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(57) ABSTRACT

Systems, methods, and computer-readable medium, are dis-
closed for transforming user-defined-function invocations in
a query-based environment. A user-defined-function (UDF)
and a query invoking the UDF are received. The UDF is
parsed into a plurality of statements. A first expression tree
corresponding to the UDF and a second expression tree cor-
responding the query are constructed, and merged using an
operator to generate a transformed expression. The trans-
formed expression s simplified, using transformation rules, if
it is determined that is can be simplified.
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DECORRELATION OF USER-DEFINED
FUNCTION INVOCATIONS IN QUERIES

TECHNICAL FIELD

[0001] The present disclosure relates generally to Struc-
tured Query Language (SQL) queries and more particularly
to automatically unnesting/decorrelating SQL queries con-
taining User defined Functions (UDF).

BACKGROUND

[0002] SQL is the most commonly used language for que-
rying relational databases. Queries written in SQL can make
use of User-Defined Functions. User-defined functions are
often written using a mix of imperative programming lan-
guage constructs and SQL. The performance of a query con-
taining a user-defined functions can be greatly improved by
transforming the query into another equivalent query in
which the computation done by imperative statements inside
the user-defined function is expressed as set-oriented SQL
operations, and the per-row execution of queries inside the
function body are transformed into set-oriented execution.
The process of transforming a query in this way is termed
“query unnesting” or “query decorrelation.”

[0003] Methods for query unnesting have been developed
for nested SQL queries. Nested SQL queries are queries that
contain a sub-query. However, these conventional unnesting
techniques developed for nested SQL queries cannot be
applied for queries containing user-defined functions, which
may contain application logic expressed using imperative
language constructs along with multiple parameterized que-
ries.

[0004] Queries containing user-defined functions can be
manually unnested or decorrelated. But, such manual unnest-
ing is time consuming and error prone.

[0005] Queries containing user-defined functions may be
nested queries with complex inner (sub-query) blocks. In the
case of nested queries, the inner block is simply another SQL
query with correlation variables used as its parameters. How-
ever, UDFs often use a mix of imperative language constructs
and SQL, and queries inside UDFs are embedded inside
procedural code. There has been a lot of work on efficient
evaluation of nested queries by unnesting or decorrelating
nested queries. However, these conventional query unnesting
techniques cannot be used to unnest queries having UDFs,
except for very simple ones (with no imperative constructs).

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows an example expression tree for a user-
defined function (UDF) in accordance with an aspect of the
present disclosure.

[0007] FIG. 2 shows an example expression tree for a UDF
in accordance with an aspect of the present disclosure.
[0008] FIG. 3 shows an example flow chart of Control Flow
Graph for a UDF in accordance with an aspect of the present
disclosure.

[0009] FIG. 4 shows an example expression tree for the
CFG in FIG. 3 in accordance with an aspect of the present
disclosure.

[0010] FIG. 5 shows a flowchart describing algebraization
of'a UDF in accordance with an aspect of the present disclo-
sure.

[0011] FIG. 6 shows merging of example expression trees
in accordance with an aspect of the present disclosure.
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[0012] FIG. 7 shows an example flowchart for a method in
accordance with an aspect of the present disclosure.

[0013] FIG. 8 shows anexample merged expression tree for
aquery in accordance with an aspect of the present disclosure.
[0014] FIG. 9 shows an example expression tree in accor-
dance with an aspect of the present disclosure.

[0015] FIG. 10 shows an example design of query rewrite
tool in accordance with an aspect of the present disclosure.
[0016] FIG. 11 shows a result of an example embodiment in
accordance with an aspect of the present disclosure.

[0017] FIG. 12 shows a result of an example embodiment in
accordance with an aspect of the present disclosure.

[0018] FIG. 13 shows a result of an example embodiment in
accordance with an aspect of the present disclosure.

[0019] FIG. 14 shows a computing device of an example
embodiment in accordance with an aspect of the present
disclosure.

[0020] FIG. 15 shows a distributed networking system of an
example embodiment in accordance with an aspect of the
present disclosure.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0021] The present disclosure relates to methods, systems
and computer-readable medium for automatically decorrelat-
ing user-defined functions (UDFs) Invocations in SQL que-
ries and is explained below with reference to the accompany-
ing drawings and examples in accordance with an
embodiment of the present disclosure.

[0022] Most database systems, both commercial and open-
source, provide support for invoking user-defined functions
(UDFs) from SQL queries. Calls to UDFs can appear in the
SELECT, FROM, WHERE and the HAVING clause. These
functions may be written using a rich set of imperative lan-
guage constructs such as assignment, conditional control
transfer and looping. Functions can also execute SQL queries
in turn. They can return a scalar value or a set of tuples. UDFs
encourage modularity and programmers prefer imperative
constructs for many tasks. UDFs also make it possible for
expressing computation, which is hard or impossible to write
in standard SQL.

[0023] Database queries written in SQL may contain calls
to user-defined functions. User-defined functions called from
an SQL query contain other SQL queries along with applica-
tion logic expressed using imperative language constructs
Imperative language constructs include variable declaration
statements, assignment statements, conditional control trans-
fer statements such as if-then-else/CASE statements and
looping statements. The conventional systems for evaluating
an SQL query ‘Q’ containing a user defined function ‘F’
involves the following steps:

[0024] 1. For each record produced by the FROM of the
query ‘Q’, the values of the function parameters are assigned;
[0025] 2. The function ‘F’ is executed, which involves the
execution of any queries inside the function; and

[0026] 3. The return value of the function ‘F” is then used to
complete the evaluation of the query ‘Q.

[0027] The above method results in repeated execution of
the function ‘F’ and ofthe queries inside ‘F.” Function ‘F’ (and
hence any query inside it) is executed for every record pro-
duced by the ‘FROM’ clause of the query ‘Q.” Such a method
of executing queries containing user-defined functions has at
least two drawbacks. Queries inside the UDF are executed
many times during a single execution of the query containing
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the UDF, which leads to poor performance, and control
switches frequently between the SQL execution engine and
the execution engine for the imperative language statements,
which also leads to poor performance.

[0028] The methods and systems described herein enables
unnesting of queries that use UDFs as nested blocks, and
overcome the drawbacks of conventional methods.

[0029] The present disclosure uses the following terminol-
ogy and notation.

[0030] The Single relation (S): This is a relation with a
single empty tuple and no attributes. Itis used to return scalar
constants or computed values as relations.

[0031] L:Value of an uninitialized variable. It can be either
null or a language specific default value for the data type.
[0032] II% Projection without duplicate removal.

[0033] Conditional Expressions: Conditional expressions
are denoted using the following notation: (p;?e;:p,?e,: . . .
:e,).

[0034] An expression of this form evaluates to e, if predi-
cate p, evaluates to true, to e, if p, evaluates to true and so on.
If none of the predicates p,, . . ., p,,; evaluates to true, the
expression evaluates to e,,. The SQL case statement is analo-
gous to a conditional expression, and is a convenient way to
compute an expression in a predicated manner.

[0035] Generalized projection: Projection (both with and
without duplicate removal) can involve expressions. The
result of an expression e can be assigned a new name n, using
the syntax e as n. Note that the expression can invoke a UDF
and can also be a conditional expression.

