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Abstract: Marine-based food supplements can improve human nutrition. In an effort to modulate
glycaemic response and enhance nutritional aspects, marine-derived algal food rich in astaxanthin
was used in the formulation of a model food (wholemeal cookie). Astaxanthin substitution of cookies
made from three flours (wheat, barley and oat) demonstrated a significant reduction in the rate of
glucose released during in vitro digestion together with an increase in the total phenolic content
(TPC) and antioxidant capacity of the food. The significantly (p < 0.005) lower free glucose release
was observed from cookies with 15% astaxanthin, followed by 10% and then 5% astaxanthin in
comparison with control cookies of each flour. Total phenolic content, DPPH radical scavenging
and Oxygen Radical Absorbance Capacity (ORAC) value also notably increased with increase in
astaxanthin content. The results evidence the potential use of microalgae to enhance the bioactive
compounds and lower the glycaemic response of wholemeal flour cookie.

Keywords: microalgae; Hematococcus pluvialis; astaxanthin; bakery products; glycaemic response;
antioxidant

1. Introduction

Whole-grains such as wheat, barley and oat make a substantial contribution to our diet.
They contain a significant amount of bioactive compounds such as fibre, minerals, vitamins and
phytochemicals [1,2] and as such mayplay a major role in enhancing human health by reducing the risk
of diabetes [3,4] and cancer [5], while also regulating serum cholesterol [6] and stimulating beneficial
gut microbiota [7]. In recent years there has been an increased interest in the utilisation of whole-grain
food materials as well as fibre rich ingredients, in cereal products, including bread [8], extruded snack
products [9,10], and pasta [11,12]. These pieces of research have investigated the impact of wholegrains
and fibre on both the physicochemical characteristics of cereal food products as well as their nutritional
quality. A recent review on this subject illustrated that the incorporation of fibre rich ingredients
into cereal products often results in negative consumer acceptability [13]. There therefore remains
a challenge to both utilise wholegrain cereal products as well as functional food ingredients such
a fibre rich materials, into mainstay food products.
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Recent research into functional food ingredients has shown an interest in the development of foods
containing seaweed or algal materials [14,15]. These materials have been part of the human diet since
600 BC [16] and they have a role of diet in sustaining human due to their diverse range of nutrients and
bioactive compounds; such as polysaccharides, proteins, polyunsaturated fatty acids, minerals and
significant amounts of antioxidants [17,18]. One such material is Haematococcus pluvialis, a single-cell
microalgal strain, which is rich source of astaxanthin (10,000–40,000 mg/kg) and associated bioactive
ingredients including dietary fibre [19]. Several cell culture and animal studies have reported that
astaxanthin has potent antioxidant activity 10 times higher than other carotenoids such as β-carotene,
lutein, and zeaxanthin, and 500 times higher than vitamin E [20–22]. Carotenoids play a role in
preventing or delaying degenerative diseases such as cancer and atherosclerosis diseases [23–25],
and may be useful in the development of functional foods [15].

There is a paucity of information regarding combining the nutritional compounds of marine-based
material and whole-grains. Therefore, the present study is the first to show the glycaemic glucose
equivalents (GGE) as a predictor of glycaemic response, antioxidant capacities and physical properties
of cereal and Hematococcus pluvialis in a model food.

2. Materials and Methods

2.1. Sample Collection and Preparation

Driedmicroalgae Hematococcus pluvialis was provided by Supreme Biotechnologies Ltd.
(Nelson, New Zealand) and ground using a grinder (AutoGrinder, M-EM0415, Sunbeam Corp Ltd.,
Auckland, New Zealand). The ground material was sieved through a 0.5 mm screen to obtain flour.
Wholemeal wheat (Champion Flour, Auckland, New Zealand), barley (Ceres Organics, Auckland,
New Zealand) and oat flours (Ceres Organics, Auckland, New Zealand) were purchased locally.

