
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0220597 A1

Simhadri et al.

US 20150220597A1

(43) Pub. Date: Aug. 6, 2015

(54)

(71)

(72)

(21)

(22)

DECORRELATION OF USER-DEFINED
FUNCTION INVOCATIONS IN QUERIES

Applicants: Indian Institute of Technology
Bombay, Mumbai (IN); Indian Institute
of Technology Hyderabad,
Yeddumailaram (IN)

Inventors: Varun Simhadri, Mumbai (IN);
Karthik Ramachan
Arun Chaitanya Miriappalli, Mumbai

dra, Mumbai (IN);

(IN); Ravindra Guravannavar,
Mumbai (IN); Sundararajarao
Sudarshan, Mumbai (IN)

Appl. No.: 14/170,386

Filed: Jan. 31, 2014

DB Schema

SQL Query
UDF Def

Aux Function
Builder

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30448 (2013.01); G06F 17/30327

(2013.01)
(57) ABSTRACT

Systems, methods, and computer-readable medium, are dis
closed for transforming user-defined-function invocations in
a query-based environment. A user-defined-function (UDF)
and a query invoking the UDF are received. The UDF is
parsed into a plurality of Statements. A first expression tree
corresponding to the UDF and a second expression tree cor
responding the query are constructed, and merged using an
operator to generate a transformed expression. The trans
formed expression is simplified, using transformation rules, if
it is determined that is can be simplified.

transformed
SQL Query

Transformer K.
Aux Function

Defins

Patent Application Publication Aug. 6, 2015 Sheet 1 of 15 US 2015/0220597 A1

(S) amount 0.15 as retval

Figure 1

Patent Application Publication Aug. 6, 2015 Sheet 2 of 15 US 2015/0220597 A1

retval

4X
N

functiprice as retVal

S uskey=ckey
orders

Figure 2

Patent Application Publication Aug. 6, 2015 Sheet 3 of 15 US 2015/0220597 A1

L2 s select Sam (total price) into total business
: from orders wiere custkeysickey:

L3 8
N3

- - - - - - - - - - -N - - - - - - - - - :
:

{ N5 if (totalbusiness > 500000) :
3. TRE FASE !

a m e o a m e o a
:

N4 ! N6 O N7
:

L4 N8 return level

Figure 3

Patent Application Publication Aug. 6, 2015 Sheet 4 of 15 US 2015/0220597 A1

s s (ii

u1 X N f

Figure 4

Patent Application Publication Aug. 6, 2015 Sheet 5 of 15 US 2015/0220597 A1

Expression for the RiDF (E} is
Expression for Logical Yode O

More logical
iodes exist?

Output Eup: EN)

R

set i e next ogical node and
E be its expression

TRE
is assignert

a. - Operator Oc Apply-Merge
Sasses;

FASE

R

is i-then-else Operator O =
Statemen? Conditional-Apply. Merge

FALS

TRE

is retri Operator O is Apply-Cross
staternet?

Eufr EupEO E.

Figure 5

Patent Application Publication Aug. 6, 2015 Sheet 6 of 15 US 2015/0220597 A1

/ /"
D s leal,...fpnean

uncal.....an) E (fp1...fpn)

Figure 6

Patent Application Publication

Figure 7

Aug. 6, 2015 Sheet 7 of 15

Parse UDF body

Construct CFG along
with logical nodes

Construct parameterized
expression for UDF body

Construct expression for
query invoking the UDF

Merge query expression
with UDF expression using

Apply-Bind extension

Expression can
be simplified?

