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Line of Sight2× nr MIMO
with Random Antenna Orientations

Lakshmi Natarajan, Yi Hong,Senior Member, IEEE, and Emanuele Viterbo,Fellow, IEEE

Abstract—Line-of-sight (LoS) multiple-input multiple-output
(MIMO) gives full spatial-multiplexing gain when the antenna
array geometry and orientation are designed based on the inter-
terminal distance. These known design methodologies, thathold
for antenna arrays with fixed orientation, do not provide full
MIMO gains for arbitrary array orientations. In this paper,
we study LoS MIMO channels with random array orientations
when the number of transmit antennas used for signalling is
2. We study the impact of common array geometries on error
probability, and identify the code design parameter that describes
the high signal-to-noise ratio (SNR) error performance of an
arbitrary coding scheme. For planar receive arrays, the error
rate is shown to decay only as fast as that of a rank1 channel,
and no better than SNR

−3 for a class of coding schemes
that includes spatial multiplexing. We then show that for the
tetrahedral receive array, which uses the smallest number of
antennas among non-planar arrays, the error rate decays faster
than that of rank 1 channels and is exponential inSNR for
every coding scheme. Finally, we design a LoS MIMO system
that guarantees a good error performance for all transmit/receive
array orientations and over a range of inter-terminal distances.

Index Terms—Antenna array, array geometry, coding scheme,
line-of-sight (LoS), multiple-input multiple-output (MI MO),
probability of error.

I. I NTRODUCTION

T HE LARGE swathes of raw spectrum available in the
millimeter-wave frequency range are expected to provide

an attractive solution to the high data-rate demands of the
future 5G cellular networks [1]. The small carrier wavelength
of millimeter-wave frequencies allow for reduced spacing
between the antenna elements when multiple antennas are
used at the transmitter and receiver. This implies that multiple-
input multiple-output (MIMO) spatial multiplexing gains can
be obtained even in the presence of a strong line-of-sight (LoS)
component when operating in such high frequencies [2].

In LoS environments, the MIMO channel matrixH is a
deterministic function of the positions of the transmitterand
receiver and the geometry of the antenna arrays used at either
terminals. If the positions of the communicating terminalsare
fixed and known apriori, the geometry of the antenna arrays
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can be designed to optimize the performance of the commu-
nication system. The LoS MIMO channel quality, in terms of
capacity, multiplexing gain, coverage and channel eigenvalues,
have been studied in [2]–[9] as a function of the inter-terminal
distance and the inter-antenna spacing of transmit and receive
arrays, when the antennas are to be arranged in a rectangular,
circular or a linear array. However, these design techniques
assume that the position and the orientation of the antenna
arrays are fixed, and the resulting criteria may be difficult to be
satisfied if either of the communicating terminals is mobileor
if the positions of the wireless terminals are not known a priori.
Systems designed according to these known criteria degrade
gracefully with variations in the geometric parameters, and
may be adequate in certain scenarios where the changes in the
orientation are limited, such as in a sectored communication
cell where the variation of the base station orientation with
respect to the direction of propagation is limited. However,
these designs, which utilize two-dimensional antenna arrays,
do not provide MIMO spatial multiplexing gains for arbitrary
array orientations.

In [10], the mutual information rates of a predominantly
LoS channel with arbitrary antenna array orientations were
studied using simulations and direct measurements in an in-
door environment. The results show that the three-dimensional
antenna arrays obtained by placing the antennas on the faces
of a tetrahedron or a octahedron provide mutual information
rates that are largely invariant to the rotation of antenna
arrays in indoor LoS conditions. Previous studies of three-
dimensional antenna arrays for wireless communications have
mainly studied the capacity of the resulting MIMO system
in a rich scattering environment. In [11] a compact MIMO
antenna was proposed which consists of12 dipole antennas
placed along the edges of a cube. A24-port and a36-port
antenna were designed in [12] by placing antennas along
the edges and faces of a cube. In [13] and [14],6-port and
16-port antennas were designed on a cube, respectively, and
the performance of the MIMO system in terms of capacity
and channel eigenvalues in a richly scattering environment
were studied. The objective of [11]–[14] has been to design a
compact array by densely packing the antenna elements while
exploiting the degrees of freedom available in an environment
that provides abundant multipath components.

To the best of our knowledge, there has been no prior
theoretical study of LoS MIMO channels where the transmit
or receive antenna array orientations are arbitrary, as may
be experienced in wireless mobile communications. Further,
all previous work have focussed on optimizing the mutual
information rates of the MIMO channel. In order to achieve
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the information theoretic limits, we need code design criteria
based on an error performance analysis of the communication
channel. In this paper, we consider LoS MIMO channels where
the number of transmit antennas used for signalling is2 and
both the transmit and receive arrays have random orientations.
We study the impact of the geometry of the antenna arrays on
the system error performance and design a LoS MIMO system
that guarantees a minimum channel quality and good error
performance for arbitrary transmit and receive orientations
over a range of inter-terminal distances.

We model the2-transmit antennanr-receive antenna LoS
MIMO channelH using the upper triangular matrixR ob-
tained from its QR-decomposition (Section II). This allowsus
to derive bounds on pairwise error probability and identifythe
code parameter that determines the high signal-to-noise ratio
(SNR) error performance of arbitrary coding schemes in LoS
MIMO channels.

We show that for any planar, i.e.,2-dimensional, arrange-
ment of receive antennas (such as linear, circular and rect-
angular arrays), the rate of decay of error probability is
similar to that of a rank1 LoS MIMO channel whenever
the receiver undergoes random rotations. Further, for some
coding schemes, includingspatial multiplexing[15]–[17], the
error rate with any planar receive array decays no faster than
SNR

−3 even though the channel is purely LoS and experiences
no fading (Section III).

We consider the smallest number of receive antennasnr = 4
that can form a three-dimensional, i.e., non-planar, arrange-
ment, and derive bounds on error performance when they form
a tetrahedral array. In this case, the error probability decays
faster than that of a rank1 channel and is always exponential
in SNR irrespective of the coding scheme used (Section IV-A).
We then design a LoS MIMO system with a good error per-
formance for all transmit and receive array orientations over a
range of inter-terminal distances by using a tetrahedral receive
array and adaptively choosing two transmit antennas from a
triangular/pentagonal array at the transmitter (Section IV-B).
Finally, we present simulation results to support our theoretical
claims (Section V).

Notation:Matrices and column vectors are denoted by bold
upper-case and lower-case symbols respectively. The symbols
A⊺, A† and ‖A‖F denote the transpose, the conjugate-
transpose and the Frobenius norm of a matrixA. The symbol
‖ · ‖ denotes the2-norm of a vector. For a complex numberz,
arg(z) andRe(z) denote its phase and real part, respectively.
The expectation operator is denoted byE(·).

II. T HE 2× nr LOS MIMO CHANNEL

We consider MIMO line-of-sight (LoS) transmission with
nt = 2 antennas at the transmitter andnr ≥ 2 antennas at
the receiver. Assuming that the large scale fading effects,
such as path loss, are accounted for in the link budget, we
take the magnitude of the complex channel gain between any
transmit-receive antenna pair to be unity. Ifrm,n is the distance
between thenth transmit and themth receive antennas, then
the (m,n)th component of channel matrixH ∈ Cnr×2 is [4]

hm,n = exp

(

i
2πrm,n

λ

)

, (1)

where λ is the carrier wavelength andi =
√
−1. The re-

sulting wireless channel isyRx =
√
SNRHx + wRx, where

yRx ∈ Cnr is the received vector,x ∈ C2 is the transmitted
vector,wRx ∈ Cnr is the circularly symmetric complex white
Gaussian noise with unit variance per complex dimension,
andSNR is the signal-to-noise ratio at each receive antenna.
The power constraint at the transmitter isE

(

‖x‖2
)

≤ 1. We
assume that the channel matrixH is known at the receiver
but not at the transmitter. Leth1,h2 ∈ Cnr denote the two
columns ofH, andH = QR be its QR decomposition where
Q ∈ Cnr×2 has orthonormal columns, i.e.,Q is a semi-unitary
matrix, and

R =







‖h1‖ h
†
1
h2

‖h1‖

0

√

‖h2‖2 − |h†
1
h2|

2

‖h1‖2






.

