1 Introduction

Stochastic volatility models are of considerable interest in empirical ..nance. There are many types
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inference. Parametric models are prone to misspeci..cation, especially when there is no theoretical
reason to prefer one speci..cation over another. Nonparametric models can provide greater fexibility.
However, the greater generality of these models comes at a cost - including a large number of lags
requires estimation of a high dimensional smooth, which is known to behave very badly [Silverman
(1986)]. The curse of dimensionality puts severe limits on the dynamic texibility of nonparametric
models. Separable models o=er an intermediate position between the complete generality of non-
parametric models, and the restrictiveness of parametric ones. These models have been investigated
in cross-sectional settings as well as time series ones.
In this paper, we investigate a generalized additive nonlinear ARCH model (GANARCH);

Yy =m (yt_1, Yi—2, - - - 7yt—d) + U, U= Ul/Z (yt—b Yi—2y - -+, yt—d) ) (1-1)
d
m (yt—layt—27 e >yt—d) = Fm (Cm + Zma(yt—a)> ) (12)
a=1
d
O (Ye-1:Yt-2, - Yemd) = By (Cv + Zva(yt—a)> : (1.3)
a=1

where m,, (-) and v, (-) are any smooth but unknown function, while F,, (-) and F, (-) are known
monotone transformations [whose inverses are G,, (-) and G, (-), respectively].! The error process,
{e:+}, isassumed to be a martingale dicerence with unitscale, i.e., E(g;|F;_1) =0and E(e?|F,_1) = 1,
where F, is the o-algebra of events generated by {y;}:_ _ . Under some weak assumptions, the time
series of nonlinear autoregressive models can be shown to be stationary and strongly mixing with
mixing coedcients decaying exponentially fast. Auestadt and Tjgstheim (1990) used a-mixing or
geometric ergodicity to identify the nonlinear time series model. Similar results were obtained for
the additive nonlinear ARCH process by Masry and Tjgstheim (1997), see also Cai and Masry (2000)
and Carrasco and Chen (2002). We follow the same argument as Masry and Tjgstheim (1997), and
will assume all the necessary conditions for stationarity and mixing property of the process {y,}; ,
in (1.1). The standard identi..cation for the components of the mean and variance is made by

E[ma (Yi-a) =0 and Efvs (yi-a)] =0 (1.4)

1The extension to allow the F transformations to be of unknown functional form is considerably more complicated,
but see Horowitz (1999).
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for all « = 1,...,d. The notable aspect of the model is additivity via known links for conditional
mean and volatility functions. As will be shown below, (1.1)-(1.3) includes a wide variety of time
series models in the literature. See Horowitz (2001) for a discussion of generalized additive models
in a cross-section context.

In a much simpler univariate setup, Robinson (1983), Auestadt and Tjgstheim (1990), and Har-
dle and Vieu (1992) studied the kernel estimation of conditional mean function, m (-) in (1.1). The
so-called CHARN (Conditionally Heteroscedastic Autoregressive Nonlinear) model is the same as
(1.1) except that m(-) and v(-) are univariate functions of y; ;. Masry and Tjgstheim (1995) and
Hardle and Tsybakov (1997) applied the Nadaraya-Watson and local linear smoothing methods,
respectively, to jointly estimate v(-) together with m (). Alternatively, Fan and Yao (1996) and
Ziegelmann (2002) proposed local linear least square estimation for volatility function, with the ex-
tension given by Avramidis (2002) based on local linear maximum likelihood estimation. Also, in a
nonlinear VAR context, Hardle, Tsybakov and Yang (1996) dealt with the estimation of conditional
mean in a multilagged extension similar to (1.1). Unfortunately, however, introducing more lags
in nonparametric time series models has unpleasant consequences, more so than in the parametric
approach. As is well known, smoothing method in high dimensions sucers from a slower conver-
gence rate - the “curse of dimensionality”. Under twice dicerentiability of m (-), the optimal rate is
n~2/4+4) which gets rapidly worse with dimension. In high dimensions it is also di¢cult to describe
graphically the function m.

Additive structure has been proposed as a useful way to circumvent these problems in multi-
variate smoothing. By assuming the target function to be a sum of functions of covariates, say,
M(Ye—1, Y2y -+ Yt—d) = Cm + Zizl ma(Y:—o), We can eaectively reduce the dimensionality of a re-
gression problem and improve the implementability of multivariate smoothing up to that of the
one-dimensional case. Stone (1985,1986) showed that it is possible to estimate m,(-) and m(-) with
the one-dimensional optimal rate of convergence - e.g., n%/® for twice dicerentiable functions - re-
gardless of d. The estimates are now easily illustrated and interpreted. For these reasons, since the
eighties, additive models have been fundamental to nonparametric regression among both econo-
metricians and statisticians. Regarding the estimation method for achieving the one-dimensional
optimal rate, the literature suggests two dicerent approaches: back..tting and marginal integration.
The former, originally suggested by Breiman and Friedman (1985), Buja, Hastie and Tibshirani
(1989), and Hastie and Tibshirani (1987,1991) is to execute iterative calculations of one-dimensional
smoothing, until some convergence criterion is satis..ed. Though appealing to our intuition, the sta-
tistical properties of back..tting algorithm were not clearly understood until the very recent works
by Opsomer and Ruppert (1997) and Mammen, Linton, and Nielsen (1999). They developed speci..c
(linear) back..tting procedures and established the geometric convergence of their algorithms and
the pointwise asymptotic distributions under some conditions. However, one disadvantage of these
procedures is the time consuming iterations required for implementation. Also, the proofs for the



linear case can’'t be easily generalized to nonlinear cases like Generalized Additive Models.

A more recent approach, called marginal integration (Ml), is theoretically more manipulable - its
statistical properties are easy to derive, since it simply uses averaging of multivariate kernel estimates.
Developed independently by Newey (1994), Tjgstheim and Auestadt (1994a), and Linton and Nielsen
(1995), its advantage of theoretical convenience inspired the subsequent applications such as Linton,
Wang, Chen, and Hardle (1997) for transformation models and Linton, Nielsen, and van de Geer
(2003) for hazard models with censoring. In the time series models that are special cases of (1.1) and
(1.2) with F,, being the identity, Chen and Tsay (1993 a,b) and Masry and Tjgstheim (1997) applied
back..tting and MI, respectively, to estimate the conditional mean function. Mammen, Linton,
and Nielsen (1999) provided useful results for the same type of models, by improving the previous
back...tting method with some modi..cation and successfully deriving the asymptotic properties under
weak conditions. The separability assumption was also used in volatility estimation by Yang, Hardle,
and Nielsen (1999), where the nonlinear ARCH model is of additive mean and multiplicative volatility

in the form of
d

p 1/2
Y= Cm > Ma(Yia) + <Cv 11 va(yt_a)> - (1.5)

a=1
To estimate (1.5), they relied on marginal integration with local linear ..ts as a pilot estimate, and
derived asymptotic properties.

This paper features two contributions to the additive literature. The ..rst concerns theoretical
development of a new estimation tool called local instrumental variable method for additive models,
which was outlined for simple additive cross-sectional regression in the paper Kim, Linton, and
Hengartner (1999). The novelty of the procedure lies in the simple de..nition of the estimator based
on univariate smoothing combined with new kernel weights. That is, adjusting kernel weights via
conditional density of the covariate enables an univariate kernel smoother to estimate consistently the
corresponding additive component function. In many respects, the new estimator preserves the good
properties of univariate smoothers. The instrumental variable method is analytically tractable for
asymptotic theory and can be easily shown to attain the optimal one-dimensional rate as required.
Furthermore, it is computationally more e¢cient than the two existing methods (back..tting and
MI), in the sense that it reduces the computations up to a factor of n smoothings. The other
contribution relates to the general coverage of the model we work with. The model in (1.1) through
(1.3) extends ARCH models to a generalized additive framework where both the mean and variance
functions are additive after some known transformation [see Hastie and Tibshirani (1990)]. All the
time series models in our discussion above are regarded as a subclass of the data generating process for
{y;} in (1.1) through (1.3). For example, setting G,, to be an identity and G, a logarithmic function
reduces our model to (1.5). Similar ecorts to apply transformation were made in a parametric ARCH
models. Nelson (1991) considered a model for the log of the conditional variance - the Exponential
(G)ARCH class, to embody the multiplicative exects of volatility. It was also argued to use the
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Box-Cox transformation for volatility which is intermediate between linear and logarithm. Since it
is hard to tell a priori which structure of volatility is more realistic and it should be determined by
real data, our generalized additive model provides useful fexible speci..cations for empirical work.
Additionally, from the perspective of potential misspeci..cation problems, the transformation used
here alleviates the restriction imposed by additivity assumption, which increases the approximating
power of our model. Note that when the lagged variables in (1.1) through (1.3) are replaced by
dicerent covariates and the observations are i.i.d., the model becomes the cross sectional additive
model studied by Linton and Hardle (1996). Finally, we also consider more e¢cient estimation along
the lines of Linton (1996, 2000).

The rest of the paper is organized as follows. Section 2 describes the main estimation idea in
a simple setting. In section 3, we de..ne the estimator for the full model. In section 4 we give our
main results including the asymptotic normality of our estimators. Section 5 discusses more e¢cient
estimation. Section 6 reports a small Monte Carlo study. The proofs are contained in the appendix.

2 Nonparametric Instrumental Variables: The Main Idea

This section explains the basic idea behind the instrumental variable method and de...nes the estima-
tion procedure. For ease of exposition, this will be carried out using an example of simple additive
models with i.i.d. data. We then extend the de..nition to the generalized additive ARCH case in
(1.1) through (1.3).