[0036] Rename operator: P, o,y (€) returns the result
of relational algebra expression e under the name r with
attributes renamed as o, . . ., a,,. When only attribute renam-
ing is needed weuse p_, o, (€)- Individual attribute
scan also be renamed using the as keyword in projections.
[0037] Group-by operator: . Gr0 ..y (€)isused
to denote a group-by expression, where o, . . ., o, are the
grouping columns, and f}, . . ., f,, are the aggregate functions.
The grouping columns are optional.

[0038] The Apply operator is extended to model imperative
constructs in the UDF. In order to achieve this, three exten-
sions of the standard Apply operator have been defined.
[0039] Apply-Bind extension: UDF invocations implicitly
perform a mapping of formal to actual parameters. In order to
represent UDF invocations algebraically, the present disclo-
sure defines a bind extension to the Apply operator. This
extension allows the Apply operator to optionally accept a list
of parameter mappings ofthe formp,=a.,, . . . , p,=q,,, where
a,, ..., o, are the attributes of the left child of the Apply, and
the right child is parameterized by p,, . . ., p,. Such a
mapping, if provided, is performed by the operator before
evaluating its right child. We denote this as follows:

®
1A s py=apn. anL2(PL> -+ 5 Pn)

[0040] Apply-Merge extension (A™): This is used to model
assignment statements. The right child of the apply operator
computes the values for attributes which are then assigned to
(or merged with) the attributes present in the left child.

[0041] As described herein, r is a relation with schema
R=(a, . . ., o), and e(r) is a parameterized single-tuple
expression, whose result has the schema S=(b,, ..., b,,). As
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described herein, L is a sequence of assignments of the form
o,=b,, a,=b,, ... a,=b,. In an example embodiment, Apply-
Merge r AM% e(r) can be defined procedurally as follows: for
each tuple t€r, evaluate s=e(t). Then produce t' as an output
tuple, where t' is obtained from t after performing the assign-
ments specified in L. The operation algebraically can be
defined as follows:

rA®M D o(r) = [, (rA®e(r)

[0042] where X=r*-{a,..., o, },bjasa,...,b,asa,.
The assignment list L. is optional. When, omitted it is assumed
to be of the form r.c,=s-c,, ..., rc,=sc,, wherec,, ..., c,are
the attributes common to R and S.

[0043] For some embodiments, the above definition
assumes e(r) to be exactly one tuple. If the rh.s expression of
an assignment statement results in more than one tuple, an
exception is thrown. If it is empty, then it may either throw an
exception, or perform no assignment and retain the existing
value. In other embodiments, the semantics of assignment
statements when e(r) is empty, or has more than one tuple,
varies across systems, and it can be modelled accordingly.

[0044] Conditional Apply-Merge operator (ASY): r is a
relation with schema R=(ct,, . . . , @,,), and e/(r) and e/r) are
parameterized single-tuple expressions and p(r) is a param-
eterized predicate expression. In an example embodiment,
the Conditional Apply-Merge operation is defined as follows:

AL (pr), en(r), e5(m) = rAM (0o (e, 7)) U 0y (e (1))

[0045] This is used to model assignments within condi-
tional branching constructs i.e., if-then-else blocks in the
body of a UDF.

[0046] Example 1 (below) shows a query which invokes a
UDF inits SELECT clause. The UDF returns the service level
for a given customer. It executes a scalar SQL query to com-
pute the customer’s total business, which it then uses to
decide the service level in a nested if-then-else block. The
execution plan for queries such as the one in Example 1 on a
commercial database system, is to invoke the UDF for each
tuple. Such iterative plans can be very inefficient, since que-
ries within the function body may be executed multiple times,
once for each outer tuple.

[0047] These plans can be compared to correlated execu-
tion of parameterized nested subqueries. In the case of nested
subqueries, decorrelation techniques have been well studied.
The Apply operator may model correlated execution of sub-
queries, also presented transformation rules that can replace
Apply operators by standard relational operations such as
joins, under certain conditions, thereby decorrelating the
query. Query decorrelation enables set-oriented execution
plans by rewriting a nested query as a flat query. Once a query
is decorrelated, the query optimizer can consider alternative
join algorithms such as hash-join and merge-join, in addition
to nested loops join.
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Example 1

Query With a Scalar UDF

[0048]

create function service level(int ckey) returns char(10) as
begin
float totalbusiness; string level;
select sum(totalprice) into totalbusiness
from orders where custkey=ckey;
if{totalbusiness > 1000000)
level = 'Platinum’;
else if(totalbusiness > 500000)
level ='Gold';
else
level = 'Regular’;
return level;
end
Query:select custkey, service level(custkey) from customer;

[0049] However, decorrelating UDF invocations, such as
the one in Example 1 is a more complex task due to the
presence of various imperative constructs. Example 2 shows
the same query after decorrelation of the UDF invocation.
This transformed query enables set-oriented execution plans,
thereby expanding the space of alternative plans for an opti-
mizer.

Example 2

Decorrelated Form of Query in Example 1

[0050]
select c.custkey, case e.totalbusiness > 1000000: 'Platinum’
case e.totalbusiness > 500000: 'Gold'
default: 'Regular’
from customer ¢ left outer join e on c.custkey=e.custkey;
where e stands for the query:
select custkey, sum(totalprice) as totalbusiness
from orders group by custkey;
[0051] Such transformations have not been addressed till

now. The techniques exhibited here exists a large class of
UDFs that can be decorrelated.

[0052] The first step towards decorrelating a UDF invoca-
tion is to construct a parameterized algebraic expression cor-
responding to the UDF. This expression is later merged with
the expression tree of the calling query or function

Example 3

UDF With a Single Arithmetic Expression

[0053]

create function discount(float amount) returns float as
begin
return amount * 0.15;
end
Query:select orderkey, discount(totalprice) from order;
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Example 4

UDF With a Single SQL Query

[0054]

create function totalbusiness(int ckey)returns int as
begin
return select sum(totalprice) from orders
where custkey =: ckey;
end
Query:select custkey, totalbusiness(custkey) from customer;

[0055] FIG. 1 illustrates an expression tree constructed for
the UDF of Example 3 which contains a single statement
returning the value of an arithmetic expression. The expres-
sion tree has one Apply operation whose left child is the
Single relation, and the right child is a projection on the
Single relation that computes the arithmetic expression.
Finally there is a projection on the return value.

[0056] This expression is not in its simplest form, and can
be further simplified. It shows a way to express scalar com-
putations as relational expressions, and we demonstrates how
this generalizes to any statement in the body of a UDF.

[0057] Similar expression trees can be constructed for
statements with different kinds of expressions (logical, rela-
tional) and data types. Consider the query of Example 4, in
which the UDF contains a single parameterized query execu-
tion statement. The expression constructed for Example 4 is
illustrated in FIG. 2. Though many commercial database sys-
tems inline single statement UDFs such as Example 3 and
Example 4 and optimize them. However, the present disclo-
sure has taken these examples to illustrate the technique of
building algebraic expressions for statements in UDFs.

[0058] The present disclosure proposes a general technique
to algebraize arbitrary side effect free UDFs with conditional
branching and other imperative constructs. The methods to
handle UDFs without loops and with loops have been
described here.

