
University of Latvia

Faculty of Computing

Uldis Locans

Future Processor Hardware

Architectures for the Benefit of

Precise Particle Accelerator

Modeling

Doctoral Thesis

Field: Computer Science

Subfield: Programming languages and systems

Scientific advisors

Dr.sc.comp., prof. Guntis Barzdins

Dr. Andreas Adelmann (PSI)

Dr. Andreas Suter (PSI)

Riga, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-resource repository of the University of Latvia

https://core.ac.uk/display/92879852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank my supervisors prof. Dr. Guntis Barzdins, Dr.

Andreas Adelmann and Dr. Andreas Sutter for their support and

guidance during this work.

I thank the co-authors Jannis Fischer, Werner Lustermann, Gunther

Dissertori, Quilin Wang, Xu Xaisheng and Lukas Stingelin for their

help and expertise during our interesting collaborations.

I thank my colleagues at PSI AMAS and LEM groups - it has been a

real pleasure working and collaborating with all of you.

Many thanks go to my parents, family and friends for their continuous

help and support trough-out this time.

This work was carried out in Paul Scherrer Institut during years 2014-

2017 as a collaboration between Accelerator Modeling and Advanced

Simulations (AMAS) group and Low-Energy Muon (LEM) group.

This study was financially supported by AMAS and LEM groups at

PSI, as well as by Prof. Peter Arbenz group at ETH Zurich and Prof.

Gunther Dissertori group at ETH Zurich.

This work was in part supported by the Latvian State research pro-

gram SOPHIS

Abstract

Emerging processor architectures such as graphical processing units

(GPUs) and Intel Many Integrated Cores (MICs) provide a huge per-

formance potential for high performance computing. However devel-

oping software that uses these hardware accelerators introduces ad-

ditional challenges for the developer. These challenges may include

exposing increased parallelism, handling different hardware designs,

and using multiple development frameworks in order to utilize devices

from different vendors.

During this work the Dynamic Kernel Scheduler (DKS) was devel-

oped, to provide a software layer between the host application and

hardware accelerators. DKS handles the communication between the

host and the device, schedules task execution, and provides a library

of built-in algorithms. Algorithms available in the DKS library will be

written in CUDA, OpenCL, and OpenMP. Depending on the avail-

able hardware, the DKS can select the appropriate implementation of

the algorithm.

The author used DKS to enable co-processor usage in applications

such as OPAL (Object-oriented Particle Accelerator Library), musrfit

and PET (Positron Emission Tomography) Image reconstruction ap-

plication. These applications are developed at Paul Scherrer Institut,

and ETH Zurich for particle accelerator modeling and experimen-

tal data analysis, and used by the world wide user community. The

achieved results show that substantial speedups in application exe-

cution times can be achieved using co-processors compared to CPUs

and with the help of DKS the process of integrating new processors

in existing applications is simplified and more maintainable.

The potential of the new hardware architectures is further demon-

strated by porting to CUDA application for multibunch tracking (mb-

track) developed at SOLEIL (French national synchrotron facility).

This application is used at PSI for the detailed study of coupled bunch

instabilities and transient beam-loading. By using the computational

power of GPUs the necessary simulations can be executed on the

GPU instead of a larger computing cluster that would be required

otherwise.