Consider a bivariate additive regression model for i.i.d. data (y, X;, X5),

y =my (X1) +my (Xp) +¢

where E(e|X) = 0 with X = (X3, X;), and the components satisfy the identi..cation conditions
Emq (X,)] = 0, for a = 1,2 [the constant term is assumed to be zero, for simplicity]. Letting
n =my (X3) + &, We rewrite the model as

y =my (X1)+n, (2.6)

which is a classical example of “omitted variable regression. That is, although (2.6) appears to take
the form of a univariate nonparametric regression model, smoothing y on X; will incur a bias due
to the omitted variable 7, because n contains X5, which in general depends on X;. One solution to
this is suggested by the classical econometric notion of instrumental variable. That is, we look for
an instrument W such that

E(W|X))#0 ; E(WnlX;)=0 (2.7)



with probability one.? If such a random variable exists, we can write

EWy| Xy = 1)
E(W‘Xl :.fll'l)

my (1) = (2.8)
This suggests that we estimate the function m, () by nonparametric smoothing of Wy on X; and
W on X;. In parametric models the choice of instrument is usually not obvious and requires some
caution. However, our additive model has a natural class of instruments — p, (X3) /p (X) times any
measurable function of X; will do, where p(-), pi(-), and p, (-) are the density functions of the
covariates X, X, and X5, respectively. It follows that

EWylx)  JWEX)m (X)f(;%dXz [ WEOm(X)p(X)dX,

EW|Xy) fW )2, TW(X)p(X)dX,
fm X2 dX2 /
X5)dX
fPQ X2 Xy " pQ( 2) ?

as required. This formula shows what the instrumental variable estimator is estimating when m is
not additive - an average of the regression function over the X, direction, exactly the same as the
target of the marginal integration estimator. For simplicity we will take

p2 (X)

WX) = p(X)

(2.9)
throughout.®

Up to now, it was implicitly assumed that the distributions of the covariates are known a priori.
In practice, this is rarely true, and we have to rely on estimates of these quantities. Let p(-),p; (-),
and p, (-) be kernel estimates of the densities p (-),p; (-), and p, (-), respectively. Then, the feasible
procedure is de..ned with a replacement of the instrumental variable W by W = by (Xs) /p(X) and
taking sample averages instead of population expectations. Section 3 provides a rigorous statistical

2Note the contrast with the marginal integration or projection method. In this approach one de..nes m; by some
unconditional expectation
mi(z1) = Elm(z1, X2)W(X2)]

for some weighting function 1 that depends only on X, and which satis...es

EW(Xo)l=1 ; E[W(X3)me(Xs)] = 0.

31f instead we take

_ pi(Xy)p2 (X2)
Wix) = p(X)

This satis.es E(W|X;) =1 and E(Wn|X;) = 0. However, the term p,(X;)cancels out of the expression and is
redundant.



treatment for feasible instrumental variable estimators based on local linear estimation. See Kim,
Linton, and Hengartner (1999) for a slightly dicerent approach.

Next, we come to the main advantage that the local instrumental variable method has. This is
in terms of the computational cost. The marginal integration method actually needs n? regression
smoothings evaluated at the pairs (Xi;, Xy;), foré,j = 1,...,n, while the back..tting method requires
nr operations-where r is the number of iterations to achieve convergence. The instrumental variable
procedure, in contrast, takes at most 2n operations of kernel smoothings in a preliminary step for
estimating instrumental variable, and another n operations for regressions. Thus, it can be easily
combined with bootstrap method whose computational costs often becomes prohibitive in the case
of marginal integration.

Finally, we show how the instrumental variable approach can be applied to generalized additive
models. Let F'(-) be the inverse of a known link function G (-) and let m (X) = E(y|X). The model
is de..ned as

y=F(mi(Xq)+mse (Xy)) +e, (2.10)

or equivalently G (m (X)) = my (X;) + ma (X2). We maintain the same identi..cation condition,
E[ms(X,)] = 0. Unlike in the simple additive model, there is no direct way to relate Wy to
my (X;), here, so that (2.8) cannot be implemented. However, under additivity

EWG(m (X)) Xi]
E[W[X]

m(Xy) = (2.11)

for the W de..ned in (2.9). Since m(-) is unknown, we need consistent estimates of m (X) in a
preliminary step, and then the calculation in (2.11) is feasible. In the next section we show how
these ideas are translated into estimators for the general time series setting.

3 Instrumental Variable Procedure for GANARCH

We start with some simplifying notations that will be used repeatedly throughout the paper. Let z; be
the vector of d lagged variables until ¢t — 1, that is, z; = (y;_1, ..., ¥:_a), Or concisely, x; = (yt_a,gt_a),

Whel’egt_a = (Yi—1- > Yt—a—1,Yt—a+1s - - - » Y—a)- De..NING ma(gt_a) = Zgﬂ,;ﬁa mg(y:—p) and Ua(ﬂt_a)
= Zgzlﬁéa vg(y—p), We can reformulate (1.1) through (1.3) with a focus on the oth components of
mean and variance as
Y = M (.Tt) + /U1/2 (.Tt) Et,
m (xt) = Fm (Cm + ma(yt—a) + mﬂ(yt—a)) )

v(zy) = F, (Cv + Vo (Y—a) + Ua(?_Jt_a)) -



To save space we will use the following abbreviations for functions to be estimated:

T
Ho(Yi-a) = [ma(Yi-a) Ve o)+ Haly, )= |maly, ) Ua(?jt_a)] :
¢ = lomal, 2 =H(w) =[G (m(2)), Gy (v(2))]"
PalYa) = c+ Ha(ya)-
Note that the components [m,(-),v.(-)]” are identi..ed, up to constant, c, by ¢, (-), which will be our
mayjor interest in estimation. Below, we examine some details in each relevant step for computing

the feasible nonparametric instrumental variable estimator of ¢, (-). The set of observations is given
by ¥ = {u}",, where n' = n + d.

3.1 Step I. Preliminary Estimation of z; = H (x)

Since z; is unknown, we start with computing the pilot estimates of the regression surface by a local
linear smoother. Let m(z) be the ..rst component of (a,b) that solves

min Z Ky(zy — ) {ys —a — b(z, — )}, (3.12)

where K (r) = I%, K(x;/h)/h* and K is a one-dimensional kernel function and h = h(n) is a
bandwidth sequence. In a similar way, we get the estimate of the volatility surface, v (-), from (3.12)
by replacing 1 with the squared residuals, z; = (y, — m (z,))2. Then, transforming m and v by the
known links will leads to consistent estimates of z,

Z=H () =[G (M (20)), Gy (0(20))]" -

3.2 Step II: Instrumental Variable Estimation of Additive Components

This step involves the estimation of ¢_ (-), which is equivalent to [m (-), v, (-)]”, up to the constant
c. Let p(-) and p, (-) denote the density functions of the random variables (y;—.,y, ) and y, ,
respectively. De..ne the feasible instrument as

= ﬁﬂ(gt_a)
Wt = = s
PWi-asy, )

where 7, (-) and 7 (-) are computed using the kernel function L (-), e.g., p(z) = S0, T, Ly(zi —
z;)/n with L, () = L(-/g)/g. The instrumental variable local linear estimates ©(y,) are given as
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(a1, az)" through minimizing the localized squared errors elementwise

n/

min K (g0 — 9a) Wi {250 — a3 = b; (-0 — 9a) )’ (3.13)
7 p=dt1

where z;, is the j-th element of z,. The closed form of the solution is
Palya)” =€l (YIKY.) ' YTKZ, (3.14)

where e; = (1,0)", Y_ = [, Y], K = diag[Kr(Yas1-a — Ya)Warts- - Kn(Un—a — ya) W], and Z
(Zar1y -5 2n) T, with 0= (1,. . ., 1)T and Y. = (Yas1-a — Yar- - Un'-a — Ya) -

4 Main Results

Let F¢ be the o-algebra of events generated by {yt}'; and « (k) the strong mixing coe€cient of {y,}
which is de..ned by
a(k) = sup |P(ANB)— P (A)P(B)|.

0
AeF” , BeF?

Throughout the paper, we assume

Cl. {y:};°, is stationary and strongly mixing with a mixing coe¢cient, «(k) = p~#*, for some
6> 0.

C.1lis a standard mixing condition with a geometrically decreasing rate. However, the asymptotic
theory for the instrumental variable estimator is developed based on a milder condition on the mixing
coedcient - as was pointed out by Masry and Tjgstheim (1997), >°.°  k* {a(k)}l_Q/” < oo, for some
v >2and 0 < a < (1—-2/v). Itis easy to verify that this condition holds under C.1. Some technical
conditions for regularity are stated.

C2. The additive component functions, m.(-), and v,(:), for o =1, ..., d, are continuous and twice
dicerentiable on their compact supports.

C.3 The link functions, G,, and G,, have bounded continuous second order derivatives over any
compact interval.

C4. The joint and marginal density functions, p(-), p, (+), and p,(-), fora = 1,. .. d, are continuous,
twice dicerentiable with bounded (partial) derivatives, and bounded away from zero on the
compact support.

C5. The kernel functions, K (-)and L(-), are a real bounded nonnegative symmetric function on
compact support satisfying | K (u)du = [ L (u)du =1, [uK (u)du = [ uL (u)du = 0. Also,
assume that the kernel functions are Lipschitz-continuous, | K (u) — K(v)| < Clu — v|.
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C6. (i) g — 0, ng? — oo, and (ii) h — 0, nh — oo. (iii) The bandwidth satis..es \/fa(t(n)) —
0,where {t(n)} be a sequence of positive integers, ¢(n) — oo such that ¢(n) = o(v/nh).

Conditions C.2 through C.5 are standard in kernel estimation. The continuity assumption in
C2 and C4, together with the compact support, implies that the functions are bounded. The ad-
ditional bandwidth condition in C.6(iii) is necessary to control the exects from the dependence of
mixing processes in showing the asymptotic normality of instrumental variable estimates. The proof
of consistency, however, does not require this condition for bandwidths. De..ne D2f (21, .. xd) =
Zj’:l O f (x;) /0*x and [V Gy, (t), VG, (t)] = [dGn, (t) /dt, dG, (t) /dt]. Let (KxK);(u) = [ K (w

u)w'dw, a convolution of kernel functions, and u%,, = [(K * K)o(u)u’du, Whl|e ||K||3 denotes
J K? (u) du. The asymptotic properties of the feasible instrumental variable estimates in (3.14) are
summarlzed in the following theorem whose proof is in the Appendix. Let x3(ya, 2o) = Elel |z, =
Yo, 20)], AN K4 (Ya, 25) = E[(e? — 1)° |z, = (ya, 24)]. A ® B denotes the matrix Hadamard product.

Theorem 1 Assume that conditions C.1 through C.6 hold. Then,
Vih(Zo(ya) = ¢a () = Bal = N[0, 25 (ya)].

where

2

h
Ba(ya) = ZHiD’pa(ya)
h2

+5 [ i D*¢a(¥a) + 15 D00 ()] © [V G (s 7)), VGo(0(Yar 7)) Pa(2a)d2a
Vi [10%a) — S8C8 Dy, ) Haa)
% o 2 pi(zﬂ) mi(za) Mg (20 ) Vo (2a) .
I L b e [ma%)%(zﬂ) i ]da
) P2 (2) VG, (m)%v (VG VG,)(k30%?)
+H(K*K>0H2/p(yayza) (VG VG,)(k3v3?) VG, (v)?k40? ](yng‘)d@.