[0059] Some example embodiments use the control flow
graph (CFG), a commonly used program representation, to
explicitly capture control flow through the statements of a
function. Each node in a CFG corresponds to a statement in
the UDF. A directed edge between two nodes represents con-
trol flow. The CFG has a start node, from which execution
begins, and an end node where execution terminates.

[0060] Inthe example method, if-then-else blocks are logi-
cally treated as single nodes. Nested if-then-clse blocks are
treated as nested logical nodes. The CFG for the UDF in
Example 1 is shown in FIG. 3 with nodes labelled N, ..., Ng.
The logical nodes with nested if-then-else blocks are labelled
Lo, ..., L, and shown in dashed boxes where applicable. The
logical block [; has two nested logical blocks denoted as L5
and L5 ,. As it can be seen, the resulting graph (considering
top level logical nodes) would have no branching.

[0061] Each node N, in the CFG contributes to the expres-
sion tree. The contribution of node N; is denoted by E,,, and
the contribution of a logical node L, is denoted by E; . These
contributions are computed as follows. Z
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N if L; is Start

l_[ (&) if L; is an assignment/ = r
Ep =

rast

(p, er, ef) if L; an if-then-else block

[0062] The expression E; for the start node is the Single
relation. An assignment statement of the form 1=r is repre-
sented as a generalized projection on the Single relation. Here
r can be a program expression, a scalar SQL query, or a UDF
invocation. If ris a scalar SQL query, its relational expression
isused. Ifit is an UDF invocation, an expression for the called
UDF is first built, and then used in the projection. If an
algebraic representation cannot be built for the called UDF, it
is left as a function invocation. Variable declarations are
treated as assignments with the rh.s. as L, i.e., the default
uninitialized value for the data type.
[0063] An if-then-else block has two successors corre-
sponding to the then and the else parts. In the example
method, now recursively define the contribution of the if-
then-else block as the set of expressions (p, et, ef). Here p is
the predicate of the if statement, e, is the expression tree
corresponding to the then branch (i.e., p is true), and e,is the
expression tree corresponding to the else branch (i.e., p is
false). This expressions (p, e, /) captures the contribution of
the entire conditional block and hence the block can be logi-
cally seen as a single node in the CFG. All the contributions of
individual nodes are then combined to getE, ;; the expression
tree for the UDF as shown below.

[0064] E,,~B;,

[0065] forifrom1,...,kdo//kisthe#oflogical nodes

[0066] o,=chooseApplyType(L,)
[0067] E,,~E, , A”E,

[0068] end
[0069] E,, is initially assigned to B, corresponding to
Start. Then, for every successive logical node L, an Apply
operation is added whose left child is the expression built so
far (E, 49, and right child is B .
[0070] The Apply operator’s type o, depends on the corre-
sponding node in the UDF. Variable declarations use the
Applycross (A™) operator. Assignment of values to previously
defined local variables is algebraized using Apply-Merge
(A™). The assignment of results of a scalar query to scalar
variables also uses Apply-Merge. Conditional branching
nodes (i.e. if-then-else blocks) use the Conditional-Apply
(A ) operator. The return clause is mapped to an apply-cross
(A™) with a relational expression corresponding to the return
expression. As a convention, return value is always alias to the
name retval. Finally, a projection on retval is added to com-
plete the expression for the UDF.
[0071] FIG. 3 illustrates the construction of the expression
tree for the CFG. The expressions with their corresponding
Apply operator types are as follows:

[0072] e, =11, as totalbusiness, null as level (S)

[0073] A°=A"

[0074] eLzznv(Gsum(tozfaZprice) a5 O yusttoy—cie,Orders))
[0075] AOZ:AMtOtaZb“S""eSS:v

[0076] e, =(totalbusiness>1000000, e, .e;.,

[0077] AOSZACM

[0078] Since L; is an if-then-else block, the expression e;

is defined recursively in terms of the predicate at N, the true
branch at L5 ; and the false branch at L5 ,. The conditional-
apply-merge operator is used. Since [; | comprises ofasingle
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node Ny, its expression would be (S A™ e,;,) which is the same
as ey,. In general, the expression for any logical node L, that
comprises of a single node N; would be e,;, as shown in rule
R1 of Table 1 that listed the additional equivalence rule.

TABLE 1
R1 rA*S=SA¥r=r
M, d
R2 PAMIL, e e e D) =T sy pas ()
where A denotes r. * -{a,, .. . ,a;
R3 H/(B) (IIg(A) as B(1) = H/(g(A) (r)
R4 1 AMD) (1) = I(r A% e(1))

where e(r) is a single tuple expression, L is of the form:

a; =by,...a;=Dby and X denotes R-

{a;,...,a},b asa;, ..., byasa,

(M), .. ap ey as b, . . copas b,,,d (TZI) A‘\.\te =

s s ap e as bl .. . epas by ex (TATE)

where e does not use any of the computed

attributes by, . .., b,,.

R6 rAM (p(), 1), efr)) =1 AM (O (1)) Uy (6/)))
where e, and e are single tuple expressions

R7 L) as a (0 (1) UL, a5 o (0p,(1) =1l 20 1imy2er) as @ (1)
Wheg\gpl"‘ p =false

R8 r A (p(r), elr), ej(r)) = IIr.*,(p?et:Ef) ®
where e, and e,are scalar valued expressions

RO TAY dpi—ay, . = an €L+ - -3 Pa) =
rA¥e(a,...,a,

[0079] Theexpression for L5 , which is another if-then-else
block is defined in terms of e, and ey, . The remaining expres-
sions are defined as below:

[0080] e;, =en, I pravimum as tever (&)

[0081] e, =(totalbusiness>500000, ey, ey,)

[0082] .4 2= g

[0083]  en=TLGor as zever (&)

[0084] eN7:H‘ReguZar * as tever (§)

[0085] e, ~Teyes as renvar ()

[0086] & =4~

[0087] Using these expressions and the types of Apply

operators, the tree is constructed as described. The resulting
tree for the UDF in FIG. 3 is shown in FIG. 4. This tree can be
further simplified and that would be considered as the
removal of apply operators.

[0088] FIG. 5 shows a flowchart describing algebraization
of'the UDF as mentioned above.

[0089] Once the expression tree is constructed for the UDF,
it needs to be correlated with the query that invokes the UDF.
This is very similar to the way nested subqueries are corre-
lated with the outer query except for one key difference: the
formal parameters of the UDF have to be bound to their
corresponding actual parameters produced by each tuple of
the outer query block. To this end, the enhanced Apply opera-
tion (Apply with the bind extension) is used to merge the
expression tree of the outer query with the tree constructed for
the UDF.

[0090] E,,., andE, are the expression trees correspond-
ing to the outer query block and the UDF respectively. Also,
t,1,...,1,, denote the formal parameters of the UDF, and a,,
..., a,, denote attributes of E_,,_, that are the actual param-
eters to the UDF. Irrespective of whether the UDF invocation
is in the where clause or the select clause, E_,,,., corresponds
to the UDF invocation as the right child of an Apply operation
as shown in the LHS of FIG. 6. Now, these are merged as
follows:

[0091] 1) The UDF invocation is replaced by its algebraic
form (E, ;) as the right child of the Apply operator. In FIG. 6,
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the invocation f,,,.(p,, - - - , p,,) is replaced by its algebraic
form B, .. The expression B, is parameterized by formal

arguments f,,, ..., T,
[0092] 2) The list of parameter mappings of the form
t,,=a,. ..., 1, =0, is passed to the Apply operator (with the

bind extension) as illustrated in FIG. 6. These assignments are
performed by the Apply operator before evaluating its right
child (E,.9.