2.2. Cookie Preparation

Cookies were prepared following the standard American Association of Cereal Chemistry
(AACC) method 10–50D [26] with slight modification. Table 1 illustrates the dry ingredients used
(sugar, salt and sodium bicarbonate). All dry ingredients (except flour) were mixed in an electric
mixer (Breville, Melbourne, Australia) with vegetable shortening (Kremelta, Peerless foods, Braybook,
Australia) for 3 min on speed 1. Dextrose solution (8.9 g dextrose anhydrous in 150 mL water) and
distilled water were added to the mixer and mixed for a further 1 min on speed 2 with scraping down
every 30 s. The flour was added and mixed for 2 min with scraping down every 30 s. The experimental
samples were prepared by replacing the wholemeal flour with astaxanthin powder 5%, 10% and
15%. The cookie dough was rolled to a 6 mm thickness using measuring roller and cut with a 57 mm
diameter cookie cutter. The cookies were placed on metal trays and baked in a preheated electric oven
(BAKBAR turbofan convection oven, E3111, Moffat Pty Ltd., Rolleston, New Zealand) for 8 min at
180 ◦C. The cookies were cooled at room temperature, placed in air-tight plastic bags and stored at
room temperature for 24 h prior to laboratory analysis.

Table 1. Model food formulation.

Sample Wholemeal
Flour (g)

Astaxanthin
Powder (g) Other Ingredients

Control 225.00 -
Vegetable shortening (64.0 g), sugar (130 g),

salt (2.1 g), sodium bicarbonate (2.5 g),
dextrose solution (33 g), water (16 g)

5% Astaxanthin powder 213.75 11.25 Vegetable shortening (64.0 g), sugar (130 g),
salt (2.1 g), sodium bicarbonate (2.5 g),
dextrose solution (33 g), water (16 g)

10% Astaxanthin powder 202.50 22.50
15% Astaxanthin powder 191.25 33.75
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2.3. Physical Characteristics

Cookie diameter (mm) and thickness (mm) were measured using calipers (INSIZE digital caliper,
series 1112, INSIZE Inc., Loganville, GA, USA). The colour of the cookie samples were measured in
terms of Comission Internationale de l’Eclairage (CIE) L*, a* and b* systems by using a colorimeter
(Konica Minolta, Chroma Meters CR-210, Tokyo, Japan). The colour differences of the cookies were
calculated by the following equation.

∆E =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

2.4. Texture

The hardness of the cookies (fracture force) was measured by using a texture analyser (TA.XT plus
Texture Analyser, Stable Micro Systems, Godalming, UK) with a 3-point bend rig. The analyser was set
at a load cell 50 kg; pre-test speed 2 mm/s; test speed 5 mm/s; post-test speed 10 mm/s; return to
start mode. The whole cookies were placed on the support ring and the probe moved downward until
the samples were broken. The peak force (kg) was recorded as hardness. Measurements were made
in triplicate.

2.5. Moisture

Moisture content of the cookie samples were measured after drying cookie ground samples
(2 g) overnight in an oven at 105 ◦C.

2.6. Determination of Total Phenolic Content

The content of total phenolics of samples was measured by Folin-Ciocalteu reagent (mixture of
phosphotungstic and phosphomolybdic acid; that is reduced by phenolics forming a blue complex)
using the method described by Floegel et al., 2011 [27] with some modifications. The ground samples
(1 g) were dispersed in 20 mL of 70% methanol (by placing on a stirrer overnight). The sample mixture
was centrifuged at 700 g Relative centrifugal force (RCF) for 10 min and the supernatant collected to
determine the total phenolics. Crude extracts (0.5 mL) were mixed thoroughly with freshly prepared
0.2 N Folin-Ciocalteu’s reagent (2.5 mL), followed by 2.0 mL of 7.5% sodium carbonate (Na2CO3) and
incubated in the dark for 2 hours. The absorbance reaction mixture was measured at 760 nm. Gallic acid
(gallic acid, 97%, CAS: 149-91-7, Sigma-Aldrich, St. Louise, MO, USA) was used as a standard and
results were expressed as mg gallic acid equivalent (GAE) per g sample.