Remarks. 1. To estimate [m.(ya.),va(%.)]", we can use the following recentered estimates,
Balya) — & Where @ = [6,,,2,) = £[3°, 4, 3, F]" and & =y, — i (x,). Since ¢ = ¢ + 0, (1//n),
the bias and variance of [, (v.), 0. (ys)]* are the same as those of @, (y,). For y = (y1,...,va), the
estimates for the conditional mean and volatility are de..ned by

Fm[_ (d - 1)6771 + Z@al(ya)]’ Fv[_ (d - 1) /C\v + Z@c@(ya)]] :

[m(y), v(y)] =




Let VF(y) = [VF,.(m(y)), VE,(v(y))]*. Then, by Theorem 1 and the Delta method, their asymp-
totic distribution satis..es

Vah [(y) — m(y) — bu(y), 5(y) — v(y) — bu(y)]" 5 N (0,2 (y)],

where (b, (y), by(y)]” = VF(y)© > a_; Ba(ya), and T*(y) = [VF (y) VE(y)T] 0 [S5(y1) + - - +Ti(ya))-
It is easy to see that ¥, (y.) and Ps(ys) are asymptotically uncorrelated for any o and 3, and the
asymptotic variance of their sum is also the sum of the variances of ¥, (y,) and @s(ys).

2. The ..rst term of the bias is of the standard form, depending only on the second derivatives
as in other local linear smoothing. The last term refects the biases from using estimates for density
functions to construct the feasible instrumental variable, p,(y, )/P(z:). When the instrument
consisting of known density functions, p,(y, )/p(z:), is used in (3.13), the asymptotic properties
of IV estimates are the same as those from Theorem 1 except that the new asymptotic bias now
includes only the ..rst two terms of B, (v, )-

3. The convolution kernel (K * K)(-) is the legacy of double smoothing in the instrumental
variable estimation of ‘generalized’ additive models, since we smooth [G,,(m(-)), G,(v(+))] with
m(-) and v () given by (multivariate) local linear ..ts. When G,,(-) is the identity, we can directly
smooth y instead of G,, (m (z;)) to estimate the components of the conditional mean function. Then,
as the following theorem shows, the second term of the bias of B, does not arise, and the convolution
kernel in the variance is replaced by a usual kernel function.

Suppose that F,,(t) = F,(t) = t in (1.2) and (1.3). The instrumental variable estimate of the
a-th component, []\/Za(ya), %(ya)], is now the solution to the adjusted-kernel least squares in (3.13)
with a modi..cation that the (2x1) vector Z is replaced by [y, 2-]" with &, de..ned in step | of section
2.2. Theorem 2 shows the asymptotic normality of these instrumental variable estimates. The proof
is almost the same as that of Theorem 1 and is thus omitted.

Theorem 2 Under the same conditions as Theorem 1,

o~

i) Vh[Ma(ya) — Ma(ya) — 7] -5 N[0, 07 (ya)),

where

m h? 2 12 g 2 2 PalZa) o
by (ya) = ?NKD ma(ya) + E#K [D p.a(za) - D p(yavza)]ma(z.a)dzm
p(yaazg)

pi(z.cx) 5
M[mg(za) + (Yo, 20| d2g,

) = K [

and

i) Vih[Va(ya) = Vi) — B2] > N[0,0% (va)],
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where

v h? 5 o g 2 Pa(Za) o
ba(ya) = —ugD Ua(ya) + T Mk [D pa.(z.a) - D p(yaa Za)]va.(z.a)dzav
2 2 P(Yas 2a)
2
v p (Zﬂ)
Ea(ya) = ||K||§ / p(; s ) [Ui(z.a) + ’f4(yaa Zm)vz(yay Z_a)]dz.a-
ay ~Q

Although the instrumental variable estimators achieve the one-dimensional optimal convergence
rate, there is room for improvement in terms of variance. For example, compared to the marginal
integration estimators of Linton and Héardle (1996) or Linton and Nielsen (1995), the asymptotic
variances of the instrumental variable estimates for m; (-) in Theorem 1 and 2 include an additional
factor of m2(-). This is because the instrumental variable approach treats n = m, (X5)+¢ in (2.6) as
if it were the error term of the regression equation for m, (). Note that the asymptotic covariance in
Theorem 1 is the same as that in Yang, Hardle, and Nielsen (1999), where they only considered the
case with additive mean and multiplicative volatility functions. The issue of e@ciency in estimating
an additive component was ..rst addressed by Linton (1996) based on ‘oracle e¢®ciency’ bounds of
infeasible estimators under the knowledge of other components. According to this, both instrumental
variable and marginal integration estimators are ine€cient, but they can attain the e€ciency bounds
through one simple additional step, following Linton (1996, 2000) and Kim, Linton, and Hengartner
(1999).

5 More ECcient Estimation

5.1 Oracle Standard

In this section we de..ne a standard of e¢ciency that could be achieved in the presence of certain
information, and then show how to achieve this in practice. There are several routes to eCciency
here, depending on the assumptions one is willing to make about ¢;. We shall take an approach based
on likelihood, that is, we shall assume that ¢, is i.i.d. with known density function f like the normal
or t with given degrees of freedom. It is easy to generalize this to the case where f contains unknown
parameters, but we shall not do so here. It is also possible to build an e¢ciency standard based on
the moment conditions in (1.1)-(1.3). We choose the likelihood approach because it leads to easy
calculations and links with existing work, and is the most common method for estimating parametric
ARCH/GARCH models in applied work.

There are several standards that we could apply here. First, suppose that we know (c,,, {mg(-) :
B # a}) and (¢, {va() : @}), what is the best estimator we can obtain for the function m,, (within
the local polynomial paradigm)? Similarly, suppose that we know (c,,, {m.(-) : a}) and (c,, {vs(:) :
B # a}), what is the best estimator we can obtain for the function v,? It turns out that this standard
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is very high and can’t be achieved in practice. Instead we ask: suppose that we know (¢,,, {mgs(-) :
B # a})and (c,, {vs(-) : B # a}), what is the best estimator we can obtain for the functions (m,, v,).
It turns out that this standard can be achieved in practice. Let = denote ‘—log f(-)’, where f(-) is
the density function of ¢;,. We use z; to denote (x;, y;), where z; = (y;_1,...,%:_q), OF Mmore concisely,
Ty = (yt_a,gt_a). For 0 = (0., 6y) = (am, Gy, by, b,), We de..ne

Y — Fm (,Yla(gt—a) + am + bm(yt—a - ya))>
Fo (Voo (Y, ) + @+ b (Us-a — ¥a)

1
+§ log Fv(’VQa(Et_a) + a, + bv(yt—a - ya))’
lt(9> Va) = Z(Zt; 97 ’)/a) = Kh(yt—a - ya)l*(zt;9>7a)7

(0,7,) = l*(ZM%)Z?T(

where Va@t_a) = (’71a@t_a)v'72a<ﬂt_a)) = (cn + ma(gt_a)vcv + Ua(ﬂt_a)) = (cm + ngﬁa ms(Yi—p),
Cv+zg¢a va(y—p)). With 1,(0,~,) being the (negative) conditional local log likelihood, the infeasible
local likelihood estimator 6 = (a,,, a,,b.,, b,) is de..ned by the minimizer of

Qu(0) =Y L(6.75),

t=d+1
where 72() = (79, (), 79, ()) = (&, + m2(-), & +v2(-)). From the de..nition for the score function;

ol* (245 0,7,)
00

Ol(z; 0,7,
070) = s(z:0,7,) = 260

S:(a,)/a) = S*(Zt;eﬂfya):

the ..rst order condition for 4 is given by

n/

_ | _
0= Sn(eayg) = E Z St(ev ’721)

t=d+1

The asymptotic distribution of local MLE has been studied by Avramidis (2002). For y = (y1, ..., %a)
= (Yary,), de.ne

Vo = Valya) = /V(y;HO,*v?.)p(y)dya; Do = D(ya) —/D(y; 00, Yo P(y)dy.

where

V(y;:0,7,) = Els™(2:0,7,)5" (25 0,74) |we = y]; D(y; 0,7,) = E(Ves; (250, 7,) |2 = y).

With a minor generalization of the results by Avramidis (2002, Theorem 2), we obtain the following
asymptotic properties for the infeasible estimators, o, (o) = [Ma(Ya ), Va(Ya)] = [@m, @y

12



Theorem 3 Under Assumption B in the appendix, it holds that
Vh(@, (ya) = Pa(ya) = Bal 5 N[0, 2% (ya)].

where B, = 3h% i [mq (ya), v (o) ", and @ (ya) = [| K|FD, VoD,

Remarks.

A more speci..c form for the asymptotic variance can be calculated. For example, suppose that
the error density function, f(-), is symmetric. Then, the asymptotic variance of the volatility function
IS given by
() = JU W) f W) dy} (VE/E)*(Gu(v®)))p(y)dy,,

A aly) dy}(VF JF)2(Go(v(y))p(y)dy, |2

where g(y) = f'(y)f~(y)y + 1, and q(y) =W "W ) +uf' W) =y f )2 2 ).

When the error distribution is Gaussian, we can further simplify the asymptotic variance; i.e.,

wi1(Ya) = [/ v‘l(y)VFTi(Gm(m(y))p(y)dga]_1; wiz = wy = 0;
wy(Ya) = 2 { / v‘2(y)VFf(Gv(v(y))p(y)dga}_1-

In this case, one can easily ..nd the infeasible estimator to have lower asymptotic variance than the
IV estimator. To see this, we note that VG,, = 1/VF,, and ||K||3 < ||(K * K)o||3, and apply the
Cauchy-Schwarz inequality to get

[I(E s+ K)oll2 /;;a—(gz))v%(m)%(ymga)dg

(e}

> KR {/ 0™ (st ) V2 (G (7))l 4 mr.

In a similar way, from x, = 3 due to the gaussianity assumption on ¢, it follows that

H(K*K)OHQM/MVG (0)*0% (Yo, Ya ),
2 p(ya,zg) v ayr Ja Q

> 2 {/v‘Q(y)VFf(Gv(v(y))p(y)dya} _1-

These, together with k3 = 0, imply that the second term of ¥*(y,) in Theorem 1 is greater than
Q2 (y,) in the sense of positive de..niteness, and hence X (v, ) > % (va), since the ..rst term of * (y,,)
IS a nonnegative matrix. The infeasible estimator is more eCcient than the IV estimator, because
the former uses more information concerning the mean-variance structure.
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5.2 Feasible Estimation

Let (G, {mgs(:) : B # a}) and (¢,, {vs(-) : B # a})] be the estimators de..ned in the previous sections.
De..ne the feasible local likelihood estimator § = (ar,,ar b 3*) as the minimizers of

m? v YmI v

Qn(0) = > 1(6:7,),

t=d+1

where 7,(:) = (14(*); Y2 (*)) = (Cm + mMy(+), ¢ + Ua(+)). Then, the ..rst order condition for 6 is
given by

/

_ o 1 « 5
0=5,(0,7a) == > 5:(0 ,7a)- (5.15)
t=d+1

Let m* (y,) = aZ, and v} (y,) = a:. We have the following result.
Theorem 4 Under Assumption A and B in the appendix, it holds that
\/nh[QZ(ya) - @a(ya)] & 0.

