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Abstract

Hawkes Processes are probabilistic models use-
ful for modelling the occurrences of events over
time. They exhibit mutual excitation property,
where a past event influences future events. This
has been successful in modelling the evolution
of memes and user behaviour in social net-
works. In the Hawkes process, the occurrences
of events are determined by an underlying inten-
sity function which considers the influence from
past events. The intensity function models the
mutual-exciting nature by adding up the influ-
ence from past events. The calculation of the in-
tensity function for every new event requires time
proportional to the number of past events. When
the number of events is high, the repeated in-
tensity function calculation will become expen-
sive. We develop a faster approach which takes
only constant time complexity to calculate the in-
tensity function for every new event in a mutu-
ally exciting Hawkes process. This is achieved
by developing a recursive formulation for mutu-
ally exciting Hawkes process and maintaining an
additional data structure which takes a constant
space. We found considerable improvement in
runtime performance of the Hawkes process ap-
plied to the sequential stance classification task
on synthetic and real world datasets.

1. Introduction
Applications involving event history data analysis arise in
various domains such as healthcare, social networks, and
the Web. For instance, in online social networks such as
Twitter one might be interested in knowing the time at
which a user tweets about a topic. In recommendation sys-
tems, companies will be interested in knowing the time at
which a user buys an item. In these tasks, point processes
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have been found to be useful to model the occurrence of
events. They are characterized by an intensity function
which specifies a distribution over the events occurring in
some time interval.

In many cases, events are associated with some markers
which denote the category associated with the event. The
events in one category can cause more events from that cat-
egory or other categories resulting in a cascade (e.g. in
Twitter posts from an user could influence posts from other
users). Hawkes process (HPs) with mutual excitation have
been found to be useful to model such influences among the
events. They define the intensity function to be a function
of past events and their categories. Every event which has
occurred in the past will have a positive influence which
decays exponentially over time and is weighted by the cat-
egory specific mutual influences. The intensity function
sums up influence from past events and this becomes com-
putationally expensive as more and more events happens.
The intensity function needs to be recalculated for every
data point and the complexity over all the N events be-
comes O(N2

). This makes both the training and prediction
time expensive. We develop a recursive algorithm which
could speed-up the intensity function calculation for mutu-
ally exciting Hawkes process (accelerated Hawkes), result-
ing in constant time computation of the intensity function
for an event. This reduces the complexity of computing the
intensity function over all the data points to O(N), lead-
ing to faster training and inference of the Hawkes process
models.

We consider a Hawkes process model with mutual exci-
tation developed for the stance classification problem in-
volving temporal textual data (Lukasik et al., 2016). Here
we treat text classification as a sequence labelling problem,
also taking into account the times associated with the la-
bels corresponding to past text. For instance, we would
like to classify tweets into different categories by consid-
ering the categories associated with past tweets and their
times. We develop the accelerated Hawkes process variant
of this model, and show the runtime performance improve-
ment on synthetic and real world data sets arising in the
web such as Twitter and Amazon review data.
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2. Related Work
Multiple works modeled occurrences of posts in social me-
dia platforms using mutually exciting Hawkes Processes
(HP).(Yang & Zha, 2013) employed HP for inferring the
underlying network of connections of users based on the
observations of timestamps and text content of tweets.
Also, prior knowledge about the users and connections
from a social network has been incorporated into the
Hawkes Process model (Zhou et al., 2013; Kobayashi &
Lambiotte, 2016; Srijith et al., 2017). They have been
used to model the generation of tweets over a continu-
ous time domain (Zhao et al., 2015) and stance classifi-
cation of tweets (Lukasik et al., 2016). Joint modeling
of information spread and text has been considered by
(He et al., 2015), who introduced a joint model of top-
ics and network inference from information propagation.
(Du et al., 2015) introduced a Dirichlet-Hawkes Process
model, which models clustering of events across Hawkes
processes via a Dirichlet process. Hawkes process have
also found its application healthcare for disease progres-
sion modelling (Choi et al., 2015). All of these applica-
tion would benefit from the proposed approach which will
speed up intensity function calculations. A recursive algo-
rithm for self exciting Hawkes process is provided in (Laub
et al., 2015). Here, we develop a recursive algorithm for
mutually exciting Hawkes process.

3. Time Sensitive Classification of Events
We consider N events where each event is represented as
a tuple (t

n

, x
n

, y
n

), where t
n

denotes the time at which an
event occurs, x

n

is the textual content, and y
n

is the label.
We consider the task of classifying each event to a label
category y

n

2 {1, 2, . . . S} by considering the content x
n

,
and the times and labels associated with past events. We
devise efficient Hawkes process approach to perform this
task of time sensitive sequence classification.