2.7. Antioxidant Properties

The antioxidant capacity of the samples was measured by the DPPH (2,2-diphenyl-1-picrylhydrazyl)
assay as described by Floegel et al., 2011 [27] with some modifications. Briefly, 0.5 mL of crude extract
was mixed with freshly prepared 1 mL of 0.1 mM methanolic DPPH (CAS: 1898-66-4, Sigma-Aldrich,
St. Louise, MO, USA) solution and incubated in the dark at room temperature for 30 min. The reaction
mixture absorbance was measured at 517 nm. In order to calculate the DPPH radical scavenging
capacity, trolox (CAS: 53188-07-1, ACROS Organics™, Morris, NJ, USA) was used as a standard and
result were expressed as µmol trolox equivalent (TE) per g sample.

Oxygen radical absorbance capacity (ORAC) was determined as described by Floegel et al., 2011
with some modifications. Briefly, 25 µL diluted extract were mixed with 150 µL of 10 nM fluorescein
into the microplate well and incubated for 30 min at 37 ◦C temperature. Twenty five microlitres AAPH
(2,2-azobis (2-amidinopropane) dihydrochloride) (CAS: 2997-92-4, Cayman Chemical, Ann Arbor,
MI, USA) solution was added to the pre-incubated reaction mixture. Fluorescence was measured
(excitation 485 nm; emission 510 nm) from the bottom microplate every 60 s for a total of 60 min.
Data analysed by using Omega MARS data analysis software (program version 3.02 R2, BMG Labtech,
Mornington, Australia), in order to calculate antioxidant capacity, trolox was used as a standard and
results were expressed as a mmol trolox equivalent (TE) per g sample.
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2.8. InVitro Carbohydrate Digestion (Glycaemic Glucose Equivalent-GGE) Analysis

The in vitro digestion process was carried out with the method developed by Foschia, Peressini,
Sensidoni, Brennan and Brennan, 2015 [28] and used by Gao, J.R. et al., 2016 [29]. The method estimates
the glucose released from the cookie samples during enzymatic hydrolysis over 120 min to predict
glycaemic response. In brief: digestions were held in 60 mL plastic pots placed on a controlled
temperature stirring hot plate (IKA RT 15, IKA Werke GmbH & Co. KG, Mendelheim, Germany).
The samples (0.5 g) were mixed with 30 mL of reverse osmosis water and kept at 37 ◦C for 10 min with
constant stirring on a magnetic starrier. Pepsin solution (1 mL of 1 g pepsin in 10 mL 0.05 M hydrogen
chloride (HCl) was added and incubated for 30 min at 37 ◦C. Aliquots (1 mL) were collected (time 0)
from the digestion mixture and added to 4 mL alcohol to arrest enzyme reaction. Amyloglucosidase
(0.1 mL) was added to the digestion mixture to prevent end product inhibition of pancreatic α-amylase.
Then pancreatin solution (5 mL of 2.5% pancreatin in 0.1 M Malate buffer pH 6.0) was added to the
mixture. Further 1 mL aliquots were collected at 20, 60 and 120 min and treated as before, then stored
at 4 ◦C until reducing sugar analysis was carried out. The 3,5-dinitrosalicylic acid (DNS) method was
followed to measure reducing sugar content of the samples during in vitro digestion. Glucose release
was calculated in mg glucose/g sample and plotted against time and area under the curve (AUC) was
calculated by dividing the graph into trapezoids.

2.9. Statistical Analysis

All data was analysed by using the data analysis software, Minitab (version 17, Minitab Inc.,
State College, PA, USA) to establish significant differences. Analysis of Variance (One-way) was
employed with Tukey’s test at 95% confidence interval (p < 0.05) in all cases. All values were presented
as the mean of triplicate determinations ± standard deviation.

3. Results and Discussion

Cookies were prepared using astaxanthin powder and wholemeal flour. The effects of astaxanthin
powder replacement on the physical properties and functional properties of wholemeal flour cookies
were analysed.