This results shows that the oracle e¢ciency bound is achieved by the two-step estimator.

6 Numerical Examples

A small-scale simulation is carried out to investigate the ..nite sample properties of both the IV and
two-step estimators. The design in our experiment is Additive Nonlinear ARCH(2)

Ye = [0.2 + v1(ge—1) + va(me—2)]es,

u(y) = 04@x(29)2 - on(y)ly",
v(y) = 04 {1/\/1 +0.1y% + In(1 +4y°) — 1} ,

where @ (-) is the (cumulative) standard normal distribution function, and ¢ is i.i.d. with N(0,1).
Fig.1(solid lines) depicts the shapes of the volatility functions de..ned by v;(-) and v,(-). Based on
the above model, we simulate 500 samples of ARCH processes with sample size n = 500. For each
realization of the ARCH process, we apply the IV estimation procedure in (3.13) with 2z, = ¢? to
get preliminary estimates of v;(-) and v,(-). Those estimates then are used to compute the two-step
estimates of volatility functions based on the feasible local MLE in section 5.2, under the normality
assumption for the errors. The infeasible oracle-estimates are also provided for comparisons. The
gaussian kernel is used for all the nonparametric estimates, and bandwidths are chosen according to
the rule of thumb (Héardle, 1990), h = cj,std(y,)n~/*+9), where std(y,) is the standard deviation of y,.
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We ..X ¢;, = 1 for both the density estimates (for computing the instruments, 1) and IV estimates in
(3.13), and ¢, = 1.5 for the (feasible and infeasible) local MLE. To evaluate the performance of the
estimators, we calculate the mean squared error, together with the mean absolute deviation error,
for each simulated data ; for o = 1,2,

1 50 1/2
€a,MSE = {%Z[U(x(yi)_@\a(yi)]Q} ;
i=1
1 50
€a,MAE = %Z‘Ua(yi)_ﬁa(yi)L
i=1

where {yi, .., yso } are grid points on [—1,1). The grid range covers about 70% of the whole observa-
tions on average. The following table gives averages of e, r/s’S and e, arar’s from 500 repetitions.

Table 1. Averages MSE and MAE for three volatility estimators

€1,MSE | €2, MSE | €1,MAE | €2 MAE
oracle est. | .07636 | .08310 | .06049 | .06816
IV est. .08017 | .11704 | .06660 | .09725
two-step .08028 | .08524 | .06372 | .07026

Table 1 shows that the infeasible oracle estimator is the best out of the three, to one’s expectation.
The performance of the 1V estimator seems to be reasonably good, compared to the local MLE’s, at
least in estimating the volatility function of the ..rst lagged variable. Howewver, the overall accuracy
of the IV estimates is improved by the two-step procedure which behaves almost as well as the
infeasible one, con..rming our theoretical results in Theorem 4. For more comparisons, Fig.1 shows
the averaged estimates of volatility functions, where the averages are made, at each grid, over 500
simulations. In Fig.2, we also illustrate the estimates for three typical (consecutive) realizations of
ARCH processes.

A Appendix

A.1 Proofs for Section 4

The proof of Theorem 1 consists of three steps. Without loss of generality we deal with the case o =
1; below we will use the subscript ‘2, for expositional convenience, to denote the nuisance direction.
That is, p2(y, ,) = p1(y, ,) in the case of density function. For component functions, m»(y, ),
va(y, ), and Hy(y, ) will be used instead of my(y, ), vi(y, ), and Hy(y, ), respectively. We
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start by decomposing the estimation errors, ¢, (y;) — ¢, (y1), into the main stochastic term and bias.
Use X,, ~ Y, to mean X,, =Y, {1+ 0, (1)} in the following. Let vec(X) denote the vectorization of
the elements of the matrix X along with columns.

Step I: Decompositions and Approximations
Since p,(y;) is a column vector, the vectorization of eg. (3.14) gives
Pry) = [L@ef (YTKY_)_I] (L, ® YIK) vec (Z) :
A similar form is obtained for the true function, ¢, (y),
Lee! (YIKY )] (B YI'K) vee (1! (1) + Y-Vl (1))

by the identity,
o1 (y1) = vee{el (YIKY ) Y K[l (1) + Y-Vl ()]},

since
T (YIKY ) ' YTKi =1, f (YIKY ) Y'KY. =0.

By de..ning D, = diag (1,h) and Q,, = D, "YTKY _D, ", the estimation errors are

&) —oi(1) = (L@ ef Q. 7y,

where

Ty = (Ig ® D,jlYTK) vec|Z — Lgpf(yl) —Y_VgolT(yl)].

Observing

1w - i
== 3 K (e = 90 (B — o) — (e — ) V()] ® (L2
7lk:d+1

where Khm (y) = Kh(y)/Wk, it follows by adding and subtracting z; = ¢; (yr—1) + Ha(y, ,) that

1 — i > R
o= Y K e ) B et B (g ) 0 LR
k=d+1
1 & w “h
+; Z K" (s — 1) [y (yk_l)—gpl(yl)—(yk—l—yl)vspl(yl)]@(l,yk 1h yl)T.
k=d+1

Due to the boundedness condition in C.2, the Taylor expansion applied to [G,, (m (xk)), G (v (xk))]
at [m(z),v (zy)] yields the ..rst term of 7, as

Tn

1 a w ~ Ye—1 — U1
=3 K (e — ) e (1, LT
k=d+1
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where Uy =z, + 2 + Ha(y, )

Zy = AVGn (m(2)) [m(2x) —m ()], VG, (v (2x)) [0 (2x) — v (22)]}T
Z = %{DQGm (m* (x1)) [m (7)) — m (23)]%, D2G, (v (1)) [0 (21) — v (z1)]*}7,

and m* (xy) [v* (zx)] is between m (zy) [v (xx)] @and m (zx)[v(zy), respectively]. In a similar way, the
Taylor expansion of ¢, (yx_1) at y; gives the second term of 7, as

s =G 2 KT s =) (D) @ 1 B 4o, 1),

T, continues to be simpli..ed by some further approximations. De..ne the marginal expectation
of estimated density functions, p»(-) and p(-) as follows

f?(yk—uﬂk_z) = /Lg(21 — Y—1) Ly (22 —i/k_Q)p(Zla%)ledev

/Lg(22 — Y, _,)p2(22)d2s.

) (ﬂk_Q)

In the ..rst approximation, we replace the estimated instrument, W, by the ratio of the expectations of
the kernel density estimates, D, (y, ,)/P(zx), and deal with the linear terms in the Taylor expansions.

That is, 7,, is approximated with an error of o, (1/%%) by t1n + ton:

_ 1 oW ey
tin = nkzd_:HKh Yr—1 — Y1) () @ (1, 3 ),
ton = — Z K (yr— 1—yl)p %k )1) [Hz(ﬂk_l)@)(LW)T],

based on the following results:
. n/ ]/7\2(}[ _ ) =
()2 Sy B (s — 1) S B @ (1, 2522)7) = o, (7).

.. n' P2y, ) Py, ;) k—1—Y1
(1) £ g B (g — 90) [Pt — sy )0 (1, 8470 7) = o, (7).

plz) P(zy)
n! ﬁQ(ﬂ _ ) p (_y ) —
(i) £ g K (1 — 1) [ — T3 @ (1, 222)T] — o, (47

To show (i), consider the ..rst two elements of the term, for example, which are bounded elemen-
twise by

}1 _ ﬁQ(ﬂk_1) 2 m Ye—1 — U1
o0 32 Ko s =) S DG ) 1, B2
= 0, (1/\/@)
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The last equality is direct from the uniform convergence theorems in Masry (1992) that

mtax|7% (1) —m(z)] = O, (log n/\/w> , (A.16)

and 3 Kj (ye-1 — yl)%DQGm (m (k) (1, #&==4)T = O, (1). The proof for (ii) is given in
Lemma A.l. The negligibility of (izi) follows in a similar way from (i:), considering (). While
the asymptotic properties of sy, and t,, are relatively easy to derive, additional approximation is
necessary to make ¢,,, more tractable. Note that the estimation errors of local linear ..ts, m (z;) —
m (z) of Z}, are decomposed into

1 K — ini '
L Z MUW (z;) &+ the remaining bias
n< p(x)

from the approximation results for local linear smoother in Jones, Davies and Park(1994). A similar
expression holds for volatility estimates, v (x;) —v (), with a stochastic term of 1 >~ ﬁ%ﬁﬂv (z1)(e}
-1). De..ne

Jk,n (961)

= K (e /W) K o = e W P 96, 96, (1, ity

p(r) p(zr) h

and let J (z;) denote the marginal expectation of .J,,, with respect to x,. Then, the stochastic term
of ¢,,,, after rearranging its the double sums, is approximated by

Fin == 32T (00) (02 (@) 20 (@) (6 = D) @ ],

since the approximation errors from J (X;) is negligible, i.e.,

ﬁ (Jem — DI (X)) e, v (X0) (e = 1) @ B]" = o, (UM) ’

applying the same method as in Lemma A.1. A straightforward calculation gives

J(Xi) =~ %/K(Ul =y /h) K (u1 — y-1/h) / h;—lK (gl_l - U2/h> ];2((;6[2)) X

u

[diag(VGom(u), VGy(w)) @ (1, %‘yl VT dusdus

1 pz(gl_l)
ﬁ/K(M —y/h) K (u _yl—l/h)m X

[diag(VGm(ur,y, ), VGulury, ) ® (1,——L)]du,

h
p2(gl_1)
p(x1)

(K K, (22 ) o 1), (22 )
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where

(K * K), <—yl_1h_ yl) = /wiK(wl) K <w1 + —yl_lh_ yl) dw.