Let µ denote the correlation between the two columnsh1 and
h2 of H, andθµ be the phase ofh†

1h2, i.e.,

µ =
|h†

1h2|
‖h1‖ ‖h2‖

andθµ = arg
(

h
†
1h2

)

.

From (1), we have‖h1‖ = ‖h2‖ =
√
nr, and hence,

R =
√
nr

[

1 eiθµµ

0
√

1− µ2

]

. (2)

SinceQ is semi-unitary andwRx is a white Gaussian noise
vector,y = Q†yRx is a sufficient statistic forx. Hence, in the
rest of the paper we will consider the following equivalent
channel

y =
√
SNRRx+w, (3)

whereR is given in (2), andw = Q†x is a two-dimensional
circularly symmetric complex white Gaussian noise with zero
mean and unit variance per complex dimension.

A. Modelling theR matrix

To analyze the error performance of arbitrary coding
schemes in LoS MIMO channels, we model the phaseθµ as
independent ofµ and uniformly distributed in[0, 2π). Deriving
the probability distribution ofθµ and µ appears difficult,
however, we provide an analytical motivation and numerical
examples to support the validity of our model.

We follow the notations from [3], [4] to describe the
geometry of the transmit and receive antenna positions as
illustrated in Fig. 1. We denote the inter-antenna distanceat
the transmitter bydt, and define the originO of the three-
dimensional reference coordinate system as the mid-point
between the two transmit antennas. Define thez-axis of the
coordinate system to be along the line connecting the two
transmit antennas, i.e., the positions of the two transmit an-
tennas are

[

0, 0, dt

2

]⊺

and
[

0, 0, − dt

2

]⊺

, respectively. Choose
thex-axis of the coordinate system such that the centroidO′

of the receive antenna array lies on thex–z plane. LetO′ be
at a distance ofR from O and at an angleβ to the x-axis
i.e., at the point

[

R cosβ, 0, R sinβ
]⊺

. Consider an auxiliary
coordinate system withO′ as the origin and the three axes
x′, y′, z′ defined as follows: thex′ axis is along the direction



NATARAJAN et al.: LINE OF SIGHT 2 × nr MIMO WITH RANDOM ANTENNA ORIENTATIONS 3

Fig. 1. Illustration of the parameters used in the system model.

OO′, i.e., along the vector
[

cosβ, 0, sinβ
]⊺

, z′ axis is on the
x–z plane, andy′ is parallel toy. Let (dm, θm, φm) be the
spherical coordinates of themth receive antenna with respect
to this auxiliary coordinate system, wheredm is the radial
distance,θm is the polar angle andφm is the azimuthal angle.
The distancerm,n between thenth transmit andmth receive
antennas satisfies [5]1

rm,n ≈ R+ dm sin θm cosφm + (−1)n
dt
2
sinβ+

(dm sin θm sinφm)2 + (dm cos θm + (−1)n dt

2 cosβ)2

2R
.

Therefore, the differencerm,2 − rm,1 is given by

rm,2 − rm,1 = dt sinβ +
(dm cos θm + dt

2 cosβ)2

2R

− (dm cos θm − dt

2 cosβ)2

2R

= dt sinβ +
dtdm cosβ cos θm

R
. (4)

Let F (β) = h
†
1h2 denote the inner product between the two

columns ofH as a function ofβ. Using (1) and (4), we obtain

F (β) = h
†
1h2 =

nr
∑

m=1

h†
m,1hm,2

= exp

(

i2πdt sinβ

λ

) nr
∑

m=1

exp

(

i2πdtdm cosβ cos θm
Rλ

)

(5)

Let f1(β) = exp (i2πdt sinβ/λ) and

f2(β) =

nr
∑

m=1

exp

(

i2πdtdm cosβ cos θm
Rλ

)

.

ThenF (β) = f1(β)f2(β), argF = arg f1+arg f2, and since
|f1| = 1, we also have|F | = |f2|.

1The angleβ is equal to the parameterθt used in [3], [4].

We now upper bound the magnitude of the derivative ofµ
with respect toβ. The derivative ofdf2/dβ equals

nr
∑

m=1

−i2πdtdm sinβ cos θm
Rλ

exp

(

i2πdtdm cosβ cos θm
Rλ

)

.

(6)

Note that|df2/dβ| ≤ b, whereb =
2πdt

∑nr

m=1 dm
Rλ

. For an
infinitesimal change∆β in the value ofβ,

|f2(β +∆β)| − |f2(β)| =
∣

∣

∣
f2(β) +

df2
dβ

∆β
∣

∣

∣
− |f2(β)|.

Using the fact that
∣

∣ |u + w| − |u|
∣

∣ ≤ |w| for any u,w ∈ C,
we have

∣

∣

∣
|f2(β +∆β)| − |f2(β)|

∣

∣

∣
≤
∣

∣

∣

∣

df2
dβ

∣

∣

∣

∣

|∆β| ≤ b|∆β|.

It follows immediately that| d|f2|/dβ | ≤ b. Using the fact
thatµ = |F (β)|/nr = |f2(β)|/nr, we have

∣

∣

∣

∣

dµ

dβ

∣

∣

∣

∣

=
1

nr

∣

∣

∣

∣

d|f2|
dβ

∣

∣

∣

∣

≤ b

nr
. (7)

Note that θµ = argF = arg f1 + arg f2, and hence,
dθµ/dβ = d(arg f1)/dβ + d(arg f2)/dβ. Now, arg f1 =
2πdt sinβ/λ, and hence,d(arg f1)/dβ = 2πdt cosβ/λ. Us-
ing (7) and the fact that the range of transmissionR is much
larger thandm, we have

d(arg f1)

dβ
=

2πdt cosβ

λ
≫ 2πdt

λ

∑nr

m=1 dm
Rnr

=
b

nr
≥
∣

∣

∣

∣

dµ

dβ

∣

∣

∣

∣

.

Hence, we expectdθµ/dβ ≫ |dµ/dβ|, i.e., a small change in
the value ofβ, that causes a negligible change inµ, changes
the phaseθµ by an entire cycle of2π rad. This motivates the
channel model whereθµ is independent ofµ and uniformly
distributed in the interval[0, 2π).

Example1. Consider a2× 2 LoS system operating in E-band
at the frequency of72 GHz over a distanceR = 10 m. Let the
two receive antennas be positioned such thatθ1 = 0, θ2 = π,
φ1 = φ2 = 0 andd1 = d2 = dr/2. Then, using (5), we have

h
†
1h2 = 2 exp

(

i2πdt sinβ

λ

)

cos

(

πdtdr cosβ

Rλ

)

.

It follows that

µ = cos

(

πdtdr cosβ

Rλ

)

andθµ =
2πdt sinβ

λ
. (8)

Suppose the antenna geometry is to be configured so thatH

is unitary, i.e.,µ = 0, under the assumption thatβ = 0. This
can be achieved by choosingdt anddr so that

dtdr cosβ

Rλ
=

dtdr
Rλ

=
1

2
.

This is the criterion for uniform linear arrays
given in [3]–[5]. With λ = 4.2 mm, the choice of
dt = dr =

√

Rλ/2 = 0.145 m yields µ = 0. With this
choice ofdt anddr, through direct computation using (8), we
observe that asβ undergoes a small variation in value from
0 rad through0.029 rad (1.66◦), the corresponding value of
µ changes from0 to 6.6× 10−4, while θµ ranges over the
entire interval from0 to 2π rad.
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Fig. 2. The joint probability density functionf(θµ, µ) of Example 2.