Keywords: Hardware acceleration, GPU computing, Intel MIC, CUDA,

OpenCL, OpenMP

Contents

Contents iv

List of Figures viii

List of Tables xi

Nomenclature xi

1 Introduction 1

1.1 Research background and motivation 1

1.2 Novelty of the work . 2

1.3 Thesis and research questions . 4

1.4 Research methodology . 5

1.5 The aim and tasks of the research 5

1.6 Main results of the thesis and approbation of the results 6

1.7 Publications of the research results 7

1.8 Outline of the thesis . 9

2 Future hardware architectures 11

2.1 GPU Accelerated Computing . 11

2.1.1 GPU Architecture . 11

2.1.2 CUDA . 12

2.1.3 OpenCL . 14

2.2 Intel Many Integrated Cores . 15

2.2.1 Intel MIC architecture . 15

2.2.2 OpenMP and vectorization 16

iv

CONTENTS U. Locans

2.2.3 OpenCL . 17

2.3 Hardware accelerators . 18

2.3.1 Hardware accelerators used during this work 18

3 Dynamic Kernel Scheduler 19

3.1 Accelerator libraries . 19

3.1.1 ArrayFire . 19

3.1.2 Thrust . 20

3.1.3 Boost.compute . 22

3.1.4 VexCL . 23

3.1.5 ViennaCL . 24

3.1.6 Other libraries . 24

3.2 DKS concept and architecture . 25

3.3 DKS algorithm library . 28

3.3.1 DKS Base . 29

3.3.2 DKS and OPAL . 30

3.3.3 DKS and Musrfit . 31

3.3.4 DKS and PET Image Reconstruction 31

3.4 DKS auto-tuning . 32

3.4.1 Auto-tuning concept . 32

3.4.2 DKS and auto-tuning . 33

4 OPAL 35

4.1 OPAL and DKS . 35

4.2 FFT Poisson solver . 36

4.2.1 FFT Based Particle-Mesh Solver 36

4.2.2 FFT-based Convolutions 36

4.3 FFT Poisson solver and DKS . 37

4.3.1 CUDA Implementation of the Poisson Solver in DKS . . . 38

4.3.2 OpenMP Implementation of the Poisson Solver in DKS . . 39

4.3.3 Integration of DKS in OPAL 40

4.3.4 Performance Results . 40

4.4 Particle matter interaction . 41

v

CONTENTS U. Locans

4.4.1 The Energy Loss . 42

4.4.2 Coulomb Scattering . 43

4.4.3 Large Angle Rutherford Scattering 44

4.4.4 OPAL implementation . 44

4.4.5 Particle drift via time integration 47

4.5 Particle matter interaction and DKS 48

4.5.1 The DKS Implementation of the Particle Matter Interac-

tion Model . 48

4.5.2 Particle matter interaction on the GPU 50

4.5.3 Particle matter interaction on the MIC 52

4.5.4 Integrating DKS in OPAL 56

4.6 Performance Results . 58

5 Musrfit 61

5.1 Musrfit and DKS . 61

5.2 Problem description . 62

5.3 χ2 and MLH kernels on GPU . 64

5.4 User defined kernels . 66

5.5 Musrfit speedups with GPUs . 67

6 PET Image reconstruction and analysis 70

6.1 PET Image reconstruction basics 70

6.1.1 Image reconstruction . 71

6.1.2 Image analysis . 74

6.2 GPU kernels for PET image reconstruction and analysis 75

6.2.1 Forward and backward projections 76

6.2.2 Source and background calculation 78

6.3 Results . 79

7 Multi-bunch tracking code - mbtrack 83

7.1 MBTRACK . 84

7.1.1 Collective effects in synchrotrons 84

7.1.2 Limitations of mbtrack MPI version 84

7.1.3 Parallelization in mbtrack MPI version 85

vi

CONTENTS U. Locans

7.2 GPU acceleration of MBTRACK 86

7.2.1 mbtrack CUDA . 86

7.2.2 GPU memory management 86

7.2.3 The basic single particle transformations 87

7.2.4 Geometric ring impedance 89

7.2.5 Statistics calculations . 93

7.3 Results . 94

7.3.1 Verification of the mbtrack-cuda 94

7.3.2 Performance of the mbtrack-cuda 95

8 Conclusions 97

References 99

vii

List of Figures

2.1 Intel MIC micro-architecture . 16

3.1 Approximating pi on the device using ArrayFire. 20

3.2 A Thrust program for sorting data on the GPU 21

3.3 Example of Boost.Compute library. 22

3.4 Example of VexCL vector operations. 23

3.1 ViennaCL architecture . 24

3.2 The Dynamic Kernel Scheduler. 25

3.3 The Dynamic Kernel Scheduler concept 26

3.5 Example of DKS usage for FFT 27

3.4 Architecture of the Dynamic Kernel Scheduler. The nodes shown

in red are planned in the future versions of DKS, in case other

vendor GPU support is required. 28

3.6 Example of setup of auto-tuning test 33