Apply transformation rule
to simplify expression

Output simplified expression
& aux functions if any

US 2015/0220597 A1

FALSE

Patent Application Publication Aug. 6, 2015 Sheet 8 of 15 US 2015/0220597 A1

I orderkey, retval as d

bind: (amountrictotalprice)

reval

is
/ mounto 5 as retval (S)

orders

Figure 8

Patent Application Publication Aug. 6, 2015 Sheet 9 of 15 US 2015/0220597 A1

'partikey, revai

2X (biscipattikeyukey

- N
ppkey:

part Supp
9aux-agg profit as eiwai

aff
1

f

-1 N fice &S & price.gy &S & qy disc &S & disc (S)

X Y.
price, qty, is

revai

((&price-Cé dise -(cost & gy}} as profit (S)

2.

is oeirasiake ascos (S, getCssipkey as cost '. partikey'rikes

in eitein

Figure 9

Patent Application Publication Aug. 6, 2015 Sheet 10 of 15 US 2015/0220597 A1

Query free

Transformerk

Loop Fission AuX Function
Builder

ransforted
SQL Query

DB Scherra

SQ Query
UDF Def Aux Function

Defins

Figure 10

Patent Application Publication Aug. 6, 2015 Sheet 11 of 15 US 2015/0220597 A1

300
Original Query mom

250 Rewritten Query x xxx x .
Database, SYS

200
a

S.
150

.

E 100
Hess

50

& &S: saxe . * * x . O &xsax$ & ses :*:

O 50 OC 500 K 5K OK 5OK 1M 5M M 5M OM

No. of UDF invocations

Figure 11

Patent Application Publication Aug. 6, 2015 Sheet 12 of 15 US 2015/0220597 A1

OOOO Original Cuery xx
Rewritten Query SSS. Sss &

Database: SYS

OOO

OO

O

O SO OO SOO K SK OK 5OK OOK5OOK M

No. of Customers (UDF invocations)

Figure 12

Patent Application Publication Aug. 6, 2015 Sheet 13 of 15 US 2015/0220597 A1

140 Original Query sees
Rewritten Query x xxx x .

2O Database: SYS

OO

8O

60

40

5 O 50 OO 500 1000

No. of Categories (UDF invocations)

Figure 13

Patent Application Publication Aug. 6, 2015 Sheet 14 of 15 US 2015/0220597 A1

6GO

618

Visual Display Computing Device SO2
evice Processor

64

SOS

62O

Network Device Multi-Port 808

Totich interface

8O

Pointing Device
32

Network interface

---------------------- 6.
Virtual Machie

88 Database

88 Operating System

Processor(s)
830 - 64'

632
image Capture

Device

Figure 14

Patent Application Publication Aug. 6, 2015 Sheet 15 of 15 US 2015/0220597 A1

723

Cient Device

72

732
Database

733 734

Figure 15

US 2015/0220597 A1

S if Li is Start

if Li is an assignment l = r

(p, e, , ef) if Li an if-then-else block

10062) The expression E, for the start node is the Single
relation. An assignment statement of the form l r is repre
sented as a generalized projection on the Single relation. Here
r can be a program expression, a scalar SQL query, or a UDF
invocation. If ris a scalar SQL query, its relational expression
is used. If it is an UDF invocation, an expression for the called
UDF is first built, and then used in the projection. If an
algebraic representation cannot be built for the called UDF, it
is left as a function invocation. Variable declarations are
treated as assignments with the rh.S. as L., i.e., the default
uninitialized value for the data type.
0063. An if-then-else block has two successors corre
sponding to the then and the else parts. In the example
method, now recursively define the contribution of the if
then-else block as the set of expressions (p, et, ef). Here p is
the predicate of the if statement, e, is the expression tree
corresponding to the then branch (i.e., p is true), and e, is the
expression tree corresponding to the else branch (i.e., p is
false). This expressions (p, e, e) captures the contribution of
the entire conditional block and hence the block can be logi
cally seen as a single node in the CFG. All the contributions of
individual nodes are then combined to get E, the expression
tree for the UDF as shown below.