Observe that (K * K), (4==%) in J (X;) is actually a convolution kernel and behaves just like a

one dimensional kernel function of y,_;. This means that the standard method (CLT, or LLN) for
univariate kernel estimates can be applied to show the asymptotics of

ty, = 1 pQ(gl—l) VGm(yb?_Jz—l)Ul/Q (Xi) & (K * K), (ﬂb]h;yl)
" nh &= p(m) VGy(y1y, v (Xi) (] = 1)) (K= K), (=) ||

If we de..ne sy, as the remaining bias term of ¢,,,, the estimation errors of »;(y1) — 1 (y1), consist of
two stochastic terms, [I, ® el Q'] (f1, +t2n), @nd three bias terms, [I, @ el Q%] (son + 510 + 520)
where

- D2 (ﬂ ) Yi1i—yir
t2n - _kzd—:i_l Kh yk 1 _yl) p(X ) [HQ(ﬂk 1) (]- T) ]a
Sop = tlop — t2n-

Step I1: Computation of Variance and Bias

We start with showing the order of the main stochastic term,
GRS o
n — Uln 2n — n - k>

where §, =&, + &ops

6 = p(y, )
t p(yk—lvyk_1)

VGm(yl,gk_l)Ul/z (X%) ex ] “ [ 1 (K * K), (&==£) ] }
VGy(y1,y,_ v (Xe) (6 — 1))

pQ(gk—l) ma (4%-1) 2K (ﬂk;i]z_i) ]
) )

by = ——il ®
2 p(yk—hﬂk_l) V2 (4%—1)

h

%K (yk—;L_yl) (’yz—1h—y1

by calculating its asymptotic variance. Dividing a normalized variance of tN;; into the sums of variances
and covariances gives

var (\/EE;) = (\/n25k> ——Zvar (&) + ZZCOV (i, &)

Kl
= hvar (Ek) + ; [n ; k} hleov (§a:€ask)]

where the last equality comes from the stationarity assumption.
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We claim that
(@) hvar (§;) — Z1(y1),
ODI [1 - TkJ hcov (§d> §d+k) =o(1), and

(¢) nhvar (E‘;) — Y1(t),
where
{/ pz 2) VGm(thz)QU(thz) (VG - VG, (K3 - 03/2)(91722) dz,
PW1,22) | (VG VG (ks 0¥ ) (y1,20) VGy(vn, 22) k4 (y1, 22)0% (Y1, 22)

®[ I K0l 0 ]

0 0

+/p(y1,22)H2( 2) Hy (2) dzp ®

|13 0
0 [K?(u)u?du
Proof of (a). Noting E (&) = E (£4;,) = 041 and E (£1,£3;) = Osxa,

hvar (§;) = hE (flkﬁfk) + hE (§2k€§k) ,

by the stationarity assumption. Applying the integration with substitution of variable and Taylor
expansion, the expectation term is

WE (6,6T) = | / py(z2)

y17z2

vGm (91722)21)(%7 22) (VGm : VGU)(K/B : U3/2)(y1 22) d
2
VC’Y'm : VGU)(H?) : /03/2)(y17 22) VGv(yb 22)2/@4(91, 22) (yb 22)

|[(K * K)oll3 0
o 106 0l 0,
and
ry_ [ P3(2) mj (22) my (22) vz (22) » || K|[3 0 )
hE (Earéor) = /p(yhz) [m2 (22) s (22) v (2) dzy ® 0 [K?(u)uldu +o(1),

where r3(y1, 22) = Eled|zy = (y1,20)] and k4(y1, 20) = E[(e? — 1)2 |z = (y1, 29)].

Proof of (b). Since £ (fmfﬂ-) iz =E (fmfgj) |2k = 0, cov (§d+1a §d+1+k) = cov (§2d+1a 52d+1+k)-
By setting ¢(n)h — 0, as n — oo, We separate the covariance terms into two parts:

c(n)
k k
Z [1 — ﬁ} hcov (§2d+1,§2d+1+k) + Z {1 - E} hcov (§2d+1a §2d+1+k) .
+1

k=1 k=c(n)

n/

To show the negligibility of the ..rst part of covariances, consider that the dominated convergence
theorem used after Taylor expansion and the integration with substitution of variables gives

{cov (§2d+17€2d+1+/€){

Py, ¥, .8, ) 10
H HT d d+k d : ® ]
|/ 2 (gd> 2 (gd“f) pi2(nly oy, ) (88! 0 0
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Therefore, it follows from the assumption on the boundedness condition in C.2 that

Py v, Y, )
Bl (u,)| B|HE (1,.,)| [ — ooy, y, )
? —d“‘“ P2y e (uly,,, @d Yo

IN

{cov (§2d+1, §2d+1+k) }

10
0 0

where ‘A < B’ mean a,; < b;;, for all element of matrices A and B. By the construction of ¢(n),
c(n)

k
Z {1 — ;] heov (€agi1s Eoarisn)

k=1
< 2¢(n) |heov (&4441,E0as14k) | < 2¢(n)RA* — 0, as n — oo.

= A

Next, we turn to the negligibility of the second part of the covariances,

n/

k
Z [1 - ;} heov (Exg1, Eaarian) -

k=c(n)+1
Let &, be i-th element of &, for s = 1,...,4. Using Davydov’s lemma (in Hall and Heyde 1980,
Theorem A.5), we obtain

o (Vi Viths)| 2500 2] [y (VR lal)]|

for some v > 2. The boundedness of E(v/h }Eék}v), for example, is evident from the direct calculation

that 1 i
L () )]}

{hcov (§§d+17 Séd—i-l—i-k) { -

®

%K (yk—’ll_yl) (yk_ilz_yl

: p_@g{m (1)
2%k (k) ] vy,

p(Miel) > g [ ey s ol

hv—l p”_l(yb 22)
hv/? 1
- O( hv—l) - O(hv/2—1)'

Thus, the covariance is bounded by

2/v
}hCOV (§2d+17 §2d+1+k){ < C |:hv/12—1:| [Oz(k:)l_Z/U} ‘

This implies

n/

k
Z {1 — 5] heov (o415 €aaiisn)

k=c(n)+1
00 . .
<23 oy ()| <€ [hl_m} > [l
Fen k=c(n)+1
- 1
= C’ Z |:h1_2/v:| [Oé(k’ 1 2/'0 Z ka 1 2/v:|
k=c(n)+1 k—e(n)+1
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if ais such that .

k2 (e(n) +1)" 2 e(n)* = =557,

for example, c(n)*h!~%¥ = 1, which implies ¢(n) — oo. If we further restrict a such that

O<a<l1l-—-
v

then,
c(n)*h* %" = 1implies c(n)*h* %" = [ c(n)h]' >/ c(n)® =1, for 6 > 0.

Thus, ¢(n)h — 0 as required. Therefore,

n/

E > 1 2/v
Z {1 - n} heov (9441, Engprin) < C z:) J=o0

k=c(n)+1

as n goes to oo.
The proof of (¢) is immediate from (a) and (b).

Next, we consider the asymptotic bias. Using the standard result on kernel weighted sum of

stationary series, we ..rst get,
2

h
Son > E[D%l(yl) ® (i, 0)7],

since

/

Y —Y Ye—1—Y
—§jK (-1 — y1) (F——=*[D%0, (1) ® (1, =——=)"]
k=d+1 h h

= R G BRI @ (0,22 )
(

[ K= w0 () B2 D%, ) 0 (1, 252

= [ B ) B ) © (1,2

L ALY RACEMIC IR

= [D*¢(y1) ® (k. 0)"].

12

For the asymptotic bias of s1,,, we again use the approximation results in Jones, Davies and Park(1994).
Then, the ..rst component of s;,,, for example, is

1 P2y, ) 11 Kh xl — xk d (9 m(zy)
- K -1 bl vGm a a ~a 2
o ; h (Yk—1— 1) p(zr) (m (zx)) 2 Z —~ (Y1-0 — Yr— o2

}7

o7
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and converges to

h2
Py /pQ(ZQ)VGm(m(ylvZQ))[M%(*KDZml(yl) + pi D*my(22)|dzs,

based on the argument for convolution kernel in the above. A convolution of symmetric kernels is sym-
metric, so that [ (K % K), (u) udu = 0, and [ (K * K), (u) v?’du = [ [wK (w) K (w + u) v’ dwdu =
0. This implies that

i 22 5 [ palea) (VG 22), VGulvlyn, )7 © e DPr (1) + i Do )]}  (1,0) i
To calculate s5,,, we use the Taylor series expansion of %:
B ( )_pz(yk_l)??(Xk)_ 1
P p(Xx) | B(Xe)
L pa(y, JP(Xe)] 1 B(X3) — p(Xe)
B S I P R S0 R
Py, ) ply, )p(Xp) o, ()
P(Xk) p* (Xy) T
Thus,
- 1 il ﬁQ(ﬂk_l) p2<ﬂk_1) Ye—1 — Y17
=y 2 Sl ) B = Ty ke @ U
A o _22)_172(22) 5 “L 7 YNTY (L) da
[ e - 2 P i) & (122 () d
N o Da(22) _ pa(22)P(2) . 21— Yir .
— /Kh(l yl){p(z) pg(z) :|[H2( 2)®(1a h ) ] ()d
_ oy | P2(z)  pe(z) . A YNNI ) ds
= [t |2 - 2 ) (1, 2 ()
p2(22)p(2)  pa(22)P(2 21— Yir
+/Kh (21 — 1) [ 2 P 2) } [Ha(22) ® (1, h ) Ip(2) d=
= L1 Dpa(aa) Halea)din © 1 0

_9_2 pa(22) o . 2\ 2 T
[ S Do, a2z (15 0

Finally, for the probability limit of [I, ® eI Q!], we note that

Qn =D;"YIKY_D;' = [Guirj—o(y1; h)]

(i,4)=1,2
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with G = 00 KIY (Viey — g) (2==2)", for i = 0,1,2, and

N Z1 — ‘ [
Ani L/Kh (21— 1) < - hyl) P2 (22)dz = /K(Ul)u1dul/p2 (22) dz
- /K(ul) uiduy = g,

where ¢go =1, ¢ =0 and ¢ = p?.