Example2. Continuing with the2× 2 system of Example 1,
now assume that the transmit and receive arrays are affectedby
independent random rotations about their respective centroids.
The random rotations are uniformly distributed over the space
of all 3-dimensional rotations. The channel matrixH, and the
parametersθµ and µ are now random variables. The joint
probability density functionf(θµ, µ) obtained using Monte-
Carlo methods is shown in Fig. 2. We computedf(θµ, µ) over
a rectangular grid of625 points using107 randomly generated
instances ofH. For any fixedµ, we observe thatf(θµ, µ) is
essentially constant across all values ofθµ, implying thatθµ
is uniformly distributed in[0, 2π) and is independent ofµ.

Example3. Consider a2 × 4 LoS MIMO system, with a
rectangular array at the receiver, carrier frequency of72 GHz,
and inter-terminal distance ofR = 10 m. The receive antennas
are placed at the vertices of a square whose edges are of
length dr. We choosedt = dr =

√

Rλ/2, which yields
the ideal channel (i.e.,µ = 0) if the transmit and receive
arrays are placed broadside to each other [5]. The joint
probability density functionf(θµ, µ), obtained using Monte-
Carlo methods, when the transmit and receive arrays undergo
uniformly random rotations about their centroids is shown in
Fig. 3. As in Example 2, the numerical result supports the
validity of our channel model.

In the rest of the paper we model the2× nr LoS channel
using the2× 2 matrix (cf. (3))

R =
√
nr

[

1 eiΘµ

0
√

1− µ2

]

, (9)

whereΘ is uniformly distributed in[0, 2π) and

µ =
1

nr

∣

∣

∣

∣

∣

nr
∑

m=1

exp

(

i2πdtdm cosβ cos θm
Rλ

)

∣

∣

∣

∣

∣

. (10)

B. Coding schemes

We analyse the error performance of any arbitrary coding
scheme for two transmit antennas with a finite transmission
duration. LetT ≥ 1 denote the transmission duration of a
given communication scheme andC ⊂ C2×T the finite set

Fig. 3. The joint probability density functionf(θµ, µ) of Example 3.

of all possible transmit codewords. The rows of the code-
words X ∈ C correspond to the two transmit antennas and
the columns to theT time slots. All codewords are equally
likely to be transmitted and the optimal decoder, i.e., the
maximum-likelihood (ML) decoder, is used at the receiver.
We further assume that the communication scheme satisfies the
average power constraint

∑

X∈C
‖X‖2F ≤ |C |T . Our analysis

holds for arbitrary codesC , including space-time block codes
(STBCs) [18].

We now briefly recall two specific coding schemes which
will be used in our simulations (in Section V) to illustrate
our analytical results.Spatial multiplexing (SM)[15]–[17],
which is also known asVBLASTin the literature, is a simple
yet powerful scheme where independent information symbols
are transmitted across different antennas and time slots. The
codebookC ⊂ C2×1 corresponding to SM occupiesT = 1
time slot, and is given by

C =

{[

s1
s2

]

∣

∣

∣
s1, s2 ∈ A

}

,

whereA is a complex constellation, such as QAM or PSK.
TheGolden code[19] is an STBC for two transmit antennas

occupyingT = 2 time slots, and is given by

C =

{[

α(s1 + τs3) α(s2 + τs4)
iᾱ(s2 + µs4) ᾱ(s1 + µs3)

]

∣

∣

∣
s1, . . . , s4 ∈ A

}

,

whereA is a QAM constellation,τ = (1 +
√
5)/2, µ = 1/τ ,

α = 1 + iµ and ᾱ = 1 + iτ . Unlike SM, the Golden code
spreads the information symbols across time and antennas.

Both SM and Golden code have been well studied in the
case of non line-of-sight MIMO fading channels. The SM
scheme provides high data rate with low complexity encoding
and decoding, while the Golden code provides high data rate,
full-diversity as well as a large coding gain at the cost of
higher decoding complexity in fading channels.

C. Error probability analysis for a fixedµ

We now analyse the error performance of a given arbitrary
coding scheme for a fixed value ofµ. Let C ⊂ C2×T be
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any code andXa,Xb ∈ C be two distinct codewords. Let
∆X = Xa −Xb be the pairwise codeword difference matrix.
The pairwise error probability betweenXa andXb for a fixed
µ and a given realizationΘ = θ is [18]

PEP (Xa → Xb|µ,Θ = θ) = Q
(
√

SNR‖R∆X‖2F
2

)

,

whereQ is the Gaussian tail function. Using the Chernoff

boundQ(x) ≤ exp
(

−x2/2
)

2
, we have the upper bound

PEP ≤ 1

2
exp

(

−SNR

4
‖R∆X‖2F

)

. (11)

Denoting the two rows of the matrix∆X as∆x
⊺

1 and∆x
⊺

2 ,
we obtain the following expression for the squared Euclidean
distance between the codewords at the receiver,

‖R∆X‖2F = nr

(

‖∆x1‖2 + ‖∆x2‖2 + 2µRe(eiθ∆x
†
1∆x2)

)

= nr

(

‖∆x1‖2 + ‖∆x2‖2 + 2µ cos θ′|∆x
†
1∆x2|

)

(12)

whereθ′ = θ + arg(∆x
†
1∆x2) mod 2π.

1) Worst-case Error Probability overθ: For a givenµ,
the value ofθ that minimizes the squared Euclidean distance
‖R∆X‖2 at the receiver isθ∗ = π + arg(∆x

†
1∆x2) since it

leads tocos θ′ = −1 in (12). Using the notation

d(µ,∆X) = ‖∆x1‖2 + ‖∆x2‖2 − 2µ|∆x
†
1∆x2|, (13)

the worst-case squared Euclidean distance is

min
θ∈[0,2π)

‖R∆X‖2F = nrd(µ,∆X).

Thus the worst-casePEP for a fixedµ satisfies

PEP
∗(µ) ≤ 1

2
exp

(−nr SNRd(µ,∆X)

4

)

. (14)

2) Average Error Probability overΘ: SinceΘ is uniformly
distributed in[0, 2π), so isΘ′ = Θ+arg(∆x

†
1∆x2) mod 2π.

Using (11) and (12), the error probability averaged overΘ,
for a fixedµ, can be upper bounded as follows

EΘ (PEP) ≤ EΘ

(

1

2
exp

(

−SNR

4
‖R∆X‖2F

))

=
1

2
exp

(−SNRnr(‖∆x1‖2 + ‖∆x2‖2)
4

)

×

1

2π

∫ 2π

0

exp

(

−SNRnr

4
2µ cos θ′|∆x

†
1∆x2|

)

dθ′

=
1

2
exp

(−SNRnr(‖∆x1‖2 + ‖∆x2‖2)
4

)

×

I0

(

SNRnr

2
µ|∆x

†
1∆x2|

)

where

I0(x) =
1

π

∫ π

0

exp (x cos θ′) dθ′ =
1

2π

∫ 2π

0

exp (x cos θ′) dθ′

=
1

2π

∫ 2π

0

exp (−x cos θ′) dθ′

is the modified Bessel function of the first kind and zeroth
order. For largex we have [20]

I0(x) =
ex√
2πx

(

1 +O
(

x−1
))

. (15)

Using (13) and the first order approximation (15), we get the
following approximate upper bound whenµ > 0,

EΘ (PEP) .
1

√

4πnrSNRµ|∆x
†
1∆x2|

× exp

(

−nrSNR

4
d(µ,∆X)

)

. (16)

Since the exponential function falls more rapidly than
SNR

−1/2, the highSNR behaviour is dictated byd(µ,∆X).
In this section, we derived bounds onPEP for a fixedµ. In

Sections III and IV we analyze the effects of random rotations
of the terminals onµ and error performance.