[0093] A merged expression trees for the UDF and its call-
ing query block have been constructed now. Further the
method describes how to remove the Apply operators and also
the method to simplify this tree is shown.

[0094] The Apply operators present in the merged query
tree are removed using the equivalence rules and additional
equivalence rules presented here. For completeness, some of
the known equivalence rules are listed (rules K1-K6) in Table
2.

TABLE 2
K1 T A¥e =13, e, if € uses no parameters from r
K2 rA*\l‘(Gp(e)) =r1%, e, if e uses no parameters from r
K3 T A* (0,(e)) = O,(rA™ e)
K4 rA*(IL(e) = s schema (»TA™ €)
K5 A" ((Gp(€)) = AUschema (r)GF(rAx €)
K6 Wpgymnper, . o O =1lg. . AP, (fA)

[0095] Equivalence rules (R1-R8) given in Table 1 are
described below can be used in order to express extended
Apply operations in terms of standard Apply or other rela-
tional operations. This enables application of known rules,
thereby simplifying and decorrelating the expression. Rules
R1-R8 is described briefly here. r is a relation with schema
Ra, ..., o).

[0096] Rule R1: This rule removes the Apply-cross opera-
tor when one of its children is Single.

rf‘\g)‘ \";:Q‘: fi)‘r:r

[0097] i.e., if one of the children of an A™ is the Single
relation and the other child is r, the result of the operation is r.

[0098] Rule R2: This rule enables the removal of Apply-
merge when its right child is a projection on Single.

P AT L), 40)

[0099] Where A=(el as &, ..., e as o) and B=R-{«,, .
.., 0,}.1.e.,if the inner expression of an A* is a projection on
Single, then the operation can be written as a projectionon r
with common attributes being projected as from Single.

[0100] Rule R3: The function composition rule for the gen-

eralized projection operator where f and g are pure functions:
Hj(B)(Hg(A) as B(V)):H/(S(A)(V)

[0101] Rule R4: Apply-merge removal. This rule follows

from the definition of Apply-merge.

[0102] Rule R5: Move a projection after the Apply.
@A) AT =LA o)

[0103] WhereA=(c.,...,0,€e,asb,,...e, asb ).and{b,,
., b,,} are computed on r. This rule holds provided the inner

expression e of the Apply does not use any computed

attributes {b,, . .., b,,} of the outer expression.

[0104] Rule R6: Conditional-Apply removal. This rule fol-

lows from the definition of Conditional-Apply.
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[0105] Rule R7: Union to generalized projection. A union
between expressions with mutually exclusive selection predi-
cates can be written as a generalized projection with a con-
ditional expression.

[, as a(ep, (1) ULy as a(epy () = Mip 2 yey) @5 a(r)

[0106] Rule R8: This rule can be derived from rules R6 and
R7 to express Conditional-Apply as projection directly,
whenever e(r) and e(r) are scalar valued.

[0107] Rule R9: Apply-bind removal. An Apply operation
with bind extension can be removed by replacing all occur-
rences of formal parameters (p,, . . . , p,,) in its right child by
actual parameters (o, ..., d.,)

)

[0108]
K6) as:

E i Mo rdericey, alOrders A p(discount(totalprice)))

[0109] FIG. 7 illustrates the overall procedure described
above in a flowchart. It depicts the UDF Decorrelation pro-
cedure.

[0110] We now illustrate the construction of the merged
query tree and removal of Apply operators for the examples
we have been considering so far. First, consider the query in
Example 3. For this example, E is given by:

This can be written using the Apply operator (rule

outer
E ouzer:Horderkey, discount(totalprice) as 4(orders)

[0111]
K6) as:

E i Mo rdericey, alOrders Ax p(discount(totalprice))

[0112] The expression for the UDE, E, ;is shown in FIG. 1
and the merged query tree is shown in FIG. 8. This merged
expression can be now simplified and the Apply operators
removed by using rules in Table I and Table II. Applying rule
K4 and R1 for the innermost Apply operator, the below
expression is emerged:

This can be written using the Apply operator (rule

x
Horderk@), retval as J0rders A (amount=totalprice) 1L,

ount*0.15 as retval( & )

[0113] Note that the above expression still uses the formal
argument amount, which is replaced by the actual argument
when the Apply operator (with bind extension) is removed
(rule R9). Applying rule K4 and R1 again, the final expression
is found:

Horderk@), totalprice®0.15 as 4lorders)

[0114] Queries that invoke a UDF in their WHERE clause
can be handled in a similar manner. For example, consider the
following query that invokes the same UDF of Example 3 in
its WHERE clause:

[0115] Select order key from orders where discount(total

price)>100;

[0116]
E

This query is initially represented as follows:

ouzer:Horderkey

price))))

(0 4= 100(0rders Ax p(discount(total-

[0117] Merging this with the expression for the UDF gives
the below expression:

1L, gerkey(Oa=100(Pa(€)))
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[0118] Where e is the expression in FIG. 8. After simplifi-
cation, the final expression is:

I

orderiey Orervar=100H ordertey, rotatprice=0.15 as rewat

(orders)))

[0119] Consider the query of Example 4. The query is ini-
tially represented as:

E outer:chstk@), v
key)))

[0120] The expression for the UDF is shown in FIG. 3.
Merging them, gives the below expression:
II

(customer A p,(totalbusiness(cust-

(customer Ax P, & A e))

custkey, v
[0121] where e=TL,,, (& sum(totalprice) as retvalOeustiey—chey
(orders))).
[0122] Applying rule R1 and simplifying, giving below

expression,

-
I, ss5ey, v(customer Ax g

Y sum(rotalprice) as

O cyyseiey—ctey(O1dETS))
[0123] Transformations described above can then be used
to remove the correlation and obtain the following expression
as one of the equivalent forms.

chstk@), V(customer - (custk@) W

ders)))

sum(totalprice) as Jor-

[0124] Consider the UDF and query of Example 1. The
query is initially represented as:
E i eyystiey, (Customer Ax p,(service_level(cust-

key))

[0125] The parameterized expression B, ,-constructed for
the UDF is shown in FI1G. 5. Here, p, and p, are the predicates
(totalbusiness>1000000)  and  (totalbusiness>500000)
respectively. After applying rule R1 on E,,; gives below
expression:

A
Eudf:leel as reevall L1 A (28 Ny 13))

[0126] where T,=e,, AMe,, and T,=S AM_ (p,, e, En)-
Using rule R4, K4 and R, T, can be simplified to:

T l:Htotalbusiness, nudl as level(eLz)

[0127] Using rule R, gives: T2=1L, 5, n5..07(S). Merging
B, 4 with E ., and simplifying with rule K4, gives below
expression:

chstk@), V(Htotalbusiness, it as W(13) A P SNy T5))