0.064
0065

Ea? EL,
for i from 1, ..., k do // k is the it of logical nodes

0.066 of choose ApplyType(L)
I0067 E. E.A.E,

0068 end
I0069 E, is initially assigned to E. corresponding to
Start. Then, for every successive logical node L, an Apply
operation is added whose left child is the expression built so
far (E), and right child is E.
0070 The Apply operator's type o, depends on the corre
sponding node in the UDF. Variable declarations use the
Applycross (A) operator. Assignment of values to previously
defined local variables is algebraized using Apply-Merge
(A'). The assignment of results of a scalar query to scalar
variables also uses Apply-Merge. Conditional branching
nodes (i.e. if-then-else blocks) use the Conditional-Apply
(A) operator. The return clause is mapped to an apply-cross
(A) with a relational expression corresponding to the return
expression. As a convention, return value is always alias to the
name retval. Finally, a projection on retval is added to com
plete the expression for the UDF.
0071 FIG. 3 illustrates the construction of the expression
tree for the CFG. The expressions with their corresponding
Apply operator types are as follows:
(0072 el-II as total business, null as level (S)
(0073. Al-A'
0074 el, "(Ssanctotaprice) as (Ostka-ke (orders)
0075) A-AMotahsinist
(0076 e: (total business>1000000, e, e.
0.077 A-A.
(0078 Since La is an if-then-else block, the expressione,
is defined recursively in terms of the predicate at N, the true
branch at L. and the false branch at L. The conditional
apply-merge operator is used. Since L. comprises of a single

Aug. 6, 2015

node Na, its expression would be (SA' ex) which is the same
as ex. In general, the expression for any logical node L, that
comprises of a single node N, would be ex, as shown in rule
R1 of Table 1 that listed the additional equivalence rule.

TABLE 1

R2 A"(IIa, as e.... a. as s. (S)-IIae as a1, as a (r)
where Adenotes r.* -a,a.

R3 IIf(e) (IgA) as B(r)) II/g(A) (r)
R4 rA)e(r) = II (r A* e(r))

where e(r) is a single tuple expression, L is of the form:
a1 = b1, ... a = b, and X denotes R
(a1, ..., a, b1 as a1, bk as ai.

R5 (a1, ... as ei as b1, ...e., as b. (r) Are
Iai,..., a, e, as b1, ... e., as b, e."(A*e)
where e does not use any of the computed
attributes b1, ..., b.

R6 r Ac' (p(r), e,(r), e(r)) = r A (o, (e.(r)) Utre (e.(r)))
where e, and e, are single tuple expressions

R7 IIe as a (Op. (r)) UIIe as a (Oo(r)) IIe elee) as a (r)
W ep p2 = false

R8 r Al (p(r), e.(r), e?(r)) : Ir".(Pegep (r)
where e, and e, are scalar valued expressions

R9 A bindpi- 6 e- a, e(p1: p.)
r A*e(a1, ..., a,)

007.9 The expression for L which is another if-then-else
block is defined interms of exandex. The remaining expres
sions are defined as below:

0080 elev, TI-Platinum as level (S)
10081) e, (totalbusiness>500000, ex ex)
0082 - 3.2= {
I0083) ex-II c. , (S)
10084 ev. II-regist, (S)
0085 el-IIleet as retvai ()
0.086 °4= *
I0087. Using these expressions and the types of Apply
operators, the tree is constructed as described. The resulting
tree for the UDF in FIG. 3 is shown in FIG. 4. This tree can be
further simplified and that would be considered as the
removal of apply operators.
I0088 FIG. 5 shows a flowchart describing algebraization
of the UDF as mentioned above.

I0089. Once the expression tree is constructed for the UDF,
it needs to be correlated with the query that invokes the UDF.
This is very similar to the way nested subqueries are corre
lated with the outer query except for one key difference: the
formal parameters of the UDF have to be bound to their
corresponding actual parameters produced by each tuple of
the outer query block. To this end, the enhanced Apply opera
tion (Apply with the bind extension) is used to merge the
expression tree of the outer query with the tree constructed for
the UDF.

I0090 E. and E, are the expression trees correspond
ing to the outer query block and the UDF respectively. Also,
fi,..., f, denote the formal parameters of the UDF, and C,
. . . , C, denote attributes of E that are the actual param
eters to the UDF. Irrespective of whether the UDF invocation
is in the where clause or the select clause, E. corresponds
to the UDF invocation as the right child of an Apply operation
as shown in the LHS of FIG. 6. Now, these are merged as
follows:

0091. 1) The UDF invocation is replaced by its algebraic
form (E) as the right child of the Apply operator. In FIG. 6,