4.1 The OPAL software structure and connection to DKS 35

4.2 FFT-Poisson solver sequence diagram 38

4.3 FFT-Poisson 2D domain decomposition 39

4.4 Particle matter interaction. With the final energy E < E0 and

larger momenta spread due to Coulomb scattering and the large

angle Rutherford scattering. 42

4.1 Struct to store one particle . 45

4.2 Loop trough the particles, calculate energy loss, Coulomb scatter-

ing and large angle Rutherford scattering for each particle. 46

4.3 Calculate energy loss for a particle using Bethe-Bloch equation . . 47

viii

LIST OF FIGURES U. Locans

4.4 Move dead particles to the end of the list and erase 48

4.5 Integration sequence diagrams . 49

4.6 Particle in matter sequence diagrams, where B denotes particle

bunch . 50

4.5 Data structure for storing particles that are in the material on the

GPU . 50

4.6 CUDA kernel for MC simulation. 52

4.7 Sorting of the particles on the GPU. 53

4.8 Data structure for storing particles that are in the material on the

MIC . 53

4.9 Vectorization of checkHit and particle drift if it leaves material . . 54

4.10 Vectorization of energy loss calculations 55

4.11 Vectorization of coulomb scattering 56

4.12 Vectorization of Rutherford, P1, P2 and P3 are temporary arrays

of size MIC WIDTH with pregenerated random values. 57

4.13 Initializing DKS for particle matter interaction in OPAL. 57

4.14 Integrating DKS in OPAL for particle matter interaction simulations. 58

5.1 Schematic of a time differential µSR experiment 62

5.2 Flow diagram of parameter fitting with Musrfit using Minuit2

and DKS . 65

5.1 CUDA examples of predefined functions that can be used to create

the user function. 67

5.2 Example of parsed user defined function ready for compilation. . . 67

5.3 Parameter fitting with χ2 function running on the GPU. The time

is shown for the execution of one iteration of the minimize com-

mand of Minuit2 . 69

6.1 PET imaging basic principles. 72

6.2 Cross section of the image showing LORs, with predominant di-

rection in the x plane, and a slice of the image along this direction

being processed. 77

6.1 Example code of DKS interface integrated in the host application

for image reconstruction. 78

ix

LIST OF FIGURES U. Locans

6.3 2D representation of sphere placement at the voxel position for

source and background calculation. 79

6.4 Execution time for forward and backward projections. Run on In-

tel(R) Xeon(R) CPU E5-2690 v3 and Nvidia Tesla K40c 81

6.5 Calculation of source and background values with different sphere

diameters. 82

7.1 Allocate the arrays for the data structures. 87

7.2 Kernel to apply wake potential effect to particles in a bunch. . . . 93

x

List of Tables

2.1 Specifications of used hardware accelerators 18

3.1 Main class functions to interact with device 30

4.1 FFT Poisson Solver results . 40

4.2 OPAL degrader results . 59

5.1 Parameter fitting with χ2 function running on the GPU. The given

time is for the execution of the minimize command of Minuit2 . . 68

6.1 Performance of image reconstruction and analysis example. 80

7.1 Comparison of mbtrack-mpi and mbtrack-cuda on 8 core machine

with 1 Nvidia Tesla K40c GPU for the first test simulation. 95

7.2 Comparison of mbtrack-mpi and mbtrack-cuda on 8 core machine

with 1 Nvidia Tesla K40c GPU for the second test simulation. . . 96

xi

Chapter 1

Introduction

1.1 Research background and motivation

In recent years hardware accelerators have become increasingly popular within

scientific computing. Based on the Top500 list from November 2016 [1], 86 of

the top 500 supercomputers in the world are accelerator based. This includes

two of the top three systems on the list: Tianhe-2 which uses Intel Xeon Phi

coprocessors and Titan which uses NVIDIA K20x GPUs. GPU usage for general

purpose computing has become even more important, due to the gaming industry.