4. Hawkes Processes
Point processes are useful for modelling longitudinal data.
They are characterized by an intensity function �(t|H

t

) >
0 (the conditioning is on history of events until time t)
which provides the instantaneous probability of occurrence
of an event at some time t. One example of a point process
is a Hawkes process (HP), which models the intensity func-
tion by adding up influence from past events. The intensity
function associated with a mutually exciting Hawkes pro-
cess takes the following form:

�
yn(t) = µ

yn +

X

tl<t

↵
yl,yn(t� t

l

) (1)

where the first term represents the constant base intensity
of generating label y. The second term represents the in-
fluence from the events that happen prior to time of inter-
est. The influence from each event decays over time and
is modelled using an exponential decay term (t � t

l

) =

exp(�!(t � t
l

)). The matrix ↵ of size S ⇥ S encodes the
degrees of influence between pairs of labels assigned to the
events. In the Hawkes process model used for stance clas-
sification (Lukasik et al., 2016), the intensity is multiplied
by likelihood of generating the context (text or other fea-
tures) given the label. This is modelled as a multinomial
distribution conditioned on the label,

p(x
n

|y
n

) =

VY

v=1

�xnv
ynv

, (2)

where V is the feature size and � is the matrix of size S⇥V
specifying the probability distribution over features for ev-
ery label. The parameters of the model are learnt by max-
imizing the log-likelihood of observing the text, labels and
times at which they occur in the data set.

l(µ,↵,!,�) =�
SX

y=1

Z
T

0
�
y

(t)dt+
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n=1

log �
yn(tn)+

NX

n=1

VX

v=1

x
nv

log �
ynv. (3)

For every new label, the summation in (1) has to be com-
puted over all the previous data points and this makes it
computationally inefficient. For a total of N events, the
complexity of intensity function calculation is N(N�1)

2 , i.e.
O(N2

). We consider a method to overcome this computa-
tional overhead and enable Hawkes process to be applica-
ble to large datasets.

4.1. Accelerated Hawkes Process

Consider a sequence of labels [y1, y2, . . . , yn] and times
[t1, t2, . . . , tn]. First, we initialise a S dimensional vector
�(t) at time t1 as,

�(t1) =

2

6664

↵
y1,1exp(!t1)

↵
y1,2exp(!t1)

...
↵
y1,Sexp(!t1)

3

7775
(4)

Now to calculate
P

tl<t2

↵
yl,y2(t2 � t

l

) = ↵
y1,y2(t2 �

t1) = ↵
y1,y2exp(�!(t2 � t1)), we multiply exp(�!t2)

to the row corresponding to the label y2 in �. Following
this we update the state of the vector � for intensity func-
tion calculation in the next point. Vector � at time t2 is
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updated by considering the label of y2 and adding the term
↵
y2,.exp(!t2) to each row.

�(t2) =

2

6664

↵
y1,1exp(!t1) + ↵

y2,1exp(!t2)
↵
y1,2exp(!t1) + ↵

y2,2exp(!t2)
...

↵
y1,Sexp(!t1) + ↵

y2,Sexp(!t2)

3

7775
(5)

Similarly,to calculate
P

tl<t3

↵
yl,y3(t3 � t

l

), we multiply

exp(�!t3)to the row corresponding to the label y3.This
can be extended to n points to give �(t

n

) as,

�(t
n

) =

2

666666664

nP
i=1

↵
yi,1exp(!ti)

nP
i=1

↵
yi,2exp(!ti)

...
nP

i=1
↵
yi,Sexp(!ti)

3

777777775

(6)

Thus in each step we have 4 sums to compute, giving a total
complexity of O(N) for N points.

The intensity function can be written recursively with the
help of �(t

n

). The intensity function for the event (n+ 1)

is,
�
yn+1 = µ

yn+1 + exp(�!t
n+1)�(tn)yn+1 (7)

and the intensity function for the event n is,

�
yn = µ

yn + exp(�!t
n

)�(t
n�1)yn (8)

where, �(t
n

)

yn+1 represents the y
n+1 row of �(t

n

). From
(6), we know that

�(t
n�1)yn = �(t

n

)

yn � ↵
yn,ynexp(!tn�1) (9)

Combining (7), (8) and (9), the intensity function can be
written recursively as

�
yn+1 = µ

yn+1 + [�(t
n

)

yn+1 � �(t
n

)

yn ]exp(�!tn+1)

+(�
yn � µ

yn + ↵
yn,yn)(tn+1 � t

n

)

(10)

5. Experiments and Results
We conduct experiments on synthetic and real world data
sets from Twitter and product reviews. We compare the
computational time required by the standard implementa-
tion of the Hawkes process and the proposed approach. All
the experiments are run on a machine with 2.9 GHz Intel
Core i5 processor and 8 GB RAM.