3.1. Physical Properties of Cookies

The physical characteristics of the cookies are summarised in Table 2. The results showed
a significant reduction (p < 0.05) in the height and diameter gain of the cookies containing astaxanthin
and a significant reduction of (p < 0.05) weight loss of the wheat and oat flour cookies with 15%
addition of astaxanthin. As the amount of astaxanthin powder increased the weight loss, height
and diameter decreased. The largest height changes were observed in cookies made from wholemeal
wheat flour, and the largest diameter changes were observed in cookies made from wholemeal
oat flour. This observation could be attributed to the hydrophilic nature of the ingredients [30].
The spread factor of a cookie is affected by dough viscosity as well as the acid-base reaction of the
ingredients (sodium bicarbonate and fat), causing bubbles in the dough to expand in volume [31].
Physical evaluation of the cookies reported by [32,33], suggested that the spread factor is affected by
the water holding capacity of the ingredients. Cookies made with wholemeal barley had increased
moisture content with increasing astaxanthin addition. The reason for this phenomenon is that the
physical state of starch, protein and fibre are the key determinants of the water holding capacity
of the flour as suggested in other papers [34–36]. The moisture content of wheat, oat and barley
cookies increased significantly (p < 0.05) at all levels of astaxanthin addition (Table 2). This can be
attributed to differences in water holding capacity of the ingredients especially different flours [37].
Correspondingly, the hardness of the cookies decreased with the addition of astaxanthin (Table 2).
The study indicated that when astaxanthin was incorporated into wheat and oat cookies they were
softer and barley cookies were harder in comparison to control cookies. This suggests that water



Foods 2017, 6, 57 5 of 10

holding capacity of astaxanthin is intermediary between oat and barley flour and it could be due to
the nature of the starch and starch-protein interface of different flour. The [38] found that differences
in swelling behaviour of the starch granules resulted in cookies with different textural properties,
while [34] showed that increased protein content affected the interaction of starch and protein and
their hydrogen bonding during dough development.

Table 2. Physical characteristics (after baking: changes in height (%), diameter (%) and weight loss (%);
moisture content (%) and hardness (kg) of the model cookies).

Sample Increase in
Height (%)

Increase in
Diameter (%)

Weight Loss
(%)

Moisture
Content (%) Hardness (kg)

WCC 94.39 ± 3.06 a 3.93 ± 0.226 9.71 ± 0.04 a 7.50 ± 0.11 c 9.26 ± 0.13 a

W5A 71.44 ± 8.39 b 2.96 ± 1.139 b 9.63 ± 0.02 a,b 7.83 ± 0.01 b 7.79 ± 0.16 b

W10A 59.39 ± 3.06 b,c 2.27 ± 0.216 b 9.48 ± 0.12 a,b 7.91 ± 0.07 b 7.35 ± 0.58 b

W15A 52.94 ± 0.75 c 1.15 ± 0.925 9.44 ± 0.12 b 8.21 ± 0.03 a 7.06 ± 0.48 b

BCC 94.33 ± 6.78 a 5.23 ± 1.168 10.31 ± 0.11 a 7.74 ± 0.02 d 4.12 ± 0.12 c

B5A 83.50 ± 1.04 a,b 4.76 ± 0.444 10.41 ± 0.11 a 7.79 ± 0.02 c 4.98 ± 0.20 b

B10A 74.61 ± 2.91 b,c 3.67 ± 0.731 b 10.46 ± 0.20 a 7.90 ± 0.01 b 5.26 ± 0.22 b

B15A 65.50 ± 4.84 c 2.72 ± 0.314 10.67 ± 0.28 a 8.17 ± 0.02 a 6.21 ± 0.10 a

OCC 70.94 ± 0.91 a 23.20 ± 0.25 a 11.54 ± 0.17 a 5.55 ± 0.05 d 7.57 ± 0.05 a

O5A 67.94 ± 2.46 a,b 12.81 ± 0.49 a 11.14 ± 0.23 a,b 6.09 ± 0.04 c 7.23 ± 0.14 a,b

O10A 64.55 ± 0.25 b 7.80 ± 0.05 c 10.63 ± 0.22 b,c 6.66 ± 0.04 b 7.02 ± 0.12 b

O15A 55.55 ± 0.91 c 3.62 ± 0.14 d 10.23 ± 0.23 c 7.12 ± 0.09 a 6.16 ± 0.23 c

Data are presented as mean ± standard deviation, n = 3; (a–d): Means within same columns for same flour cookie
group that do not share the same superscript are significantly different (p < 0.05). W, Wheat; B, Barley; O, Oat;
CC, Cookie Control; A, Astaxanthin (5%, 10% or 15%).