[0128] where T;=(customer Axe; ,). Using the transforma-
tions, gives below expression:
&

(custrey & sumrotalprice) as rotalbusiness

Ty=customer B
(orders))

[0129] Applying rule R8 to the merged expression, gives
the following final simplified expression. The SQL query
corresponding to this expression is given in Example 2:

I, stkey, p12* Platiniom "py?* Gold * ‘Regulary as v (1 3)

[0130] UDFs With Loops

[0131] Loops are encountered often in UDFs and generally
iterate over cursors defined on query results. Example 5
shows a query on the TPCH schema which invokes the UDF
totalloss, with a cursor loop in it. For a given supplier, this
query lists out the parts along with the total loss incurred on
the sales of that part. The cursor in the UDF iterates over each
line item with the specified part, and computes the profit
gained. Ifthe profit is less than zero, i.e., it is a loss, then it is
accumulated in the total_loss variable.
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Example 5

UDF With a Loop
[0132]

create function totalloss(int pkey) returns intas
begin
int total_loss = 0;
int cost = getCost(pkey);
declare ¢ cursor for
select price, qty,disc from lineitem
where partkey=:pkey;
open ¢;
fetch next from ¢ into @price, @qty, @disc;
while @@FETCH_STATUS = 0
int profit = (@price-@disc) - (cost * @qty);
if (profit < 0)
total_loss = total_loss - profit;
fetch next from ¢ into @price, @qty, @disc;
close c¢; deallocate ¢;
return total_loss;
end
Query: select partkey, totalloss(partkey)
from partsupp where suppkey = ?;

[0133] Loops result in a cycle in the control-flow graph of
the UDF, making the task of algebraizing them challenging
and, in some cases, impossible. Since queries involve disk IO,
one of the goals is to decorrelate any queries inside a UDF
with respect to the outer query block. Now, the disclosure
describes techniques to decorrelate scalar and table valued
cursor loops. In an example embodiment this example
method can be extended to arbitrary while loops

[0134] Algebraizing Cursor Loops

[0135] The first step to building an expression for a cursor
loop is to build an expression for the body of the loop. The
body of a loop may contain imperative statements, query
execution statements and nested loops, with arbitrary data
dependences between them. Such inter-statement data depen-
dences are captured by a data dependence graph (DDG) using
static analysis of the code. The key difference between state-
ments in a loop body and other statements which are not part
of a loop is that statements in a loop may have cyclic data
dependences i.e, loops may result in cycles in the DDG. For
instance, consider the loop in Example 5. The value of vari-
able total_loss, written in an iteration say i, is read in the
subsequent iteration i+1, resulting in a cyclic data depen-
dence.

[0136] The parameterized expression for a loop with no
cyclic data dependences is built as follows. E_, is the expres-
sion for the query on which the cursor is defined, and E, is the
expression for the body of the loop. Expression E, is con-
structed using the technique described above. Then the
expression for the loop is:

E~(§ AXE) AN E,

[0137] The presence of cyclic dependences in a loop makes
it impossible to construct a set oriented algebraic expression
for the loop in its given form. However, cyclic dependences
are quite commonly encountered in loops in UDFs. The dis-
closure now describes how to compute the expression E, for
the body of a loop with cyclic data dependences.

[0138] Consider the subgraph of CFG corresponding to the
statements in the body of a loop. The logical nodes in this
subgraph are =L, ..., L,. Here, L, is the first node in L. that
is part of a cycle of data dependences.
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[0139] Then, the contribution of nodes L,, . . ., L, (referred
to as L) can be captured as a user defined aggregate function
if the following conditions hold:
[0140] The initial values of all variables written in L, are
statically determinable. This is because initial values have to
be supplied to aggregate functions, at function creation time;
and
[0141] The query on which the cursor is defined does not
have an ORDER BY clause, or the database allows enforce-
ment of order while invoking user defined aggregates.
[0142] Here, E,,, is the expression at the point that precedes
Li. E,, is constructed as described earlier (the fetch next
statement is treated as an assignment and modelled accord-
ingly). Then the expression constructed for the body of the
loop L is:

Ebzi‘;fc( )(Ein)

[0143] Where £ is the auxiliary function created for nodes
L.. Function £, is a tuple-valued aggregate function with the
signature:

TUPLE(,, . . ., o0 fulby, .. . ,b,)

where (i)c, . . ., ¢, are the variables that are live at the end of
loop L, and (ii) by, . . ., b,, are the attributes that are used by
statements in L. The body of f, is constructed using the
statements in L. Nested loops are not considered in the above
description, but can be handled similarly.

[0144] The above transformation may be performed if the
following conditions hold:

[0145] The initial values of all variables written in L are
statically determinable. This is because initial values have to
be supplied to aggregate functions at creation time; and
[0146] The query on which the cursor is defined does not
have an ORDER BY clause, or the database allows enforce-
ment of order while invoking user defined aggregates.
[0147] In the loop of Example 5, the cyclic dependence is
present in the following logical node:

if (profit < 0)
total_loss = total_loss - profit;

[0148] The expression is computed up to this logical node
as described earlier. The variable total_loss is the only vari-
able written to in this node, and its initial value can be stati-
cally determined to be 0. Therefore this logical node is
expressed as a user defined aggregate function that accepts
profit as its parameter, and returns total_loss.

[0149] User defined aggregate functions should support a
set of methods that are invoked at different stages during their
evaluation. In particular, they should support an initialization
method where initial values are set, an accumulate or iterate
method that accumulates individual input values, and a ter-
minate method that returns the aggregate value. For Example
5, the technique results in a user defined aggregate function
aux-agg( ) shown below. Observe that in some embodiments
the accumulate method contains the same code as the logical
node with a dependence cycle.

[0150] Implementation of function aux-agg( ):

State: int total_loss;
void initialize( )
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-continued

begin

total_loss = 0;
end
void accumulate (int profit)
begin

if (profit < 0)

total_loss = total_loss - profit;

end
int terminate( )
begin

return total_loss;
end

[0151] The final expression constructed for the query in
Example 5 is shown in FIG. 9 where the function aux-agg( )
is the user defined aggregate. Merging the expression tree
with the outer query block and removing correlations is done
as described above.

[0152] In this approach, all the statements are moved in L,
into an aggregate function. In other words, all the statements
in the loop that follow L, (the first statement that is a part of a
dependence cycle) are considered for the user defined aggre-
gate. However, there could be statements in L_ that are not
part of any dependence cycle. In such cases, it may be pos-
sible to reorder statements in the loop such that L contains
only statements that are part of a dependence cycle, or state-
ments dependent on them. Some embodiments may include
or may be capable of including such optimization.

[0153] Algebraizing Table Valued UDFs

[0154] Table valued UDFs that build and return a tempo-
rary table are encountered very often in applications. Such
UDFs typically look like the one shown in Example 6. This
UDF creates a temporary table, iterates over a cursor and
inserts values into a temporary table in every iteration before
returning the table.

[0155] Table valued UDFs can be represented algebraically
using an example embodiment if the loop does not contain
cyclic data dependences, there are no updates or deletes to the
table valued attribute (only inserts are present), and the table
valued attribute is not modified both before and after the loop.