III. E RROR PERFORMANCE OF PLANAR RECEIVE ARRAYS

Assume that the receive antenna system is affected by a ran-
dom three-dimensional rotationU ∈ R3×3 about its centroid
O′. Let the rotationU be uniformly distributed on the set of
all 3-dimensional rotations, i.e., the special orthogonal group

SO3 =
{

U ∈ R
3×3 | UU⊺ = I, det(U) = 1

}

.

In Theorem 1, we provide a lower bound on the average
pairwise error probability over a LoS MIMO channel with
planar receive array. To do so, we derive a lower bound on
the probability that a random rotationU would lead to a ‘bad’
channel matrix withµ close to1, i.e.µ ≥ 1−ǫ for some small
positiveǫ. By analyzing thePEP for this class of bad channels,
and lettingǫ decay suitably withSNR, we arrive at a lower
bound for the averagePEP at highSNR.

Theorem 1. Let the receive antenna array be any planar
arrangement ofnr antennas,nr ≥ 2, undergoing a uniformly
distributed random rotationU about its centroid. At highSNR,
for any transmit orientationβ, we have

E(PEP) ≥
exp

(

−nrc |∆x
†
1
∆x2|

2

)

2nrSNR
3
√

2π2|∆x
†
1∆x2|

(

‖∆X‖F + 1√
nrSNR

)

× exp

(

−nrSNR

4
d(1,∆X)

)

, (17)

wherec = maxnr

m=1 2πdtdm/Rλ.

Proof: Let {ex, ey, ez} be the standard basis inR3. When
the receive system undergoes no rotation, i.e., whenU = I, let
the position of themth receive antenna relative to the centroid
O′ of the receive antenna system bedmrm, whererm ∈ R3 is
a unit vector. Since the receive array is planar and the random
rotationU is uniformly distributed, without loss of generality,
we assume that the vectorsr1, . . . , rnr

are in the linear span
of ex andez. From Fig. 1 we see thatθm in (5) is the angle
between the orientationUrm of themth receiver and the unit
vector ṽ =

[

− sinβ, 0, cosβ
]⊺

along z′-axis, i.e.,cos θm =
r⊺mU⊺ṽ. Note thatU⊺ has the same distribution asU, and
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v = U⊺ṽ is uniformly distributed on the unit sphere inR3.
The resulting random variable|e⊺yv| is known to be uniformly
distributed in the interval[0, 1].

For a small positive numberδ > 0, consider the event
E : |e⊺yv|2 ≥ 1− δ2. The probability ofE is

P(E) = P

(

|e⊺yv| ≥
√

1− δ2
)

= 1−
√

1− δ2 ≈ δ2

2
,

for small values ofδ. We will now derive an upper bound
for the PEP for the case whenE is true. Using the fol-
lowing inequalities, we first show that| cos θm| ≤ δ, for all
m = 1, . . . , nr,

| cos θm|2 = |r⊺mv|2

≤ |e⊺xv|2 + |e⊺zv|2 (sincerm ∈ span(ex, ez))

= ‖v‖2 − |e⊺yv|2

≤ 1− (1− δ2) = δ2.

Let cm = 2πdtdm cosβ/Rλ and cmax = max{c1, . . . , cnr
}.

From (10), we have

µ =
1

nr

∣

∣

∣

∣

∣

nr
∑

m=1

exp (icm cos θm)

∣

∣

∣

∣

∣

.

We will now show that the value ofµ is close to1 whenE is
true. If ǫm = 1− exp(icm cosβ), then

|ǫm|2 = (1− cos(cm cos θm))
2
+ sin2 (cm cos θm)

= 2− 2 cos(cm cos θm)

≈ 2− 2

(

1− c2m cos2(θm)

2

)

= c2m cos2(θm) ≤ δ2c2max,

where the approximation follows from the Taylor’s se-
ries expansion of thecos(·) function and the fact that
|cm cos θm| ≤ cmδ is small. Now,

µ =
1

nr

∣

∣

∣

∣

∣

nr
∑

1

(1− ǫm)

∣

∣

∣

∣

∣

=
1

nr

∣

∣

∣

∣

∣

nr −
nr
∑

1

ǫm

∣

∣

∣

∣

∣

≥ 1− 1

nr

nr
∑

1

|ǫm| ≥ 1− δcmax.

Thusµ ≥ 1− δcmax wheneverE is true.
The pairwise error probability for fixedµ and Θ = θ is

Q
(

√

SNR‖R∆X‖2F/2
)

. Since we need a lower bound on
the probability of error, we use the following lower bound for
the Gaussian tail function [21]

Q(x) ≥ 2√
2π
(

x+
√
x2 + 4

) exp

(

−x2

2

)

, for x ≥ 0.

Usingx2 +4 ≤ (x+2)2 for x ≥ 0, we obtain a more relaxed
bound

Q(x) ≥ 1√
2π(x+ 1)

exp

(

−x2

2

)

.

In our casex =
√

SNR‖R∆X‖2F/2, and we use the exact
value ofx from (12) for the exponent, and the following upper
bound for the denominator

x =

√

SNR

2
‖R∆X‖F ≤

√

SNR

2
‖R‖F ‖∆X‖F

=
√

nrSNR‖∆X‖F .

Thus, we have the following lower bound for a fixedµ and
Θ = θ,

PEP ≥ exp
(

− SNR
4 ‖R∆X‖2F

)

√
2π
(√

nrSNR‖∆X‖F + 1
) . (18)

Since the denominator is independent of the phaseΘ, we can
use the same method as in Section II-C2 to obtain the average
of the above lower bound over the uniformly distributed
random variableΘ. Averaging (18) overΘ and using the
approximation to the Bessel function (15), we obtain

EΘ(PEP) &
exp

(

−nrSNR
4 d(µ,∆X)

)

nrSNR

√

2π2µ|∆x
†
1∆x2|

(

‖∆X‖F + 1√
nrSNR

)

Using the trivial upper boundµ ≤ 1 in the denominator,

EΘ (PEP) &
exp

(

−nrSNR
4 d(µ,∆X)

)

nrSNR

√

2π2|∆x
†
1∆x2|

(

‖∆X‖F + 1√
nrSNR

)

.

(19)

Since d(µ,∆X) is a decreasing function ofµ, if E is true,
the numerator in the RHS of (19) can be lower bounded
by exp

(

−nrSNR
4 d(1− δcmax,∆X)

)

. The expression (19) is
a lower bound on the averagePEP for a givenµ. We now
derive a lower bound for thePEP when averaged over bothµ
andΘ as follows

E(PEP) = P(E)P (Xa → Xb|E) + P(Ec)P (Xa → Xb|Ec)

≥ P(E)P (Xa → Xb|E)

≥ δ2 exp
(

−nrSNR
4 d(1− δcmax,∆X)

)

2nrSNR

√

2π2|∆x
†
1∆x2|

(

‖∆X‖F + 1√
nrSNR

)

.

(20)

From the definition (13) ofd(µ,∆X), we have

d(1− δcmax,∆X) = d(1,∆X) + 2δcmax|∆x
†
1∆x2|,

Using the above relation and choosingδ = SNR
−1, which is

small for highSNR, we obtain

E(PEP) ≥
exp

(

−nrcmax|∆x
†
1
∆x2|

2

)

exp
(

−nrSNR
4 d(1,∆X)

)

2nrSNR
3
√

2π2|∆x
†
1∆x2|

(

‖∆X‖F + 1√
nrSNR

)

.

Usingcosβ ≤ 1 in cm = 2πdtdm cosβ/Rλ we obtaincmax ≥
maxm 2πdtdm/Rminλ. This completes the proof.

We compare the lower bound (17) onPEP for planar
receive arrays undergoing random rotations, with the upper
bound (16) for a channel with fixedµ = 1. The dominant
term dictating the rate of decay of error probability for both
these channels isexp

(

−nr SNR
4 min∆X d(1,∆X)

)

, where the
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minimization is over all non-zero codewords difference ma-
trices ∆X = Xa −Xb of the codeC . Note that µ = 1
minimizes the performance metricd(µ,∆X), and corresponds
to the worst-case scenario where bothH andR have rank1.
While planar receive arrays, such as the well-studied linear,
rectangular and circular arrays, provide an array gain (annr-
fold increase in receivedSNR), their asymptotic coding gain
min∆X d(1,∆X) provides no improvement over that of any
rank 1 channel.