3.2. Colour

The colour profile of the cookie samples (surface and ground) are summarised in Table 3. Both the
surface colour and the total colour (represented by the ground sample) were measured to determine
if there was any interaction in terms of food addition and colour enhancement. The addition of
astaxanthin to three types of flour cookies significantly (p < 0.05) decreased the lightness (L*), causing
the cookies to became red (a*) and decreased yellowness (b*). There was a significant colour change
as illustrated by the4E value of the three kind of flour cookies in the following order: control >5%
astaxanthin >10% astaxanthin >15% astaxanthin cookies. The main factor causing the colour change of
the cookies is due to the pigment of astaxanthin powder, as the level of substitution increased lightness
of the cookies decreased and greenness increased. However, the reaction between reducing sugars
and amino acids (maillard reaction; starch dextrinization and caramelization) which is induced by
heating during baking time also enhances darkness the cookie colour [39] as reflected in colour change
(Table 3;4E value).

3.3. Total Phenolic Content (TPC) and Antioxidant Activity of Cookies

The phenolic content, DPPH radical scavenging and ORAC activity of the cookies are summarised
in Table 4. It can be seen that the phenolic content increased significantly (p < 0.05), and proportionately,
with the replacement of astaxanthin powder. This phenomenon is likely to be due to the high amount of
phenolic compounds present in astaxanthin (10,000–40,000 mg/kg). Spiller and Dewell (2003) [40] and
Sharma and Gujral (2014) [41] have shown that wheat flour has less phenolic compounds compared
to barley and oat flour. ORAC values were observed to increase as astaxanthin increased in the
formulation (Table 4). Increasing the level of astaxanthin in cookies resulted in a significant increase
(p < 0.05) of DPPH scavenging activity. These results are due to the addition of astaxanthin derived
from microalgae. Previous research has illustrated that astaxanthin compounds are 10 times stronger
than the other carotenoids [20] in terms of phenolic antioxidant activities.
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Table 3. The CIE colour profiles of the cookies.

