subunit B 
2,24 (Conway, 2015) 1,2 

Complement C1q subcomponent 

subunit C 
2,26 (Conway, 2015) 1,2 



 

 

FIGURE LEGENDS 

Figure 1. SEM images of sol-gel coated disc surface.  70M30T (a)  and 50M50G (b). 

Calibration bar 10 µm. 

Figure 2. MC3T3-E1 cell viability and mineralization in vitro. Percentage of cell 

survival following the norm ISO 10993-5 (a). ALP activity (mM PNP/h) normalized to 

the protein concentration (µg/µl) of cells grown without disc (oblicue lines), grown on 

control Ti discs (horizontal lines), 70M30G (white column) and 50M50G coated Ti 

discs (black column). 

Figure 3. In vivo studies.   a) Light microscopy images of 

(EXAKT
®
 cut and Gomori Trichrome stain) in vivo implants 4 and 8 weeks post-

implantation of 70M30T and  50M50G sol-

gelcoated screw.  b) Quantification of the estimated area of fibrous connective tissue for

Complement C3 2,27 

(Maekawa et al., 2014; 

Matsuoka et al., 2014; 

Kuo et al., 2015) 

1 

Plasma protease C1 inhibitor 2,34 (Davis et al., 2007) 1,3 

Apolipoprotein E 2,40 

(Dieckmann et al., 

2013; Newman et al., 

2002) 

3,4,5,6,7 

Leucine-rich alpha-2-glycoprotein 2,54 (Fujimoto et al., 2015) 5 

Complement C5 2,55 (Conway, 2015) 1,6 

Serum amyloid P-component 3,48 (Bottazzi et al., 2016) 1,5,7,8 

Complement C1q subcomponent 

subunit A 
3,60 (Conway, 2015) 1,2 

Myosin-1 4,22 - 9 

Lipocalin-1 4,28 - 8 

C-reactive protein 7,83 (Du Clos, 2013b) 1,5,8 

Glutamate dehydrogenase 1, 

mitochondrial 
13,47 - - 

L-lactate dehydrogenase B chain 14,30 - - 



 a n=4. Significant values were considered for a p<0.05 (ANOVA, with Newman-

Keuls post-test).Calibration bar 200 µm. 

 