10 _1 L] ek O T -1 T
Thus, Q, — 0w | Q, 7 0 ,and e; Q.- — e; . Therefore,
1207
Bi,(y1) = [L®el Q"] (Son + Sin+ S2n)
h2
= guiDQ%(yl)
h2
5 [ Hkac De1(n) + 1 D20y(22)] © [VGo(mlys, 22)), VG (v(yr, 22))]" pa(22)dz

2 2
V4
+%M%(/DP2 (22) Hy(22)dzo —%M%(/Msz(thz)Hﬂ@)dzz

p (yla 22)
+o, (h2) + 0, (gZ) )

Step I11: Asymptotic Normality of ¢*

Applying the Cramer-Wold device, it is su¢cient to show

_ Ly 2,

for all B € R*, where Ek = B7¢,. We use the small block-large block argument-see Masry and
Tjostheim (1997). Partition the set {d,d+ 1,...,n} into 2k + 1 subsets with large blocks of size
r = r, and small blocks of size s = s,, where

and [z] denotes the integer part of z. De..ne

j(7'+3)+7‘—1 _ (j+1)(r+s)_1 .
t=j(r+s) t=j(r+s)+r
Sk = Z \/hft,
t=k(r+s)
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then,
1 k-1 k-1 1
Dn — ) ) =— (9 s AW

Due to C.6., there exist a sequence a,, — oo such that

GpSp = O (\/E) and a, \/%oz ($n) — 0, as n — oo, (A.18)
and de..ne the large block size as
Vnh
I = [ i ] . (A.19)
Qn
It is easy to show by (A.18) and (A.19) that as n — oo :
'n Sn n
——0,— —0, —= —0 A.20
n - Y T’n - ) m — Y ( )
and
n
T—na ($,) — 0

We ..rst show that S/ and S are asymptotically negligible. The same argument used in Step Il
yields

s—1

var (w;) = §Xvar (\/EEJ + 2s Z (1 — %) cov (\/ﬁgdﬂ, \/Egd+1+k) (A.21)

k=1,
= sf'E8(1+0(1),
which implies
k—1
nSy NSy
Zvar (w;j) =0 (ks) ~ P ~ — o(n),
7=0
from the condition (A.20). Next, consider
k—1 k—1 s s . .
Z cov (wi, wy) = Z Z Z cov (\/héNi—i-kla \/thjJrkg) )
i,j;p, z,;‘;p, k1=1 ko=1
1%£] 17

where N; = j(r+s) +r. Since |N; — N, + k; — k| > r, for i # j, the covariance term is bounded by

2 f i )cov (@E,ﬂ, \/ﬁé@)

k1=1 ko=k1+r

< 2n i ‘cov (\/Egdﬂ,\/ﬁzﬂprj)‘ =o(n).

Jj=r+1
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The last equality also follows from Step 1l. Hence, 1 E {(S}))*} — 0, as n — oo. Repeating a similar
argument for S, we get

%E {(S;l//)Q} < 71l [n —k (T’ + 8)] var (Vﬁgd-&-l)

n—k (T’ n S) n—k(r+s) . _
ot Z cov (Vi€ g, ViEsins,)
j=

Tn + Sp
< T5T215 +0(1)

— 0, asn — oo.

Now, it remains to show ==, = == > o, 2L N(0,57%,5).

~ }j(r+s)+r—1

Since 7, is a function of {gt, which is 77 measurable, the Volkonskii and

t=j(r+s)+1 j(r+s)+1—d
Rozanov’s lemma in the appendix of Masry and Tjgstheim(1997) implies that, with 5, = s, — d + 1,

k—

Blesafit—= > n,)] - [T 5 (exp (in,))

J=0

[asry

a(G) ~—a(5) ~o(),

< 16ka (s, —d+1) ~
Tn + Sp Tn

where the last two equalities follows from hold (A.20). Thus, the summands {nj} in S/, are asymp-
totically independent. Since the similar operation to (A.21) yields

var (nj) =788 (1+0(1)),
and hence
-iﬂ’—lkJE 2y _ FaTo grs 5004001 oo
var( n>—nj§_; (nf) = =18 (1 + 0(1)) — FE'6.

Finally, due to the boundedness of density and kernel functions, the Lindeberg-Feller condition for
the asymptotic normality of .S, holds,

%zkz:oiE [77?1{}771'} > \/55\/@}} -0,

for every 6 > 0. This completes the proof of Step I1I.

From e7Q:! 2 ¢, the Slutzky Theorem implies vnh[l, ® e7Q-1]t* % N (0,%%), where X% =
[y ® eT]S1[ L @ e1). In sum, vnh(3, (1) — @1 (y1) — B.) <> N (0,53), with 23 (y1) given by

222 m\Y1, %22 v 15 22 m " v /<63'113/2 1, 22

dz
p(y1, 22) (VG - VG (k3 - v*?) (1, 22) VGolyr, 22)2k4(y1, 22)0% (Y1, 22) 2

+/p(y1’22)”KH2H2( o) HY (25) dz,.
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Lemma A.1 Assume the conditions in C.1, C.4. through C.6. For a bounded function, F (),
it holds that

@ rm = % ZKh (Ye—1— 1) (ﬁ2(}1k_2) - 1_72(sz_2))F () = 0p (1),

(b) ron = % D En (yier — 1) (Blaw) —plan)) F (21) = 0, (1)

Proof. The proof of (b) is almost the same as (a). So, we only show (a). By adding and
subtracting wa (yi—2|yk—2), the conditional expectation of L, (ﬁl_z _ﬂk-z) given Yoy inrq,, we get
rin =&, + &5, Where

& = # ZZKh (Yr—1 — v1) F (z) [Ly (ﬂl_g _ﬂk_g) _T’l\k (Y1—2|yr—2)]

k=d l=d

§on = % > > Kn(ye-r — v1) F (2i) [Lig (yi-2lh—2) — Doly, )

Rewrite ¢,,, as

1 — —
) Z Ky (Yr—1 — 1) F (@) [Liorsipe (Yn+s—2lYn—2) — p2(ﬂk_2)]
k  s<k*(n)
1 - —
+E Z K (Y1 — y1) F (@) [Licrsie (Yrs—2|yn—2) — pQ(Qk_Q)]y
k  s>k*(n)

where £* (n) is increasing to in..nity as n — oco. Let

B = FE{Ky, (ys-1 — v1) F (%) [Lrsp (Ynrs2|Y_2) —ﬁz(gk_2)]}y

which exists due to the boundedness of F' (z). Then, for a large n, the ..rst part of &, is asymptot-
ically equivalent to 7—11k:* (n) B. The second part of &,,, is bounded by

1
SUD [Pirsfi(Yrrs—2lyn—2) — P (gh—2) |~ > Kn (geor — 1) |F (2) |
k

s>k*(n)

< Pk(n)Op(l)-

Therefore, v/nhé,, < O, ‘/_k: o F ™ /nh) = 0,(1), for k (n) = logn, for example.
p

It remains to show &,,, = o, (—1—h) Since E (§,,,) = 0 from the law of iteration, we just compute

E(&,) = %ZZZZ E{Kn (Y1 — y) Kn (s —y) F (21)

WAL it
F (X)) [Lg (ﬂl_Q _ﬂk_g) —T/uk(ﬁ,@_Z)} [Lh (Qj_g _Qi_2>
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(1) Consider the case k=i and [ # j.

S (KR (s — ) F (1)

ko 1#j

[Lg (%—2 _ﬂk—z) _Il|k(gk—2):| [Lg (ﬂj—z _Ek—2> N Lj"“(gk—z) 1
= 0,

since, by the law of iteration and the de..nition of Ij‘k(gk_Z) :

E\k,l |:LQ (ﬂj_z _ﬂk_2> _Ej\k(ﬂk_g)}
= E‘k |:L9 (g]’_g _gk—2> _Z]‘k(gk_Q)} = E|k |:LQ (gj_g _gk_g):| _T/j|k(gk_2) =0
(2) Consider the case [ = j and k # i.
LSS B (s — ) K (s — ) Flm) ()
ki l

Lo (s~ 2s) = Doy )] [ Lo (wy —2s) — Tusly,_)])
We only calculate

—~ Z S5 B (s = 0 B (i =90 Ly (3~ ) B (5, — ) Flan) P}
v l (A.22)

since the rest of the triple sum consist of expectations of standard kernel estimates and are O (1/n).
Note that

Ej )Ly (Ql_g - Qk_2> Ly (ﬂl—z _ﬂz’—2)
= (L * L)g (yk—Z - %_2) Di|(k,9) (—yk—2|yk—27'yi—2> ’

where (Lx L), (-) = (1/g) [ L(u) L (u+-/g) is a convolution kernel. Thus, (A.22) is

;14 SN Y EK (yee1 — y) Kn (g1 — y) (L + L), (ﬂk_Q —24-_2) X

ki !

o)

(3) Consider the case with i =k, j = m.

S BURE (es — ) () [y (s — i) — Ty, )]
k£l

- ofe) -+ (3)

F(xk)F(xi)pll(kﬂ') (ﬂk_2|ﬂk_27ﬂi—2>
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(4) Consider the case k #1i, [ # j.

i ZZ ZZE{Kh (Ye—1 = y) K (yie1 — y) F () F (2:)

k£l i#]

[Lg (ﬂl_g - ﬂk_Q) - lek(gk_Q)} |:Lg (3]'—2 —gi_2> — Lj‘i(gi_z)]}
0,

for the same reason as in (1).

A.2 Proofs for Section 5

Recall that z; = (y;1,...,¥-aq) = (yt_a,gt_a), and z; = (zy,y;). In a similar context, let x =
W1, Ya) = (Yary_ ), @Nd z = (,yo). For the score function s*(z,0,v,) = s*(z,6,7,(y,_)), we de..ne

its ..rst derivative with respect to the parameter ¢ by

0s*(z,0,7,)

Vs (z,0,7,) = 50 ,

and use s*(6,v,) and Vys*(6,v,) to denote E[s*(z,0,v,)] and E[Vgs*(z,0,7,)], respectively. Also,
the score function s*(z, 6,-) is said to be Frechet dicerentiable (with respect to the sup norm || - ||.),
if there is S*(z,0,~,) such that for all v, with ||y, — 4" || small enough,

157 (2,0, 7a) — (2, 6,7) — S™(2,0,7a(¥,)) (Ve — Ya)Il < 0(2)|[70 — Vall, (A.23)

for some bounded function b(-). S*(z,6,7Y) is called the functional derivative of s*(z,6,v,) with
respect to. .. In asimilar way, we de..ne V., .S*(z, 6, v,,) to be the functional derivative of S*(z,6,v,,)
with respect to. v,,.

Assumption A
Suppose that (i) Vgs*(6o) is nonsingular; (ii) S*(z,0,7,(y,)) and V., S5*(z,0,7.(y,)) exist and
have square integrable envelopes S (-) and V. S*(-), satisfying

157 (2, 0, 72 ) < 57(2), [1V45™ (2.6, 74 (g I < V55*(2),

and (iii) both s*(z, 6, ~,) and S*(z, 6,+,,) are continuously di=erentiable in ¢, with derivatives bounded
by square integrable envelopes.

Note that the ..rst condition is related to identi..cation condition of component functions, while
the second concerns Frechet dicerentiability (up to the second order) of the score function and
uniform boundedness of the functional derivatives. For the main results in section 5, we need the
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following conditions. Some of the assumptions are stronger than their counterparts in Assumption
C in section 4. Let hy and h denotes the bandwidth parameter used for the preliminary 1V and the
two step estimates, respectively, while g is the bandwidth parameter for the kernel density.