Algorithm 1: Ogata’s Thinning algorithm
1: Input: conditional intensity function �

y

(t), time T
2: t = 0, S = {}.
3: while t < T do
4: �  P

S

y=1 �y

(t)
5: Generate candidate next arrival time from

s ⇠ exp(1/�)
6: Generate random number U ⇠ Unif([0, 1])

7: if (t+ s > T ) OR (U >
PS

y=1 �y(t+s)

�

) then
8: Set t = t+ s
9: else

10: Set t = t+ s
11: Obtain �

y

=

�y(t)PS
y=1 �y(t)

8y = 1 . . . S

12: Sample label l from Cat(�1, . . . , �S)
13: S = S [ (t, l), Update Intensity �

y

(t)
14: end if
15: end while
16: Return: S

Figure 1. Time comparison for Standard vs. accelerated Hawkes
for synthetic data

5.1. Performance on Synthetic Data

The synthetic data set consisting of time and labels
of events is generated using Ogata’s Thinning Algo-
rithm (Ogata, 1981). The algorithm iteratively samples
time from an exponential distribution with scale parameter
� to be the inverse of the summation of intensities over all
labels. The sample is accepted based on the ratio of inten-
sities summed over labels at the new point and the previous
point. The sampled time is used to compute the new in-
tensity across each label and summation of intensities over
all the labels. The label is sampled from a categorical dis-
tribution with each label having a probability given by the
ratio of its current intensity to the summed intensity. Algo-
rithm 1 outlines the data generation process. This is equiva-
lent to sampling from a multi-variate Hawkes process. The
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↵ matrix, µ and ! parameters are randomly initialized and
the initial time is chosen to be zero. For this synthetic data
set, we consider the computational time required for inten-
sity calculation using both methods.

From Figure 1 it can be seen that the proposed model
achieved much better performance in computational time.
Time increased quadratically with increasing data set size
for the standard model. We see that with for every ten-
fold increase in dataset set size, there is a hundred times in-
crease in computing time. The proposed approach achieved
close to three orders of magnitude improvement in compu-
tational time compared to the standard model on 5000 data
points. This will enables the use of Hawkes process to the
problems involving large event history data.

5.2. Performance on Ferguson Twitter Dataset

To validate the computational improvement further, we
apply it to the rumour stance classification problem
in (Lukasik et al., 2016). We tested the Accelerated HP ap-
proach for the Ferguson Twitter data set. The dataset con-
sists of 1244 data points. It consists of tweet time, meme
id (conversation thread id), infecting id (reply to id), labels
and the tweet message.

The stance classification task involves each tweet d
j

being
classified into one of the four categories y

j

2 Y , which
represents the stance of the tweet d

j

with respect to the ru-
mour R

i

it belongs to. Four categories are considered in the
dataset ; support, deny, question, comment. We consider
the leave-one-out (LOO) setting, introduced by Lukasik et
al. (2015a), where for each rumour R

i

2 D we construct
the test set R

i

and the training set D/R
i

. In each fold i, the
HP parameters are learnt from the training set and tested
on R

i

. For this setting, we compare both the approaches on
the training time taken to learn the parameters of the model
over all the folds.

Table 1. Training time comparison for standard and acclerated
Hawkes for Fergson Twitter data

Data set size Accelerated (sec) Standard (sec)
10 0.022 0.062

100 0.270 1.606
1000 20.965 110.860

From Table 1 it can be seen that proposed approach lead to
faster training time than the standard approach. For 1000
data points the proposed approach is found to be 5 times
faster than the standard approach.

5.3. Performance on Amazon review Dataset

We further consider the performance of the accelerated
Hawkes method for a larger dataset. The Amazon instant

video review dataset (He & McAuley, 2016) consists of
37,216 reviews. This datasets consists of review post time,
product id, rating, review text. We apply a Hawkes process
to model the prediction of the rating class of a product sim-
ilarly as in the rumour stance classification in the previous
section.

We first pre-process the data by converting the overall rat-
ing into a set of three classes which include bad, good
and excellent by thresholding. Also, since the review
text columns contain a lot of symbols, spelling errors and
named entities we remove the stop words and use a lem-
matizer and the Synsets from Wordnet to get the root word
and check for word existence respectively. The processed
vocabulary is then used to convert the text into a one hot
encoded vector based on the collected vocabulary. We fur-
ther used only the 100 most reviewed products with around
15K points and followed the leave-one-out approach de-
scribed in the earlier section. Here, we iteratively leave
each product out, train the HP model on the remaining
products and predict on the leaved out product. We see
a stark decrease in training time using accelerated Hawkes
over standard Hawkes. Accelerated Hawkes took only 1.46
hours, while standard Hawkes took 11 hours to learn the
parameters of the Hawkes process model over all the 100
folds. Both the approaches gave the same accuracy of 0.65.

Table 2. Comparison of Training time for Standard vs. Acclerated
Hawkes on Amazon review data

Method Training Time
Accelerated 5263.47 sec (1.46 hours)

Standard 39610.17 sec (11 hours)

6. Conclusions
In this paper we considered an efficient approach to
Hawkes process intensity function calculation and demon-
strated practical gains on one synthetic and two real world
datasets. By maintaining a constant size vector, the pro-
posed Hawkes process approach managed to reduce the
time complexity from O(N2

) to O(N). This will enable
Hawkes processes to be applied to the problems involving
big data. Though the performance improvement is shown
on the stance classification task using Hawkes process, the
proposed approach is generic and will be useful for many
tasks involving Hawkes process.
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