Sample L* a* b* 4E

Surface Cookie colour

WCC 90.40 ± 0.42 a −5.79 ± 0.35 a 33.05 ± 0.09 a 96.43 ± 0.44 a

W5A 84.14 ± 0.26 b −7.37 ± 0.08 b 29.16 ± 0.23 b 89.36 ± 0.32 b

W10A 82.20 ± 0.10 c −8.72 ± 0.20 c 27.42 ± 0.06 c 87.09 ± 0.13 c

W15A 81.42 ± 0.32 c −8.27 ± 0.08 c 26.45 ± 0.34 d 86.01 ± 0.40 d

BCC 94.43 ± 0.45 a −8.16 ± 0.76 a 34.55 ± 0.27 a 100.89 ± 0.58 a

B5A 86.97 ± 0.19 b −9.25 ± 0.04 b 32.16 ± 0.07 b 93.19 ± 0.20 b

B10A 84.77 ± 0.23 c −7.88 ± 0.25 a 30.06 ± 0.15 c 90.29 ± 0.27 c

B15A 83.10 ± 0.14 d −7.83 ± 0.01 a 27.95 ± 0.14 d 88.02 ± 0.18 d

OCC 91.31 ± 0.69 a −5.64 ± 0.34 a 35.24 ± 0.15 a 98.04 ± 0.71 a

O5A 84.19 ± 0.14 b −7.63 ± 0.34 b 30.64 ± 0.15 b 89.91 ± 0.20 b

O10A 82.21 ± 0.13 c −7.87 ± 0.13 b 28.26 ± 0.11 c 87.31 ± 0.17 c

O15A 80.77 ± 0.15 d −8.17 ± 0.13 b 26.56 ± 0.19 d 85.39 ± 0.22 d

Ground Cookie colour

WCC 87.20 ± 0.20 a −0.32 ± 0.03 a 45.33 ± 0.10 a 97.55 ± 0.30 a

W5A 77.82 ± 0.06 b −6.32 ± 0.04 c 43.72 ± 0.26 b 90.29 ± 0.01 b

W10A 75.42 ± 0.22 c −6.98 ± 0.03 d 38.31 ± 0.15 c 84.88 ± 0.13 c

W15A 69.10 ± 0.30 d −6.20 ± 0.02 b 34.13 ± 0.12 d 77.32 ± 0.22 d

BCC 95.13 ± 0.07 a −13.41 ± 0.21 c 43.14 ± 0.41 a 105.32 ± 0.13 a

B5A 82.96 ± 0.62 b −5.86 ± 0.23 a 43.95 ± 0.65 a 94.06 ± 0.30 b

B10A 74.46 ± 0.63 c −6.56 ± 0.12 b 44.02 ± 0.09 a 86.74 ± 0.56 c

B15A 71.13 ± 0.77 d −6.04 ± 0.38 a,b 39.85 ± 1.38 b 81.76 ± 0.24 d

OCC 93.15 ± 0.59 a −9.32 ± 0.1.34 b 49.41 ± 1.35 a 105.86 ± 0.02 a

O5A 85.92 ± 0.27 b −8.36 ± 0.09 a,b 39.58 ± 0.21 b,c 94.97 ± 0.16 b

O10A 73.24 ± 0.36 c −7.33 ± 0.03 a 36.04 ± 0.07 c 81.96 ± 0.29 c

O15A 71.19 ± 0.47 d −6.99 ± 0.57 a 41.34 ± 2.68 b 82.64 ± 0.97 c

L*, lightness (0 = black, 100 = white); a*, red (+) to green (-); b*, yellow (+) to blue (-); 4E, colour difference.
Data are presented as mean ± standard deviation, n = 3; (a–d), Means within same columns for same flour cookie
group that do not share the same superscript are significantly different (p < 0.05). W, Wheat; B, Barley; O, Oat;
CC, Cookie Control; A, Astaxanthin (5%, 10% or 15%).

Table 4. Total phenolic content and antioxidant capacity.

Sample TPC (mg GAE/g Sample) DPPH (µmol TE/g Sample) ORAC (mmol TE/g Sample)

WCC 0.59 ± 0.01 d 0.54 ± 0.01 d 0.09 ± 0.001 b

W5A 0.80 ± 0.01 c 0.95 ± 0.03 c 0.11 ± 0.001 a

W10A 0.95 ± 0.01 b 1.10 ± 0.01 b 0.12 ± 0.001 a

W15A 1.14 ± 0.01 a 1.26 ± 0.03 a 0.12 ± 0.004 a

BCC 0.63 ± 0.01 c 1.36 ± 0.01 d 0.08 ± 0.003 b

B5A 0.95 ± 0.02 b 1.69 ± 0.02 c 0.09 ± 0.002 a

B10A 1.15 ± 0.09 a 1.74 ± 0.01 b 0.09 ± 0.002 a

B15A 1.27 ± 0.01 a 1.79 ± 0.01 a 0.10 ± 0.002 a

OCC 0.87 ± 0.01 d 1.13 ± 0.01 d 0.08 ± 0.001 c

O5A 1.03 ± 0.01 c 1.22 ± 0.01 c 0.10 ± 0.002 b

O10A 1.28 ± 0.01 b 1.34 ± 0.01 b 0.10 ± 0.001 a

O15A 1.44 ± 0.01 a 1.46 ± 0.01 a 0.11 ± 0.001 a

Data are presented as mean ± standard deviation, n = 3; (a–d), Means within same columns for same flour
cookie group do not share the same superscript are significantly different (p < 0.05). W, Wheat, B, Barley; O, Oat;
CC, Cookie Control; A, Astaxanthin (5%, 10% or 15%).