Assumption B

1. {y,}°, is stationary and strongly mixing with a mixing coe¢cient, a(k) = p~°*, for some
B> 0, and E(c}|z;) < oo, Where g, = y, — E(y|x,).

2. The joint density function, p(-), is bounded away from zero, and ¢-times continuously diceren-
tiable on the compact supports, X = &, x Az, with Lipschitz continuous remainders, i.e., there exists
C < oo such that for all z, 2’ € X, |Dtp(x) — DEp(2')| < Cllx — /||, for all vectors = (pq, ..., 1)
with 320, 1; < .

3. The component functions, m,(-), and v,(-), for « = 1,...,d, are g-times continuously dicer-
entiable on &, with Lipschitz continuous ¢-th derivative.

4. The link functions, G,, and G, are ¢-times continuously dicerentiable over any compact
interval of the real line.

5. The kernel functions, K (-)and L(-), are of bounded support, symmetric about zero, satisfying
[ K (u)du= [ L (u)du=1,andof order g, i.e., [v'K (u)du = [u'L(u)du=0,fori=1,...,¢—1.
Also, the kernel functions are g-times dicerentiable with Lipschitz continuous ¢-th derivative.

6. The true parameters 0y = (Ma(Ya), Va(Ya), M, (Va), . (ya)) lie in the interior of the compact
parameter space O.

7. (i) g — 0, ng? — oo, and (i) hg — 0, nhy — .

8. (i)

2
nhg

—_— , and ‘mhhe — 0
(logn)Zh_)oo Vnhhi 0,

and for some integer w > d/2,

(ii) n(hoh)*** /logn — oo; hE R = 0

(iii) nhg+(4w+1)/ logn — oo; ¢ > 2w + 1.

Some facts about empirical processes are useful in the sequel. De..ne the L2-Sobolev norm (of
order ¢ ) on the class of real-valued function with domain W,

Itz = (3 [ (Dir(a) e
uj<q” Vo
where, for z € W, C R*and a k-vector u = (p, .- .,u,) of nonnegative integers,

(‘3246:1#1'7—(3;)
DMT(.T) - aﬂfll‘l . auk]}k’
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and ¢ > 1 is some positive integer. Let X,be an open set in R! with minimally smooth boundary
as de..ned by, e.g., Stein (1970), and X = x§_, &p, with A5 = xgzl#a)xﬁ. De..ne 7; be a class
of smooth functions on A5 = x§_, ., A whose L>-Sobolev norm is bounded by some constant;
T ={7:||7|lg2as < C}. Inasimilar way, 7, = {7 : ||7||;2.2 < C}.

De..ne (i) an empirical process, v1,(-), indexed by 7 € 7;:

U1n(7'1) Z%tzi;[fl(fﬁt;ﬁ) _Efl(xtQ 7'1)] ) (A.24)

with pseudometric p,(-,-) on 75:

1/2

pr(r.7) = [ [ twsran) = s )|

where f1(w;7) = h™"2 K (4574)S" (w, va) 71 (w,);
and (ii) an empirical process, va, (-, -), indexed by (y,, 72) € Xy X 73 :

V(Y 72) = % S a3 Yo ) — Efol055007)] (A.25)

with pseudometric p,(-,-) on 7y:

1/2

P2((Yar T2) (Yy T5) = Ux(fz(w;yaﬁz)—fz(w; Yo, ) p(w)dw |

where f3(wiya, 72) = hy VK (2572 ) ERLGL (m (w)) Ta(w).

ho p(w)

We say that the process {v1,(-)} and {v,, (-, )} are stochastically equicontinuous at 7% and (2,79,
respectively, (with respect to the pseudometric p,(-,-) and p,(-,-), respectively ), if

Ve,n>0 36>0s.t

Tim P* | sup |vin(71) — vl (79| > 1| <, (A.26)
T—o0 py(7,10)<6
and
lim P* sup Von(Yas T2) — Von (12, T9)| > 0| <&, (A.27)
=00y ((garm2),(v2,79)) <6

respectively, where P* denotes the outer measure of the corresponding probability measure.

Let F; be the class of functions such as f;(-) de..ned above. Note that (A.26) follows, if Pollard’s
entropy condition is satis.ed by F, with some square integrable envelope F;see Pollard (1990)
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for more details. Since fi(w;7T1) = ¢1(w)71(w,) is the product of smooth functions 7; from an
in..nite dimensional class (with uniformly bounded partial derivatives up to order ¢) and a single
unbounded function c(w) = [A~/2K (*+-2)S5*(w,~%)], the entropy condition is veri..ed by Theorem
2 in Andrews (1994) on a class of functions of type 111. Square integrability of the envelope F'; comes
from Assumption A(ii). In a similar way, we can show (A.27), by applying the “ mix and match”
argument of Theorem 3 in Andrews (1994) to f5(w; Yo, 72) = cg(w)h—l/QK(%h—‘Oﬂ“)m(w), where K (-)
Is Lipschitz continuous in y,, i.e., a function of type II.

Proof of Theorem 4. We only give a sketch, since the whole proof is lengthy and relies on
the similar arguments to Andrews (1994) or Gozalo and Linton (1995) for i.i.d case. Expanding the
FOC in (5.15) and solving for (5* — ) yields

7,_L/

= Y Vsl BRI Y s )

t=d+1 t=d+1

where @ is the mean value between 8 and 6, and s(z,3,,) = s(z, 60,7, ). By the uniform law of large
numbers in Gozalo and Linton (1995), we have sup,.e | Q.. (0) — E(Q,(0))| 2 0, which, together with
(1) uniform convergence of v, by Lemma A.3, and (ii) uniform continuity of the localized likelihood
function, Q,.(0,7,) over © x Iy, yields sup,ce [Q,.(0) — E(Q.(6))] 2 0, and thus consistency of 0.
Based on the ergodic theorem on the stationary time series and a similar argument to Theorem 1 in
Andrews (1994), consistency of 9 as well as uniform convergence of v, imply

1 < -
= Z Vos(z,0,7,) = E[Ves(zt,00,7%)] = Da(¥a), (A.28)

t=d+1

For the numerator, we ..rst linearize the score function. Under Assumption A(ii), s*(z,0,v,) is
Frechet dicerentiable and (A.23) holds, which, due to v/nh||7, —7%||% = 0 (by Lemma A.3 and
B.8(1)), yields a proper linearization of the score term;

1 & .
- Z Ztﬁa = 5 Z Kh(yt—a —yﬂ)s (%Wg)
.z d+1 t=d+1

7,_L/

4= 3 Kaltima — 005 (2000 ) Fal,) — 72, + 0,(1/v/h),

t=d+1

where S*(2;,va(y, ) = S* (2, 0o,7valy, ). Or equivalently, by letting

S*(y,valy,) = ElS*(z,va(y,_ )z = 9]
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and u; = S*(z4,70(y, ) — EIS" (7, valy, )7 = yl, we have

—Q

vnh " -
T S(Zt,’)/a) = Z Kh yt o ya (Zt7724)
t=d+1 t d+1
Z En(Ys-a = Ya) S (@070 (y, )Faly, ) —7aly, )]
t d+1
\/h
\/— Z Kh yt a ya)ut[va@ ) Vg(ﬂt_a)] +0P(1)
t=d+1

= Tln + Tgn + Tgn + Op(l)-

Note that the asymptotic expansion of the infeasible estimator is equivalent to the ..rst term of
the linearized score function premultiplied by the inverse Hessian matrix in (A.28). Due to the
asymptotic boundedness of (A.28), it su€ces to show the negligibility of the second and third terms.
To calculate the asymptotic order of 75,,, we make use of stochastic equicontinuity results above.
For a real-valued function 6(-) on &z and 7 = {6 : ||0]|, 2,.2= < C}, we de..ne an empirical process

(yav = \/ Z xtayav _E(f(xﬁyavé))]’

t=d+1

where f(z;;ya,6) = K(%=2=22)hS"(2,,9%(y, ))(y, ), for some integer w > d/2. Let ¢ =
h 2[5, (y, ) — 72y, .)]. From the uniform convergence rate in Lemma A.3 and the bandwidth
condition of B.8(ii), it follows that

~ e logn —w
18112 = Op(h 72 [\/ vl ]) = 0,(1).

Since § is bounded uniformly over Az, with probability approaching one, it holds that Pr(s € 7) — 1.
Also, since, for some positive constant C' < oo,

P*((4a,0), (¥, 0)) < O™ V7, =101 5. = 05(1),

we have p((ya,g), (Ya, 0)) = 0. Hence, following Andrews (1994, p.2257), the stochastic equicontinu-
ity condition of v, (y,,-) at 6° = 0, implies that v, (ya,8) — Vn(Ya, 8°| = [Un Ya,0)] = 0,(1); i.e., Thy
is approximated (with an o,(1) error) by

T3, = vk / Enlya — 108" (2,7 Fa(y,) — 12y )p(a)dz.

We proceed to show negligibility of T.7,. From integrability condition on S*(z, fyg(ﬂa)), it follows, by
change of variables and the dominated convergence theorem, that [ K, (y,—y%)S*(z, fyg@a))dpo(z) =
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fS*[(y,yg,g_;a),fyg(ga)]p(y, Y,y )d(y y ) < oo, Which, together with /n-consistency of ¢ = (¢,,,¢,)’,
means that (¢ — ¢)vnh [ Ky (Yo — ya)S (2,7aly,))dEFo(2) = 0,(1). Since

aly,) = > (@slys) — ©5we)) — (d —2)(@— o),

B=1,#a

this yields

Ty, = Z Vnh / Kn(go — )8 (2,72)@s(ys) — ¢5(ys))p(x)d(x) + 0,(1),

B=1,#a

From Lemma A.3,

BsWs) — @slys) = hibs(ys) + 1 > (K *K), (45— yp) P ) (VG(z5,y, ,) ©&)
n p(xt) o
rY, ;)

p(xt)

where §, = (e, (6} = 1))", VG(x1) =[VGrn (yp,y,_,)v (= 0", VGy(ys, v @))", and Py, ) =
7g(ﬂt_ﬁ) — ¢p. Under the condition B.8(i), \/nhhq = o(1), mtegrablllty of the bias function l_)ﬁ(yg)
and S*(z,60,7a(y,)) implies

1 )
= Ko (05— y) 720 (Y, y) + Oplpn) + 0p(n7 %),
t

15, = Sin + San + 0,(1),

where S;,, =

2 (Y, )
Z \/nh/Kh o — Yo)S" (x ,vﬂ)%Z(K*K)hO (yt_;a—yﬂ)pp%ctf (VG(2,y, 45) © &)p(x)ds

=1,7#«a t

and

2 (Y, )
Z Vnh / Ki(y, S*(2,70)= ;Kho (yt_a—yﬂ)pp%t)ﬂ Voo (U,_5)p(2)de.