Theorem 1 further implies that whenmin∆X d(1,∆X) = 0,
the error probability is no more exponential inSNR, but
decays at the most as fast asSNR−3. Hence, although the
channel is purely LoS and experiences no fading, the error
performance with a planar arrangement of antennas can decay
slowly, similar to a fading channel.

The parameterd(1,∆X) satisfies the following tight in-
equality

d(1,∆X) = ‖∆x1‖2 + ‖∆x2‖2 − 2|∆x
†
1∆x2|

≥ ‖∆x1‖2 + ‖∆x2‖2 − 2‖∆x1‖ ‖∆x2‖
= ( ‖∆x1‖ − ‖∆x2‖ )2. (21)

The second line follows from the Cauchy-Schwarz inequality
which is tight if and only if ∆x1 and ∆x2 are linearly
dependent. Thus,d(1,∆X) = 0 if and only if ∆x1 and∆x2

are linearly dependent and‖∆x1‖ = ‖∆x2‖, i.e., if and only if
∆x1 = α∆x2 for some complex numberα of unit magnitude.
We use this observation in Example 4 below to show that the
widely used spatial multiplexing coding scheme suffers from
such a slowly decaying error probability with planar receive
arrays.

Example4. Performance of Spatial Multiplexing with Planar
Receive Array.The codeword difference matrices of the SM
scheme are of the form

∆X =

[

∆s1
∆s2

]

,

where∆s1,∆s2 ∈ ∆A and∆A = {x− y |x, y ∈ A} is the
set of pairwise differences of the complex constellationA.
When∆s1 = ∆s2 the two rows of the codeword difference
matrix ∆X are equal resulting ind(1,∆X) = 0. Hence, for
the SM scheme,min∆X d(1,∆X) = 0, and from Theorem 1,
the rate of decay of the average error probability will be no
faster thanSNR−3. Note that this result is valid for any number
of antennasnr used in any planar arrangement of the receive
array. This theoretical result is validated by our simulations
(see Fig. 10 and Fig. 13) in Section V.

IV. ERROR PERFORMANCE OFTETRAHEDRAL RECEIVE

ARRAY

The smallest number of antennas that can form a non-planar
arrangement is4. In this section we consider the case where
nr = 4 receive antennas are placed at the vertices of a regular
tetrahedron, see Fig. 4. The inter-antenna distancedr is the
same for any pair of receive antennas, and this is related to
the distancedm of each antenna from the centroidO′ of the

Fig. 4. The receive antennas are placed at the vertices1, . . . , 4 of the
tetrahedron. Also shown in the figure are the centroidO′, the distancesd3
andd4 of the antennas3 and4 from O′, and the inter-antenna distancedr .

receive array asdm =
√

3/8dr, m = 1, . . . , 4. Let us define
the deviation factorη as in [3], [4] as follows

η =
Rλ

2dtdr cosβ
. (22)

In the case of a tetrahedral receiver, using (10) and (22),

µ =
1

4

∣

∣

∣

∣

∣

4
∑

m=1

exp

(

i
π

η

√

3

8
cos θm

)∣

∣

∣

∣

∣

.

The parameterη captures both the distanceR and the transmit
orientationβ, while the variablesθ1, . . . , θ4 jointly determine
the receive orientationU. In order to upper bound the error
probability using (14), we need the maximum value ofµ over
all possibleη andU. Let

µ∗(η) = max
U∈SO3

1

4

∣

∣

∣

∣

∣

4
∑

m=1

exp

(

i
π

η

√

3

8
cos θm

)∣

∣

∣

∣

∣

(23)

be the maximum channel correlation over all receive orien-
tations as a function ofη. If one is aware of the range of
values thatR andβ may assume, then one can upper bound
the worst-casePEP using (14) as

PEP
∗ ≤ 1

2
exp

(

−nr SNR

4
d(max

η
µ∗(η),∆X)

)

=
1

2
exp

(

−SNR d(max
η

µ∗(η),∆X)

)

. (24)

A. An upper bound onµ∗(η)

In this sub-section we derive an upper bound onµ∗(η) for
all η ≥ 1. This result will allow us to show that the highSNR
error performance of the tetrahedral array is better than any
planar receive array whenη ≥ 1 and the receiver undergoes
a uniformly random rotation. To derive this upper bound, we
first show that whenη ≥ 1, irrespective of the receive array
orientation, the4× 2 channel matrixH contains at least one
2× 2 submatrixHsub such that the correlationµsub between
the two columns ofHsub is at the mostcos

(

π/2
√
2η
)

. This
latter problem is equivalent to finding the maximum distortion
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Fig. 5. The tetrahedron arrangement illustrating the vertices 1, . . . , 4, the
referenceO′ at the centroid of the tetrahedron, and the directions of a few
of the unit vectorsrm andgm,ℓ.

when a unit vector inR3 is quantized using a codebookG
consisting of12 unit vectors that correspond to the6 edges of
the tetrahedron along with the polarities±1. The computation
of this maximum distortion is then simplified by showing that
G is a group code[22].

We first introduce some notation to capture the geometrical
properties of the tetrahedral array. Consider the tetrahedron
shown in Fig. 5 with the centroidO′. Let rm ∈ R3 be
the unit vector in the direction of themth receive antenna
with respect to the referenceO′. Hence, the position vector
of the mth receive antenna isdmrm. If one applies a3-
dimensional rotationU ∈ R

3×3 on the receive system about
O′, the position of themth receive antenna isdmUrm. It
is straightforward to show that the polar angleθm of themth

rotated receive antenna (cf. Fig. 1) satisfiescos θm = r⊺mU⊺ṽ,
where the unit vector̃v =

[

− sinβ, 0, cosβ
]⊺

. SinceU is an
arbitrary rotation matrix, the set of all possible values assumed
by the vectorv = U⊺ṽ is the sphereS2 consisting of all unit
vectors inR3. From (10), the correlationµ for a tetrahedral
receiver is

µ =
1

4

∣

∣

∣

∣

∣

4
∑

m=1

exp

(

i2πdtdm cosβ cos θm
Rλ

)

∣

∣

∣

∣

∣

,

where cos θm = r⊺mU⊺ṽ = r⊺mv, andv ∈ S2 captures the
effect of the rotation undergone by the receive array. For any
m 6= ℓ, the unit vectorsrm andrℓ satisfy‖rm−rℓ‖ =

√

8/3.
Let

gm,ℓ =
rm − rℓ

‖rm − rℓ‖
=

√

3

8
(rm − rℓ)

be the unit vector alongrm − rℓ, i.e., along the edge of the
tetrahedron between the verticesm andℓ (see Fig. 5).

Let Hsub be the2 × 2 submatrix ofH formed using the
mth and ℓth rows. Note thatHsub is the channel response
seen through the receive antennasm andℓ. Using the fact that

dm = dℓ =
√

3/8 dr, the correlation between the columns of
Hsub can be written as

µsub =
1

2

∣

∣

∣
exp

(

i2πdtdm cosβ r⊺mv

Rλ

)

+

exp

(

i2πdtdℓ cosβ r
⊺

ℓv

Rλ

)

∣

∣

∣

=
1

2

∣

∣

∣

∣

1 + exp

(

i2πdtdm cosβ(rm − rℓ)
⊺v

Rλ

)∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

1 + exp

(

i2πdtdm
√

8/3 cosβ g
⊺

m,ℓv

Rλ

)
∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1 + exp

(

i
π

η
g
⊺

m,ℓv

)
∣

∣

∣

∣

=

∣

∣

∣

∣

cos

(

π

2η
g
⊺

m,ℓv

)
∣

∣

∣

∣

, (25)

where the fourth equality follows from (22) and the last
equality uses straightforward algebraic manipulations. Given
an ‘orientation’v, we intend to find the submatrixHsub with
the least correlationµsub. If η ≥ 1, we have

∣

∣

∣

∣

π

2η
g
⊺

m,ℓv

∣

∣

∣

∣

≤ π

2
.