Almost every computer is now equipped with a GPU, but if the application is

not exploiting the GPU, it is not using all the available computational power of

the system. The main benefit of these new devices is the performance potential

they provide. The GPUs and also Intel MICs are designed to execute massively

parallel workload very efficiently when compared to CPUs, which are designed for

serial task execution. Taking advantage of the these resources can substantially

increase the performance of an application.

Despite the growing popularity of these devices, developing software that can

take advantage of hardware accelerators can become a challenging task, especially

for large existing applications. Each hardware accelerator has its own architecture

and memory hierarchy which must be taken into account to gain the maximum

performance out of the device. In addition to hardware differences, there are

also varying methods to program these devices. NVIDIA provides the CUDA [2]

1

1. Introduction U. Locans

toolkit for its GPUs, both AMD and NVIDIA support the OpenCL [3] frame-

work, and Intel allows usage of standard tools and languages to program Intel

MIC processor [4], but parallelization and vectorization of the code is needed to

gain the best performance. There are also OpenACC [5] and OpenMP 4.0 [6] stan-

dards that allow the targeting of hardware accelerators by expressing parallelism

through compiler directives.

In this work, the Dynamic Kernel Scheduler (DKS) is presented which provides

a slim software layer between the host application and the hardware accelerators.

DKS separates the accelerator and framework specific code from the host ap-

plication and provides a simple interface that can be implemented in the host

application to offload tasks to the accelerator. DKS provides functions to handle

communication and data transfer between host and device, as well as a library of

functions written in CUDA, OpenCL, and OpenMP that allow the targeting of

different hardware accelerators.

The ability of DKS to have implementations using different frameworks and

libraries, and switch between them from the host application allows the targeting

of hardware accelerators of different types and fine tuning of the code to gain

the maximum performance from each device. This approach also provides more

portability and software investment protection for the host application. In case a

hardware architecture is no longer available, a new architecture or development

framework emerges, only DKS needs to be updated.

1.2 Novelty of the work

With the increasing popularity of hardware accelerators there have been many at-

tempts to ease the development of applications that exploit these devices. These

attempts range from creation of cross-platform standards, use of compiler di-

rectives, device specific libraries and high level APIs that allow the creation of

GPU/MIC code.

The OpenCL standard [3] gives the opportunity to create a cross-platform

code, but while the code is guaranteed to execute on the device, as long as it

supports OpenCL, the performance portability is not guaranteed. This means

that different implementations of the same algorithm might be necessary to gain

2

1. Introduction U. Locans

the best performance from the device. In addition device specific frameworks such

as CUDA and CUDA libraries for Nvidia devices, or OpenMP, vectorization and

MKL libraries for Intel devices, provide advantages over OpenCL in performance

and ease of development. For this reason use of only OpenCL as a device language

may not be the best option in each case.

The OpenMP standard starting with version 4.0 provides the support to of-

fload the code to the target device [7]. This would allow the creation of GPU/MIC

code using OpenMP pragmas, an approach similar as used with OpenACC [5].

Unfortunately compiler support for creating device codes using OpenMP4.0 or

OpenACC is limited and for this reason creating device code that would run on

all the devices and platforms is not yet a feasible task.

In order to help with the code development for the GPUs, Nvidia provides a

set of GPU accelerated libraries with the CUDA toolkit [8]. These libraries can be

easily incorporated in the host applications to offload tasks to the device. Similar

approach can be used on Intel MIC where Intel Math Kernel Library (Intel MKL)

is available [9].

Several parallel vector libraries, such as Thrust [10], ArrayFire [11] and Boost-

Compute [12], are available that implement parallel versions of algorithms from

C++ standard template libraries. These libraries provide a collection of functions

such as scan, sort, and reduce, which can be combined to implement complex al-

gorithms.

There have also been attempts to create higher level APIs and abstractions to

ease the creation of the GPU code [13, 14, 15]. These attempts focus on creating

a more generic way of expressing the parallelism needed for the GPU code, that

is later translated to CUDA or OpenCL kernels.