Example 6

Table Valued UDF With a Cursor Loop
[0156]

create function some function( ) returns tt table(...) as
begin
declare ¢ cursor for ...
open ¢;
fetch next from c into ...
while@@FETCH_STATUS =0
// compute attributes of table tt
insert into tt values(...);
fetch next from c into ...
close c¢; deallocate ¢;
return tt;
end

[0157] The expression for the cursor loop is built as
described by the techniques herein. The statement that inserts
values into the temporary table is algebraized by using a
projection on the attributes of the temporary table.

[0158] Inthe UDF of Example 6, E_is the expression for the
query on which the cursor is defined. Here, (a;, a,, . .. )arethe
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attributes of the temporary table tt,and E,, is the expression for
the code that computes the values (@v,, @v,, . . . ) that are
inserted into tt. Then, the expression for the UDF is:

(8 AXE) A By AT oy as ... (%))

[0159] The methods presented in this section are used to
build algebraic representation for scalar or table valued UDFs
with cursor loops. This covers a large class of UDFs com-
monly encountered in practice. These methods can be further
extended to handle loops with a dynamic iteration space, such
as arbitrary while loops. One of the objectives of the meth-
odology described herein is to decorrelate any queries inside
a loop, since they involve disk 10. In these cases, techniques
such as loop fission can be extended to isolate query execu-
tion statements into separate loops. Then, the query execution
statements can be decorrelated, while the rest of the loops
could remain as auxiliary UDFs, since they may have cyclic
dependences that may make it impossible to construct set-
oriented algebraic expressions.

[0160] The present disclosure may be used with any data-
base that supports UDFs and standard decorrelation transfor-
mations. The extensions and equivalence rules disclosed here
can be integrated with the query optimizer to enable decorre-
lation of UDF invocations.

[0161] Sincelimited access to such a query optimizer, these
techniques was implemented as a query rewrite tool instead
which can be used as a pre-processor for a database system.
The tool accepts a database schema, an SQL query, and defi-
nitions of UDFs used by the query, written in the syntax of a
commercial database system (SYS1), as its inputs. It pro-
duces as output a rewritten SQL query along with definitions
of auxiliary functions, if any, used by the rewritten query. The
rewritten SQL query is then executed on the database system,
which performs cost-based optimization on the query.

[0162] The structure of the rewrite tool is shown in FIG. 10.
After parsing, a tree structured intermediate form of the query
and the referenced UDFs are constructed. Ifthe UDF contains
loops, the loop fission module may be used to perform the
necessary transformations while the tree is built. This tree
makes use of Apply operators with extensions as disclosed
herein. The aux function builder is invoked as required to
generate auxiliary functions. Transformation rules that
remove the Apply operators are then applied to the interme-
diate tree form. If the tool is unable to remove all the Apply
operators, it does not transform the query. Finally, the output
phase generates a SQL query and auxiliary functions from the
transformed intermediate representation.

[0163] In an example embodiment, a system can be
designed to assess (a) the applicability of the methods and
systems described herein to real-world UDFs, and (b) the
performance benefits due to the rewrite on modern commer-
cial database systems. To the best of knowledge, there is no
benchmark for SQL where queries make extensive use of
UDFs. To assess the applicability of the rewrite techniques
disclosed here, real world applications can be constructed and
borrowed from UDFs that make use of various constructs
offered by a typical imperative language. The program logic
in most of these UDFs is influenced by functions and proce-
dures found in real-world applications, and changes were
made primarily for running them against the TPCH dataset.
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Example 7

UDF for System 1
[0164]

create function discount(float amt, int ckey) returns float as
begin
int custeat; float catdisct, totaldiscount;
select category into :custcat
from customer where customerkey = :ckey;
select frac_discount into :catdisct
from categorydiscount where category = :custcat;
totaldiscount = catdisct * amt;
return totaldiscount;
end
Query: select orderkey, discount(totalprice, custkey) from order;

[0165] The example systems described below may be per-
formed on two widely used commercial database systems—
SYS1 and SYS2. The system can generate the decorrelated
queries for SYS1, and manually translate to the syntax of
SYS2 in order to assess the applicability and performance
benefits. The database servers may be run on Intel Corei5 3.3
Ghz machines with 4 GB of RAM. The queries may be run
locally on the TPC-H 10 GB dataset with a few augmented
attributes to suit the methods described herein. The tables
customer and orders consist of 1.5 million and 15 million
records respectively, with default indices on primary and
foreign keys.

[0166] Asoneexample, considersystem 1 for a straight line
UDF which computes the discount for a customer based on
the category of the customer. The UDF and the query are
shown in Example 7. This UDF executes two scalar SQL
queries and an arithmetic operation in order to compute the
discount value. Using these techniques, along with the trans-
formation rules, given the following decorrelated form for the
query of Example 7:

[0167] select o orderkey, (frac_discount*o_totalprice) as
totaldiscount

[0168] from orders o, customer c, categorydiscount cd
[0169] where o_custkey=c custkey and

¢_nationkey=custcatgeory

[0170] FIG. 11 shows the results of example system 1 on
SYS1 with the number of UDF invocations on the x-axis and
the time taken on the y-axis. The disclosed techniques vary
the number of UDF invocations by using a top clause. It is
seen that for smaller number of invocations, both the original
and the rewritten query perform similarly. The optimizer
performed an iterative invocation of the UDF for the original
query; it chose a plan with nested loop joins for the rewritten
query. However, as the number of invocations increase, the
time taken by the original query steadily increases. This is
because the optimizer does not have alternative plans to
choose, and uses the same iterative plan. In contrast, the time
taken by the rewritten query remains very low even with a
larger sizes as the optimizer chose other plans with hash join.
This shows how our transformations enable the optimizer to
choose better plans. Similar patterns were observed on SYS2
though the actual numbers vary. For instance, at 1 million
invocations, the time taken by the original query and there
written were respectively 6 minutes and 14 seconds. At 10
million invocations, the original query took 16 minutes
whereas the rewritten one ran in 2 minutes.

[0171] As another example, consider system 2 for the query
and UDF shown in Example 1 with its rewritten form in
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Example 2. Recall that this UDF has assignment statements,
branching statements and a scalar SQL query.

[0172] The techniques vary (by appending a where clause)
the number of customers, and hence the number of UDF
invocations, and report the time taken by the original and
transformed queries. The results on SYS1 for example system
2 are shown in FIG. 12 with the UDF invocation count on the
x-axis and the time taken (in log scale) on the y-axis.

[0173] The observations here are similar to what were
observed in example system 1. Observe that up to 1K invo-
cations, both the original and transformed queries perform
similarly. For the original query, the optimizer chose a plan
which iteratively invokes the UDF for each tuple in the cus-
tomer table. In the case of the transformed query, the opti-
mizer chose a nested loops join, thus resulting in similar
performance. As the number of customers increase, the origi-
nal query plan remains the same, and hence performance
degrades. For the rewritten query, the time taken actually
reduces between 1K and 10K before starting to raise very
gradually for invocations beyond 10K. This drop is due to the
fact that up to 1K, the chosen plan had two nested loop join
operations. Between 1K to 5K, one of them switches to a hash
join; between 5K to 10K, the second one also switches to a
hash join. At 10 million customers, the original query took
more than 3 hours whereas the rewritten query ran in less than
aminute. On SYS2, the rewritten query took about 9 minutes
while the original query ran for almost 24 hours.