B=1,#a

Let S/, and S: be the i-th element of S;,, and S,,,, respectively, with S*7(-) being the (i, j) element

34



of S*(-). By the dominated convergence theorem and the integrability condition, we have

. \/7[/ p2 (gt_ﬁ) 1/2
g - MYr e el 18
. NG E () v(xy) ey X

l/ K (Yo — y)S™ (2,70) Y (K« K),, (ys — yi—p) VGm(ymﬂt_ﬂ)p(fE)dx]
B=1,#a
Vi~ P2y SN
\/Tl Z ( t) v (xt) (gt 1)
[ / K (Yo — 90)S™ (2,79) Y (K o Ws = 4-8) VGu(ys,y, )p(z )dw]
B=1#a

- 7’521’;(—5[U< O wh (e +v (@) wh(en) (€ — 1)] +0,(1),

where

1 i, *
w (‘/L‘t) VGJ(yoU t— BEI;E /S] ya7yt ﬂ7y(a/8)) ,Ya]p(ya7yt ﬁ7y( ﬂ))dy(aﬂ)’

and VGI(-) = VG,(+), for j = 1;VG,(+), for j = 2. Since ps(-)/p(-) and w,;(-) are bounded under
the condition of compact support, applying the law of large numbers for i.i.d errors &, = (g, (2 —1))"
leads to S;, = 0,(1), and consequently, S;,, = 0,(1). Likewise,

S;, = %Zp;%f Yial, , [ / K (Yo —y)S™ (2,79) Y Ky (yt—a—yﬂ)p(fb)d:ﬁ]

B=1,#a
d
Z s /Kh o = YNS* (@90 D Kn (s — yp) pla)dz
\/_ B=1#a
Vh p2(ﬂ _ )
- ﬁzﬁ = @maly, )+ = @0valy, )] + oD
t
where
w Z /-SZJ yaayt ﬁ’y(a B)) Va]p(ya’yt ﬂ’ﬂ(a ﬁ))dﬂ(a
=1,#«a
and, for the same reason as above, we get Si = o0,(1), and Sz, = 0,(1), since E(mg(gt_a)) =
E(U.Q.(ﬂt_a)) =
We ..nally show negligibility of the last term;
Vi & -
T =1 > EKn(i—o — y)ualy, ) — oy, )
t=d+1
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Substituting the error decomposition for ¥, (y, )—va(y, ) and interchanging the summations gives

d
Vi P2y, ) .
Ty = Z ZZKh Yo = Yo) Ko (Us—p — Y5) W’ya Yy, uiy, )
St VT )
p2(£8_ )
3 LSS Kl o) UKy () (V) )
B= 17501 t o s(£t) P\Ts
+op(1),

where the o,(1) errors for the remaining bias terms holds under the assumption that vnhh2 = o(1).

For
) pz(ys_ ) _
ﬂ—:z’ﬂ(zt’ ZS) = Kh(yt—oct - yg)Kho (ys—ﬁ - yﬂ) W)ﬁuﬂ/z{) ys—ﬁ)\/ﬁ/(n\/n)v

we can easily check that E(777 (2, 2,)|2) = E(n\7 (2, 2,)|2) = 0, for t # s, implying that $° D its
7% (2, z,) is a degenerate second order U-statistic. The same conclusion also holds for the second
term. Hence, the two double sums are mean zero and have variance of the same order as

n® x { B (2, 2,2 + B (2, 2,) EniP (25, 2) }
which is of order n=*h~!. Therefore, T3, = 0,(1). B

Lemma A.2 (Masry, 1996) Suppose that Assumption B hold. Then, for any vector u =
(:ulw-'a:ud) Wlth ‘:u| <w

R logn _
(a) sup|Dip (x) = Dip ()| = Oply | ) + Oplg"™")

~ logn _
(a) sup| Dy (x) = Dim (2)| = Op(y | —gz) + Oalh ™) = pula)
0

TeX

(¢) sup | (z) —m (z) — L(z)| = O,(p},), where

TeEX

~ 1 Ky, (x5 — )
L(z) ==Y —=—2pl2 (g))e, + hib,(z).
Ly fule

Lemma A.3 Suppose that Assumption B hold. Then, for any vector p = (uq, .., pq)" With
il = Zp; < w,

R logn _
(@) sup DBy = D )] = Oy i) + Oplh=) £ 0,01 1)
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(0) sup |Pa(¥a) = Palya) = Lo(ya)l = Op(p2) + 0,(n7172),

Ta€Xa
where

pa(y, )

)

w(ya) = _Z K*K yta ya)

a, (m <ya,gt_a>>v<xt>l/2” ]
G (0(Yary, )0 (1)

—i-?l Z Ki (Y4—a — ya) ( ) [ Mg (yt_a> , Uy (gt_OC)] g + hqga(ya)

p(xt)

Proof We ..rst show (b). For notational simplicity, the bandwidth parameter i (only in this
proof) abbreviates hy. From the decomposition results for the IV estimates,

Pa(Ya) = Palya) = [I2® €] Q'] Tn,
_ It n R
where Q,, = [qn’i-‘rj—Q(ya)](i’j):l’Q’ with g,; = 711 Zt:d K (Y1—a — Ya) 5 (Ut n 4 ) ,fori =0,1,2,

plxt)
%(ﬂt—a) ~ t—a—Yo
and 7, = 535, K (o — Ya) o= Bt — Pal¥e) = (Mo — Ya) Veu(¥a)] ® (1, #=52)T. By C-S

inequality and Lemma A.2. applied with Taylor expansion, it holds that

Sup —ZKh Yoo — ya) [%A@t_a) _pa(gt_a)] <‘%_°‘h— ya)i

TaC€Xy T p(xt) p(zt)
]/7\5(3_4 ) pa( ) Yt—a = Ya :
< sup |—* — L sup — Kn (Y1—a — Ya) |[———
zex | p(a) P(T) | sacx, Z h AT ) h

- Op(sug p(z) — p(x)|) = Op(/?n),

where the boundedness condition of B.2 is used for the last line. Hence, the standard argument of
Masry (1996), implies that sup, .y |G — @| = 0p(1), where ¢; = [ K (u) uidu,. From go = 1,
q = 0 and ¢, = 3, we get the following uniform convergence result for the denominator term, i.e.,
eTQ-1 L €T, uniformly in y, € X,. For the numerator, we show the uniform convergence rate of
the ..rst element of 7,,, since the other terms can be treated in the same way. Let 7} denote the ..rst
element of 7, i.e.,

1 pe(y, )
= ;Kh Yo — Ya)

th_)a [GM(m(xt)) - Ma(ya) - (yt—a - ya)mix(ya)] )

or alternatively,
1 ~
T = m ;Kh Yt-a — Ya) T(T4; ),

where
r(ryg) = g;ig(zc)) (Gm(91(20)) — Mo (Ya) — (Y1—a — ya)m/a(ya)]
gx) = [g1(m), 92(y, )s93(ze)] = [m(z),paly, ) ()]
g = 8(x) =(m(z),paly, ) Dlz)]
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Since pz(-)/p(-) is bounded away from zero and G,, has a bounded second order derivative, the

functional r(z;;g) is Frechet dicerentiable in g, with respect to the sup norm || - ||, with the
(bounded) functional derivative R(xt;g)zﬂ—cgig)l ( . This implies that for all g with ||g—g°||o
.

g=g(xt)
small enough, there exists some bounded function b(-) such that
(215 8) = r(2;8°) — R(z1;:8")(8 — 8°)|loo < b(a2)llg — °II%
By Lemma A.2, ||g — g°||% = O,(p2), and consequently, we can properly linearize 7., as

:_ZKh yt « ya xtvg ZKh Yt—a — oc R(xtago)(g\_go)—i_Op(pi)

where the O, (p2) error term is uniformly in z,. After plugging in G,,,(m(z;)) = ¢ +X1<p<ams (Yi—p)
into 7 (z;; g°), a straightforward calculation shows that

1
7-711 = ; Z K, (yt—a - ya) gt[l + Op(pn)]
t

25 K e~ 1) G () )~ )
+% Hy (k)bla(ya) + Op(hq), (A.29)

p2(y, ) . .
where ¢, = — 75 Mz(y, ), and Mg(y, ) = Zi<p<a(2a)mg (Qt-a)' Note that due to the identi-
..cation condition, E[s;|y:—] = 0, and consequently, the ..rst term is of a standard stochastic term
appearing in kernel estimates. For a further asymptotic expansion of the second term of 7, we use the
stochastic equicontinuiuty argument to the empirical process {v,(-,-)}, indexed by (y,, ) € X, x T,

with 7 = {6 : ||6]|s.2,4. < C}, such that

(yav - \/ Z xtayav _E(f(xt;yavé))]a

t=d+1

where f(z¢; ya, 6) = K(#=% “")h“’p_(ﬂf “ G, (m(24)) 6(y:—a), for some positive integer w > d/2. Let

p(zt)
6 = h="12[m (z,) — m(x,)]. By the same similar argument in the proof of Theorem 5.2, it holds

under B.8(iii) and Lemma A.2 that [|6||,ox = O, hmem12[ [T+ h1m])= 0,(1), leading to
(i) Pr(6 € T7) — 1 and (i) p((ya,9), (a,8°)) = 0, where §° = 0. These conditions and stochastic
equicontinuity of v,,(-, -) at (ya, 8°) yields SUDy, . |vn(ya,g)—yn (Yo, 8% = SUDg, . |vn(ya,/(§)| =0,(1).
Thus, the second term of 7 is approximated with an o,(1/+/n) error (uniform in y,) by

/Kh (Yt—a — Ya) p_((ﬂt )a)G (m () [m (20) — m ()] p(z:)doy,
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which, by substituting L(z,) for m (z;) — m (z;), is given by

i > (K +K), <y_“—h_ya) pa(y, )Gm(m(Ya,y, (A.30)

hi

4 g (K)b2a (Ya),

where (K % K) (-) is actually a convolution kernel as de..ned before. Hence, by letting b, (y.) summa-
rize two bias terms appearing in (A.29) and (A.30), Lemma A.3(b) is shown. The uniform convergence
results in part (a) then follow by the standard arguments of Masry(1996), since two stochastic terms
in the asymptotic expansion of ¥, (v.) — ¢, (y«) consist of only univariate kernels. B
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