The DKS API does not aim to replace or replicate these efforts but rather

provide a confined layer where all of these approaches can be used. Developer

provided libraries together with hand tuned kernels provide the ability to create

fast, optimized algorithms for each hardware accelerator. DKS algorithms for

Nvidia graphics cards use handwritten CUDA kernels complemented by cuFFT,

cuBLAS, cuRand and Thrust libraries, while the algorithms to target Intel MIC

use OpenMP complemented by Intel’s Math Kernel Library (MKL). OpenCL is

used to target devices from other vendors, which in this work were AMD GPUs.

3

1. Introduction U. Locans

With DKS all of these approaches can be combined to create fast and optimized

device code for each device, while keeping the changes to integrate these devices

in the host application minimal.

As can be seen, there is no universal and effective solution to include different

hardware accelerators in existing applications - for this reason many domain

specific solutions are developed, for example TensorFlow and Torch libraries for

deep learning applications, ArrayFire, Thrust and Boost.Compute for vector and

matrix operations, and also DKS library, developed by the author, for physics

simulations.

1.3 Thesis and research questions

During this work the following thesis have been proposed:

• With the use of hardware accelerators it is possible to significantly speed

up the performance if physics simulation applications.

• It is possible to develop a universal library (DKS), that would allow to effec-

tively integrate devices with different architectures in the existing physics

simulation tools.

The research questions studied during this work is how to effectively develop

the needed algorithms for these parallel architectures and how to develop the

DKS library. DKS library needs to provide a common interface so that the appli-

cation could communicate with different hardware accelerators un execute tasks

on these devices. At the same time library needs to provide the best possible

implementation of the algorithms for different architectures. This library needs

to be easily extendable, so that other algorithms needed in the future or needed

for different applications could be easily added. DKS library also needs to be ex-

tendable with different hardware accelerator support, so in the future new devices

could be added without changing the interface used in the host application.

4

1. Introduction U. Locans

1.4 Research methodology

During this work both theoretical analysis and practical research methods were

used.

Theoretical studies were used to analyze existing physics simulation tool and

the algorithms used in these applications as well as attempts to use hardware

accelerators in similar simulation application optimization. Additionally exist-

ing hardware accelerator libraries were analyzed to develop a concept for DKS

architecture.

The practical implementation of the thesis is the development of DKS library

which was also successfully integrated in multiple physics simulation and experi-

mental data analysis applications. Additionally benchmark tests were performed

to study the benefits that these devices can provide for simulation applications.

1.5 The aim and tasks of the research

The main objective of the thesis was to integrate new processor technologies such

as GPUs and Intel MICs to speed up existing particle accelerator simulation

software, such as OPAL and mbtrack, software for experimental data analysis

such as musrfit, and PET image reconstruction.

To take advantage of the new processor architectures, algorithms that will be

executed on these devices, need to be rewritten using the supported program-

ming languages such as CUDA, OpenCL and OpenMP. To achieve the optimal

performance from each device the algorithms also need to be constructed with

the device architecture in mind.

To facilitate the integration of the device specific algorithms in large existing

applications, DKS was developed which allows to separate all the device specific

code from the host application. With the help of DKS it is possible to create device

code using multiple different frameworks to target different devices and integrate

this code in the host application with one simple interface. This simplifies the

process of supporting multiple co-processors for the host application. DKS also

eases the process of developing, maintaining and optimizing the device code.

The auto tuning framework for DKS is developed to allow DKS to execute the

5

1. Introduction U. Locans

GPU code with best possible launch parameters. This allows DKS to adapt to

different hardware environments since GPU hardware resources, such as available

memory, available cores and registers per core, vary between different devices and

influence how the code should be launched for best performance.

1.6 Main results of the thesis and approbation

of the results

The main result of the thesis is universal DKS library, developed by the author,

that eases the integration of hardware accelerators in existing physics simulation

applications. During this work DKS was used to add the option to offload the

compute intensive parts of the simulations to GPU and Intel MIC for various

physics simulation codes, developed and used at PSI and ETH Zurich. These

codes include:

• OPAL - a framework for general particle accelerator simulations

• musrfit - a framework to analyze muSR data

• PET Image reconstruction and analysis software

• mbtrack - multibunch tracking code

DKS library was developed to be easily extendable un reusable in other appli-

cations. This library can also be extended to support other hardware accelerators.