Since cos is decreasing function in the interval[0, π/2],
from (25), the problem of findingµsub translates to finding
the edgegm,ℓ of the tetrahedron that has the largest inner
product withv.

We will now show that for anyv ∈ S2 there exists agm,ℓ

such that
√

1/2 ≤ g
⊺

m,ℓv ≤ 1. Since

‖v − gm,ℓ‖2 = ‖v‖2 + ‖gm,ℓ‖2 − 2 g⊺

m,ℓv = 2
(

1− g
⊺

m,ℓv
)

this is equivalent to finding the maximum squared Euclidean
error when the set of vectorsG = {gm,ℓ | m 6= ℓ} is used as
a codebook for quantizing an arbitrary unit vectorv in R3.
The setG contains12 vectors, corresponding to the6 edges
of the tetrahedron together with the polarity±1.

Proposition 1. For anyv ∈ S2, there existm, ℓ ∈ {1, 2, 3, 4},
m 6= ℓ, such thatg⊺

m,ℓv ≥
√

1/2.

Proof: With some abuse of notation we will denote the
elements ofG asg1, . . . ,g12. For eachi = 1, . . . , 12, let

Di =
{

v ∈ S
2 |g⊺

i v ≥ g
⊺

j v, for all j 6= i
}

(26)

be the set of unit vectors that are closer togi than any other
gj ∈ G. Since∪iDi = S2, it is enough to show that

min
i

min
v∈Di

g
⊺

i v =

√

1

2
.

As we now show, the regionsD1, . . . ,D12 are congruent to
each other. LetH be the symmetry group of the tetrahedron,
i.e., the set of all orthogonal transformations onR3 that map
the tetrahedron onto itself. It is known that the groupH
is isomorphic to the symmetric groupS4 of degree4, and
every element ofH is uniquely identified by its action on
the set of vertices, which is isomorphic to the action of the
corresponding element inS4 on the set{1, 2, 3, 4}; see [23].
Since for any two given pairs(m1, ℓ1) and (m2, ℓ2), with
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Fig. 6. An illustration of the conesS and R1 used in the proof of
Proposition 1. The coneS is circular with axisg1 (dashed line). The coneR1

is bounded by hyperplanes, and its edges are along the vectors q1, . . . ,q6.
The edgeq3 is the farthest from the axisg1 and lies on the surface ofS.

m1 6= ℓ1 and m2 6= ℓ2, there exists a permutation on
{1, 2, 3, 4} that mapsm1 to m2 and ℓ1 to ℓ2, we see that
there exists an orthogonal transformationM ∈ H such that

rm2
= Mrm1

andrℓ2 = Mrℓ1 .

This can be extended to a group action onG as

Mgm1,ℓ1 = M

(

rm1
− rℓ1

‖rm1
− rℓ1‖

)

=

√

3

8
M (rm1

− rℓ1)

=

√

3

8
(rm2

− rℓ2) = gm2,ℓ2 .

Thus we see that the groupH acts transitively onG, i.e.,

G = {Mgi |M ∈ H} for every i = 1, . . . , 12.

This makesG a group code, and consequently, the regions
D1, . . . ,D12 are congruent to each other [22], i.e., for every
1 ≤ i < j ≤ 12, there exists an orthogonal transformation
M ∈ H such that

Dj = MDi = {Mv |v ∈ Di} .

Since orthogonal transformations conserve inner productsand
sincegi ∈ Di for all i, we have

min
v∈Di

g
⊺

i v = min
v∈Dj

g
⊺

j v for any i 6= j.

Thus, to complete the proof it is enough to show that

min
v∈D1

g
⊺

1v =

√

1

2
.

We now restrict ourselves to one particular regionD1 and
find the smallest value ofg⊺

1v. Note that whenv ∈ S2, the
inner product ofv with gi decreases with increasing distance
‖v − gi‖. Thus, from (26),D1 is the intersection ofS2 with
the set of all points inR3 that are closer tog1 than any other
gi ∈ G. The regionD1 is called a fundamental regionof
the group codeG and is bounded by two-dimensional planes
passing through the origin [22]. The half-spacesPi that define
this fundamental region are

Pi =
{

x ∈ R
3 | ‖x− g1‖ ≤ ‖x− gi‖

}

=
{

x ∈ R
3 | (g1 − gi)

⊺
x ≥ 0

}

,

and are related toD1 as

D1 = S
2 ∩R1, whereR1 = ∩12

i=2Pi.

The group codeG and the11 half-spacesPi can be explicitly
calculated starting from the geometry of the tetrahedron, and it
can be verified thatR1, and henceD1, is bounded by exactly6
planes arising from6 of the eleven half-spacesPi. The region
R1 is a convex cone [22] generated from the6 edges running
along the vectorsq1, . . . ,q6 that are the intersections between
the 6 hyperplanes, i.e.,R1 is the infinite cone generated
from the convex hull of the set{q1, . . . ,q6}. Fig. 6 shows
an illustration of the geometry considered in this proof (the
depiction ofq1, . . . ,q6 is not exact). Since

min
v∈D1

g
⊺

1v = min
x∈R1

g
⊺

1x

‖x‖ , (27)

and sinceg⊺

1x/‖x‖ is the cosine of the angle betweenx and
g1, our problem is to find a vector inR1 which makes the
largest angle withg1. The set of points that make a constant
angle with g1 form the surface of an infinite circular cone
with g1 as its axis. Thus (27) is equivalent to finding the
smallest circular coneS, with g1 as the axis, that contains the
conical regionR1. SinceR1 is generated byq1, . . . ,q6, S is
the smallest circular cone that contains the vectorsq1, . . . ,q6,
and hasg1 as the axis. It follows thatS contains on its surface
the vectorqi, from amongq1, . . . ,q6, that makes the largest
angle withg1. Thus,

min
v∈D1

g
⊺

1v = min
x∈R1

g
⊺

1x

‖x‖ = min
x∈S

g
⊺

1x

‖x‖

The numerical valuemini∈{1,...,6} g
⊺

1qi / ‖qi‖ = 1/
√
2 is ob-

tained by a direct computation of the half-spacesP1, . . . ,P11,
and the resulting vectorsq1, . . . ,q6 arising from the tetrahe-
dral geometry.

Proposition 2. If a tetrahedral array is used at the receiver
and η ≥ 1, then for every receive orientationU, there exists
a 2× 2 submatrixHsub of the channel matrixH such that

0 ≤ µsub ≤ cos

(

π

2
√
2η

)

,

where µsub is the correlation between the two columns of
Hsub.

Proof: From Proposition 1, there existm 6= ℓ such that
g
⊺

m,ℓv ≥
√

1/2. Let Hsub be the submatrix ofH formed
by themth and ℓth rows. From (25) and the hypothesis that

η ≥ 1, we haveµsub =
∣

∣

∣
cos
(

π
2η g

⊺

m,ℓv
)∣

∣

∣
≤ cos

(

π
2η

√

1
2

)

.

The following upper bound onµ∗(η) follows immediately
from Proposition 2.

Theorem 2. For a tetrahedral receive array andη ≥ 1,

µ∗(η) ≤ 1

2

(

1 + cos

(

π

2
√
2η

))

.