[0174] As yet another example, consider system 3 for a
UDF with a loop. The UDF computes the number of parts in
a given category and all its parent categories. The parts table
had 2 million rows and there were 1000 categories. In some
embodiments, the transformation rules, disclosed herein,
may be applied manually. Similar to example system 2, the
described techniques vary the number of UDF invocations by
appending a where clause on the categories table, and record
the time taken. The results of this example system 3 on SYS1
are shown in FIG. 13, where the x-axis indicates the number
of UDF invocations and y-axis shows the time taken.

[0175] Similar to the other example systems, the time taken
by the original query in this case increases as the number of
invocations increases. It is realized that for smaller number of
invocations, the transformed query actually performs a bit
worse than the original query. In fact, as the graph shows, the
time taken by the rewritten query is a constant (at 5 seconds).
This is due to the fact that the scan on the parts table domi-
nates the query execution time, and the selection predicate on
categories does not reduce this.

[0176] The embodiments described here of decorrelating
UDFs are designed to be part of a cost based optimizer. If an
optimizer incorporates these techniques, it can choose the
better of the two plans for smaller number of invocations,
since iterative invocation remains as an alternative. Since our
current implementation is an external tool, this option is not
available to the optimizer. At larger number of invocations,
however, the rewritten form turns out to be significantly faster
than the original query.

[0177] FIG. 14 is a block diagram of an exemplary com-
puting device 600 that may be used to implement exemplary
embodiments of a UDF transformer or decorrelater system
101, as described herein. The computing device 600 includes
one or more non-transitory computer-readable media for stor-
ing one or more computer-executable instructions or software
for implementing exemplary embodiments. The non-transi-
tory computer-readable media may include, but are not lim-
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ited to, one or more types of hardware memory, non-transi-
tory tangible media (for example, one or more magnetic
storage disks, one or more optical disks, one or more flash
drives), and the like. For example, memory 606 included in
the computing device 600 may store computer-readable and
computer-executable instructions or software for implement-
ing exemplary embodiments of the UDF transformer system
101. The computing device 600 also includes configurable
and/or programmable processor 602 and associated core 604,
and optionally, one or more additional configurable and/or
programmable processor(s) 602' and associated core(s) 604'
(forexample, in the case of computer systems having multiple
processors/cores), for executing computer-readable and com-
puter-executable instructions or software stored in the
memory 606 and other programs for controlling system hard-
ware. Processor 602 and processor(s) 602' may each be a
single core processor or multiple core (604 and 604') proces-
SOf.

[0178] Virtualization may be employed in the computing
device 600 so that infrastructure and resources in the com-
puting device may be shared dynamically. A virtual machine
614 may be provided to handle a process running on multiple
processors so that the process appears to be using only one
computing resource rather than multiple computing
resources. Multiple virtual machines may also be used with
one processor.

[0179] Memory 606 may include a computer system
memory or random access memory, such as DRAM, SRAM,
EDO RAM, and the like. Memory 606 may include other
types of memory as well, or combinations thereof.

[0180] A user may interact with the computing device 600
through a visual display device 618, such as a computer
monitor, which may display one or more graphical user inter-
faces 112 that may be provided in accordance with exemplary
embodiments. The computing device 600 may include other
10O devices for receiving input from a user, for example, a
keyboard or any suitable multi-point touch interface 608, a
pointing device 610 (e.g., amouse), a microphone 628, and/or
an image capturing device 632 (e.g., a camera or scanner).
The keyboard 608 and the pointing device 610 may be
coupled to the visual display device 618. The computing
device 600 may include other suitable conventional 1/O
peripherals.

[0181] The computing device 600 may also include one or
more storage devices 624, such as a hard-drive, CD-ROM, or
other computer readable media, for storing data and com-
puter-readable instructions and/or software that implement
exemplary embodiments of the UDF transformer system 101
described herein. Exemplary storage device 624 may also
store one or more databases for storing any suitable informa-
tion required to implement exemplary embodiments. For
example, exemplary storage device 624 can store one or more
databases 626 for storing information, such as product infor-
mation including, for example, product specific information,
product inventory information, product location information,
and/or any other information to be used by embodiments of
the system 101. The databases may be updated manually or
automatically at any suitable time to add, delete, and/or
update one or more items in the databases.

[0182] The computing device 600 can include a network
interface 612 configured to interface via one or more network
devices 620 with one or more networks, for example, Local
Area Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
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limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 56kb, X.25), broadband connec-
tions (for example, ISDN, Frame Relay, ATM), wireless con-
nections, controller area network (CAN), or some combina-
tion of any or all of the above. In exemplary embodiments, the
computing device 600 can include one or more antennas 630
to facilitate wireless communication (e.g., via the network
interface) between the computing device 600 and a network.
The network interface 612 may include a built-in network
adapter, network interface card, PCMCIA network card, card
bus network adapter, wireless network adapter, USB network
adapter, modem or any other device suitable for interfacing
the computing device 600 to any type of network capable of
communication and performing the operations described
herein. Moreover, the computing device 600 may be any
computer system, such as a workstation, desktop computer,
server, laptop, handheld computer, tablet computer (e.g., the
iPad™ tablet computer), mobile computing or communica-
tion device (e.g., the iPhone™ communication device), or
other form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein.

[0183] The computing device 600 may run any operating
system 616, such as any of the versions of the Microsoft®
Windows® operating systems, the different releases of the
Unix and Linux operating systems, any version of the
MacOS® for Macintosh computers, any embedded operating
system, any real-time operating system, any open source
operating system, any proprietary operating system, or any
other operating system capable of running on the computing
device and performing the operations described herein. In
exemplary embodiments, the operating system 616 may be
run in native mode or emulated mode. In an exemplary
embodiment, the operating system 616 may be run on one or
more cloud machine instances.

[0184] FIG. 15 is a block diagram of an exemplary client-
server environment 700 configured to implement one or more
embodiments of the UDF transformer system. The environ-
ment 700 includes servers 710-713 operatively coupled to
clients 720-722, via a communication network 750, which
can be any network over which information can be transmit-
ted between devices communicatively coupled to the net-
work. For example, the communication network 750 can be
the Internet, an Intranet, virtual private network (VPN), wide
area network (WAN), local area network (LAN), and the like.
The environment 700 can include repositories or databases
730-734, which can be operatively coupled to the servers
710-713, as well as to clients 720-722, via the communica-
tions network 750. The servers 710-713, clients 720-722, and
databases 730-734 can be implemented as computing
devices. Those skilled in the art will recognize that the data-
base devices 730-734 can be incorporated into one or more of
the servers 710-713 such that one or more of the servers can
include databases. In an exemplary embodiment, part of the
UDF transformer can be implemented by the server 710 and
the another part of the UDF transformer can be implemented
by one or more of the server 711-713 and/or databases 730-
734. In some embodiments, the UDF transformer system can
be distributed over different servers.