DKS was integrated in OPAL (Object-oriented Parallel Accelerator Library)

which is an open source C++ framework for general particle accelerator simula-

tions. For acceleration of OPAL simulations using GPUs and Intel MIC devices

CUDA and OpenMP implementations were created for FFT based Poisson solver

and for Monte Carlo simulations of particle matter interactions. These algorithms

are the ones of the most time consuming parts in some of the most widely run

simulations using OPAL - ring cyclotron simulations and degrader simulations.

DKS was used in musrfit - a framework for muSR data analysis, to enable

almost real time data analysis of experimental data. In musrfit parameter fitting

using χ2 and log-max likelihood minimization was offloaded to the GPUs to speed

6

1. Introduction U. Locans

up data analysis of muSR experiments. CUDA and OpenCL was used in DKS

to create the necessary GPU algorithms and the performance was tested using

various GPUs from different vendors. The results show that almost real-time data

analysis performance can be achieved with a single GPU. This allows to perform

the data analysis simultaneously with the experiments, guiding the experimenter

to optimize the measuring program.

Using DKS and CUDA a PET image reconstruction and analysis software was

optimized to allow compute intensive parts of the code to run on Nvidia GPUs.

With the help of GPUs it was demonstrated that the execution time of PET

image reconstruction can be decreased significantly, bringing the project closer

to its goal of real time image reconstruction.

Multibunch tracking code mbtrack developed at SOLEIL (French national

synchrotron facility) and used at PSI to study multibunch instabilities was ported

to CUDA. This allows the code to execute on Nvidias GPUs. The results show

a substantial improvement in computing time for single bunch simulations com-

pared to CPU version. The main benefit of GPU version for multibunch simula-

tions is the ability to run the large simulations required at PSI without the need

of a computing cluster, which was required for the original version.

OPAL, musrfit and mbtrack applications accelerated by GPUs are used at

PSI for particle matter interaction simulations (OPAL), studies of multi bunch

instabilities for SLS-2 upgrade proposal (mbtrack) and for µSR experimental data

analysis (musrfit). PET image reconstruction program was used as a prototype

at ETH Zurich to demonstrate the potential of GPU acceleration and could be

used in the future in order to achieve real time image reconstruction.

1.7 Publications of the research results

The list of publications by the author includes 2 papers submitted to journal

”Computer Physics Communications” and three papers in the conference pro-

ceedings (ICAP2015, IPAC2017 and µSR2017). In all three papers the author of

the dissertation was the main author of the publication and responsible for the

design of the algorithms for parallel architectures in DKS, the GPU/MIC code

development, verification and benchmark tests.

7

1. Introduction U. Locans

• Andreas Adelmann, Uldis Locans, Andreas Suter, The Dynamic Kernel

Scheduler − Part 1, Computer Physics Communications, Volume 207, Oc-

tober 2016,

http://dx.doi.org/10.1016/j.cpc.2016.05.013, (Scopus).

• Uldis Locans, Andreas Adelmann, Andreas Suter, Jannis Fischer, Werner

Lustermann, Gunther Dissertori, Qiulin Wang, Real-Time Computation of

Parameter Fitting and Image Reconstruction Using Graphical Processing

Units, Computer Physics Communications, Accepted for publication,

http://dx.doi.org/10.1016/j.cpc.2017.02.007, (Scopus).

• Uldis Locans, Andreas Adelmann, Andreas Suter, Dynamic Kernel Sched-

uler (DKS) - Accelerating the Object Oriented Particle Accelerator Library

(OPAL), Proceedings of ICAP2015,

http://accelconf.web.cern.ch/AccelConf/ICAP2015/papers/proceed.

pdf, (JACoW).

• Uldis Locans, Xu Haisheng, Andreas Adelmann, Lukas Stingelin, A GPU

variant of mbtrack and its application in SLS-2, International Particle Ac-

celerator Conference (IPAC2017).

https://doi.org/10.18429/JACoW-IPAC2017-THPAB051

• Uldis Locans, Andreas Suter, musrfit - Real Time Parameter Fitting Using

GPUs, 14th International Conference on Muon Spin Rotation, Relaxation

and Resonance (µSR2017)

Presentation of the work includes conference talks and poster presentations.