Proof: Let H = [hm,n] be the 4 × 2 channel matrix.
From Proposition 2, assume without loss of generality that the
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2× 2 submatrix formed from the first two rows has correlation
µsub ≤ cos

(

π/2
√
2η
)

. Then,

µ =
1

4

∣

∣

∣
h†
1,1h1,2 + h†

2,1h2,2 + h†
3,1h3,2 + h†

4,1h4,2

∣

∣

∣

≤ 1

4

∣

∣

∣
h†
1,1h1,2 + h†

2,1h2,2

∣

∣

∣
+

1

4

∣

∣

∣
h†
3,1h3,2 + h†

4,1h4,2

∣

∣

∣

=
1

2
µsub +

1

4

∣

∣

∣
h†
3,1h3,2 + h†

4,1h4,2

∣

∣

∣

≤ 1

2
cos

(

π

2
√
2η

)

+
2

4
,

where the last inequality follows from Proposition 2 and the
fact that allhm,n have unit magnitude.

The upper bound
(

1 + cos
(

π/2
√
2
))

/2 on µ∗(η) is less
than1 for η ≥ 1. Sinced(µ,∆X) is a decreasing function of
µ, we haved(µ∗(η),∆X) > d(1,∆X). Hence, the geometry
of the tetrahedral arrangement allows the error probability to
decay faster than that of rank1 LoS MIMO channels, and
provides performance improvement over any planar arrange-
mentnr = 4 of antennas, irrespective of the code used at the
transmitter. Note that this gain of the tetrahedral arrangement
over planar arrays is not due to larger inter-antenna distances
dt anddr.

From (21), we haved(1,∆X) ≥ (‖∆x1‖ − ‖∆x2‖)2. Us-
ing µ∗ < 1, we obtain

d(µ∗,∆X) > d(1,∆X) ≥ (‖∆x1‖ − ‖∆x2‖)2 ≥ 0.

Hence, unlike the planar case, the error probability of a
tetrahedral receiver is exponential inSNR for any codeC .

Example5. Performance of Spatial Multiplexing with Tetra-
hedral Receive Array. Consider the SM scheme signalled
over nt = 2 antennas using4-QAM symbols. Let the trans-
mit orientationβ = 0 be fixed, the inter-terminal distance
R = 10 m, λ = 4.2 mm, and dt = dr = 0.145 m.
Then, η = Rλ/(2dtdr cosβ) = 1, and from Theorem 2,
µ∗(η) ≤ 0.722. An exhaustive numerical computation over
all pairs of codewords yieldsmin∆X d(0.722,∆X) = 0.556.
Using (24), the pairwise error probability of SM for fixed
transmit orientation and random receive orientation can be
upper bounded as

E(PEP) ≤ PEP
∗ ≤ 1

2
exp (−SNRµ∗(1))

≤ 1

2
exp (−SNR× 0.556) .

On the other hand, as shown in Example 4, for any planar
receiver array, the error rate is not better thanSNR

−3.

B. System design for arbitrary array orientations

In Section IV-A, we assumed thatη was fixed, i.e., the trans-
mit orientationβ and inter-terminal distanceR were fixed, and
we studied the effect of an arbitrary rotationU of the receive
array onµ and error probability. We now design a system that
allows arbitrary transmit and receive array orientations and a
range of valuesRmin ≤ R ≤ Rmax. It is desirable that the

Fig. 7. Triangular arrangement of transmit antennas.

LoS MIMO system guarantees a minimum channel quality i.e.,
µ ≤ µmax, for someµmax < 1. Using (24), for such a system,

E(PEP) ≤ PEP
∗ ≤ 1

2
exp

(

−nr SNR

4
d(µmax,∆X)

)

.

Using union bound, the average codeword error rate and bit
error rate of the system can be upper bounded by

|C |
2

exp

(

−nr SNR

4
min
∆X

d(µmax,∆X)

)

.

Hence, the coding gain of an arbitrary coding schemeC over
this LoS MIMO system ismin∆X d(µmax,∆X).

When the number of transmit antennasnt = 2, by choosing
β = π/2, we observe from (10) that the worst case correlation
µmax = 1 irrespective of the array geometry used at the
receiver. Hence, in order to haveµmax < 1, we need more
than2 antennas at the transmitter.

Suppose the transmitter uses an array ofnt ≥ 3 antennas.
Based on the transmit array orientation, one can choose2 of
the nt antennas for signal transmission so that the angleβ
corresponding to the chosen pair of antennas is minimum. For
example, letnt = 3 antennas be placed at the vertices of an
equilateral triangle with inter-antenna distancedt, as shown in
Fig. 7. Let tm,n be the unit vector inR3 in the direction of
the position of transmit antennam with respect to the position
of transmit antennan. Note that the vectorstm,n vary with
changes in the transmit array orientation. If antennasm and
n are used for transmission and ifu ∈ R3 is the unit vector
along the directionOO′ of transmission, thensinβ = u⊺tm,n

(cf. Fig. 1, wheretx1 and tx2 correspond totxm and txn,
respectively). The six vectors in the set

T = {tm,n |m,n = 1, 2, 3, m 6= n}
are arranged symmetrically in a two-dimensional plane at
regular angular intervals ofπ/3. Let u‖ and u⊥ be the
components ofu parallel and perpendicular to the plane of
T , respectively. Since the vectors inT divide the plane into
regular conical regions of angular widthπ/3, there exists at
least one vectortm,n ∈ T such that the angle betweentm,n

andu‖ lies in the interval[−π/6,+π/6], i.e.,

|u⊺

‖tm,n|
‖u‖‖

≤ sin
(π

6

)

=
1

2
.

We can thus upper bound|u⊺tm,n|2 as follows

|u⊺tm,n|2 = |u⊺

⊥tm,n|2 + |u⊺

‖tm,n|2 ≤ 0 + ‖u‖‖2
1

4
≤ 1

4
.
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Fig. 8. The functionsµ∗, µ∗

pent, upper bound onµ∗ and the lineµmax = 2/3.

Thus there exists atm,n such that| sin(β)| = |u⊺tm,n| ≤
1/2, i.e., β ∈ [−π/6, π/6]. Hence, if the transmit array is an
equilateral triangle, by appropriately choosing2 out of the3
available antennas for signalling, one can ensure|β| ≤ π/6.

The upper bound onµ∗(η) of Theorem 2 is not tight and is
available only forη ≥ 1. Since this bound can not be used as a
good estimate ofµ∗(η) and the analytical computation of the
exact expression (23) ofµ∗(η) appears to be difficult, we use
numerically computed values ofµ∗(η) for system design. The
functionµ∗(η) and the upper bound of Theorem 2 are shown
in Fig. 8. Using the exact functionµ∗(η), the requirement on
channel qualityµ ≤ µmax can be translated into a criterion
η ∈ [ηmin, ηmax]. From (22), for fixeddt, dr, λ, and |β| ≤
βmax, we have

ηmin =
Rminλ

2dtdr
andηmax =

Rmaxλ

2dtdr cosβmax
. (28)

The range[Rmin, Rmax] can thus be obtained from (28).

Example 6. Suppose we requireµmax = 2/3 with λ =
4.2 mm. Using a triangular transmit array we haveβmax =
π/6. From Fig. 8, the criterionµ∗(η) ≤ 2/3 is equivalent to
ηmin = η1 = 0.62 and ηmax = η2 = 1.22. If each side of
the triangular transmit array has lengthdt = 6 cm, and the
tetrahedral receive array hasdr = 25 cm, then from (28) we
haveRmin = 4.43 m andRmax = 7.75 m.

The narrow range of[Rmin, Rmax] in Example 6 can be
attributed to the small value ofη2 − η1 in Fig. 8. This can be
improved by using a pentagonal transmit array as follows. As
shown in Fig. 9, with a regular pentagon, the choice of the
transmit antenna pair can be divided into the following two
cases: (i) the two antennas are the neighbouring vertices of
the pentagon with inter-antenna distance equal to the length
dt of the edge of the regular pentagon, or (ii) the antennas are
non-neighbouring with inter-antenna distance

(

1 +
√
5
)

dt/2.
Irrespective of the class from which the antenna pair is
chosen, it is straightforward to show that|β| ≤ π/10 can
be always guaranteed. While the value ofη for the first case
is given by (22), in the second case it reduces by a factor of

Fig. 9. Left: any pair of neighbouring antennas in a pentagonal array has an
inter-antenna distance ofdt. Right: Any pair of non-neighbouring antennas
has distance(1 +

√
5)dt/2.

