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(57) ABSTRACT 

Systems, methods, and computer-readable medium, are dis 
closed for transforming user-defined-function invocations in 
a query-based environment. A user-defined-function (UDF) 
and a query invoking the UDF are received. The UDF is 
parsed into a plurality of Statements. A first expression tree 
corresponding to the UDF and a second expression tree cor 
responding the query are constructed, and merged using an 
operator to generate a transformed expression. The trans 
formed expression is simplified, using transformation rules, if 
it is determined that is can be simplified. 
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S if Li is Start 

if Li is an assignment l = r 

(p, e, , ef) if Li an if-then-else block 

10062) The expression E, for the start node is the Single 
relation. An assignment statement of the form l r is repre 
sented as a generalized projection on the Single relation. Here 
r can be a program expression, a scalar SQL query, or a UDF 
invocation. If ris a scalar SQL query, its relational expression 
is used. If it is an UDF invocation, an expression for the called 
UDF is first built, and then used in the projection. If an 
algebraic representation cannot be built for the called UDF, it 
is left as a function invocation. Variable declarations are 
treated as assignments with the rh.S. as L., i.e., the default 
uninitialized value for the data type. 
0063. An if-then-else block has two successors corre 
sponding to the then and the else parts. In the example 
method, now recursively define the contribution of the if 
then-else block as the set of expressions (p, et, ef). Here p is 
the predicate of the if statement, e, is the expression tree 
corresponding to the then branch (i.e., p is true), and e, is the 
expression tree corresponding to the else branch (i.e., p is 
false). This expressions (p, e, e) captures the contribution of 
the entire conditional block and hence the block can be logi 
cally seen as a single node in the CFG. All the contributions of 
individual nodes are then combined to get E, the expression 
tree for the UDF as shown below. 

0.064 
0065 

Ea? EL, 
for i from 1, ..., k do // k is the it of logical nodes 

0.066 of choose ApplyType(L) 
I0067 E. E.A.E, 

0068 end 
I0069 E, is initially assigned to E. corresponding to 
Start. Then, for every successive logical node L, an Apply 
operation is added whose left child is the expression built so 
far (E), and right child is E. 
0070 The Apply operator's type o, depends on the corre 
sponding node in the UDF. Variable declarations use the 
Applycross (A) operator. Assignment of values to previously 
defined local variables is algebraized using Apply-Merge 
(A'). The assignment of results of a scalar query to scalar 
variables also uses Apply-Merge. Conditional branching 
nodes (i.e. if-then-else blocks) use the Conditional-Apply 
(A) operator. The return clause is mapped to an apply-cross 
(A) with a relational expression corresponding to the return 
expression. As a convention, return value is always alias to the 
name retval. Finally, a projection on retval is added to com 
plete the expression for the UDF. 
0071 FIG. 3 illustrates the construction of the expression 
tree for the CFG. The expressions with their corresponding 
Apply operator types are as follows: 
(0072 el-II as total business, null as level (S) 
(0073. Al-A' 
0074 el, "(Ssanctotaprice) as (Ostka-ke (orders) 
0075) A-AMotahsinist 
(0076 e: (total business>1000000, e, e. 
0.077 A-A. 
(0078 Since La is an if-then-else block, the expressione, 
is defined recursively in terms of the predicate at N, the true 
branch at L. and the false branch at L. The conditional 
apply-merge operator is used. Since L. comprises of a single 
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node Na, its expression would be (SA' ex) which is the same 
as ex. In general, the expression for any logical node L, that 
comprises of a single node N, would be ex, as shown in rule 
R1 of Table 1 that listed the additional equivalence rule. 

TABLE 1 

R2 A"(IIa, as e.... a. as s. (S)-IIae as a1, ..... as a (r) 
where Adenotes r.* -a, . . . .a. 

R3 IIf(e) (IgA) as B(r)) II/g(A) (r) 
R4 rA)e(r) = II (r A* e(r)) 

where e(r) is a single tuple expression, L is of the form: 
a1 = b1, ... a = b, and X denotes R 
(a1, ..., a, b1 as a1, .... bk as ai. 

R5 (a1, ... as ei as b1, ...e., as b. (r) Are 
Iai,..., a, e, as b1, ... e., as b, e."(A*e) 
where e does not use any of the computed 
attributes b1, ..., b. 

R6 r Ac' (p(r), e,(r), e(r)) = r A (o, (e.(r)) Utre (e.(r))) 
where e, and e, are single tuple expressions 

R7 IIe as a (Op. (r)) UIIe as a (Oo(r)) IIe elee) as a (r) 
W ep p2 = false 

R8 r Al (p(r), e.(r), e?(r)) : Ir".(Pegep (r) 
where e, and e, are scalar valued expressions 

R9 A bindpi- 6 . . . . e- a, e(p1: . . . . p.) 
r A*e(a1, ..., a,) 

007.9 The expression for L which is another if-then-else 
block is defined interms of exandex. The remaining expres 
sions are defined as below: 

0080 elev, TI-Platinum as level (S ) 
10081) e, (totalbusiness>500000, ex ex) 
0082 - 3.2= { 
I0083) ex-II c. , (S) 
10084 ev. II-regist, (S) 
0085 el-IIleet as retvai ( ) 
0.086 °4= * 
I0087. Using these expressions and the types of Apply 
operators, the tree is constructed as described. The resulting 
tree for the UDF in FIG. 3 is shown in FIG. 4. This tree can be 
further simplified and that would be considered as the 
removal of apply operators. 
I0088 FIG. 5 shows a flowchart describing algebraization 
of the UDF as mentioned above. 

I0089. Once the expression tree is constructed for the UDF, 
it needs to be correlated with the query that invokes the UDF. 
This is very similar to the way nested subqueries are corre 
lated with the outer query except for one key difference: the 
formal parameters of the UDF have to be bound to their 
corresponding actual parameters produced by each tuple of 
the outer query block. To this end, the enhanced Apply opera 
tion (Apply with the bind extension) is used to merge the 
expression tree of the outer query with the tree constructed for 
the UDF. 

I0090 E. and E, are the expression trees correspond 
ing to the outer query block and the UDF respectively. Also, 
fi,..., f, denote the formal parameters of the UDF, and C, 
. . . , C, denote attributes of E that are the actual param 
eters to the UDF. Irrespective of whether the UDF invocation 
is in the where clause or the select clause, E. corresponds 
to the UDF invocation as the right child of an Apply operation 
as shown in the LHS of FIG. 6. Now, these are merged as 
follows: 

0091. 1) The UDF invocation is replaced by its algebraic 
form (E) as the right child of the Apply operator. In FIG. 6, 
