[0185] The client devices 720-722 can include a client side
application 723 programmed and/or configured to access or
execute the UDF transformer system. In the present embodi-
ment, the client devices 720-722 can be computing devices
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including, for example, portable computing devices. In one
embodiment, the client-side application 723 implemented by
the client device 720 can be a web-browser capable of navi-
gating to one or more web pages hosting GUIs of the UDF
transformer. For example, in some embodiments, the client-
side application 723 implemented by one or more of the client
devices 720-722 (e.g., portable computing devices) can be an
application specific to the environment installed on the client
devices 720-722 to permit access to the UDF transformer
system. In some embodiments, the application can be a
mobile application installed and executed by a portable com-
puting device. In exemplary embodiments, the client devices
720-722 can be configured to communicate with the network
750 via wired and/or wireless communication. The databases
730-734 can store information for use by the UDF trans-
former system.

[0186] Indescribing exemplary embodiments, specific ter-
minology is used for the sake of clarity. For purposes of
description, each specific term is intended to at least include
all technical and functional equivalents that operate in a simi-
lar manner to accomplish a similar purpose. Additionally, in
some instances where a particular exemplary embodiment
includes a plurality of system elements, device components
or method steps, those elements, components or steps may be
replaced with a single element, component or step. Likewise,
a single element, component or step may be replaced with a
plurality of elements, components or steps that serve the same
purpose. Moreover, while exemplary embodiments have been
shown and described with references to particular embodi-
ments thereof, those of ordinary skill in the art will under-
stand that various substitutions and alterations in form and
detail may be made therein without departing from the scope
of the invention. Further still, other embodiments, functions
and advantages are also within the scope of the invention.
[0187] Exemplary flowcharts are provided herein for illus-
trative purposes and are non-limiting examples of methods.
One of ordinary skill in the art will recognize that exemplary
methods may include more or fewer steps than those illus-
trated in the exemplary flowcharts, and that the steps in the
exemplary flowcharts may be performed in a different order
than the order shown in the illustrative flowcharts.

What is claimed is:

1. A computer-implemented method for transforming user-
defined-function invocations within a query-based environ-
ment, the method comprising:

receiving a query with a user-defined-function (UDF);

parsing the UDF into a plurality of statements;

constructing a first expression tree representation of the
UDF,

constructing a second expression tree representation of the

query absent the UDF;
generating a transformed expression representation of the
query by merging the first expression tree and the second
expression tree based on parameters of the first expres-
sion tree and attributes of the second expression tree; and

simplifying the transformed expression using transforma-
tion rules, based on a determination that the transformed
expression can be simplified.

2. The method of claim 1, wherein the first expression tree
is constructed using a control flow graph having at least two
nodes and an edge connecting the at least two nodes, wherein
the edge represents a flow through statements of the UDF, and
the nodes represent a statement of the UDF.
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3. The method of claim 1, wherein the first expression tree
is a parameterized expression tree of the UDFE.

4. The method of claim 1, wherein the constructing of the
first expression tree includes applying a set of operators
selected from one of an apply-bind operator, apply-merge
operator, a conditional-apply-merge operator, and an apply-
Cross operator.

5. The method of claim 1, wherein the generating of the
transformed expression includes merging the first expression
tree and the second expression tree by applying an apply-bind
operatotr.

6. The method of claim 1, wherein the constructing of the
first expression tree comprises:

determining a type of a statement of the plurality of state-

ments;

choosing, based on the type of the statement, an operator

from the set of operators; and

applying the operator to the statement to generate part of

the first expression tree.

7. The method of claim 6, wherein the statement is at least
one of an assignment statement, an if-then-else conditional
statement, or a return statement.

8. The method of claim 6, further comprising:

choosing an apply-merge operator when the statement is an

assignment statement;

choosing a conditional-apply-merge operator when the

statement is an if-then-else conditional statement; and
choosing a conditional-apply-merge operator when the
statement is a return statement.

9. The method of claim 1, wherein the simplifying of the
transformed expression includes removing the applied set of
operators based on the transformation rules.

10. The method of claim 1, further comprising generating
a query representing the simplified transformed expression.

11. A system for transforming user-defined-function invo-
cations within a query-based environment, the system com-
prising:

a parser module configured to:

receive a query with a user-defined-function (UDF); and
parse the UDF into a plurality of statements;

a processor-implemented tree-construction module con-

figured to:

construct a first expression tree representation of the
UDF; and

construct a second expression tree representation of the
query absent the UDF; and

a transformer module configured to:

generate a transformed expression representation of the
query by merging the first expression tree and the
second expression tree based on parameters of the
first expression tree and attributes of the second
expression tree; and

simplify the transformed expression using transforma-
tion rules, based on a determination that the trans-
formed expression can be simplified.

12. The system of claim 11, wherein the tree-construction
module constructs the first tree expression includes applying
a set of operators selected from one of an apply-bind operator,
apply-merge operator, a conditional-apply-merge operator,
and an apply-cross operator.

13. The system of claim 11, wherein the tree-construction
module constructs the first expression tree using a control
flow graph having at least two nodes and an edge connecting
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the at least two nodes, wherein the edge represents a flow
through statements of the UDF, and the nodes represent a
statement of the UDF.

14. The system of claim 11, wherein the tree-construction
module merges the first expression and the second expression
by using an apply-bind operator.

15. The system of claim 11, wherein the tree-construction
module is further configured to:

determine a type of a statement of the plurality of state-

ments;

choose, based on the type of the statement, an operator

from the set of operators; and

apply the operator to the statement to generate part of the

first expression tree.

16. The system of claim 15, wherein the tree-construction
module is further configured to:

choose an apply-merge operator when the statement is an

assignment statement;

choose a conditional-apply-merge operator when the state-

ment is an if-then-else conditional statement; and
choose a conditional-apply-merge operator when the state-
ment is a return statement.

17. A non-transitory computer-readable storage device
configured to store instructions executable by a processing
device, wherein execution of the instructions in a query-based
environment causes the processing device to implement a
method of transforming a user-defined-function invocations
within the query-based environment comprising:

receiving a query with a user-defined-function (UDF);

parsing the UDF into a plurality of statements;

constructing a first expression tree representation of the
UDF;

constructing a second expression tree representation of the

query absent the UDF;
generating a transformed expression representation of the
query by merging the first expression tree and the second
expression tree based on parameters of the first expres-
sion tree and attributes of the second expression tree; and

simplifying the transformed expression using transforma-
tion rules, based on a determination that the transformed
expression can be simplified.

18. The non-transitory storage device of claim 17, wherein
the constructing of the first expression tree includes applying
a set of operators selected from one of an apply-bind operator,
apply-merge operator, a conditional-apply-merge operator,
and an apply-cross operator.

19. The non-transitory storage device of claim 17, wherein
the first expression tree is constructed using a control flow
graph having at least two nodes and an edge connecting the at
least two nodes, wherein the edge represents a flow through
statements of the UDF, and the nodes represent a statement of
the UDF.

20. The non-transitory storage device of claim 17, further
comprising:

determining a type of a statement of the plurality of state-

ments;

choosing an apply-merge operator when the statement is an

assignment statement;

choosing a conditional-apply-merge operator when the

statement is an if-then-else conditional statement;
choosing a conditional-apply-merge operator when the
statement is a return statement; and

applying the operator to the statement to generate part of

the first expression tree.

#* #* #* #* #*