(

1 +
√
5
)

/2 because of the larger inter-antenna distance. Thus
the maximum correlation with pentagonal transmit array is

µ∗
pent(η) = min

{

µ∗(η), µ∗
(

2η

1 +
√
5

)}

,

whereµ∗(η) is given in (23). From Fig. 8, the value ofηmax

improves fromη2 to η3, thereby widening[Rmin, Rmax].

Example7. As in Example 6, letµmax = 2/3, λ = 4.2 mm,
dt = 6 cm and dr = 25 cm. With a pentagonal transmit
array, βmax = π/10, and using the functionµ∗

pent, we
have ηmin = η1 = 0.62 and ηmax = η3 = 2. Using (28),
Rmin = 4.43 m andRmax = 12.7 m.

V. SIMULATION RESULTS

We use the system parametersλ, dt, dr, Rmax andRmin

from Example 7. We assume that the transmit and receive
arrays undergo independent uniformly random3-dimensional
rotations about their centroids, and the distanceR between the
terminals is uniformly distributed in[Rmin, Rmax]. In all the
simulations the channel matrixH was synthesized using (1)
and the exact distances{rm,n} between the transmit and
the receive antennas. We consider the following three coding
schemes with the transmission rate of4 bits per channel use:
(i) the Golden code [19] using4-QAM alphabet, (ii ) spatial
multiplexing (SM) [15]–[17] with4-QAM, and (iii ) uncoded
16-QAM transmitted using only one transmit antenna (single-
input multiple-output SIMO). Gray mapping is used at the
transmitter to map information bits to constellation points, and
unless otherwise stated, maximum-likelihood (ML) decoding
is performed at the receiver. While we used pairwise error
probability for performance analysis in Sections II, III and IV,
we simulate the bit error rate to compare the average error
performance.

A. Error performance withnr = 4

Fig. 10 shows the performance of the three schemes with
two different antenna geometries: (i) uniform linear array
(ULA) at the transmitter withnt = 2, and uniform rectan-
gular array (URA) at receiver2 with nr = 4, (ii ) selecting

2The performance of uniform linear array at receiver is worsethan that of
URA, and hence has been omitted.
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Fig. 10. Comparison of Pent×Tetr with ULA×URA.

Fig. 11. Coding gain for bit rate of4 bits per channel use.

2 antennas from a pentagonal array at the transmitter, and
using a tetrahedral array at the receiver. The values ofdt,
dr are ideal for the ULA×URA configuration [5] at the
distanceR = 2dtdr/λ = 7.14 m, which is near the mid-point
of the interval[Rmin, Rmax]. The performance of the single-
antenna transmission scheme is independent of the receive
antenna geometry since, from (1), all the channel gains
of the SIMO channel have unit magnitude. Also, Fig. 10
shows the performance of the ideal channel withµ = 0, i.e.,
R =

√
nr I2, which is a pair of parallel AWGN channels each

carrying a4-QAM symbol. From Fig. 10, we see that, with
ULA×URA, the performance of both SM and the Golden
code are worse than SIMO at highSNR. Further, since
min∆X d(1,∆X) = 0 for SM, the error probability decays
slowly with SNR, confirming our theoretical results. With the
proposed pentagon×tetrahedron geometry both codes show
improved performance, close to that of the ideal channel.

The above error performance is succinctly captured by the
coding gainmin∆X d(µ,∆X) shown in Fig. 11 as a function
of µ. From Example 7,µ ≤ 2/3 for the new antenna geometry.
From Fig. 11 we see that the coding gains of SM and the
Golden code are both equal to1 for all µ ≤ 1/2 and are
larger than the SIMO coding gain forµ ≤ 2/3, which explains
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Fig. 12. Performance of different tx arrays with tetrahedral rx array.
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Fig. 13. Error probability of spatial multiplexing with triangular transmit
array when the receive array is(i) three-dimensional, and(ii) rectangular.
Results are shown fornr = 16 andnr = 64 antennas.

their superiority to SIMO. On the other hand, the coding
gain for linear and rectangular arrays ismin∆X d(1,∆X). For
µ = 1, from Fig. 11 we observe that SIMO has the largest
coding gain followed by the Golden code and then SM. The
error performances in Fig. 10 show this same trend for the
rectangular array at highSNR.

Fig. 12 compares the performance of different transmit array
geometries when a tetrahedral array is used at the receiver.
The nt = 2 case (ULA) performs poorly sinceµmax = 1.
While the triangular array with the Golden code achieves
most of the available gain, the pentagonal array has near ideal
performance.

B. Error Performance with large number of receive antennas

The LoS MIMO system analysed in Section IV employs the
tetrahedral receive array – a three-dimensional antenna array
for nr = 4 antennas – to enable smaller error rates than planar
arrays. The geometry of the receive array is relevant even
if the number of receiving antennasnr is large. Theorem 1
and Example 4 show that the probability of error of the SM
scheme is lower bounded up to a constant factor bySNR

−3
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for any value ofnr, if a planar receive array is used. On
the contrary, from Example 5, the SM scheme can achieve
exponential rate of decay of error probability ifnr = 4
antennas are placed at the vertices of a regular tetrahedron.
It follows that for anynr ≥ 4, a careful three-dimensional
arrangement ofnr antennas can ensure that the error rate is
exponential inSNR. For instance, if the three-dimensional
arrangement includes a subset of4 antennas that form a
tetrahedron, it immediately follows from Example 5 that a
sub-optimal decoder that bases its decision only on the signals
received by these4 antennas achieves exponential error rate.
Hence, the optimal ML decoder that utilizes all thenr receive
antennas achieves an exponential error probability as well.

Fig. 13 compares the error performance of SM scheme
under planar and three-dimensional receive antenna arrays
whennr = 16, 64. A triangular array is used at the transmitter,
4-QAM is chosen as the modulation scheme and ML decoding
is performed at the receiver. For both values ofnr, we consider
a URA (rectangular arrangement of receive antennas) for the
planar arrangement of antennas. The three-dimensional array
is chosen as a set ofnr points on the surface of a sphere so
that the minimum distance between the points is large. A table
of such arrangements of points, which are known asspherical
codes, is available online [24]. For fairness, the diameter of
the sphere is set equal to the width of the rectangular array.
The coordinates of thenr points on the sphere were obtained
from [24]. As with previous simulations, we set the values
of dt, λ, Rmax andRmin as in Example 7. The inter-antenna
distancedr of the URA is chosen to be12.5 cm whennr = 16
and to be6.25 cm whennr = 64. This is the optimal inter-
antenna distance for the URA when the transmit and receive
arrays are oriented broadside to each other and the inter-
terminal distanceR = 7.14 m [5].

It is evident from Fig. 13 that array geometry is an important
design parameter even whennr is large. The error rates of
rectangular arrays shown in Fig. 13 decay asSNR

−2 at high
SNR. The gain due to the three-dimensional array is about
7 dB at an error rate of10−5 for bothnr = 16 and64.

VI. CONCLUSION

We studied the error performance of arbitrary coding
schemes in2 × nr LoS MIMO channels where the commu-
nicating terminals have random orientations. We analyzed the
effects of some receive array geometries on error probability,
and showed that, unlike linear, circular and rectangular arrays,
the error rate with a tetrahedral array decays faster than
that of a rank1 channel. Using tetrahedral and polygonal
arrays, we designed a LoS MIMO system that provides a good
error performance for all transmit and receive orientations. By
modelling theR matrix, we derived error probability bounds
for the case when the number of transmit antennas used for
signalling is2. Analysis of the performance when more than
2 transmit antennas are used is yet to be addressed.
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