3.4. Glycaemic Glucose Equivalent (GGE) Analysis

Figure 1 illustrates the in vitro digestion of cookies, calculated as the amount of reducing
sugar released by digestive enzymes over 120 min. All the samples demonstrated the impact of
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the substitution of astaxanthin in the following order (5% > 10% > 15%) and significantly slowed the
amount of reducing sugar released (calculated as mg glucose/g sample of incremental area under the
curve (iAUC)) as compare with the control cookies.
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Figure 1. Reducing sugar released (mg/g sample) after 120 min digestion of (A) wheat, (B) barley and
(C) oat wholemeal flour cookies with astaxanthin substitution. WCC, wheat cookie control; W5A, wheat
+ 5% astaxanthin cookie; W10A, wheat + 10% astaxanthin cookie; W15A, wheat + 5% astaxanthin cookie;
BCC, barley cookie control; B5A, barley + 5% astaxanthin cookie; B10A, barley + 10% astaxanthin
cookie; B15A, barley + 15% astaxanthin cookie; OCC, oat cookie control; O5A, oat + 5% astaxanthin
cookie; O10A, oat + 10% astaxanthin cookie; O15A, oat + 15% astaxanthin cookie. (a–d), Means within
same figure that do not share the same superscript are significantly different (p < 0.05).

It is possible that the high antioxidant activity of the astaxanthin powder could be related to
the decreased rate of sugar released [21]. Researchers have shown that antioxidants can impair
enzyme activity during the digestion [42]. The interaction between phenolic compounds and
digestive enzymes [43] could affect the non-covalent starch-phenolic interactions thus impeding
starch degradation [44,45]. Additionally, the rate of sugar release may also be decreased due to the
non-starchy network of fibre and protein in the system which entraps starch granules and acts as
a physical barrier thus limiting enzyme accessibility [28,46].

Figure 2 illustrates the rate of reaction of starch conversion to reducing sugar release over the
120 min in vitro digestion period. Form this figure it can be observed that the rate of reaction between
20–120 min appears to be greater for the control samples as compared with the samples containing
astaxanthin. It can also be observed that the oat samples generally showed a lower sugar release profile
than the barley and the wheat samples. It is possible that the in vitro digestion studies observed in
Figures 1 and 2 are related to the total phenolic content/antioxidant activity of the samples (Table 4).
Further work is required to determine whether this is an indirect relationship or if there is a mechanistic
association between phenolic content of the cookies and reduced starch digestion.
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Figure 2. Reducing sugar released (mg/g sample) during the 120 min in vitro digestion process of (A) wheat,
(B) barley and (C) oat wholemeal flour cookies with astaxanthin substitution. WCC, wheat cookie
control; W5A, wheat + 5% astaxanthin cookie; W10A, wheat + 10% astaxanthin cookie; W15A,
wheat + 5% astaxanthin cookie; BCC, barley cookie control; B5A, barley + 5% astaxanthin cookie;
B10A, barley + 10% astaxanthin cookie; B15A, barley + 15% astaxanthin cookie; OCC, oat cookie
control; O5A, oat + 5% astaxanthin cookie; O10A, oat + 10% astaxanthin cookie; O15A, oat + 15%
astaxanthin cookie.

4. Conclusions

The research has illustrated the possible use of novel natural ingredients in alerting the functional
quality and biological activity of simple foods. In particular, in vitro digestion (GGE analysis) of
the cookies demonstrated significantly lower glucose release when astaxanthin increased in the
formulation. The results also demonstrated that the combination of astaxanthin with wholemeal flour
significantly improve the antioxidant properties of the cookies. Thus, the inclusion of astaxanthin
illustrates a potential synergy between microalgae and wholemeal flour of the model food. As such
this combination can contribute to the intake of natural bioactive compounds in the human diets for
the potential health benefits.
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