• Uldis Locans, Andreas Adelmann, Andreas Suter, Dynamic Kernel Sched-

uler (DKS) - a thin software layer between host application and hardware

accelerators, Platform for Advanced Computing (PASC), Zurich, Switzer-

land, 2015, Poster presentation.

• Uldis Locans, Andreas Adelmann, Andreas Suter, Dynamic Kernel Sched-

uler (DKS) - Accelerating the Object Oriented Particle Accelerator Li-

brary (OPAL), International Computational Accelerator Physics Confer-

ence, Shanghai, China, 2016, Contributed talk.

8

http://dx.doi.org/10.1016/j.cpc.2016.05.013
http://dx.doi.org/10.1016/j.cpc.2017.02.007
http://accelconf.web.cern.ch/AccelConf/ICAP2015/papers/proceed.pdf
http://accelconf.web.cern.ch/AccelConf/ICAP2015/papers/proceed.pdf
https://doi.org/10.18429/JACoW-IPAC2017-THPAB051

1. Introduction U. Locans

• Uldis Locans, Xu Haisheng, Andreas Adelmann, Lukas Stingelin, A GPU

variant of mbtrack and its application in SLS-2, International Particle Ac-

celerator Conference (IPAC2017), 2017, Copenhagen, Denmark, poster.

• Uldis Locans, Andreas Suter, musrfit - Real Time Parameter Fitting Using

GPUs, 14th International Conference on Muon Spin Rotation, Relaxation

and Resonance (µSR2017), 2017, Sapporo, Japan, poster.

1.8 Outline of the thesis

Chapter 2 gives and overview over currently available hardware accelerator ar-

chitectures, programming frameworks used to program co-processors as well as

hardware and programming frameworks used in this work.

Chapter 3 describes in detail the concept and implementation of Dynamic

Kernel Scheduler. This chapter focuses on the ideas of DKS and how it can be

used to help host applications to utilize the co-processors.

In the 4th chapter a description of OPAL is given, as well as algorithms that

were chosen for offload to the hardware accelerators. This chapter provides the

information on how these algorithms are implemented in OPAL and how DKS

was used to enable co-processor support. Results of benchmark tests using Nvidia

GPUs and Intel Xeon Phi co-processors are reported.

Chapter 5 describes the challenges of enabling GPU support for musrfit. The

runtime generation of CUDA or OpenCL code in DKS for execution on GPU is

described as well as DKS integration in musrfit. Results provided in this chapter

show the benefits of GPU usage for parameter fitting in musrfit compared to the

currently used CPU version.

Chapter 6 gives an overview of the PET Image reconstruction and analysis

algorithms used at ETH Zurich and the efforts to speed up these algorithms using

GPUs. CUDA code used to execute the algorithms is described as well as DKS

usage to integrate the code in the existing application. The potential of GPUs to

speed up these algorithms is reported in the result section of this chapter.

Chapter 7 describes the efforts of creating a CUDA version of multibunch

tracking software mbtrack developed at SOLEIL and used at PSI. This chapter

9

1. Introduction U. Locans

describes the motivation for the CUDA version as well as development of the

CUDA algorithms.

The conclusions of the work are given in the chapter 8.

10

Chapter 2

Future hardware architectures

2.1 GPU Accelerated Computing

GPU accelerated computing refers to the use of GPUs for general purpose ap-

plications. The main benefit of the GPU is the massively parallel architecture

which consists of thousands of cores designed to very efficiently execute multiple

tasks simultaneously. GPU accelerated applications use the GPU to perform the

compute intensive parts of the code while the remainder of the application is still

running on the CPU.

2.1.1 GPU Architecture

In GPU accelerated computing, the GPU is usually connected to the host using a

PCI-Express bus. The GPU is equipped with its own memory and data needs to

be transferred from the host to the device, though some support for direct access

of the host memory is available with certain restrictions. The GPU is optimized

for high throughput calculations so high data bandwidth is required. This is

achieved using wide data paths which allows to fetch multiple data elements in

on cycle.

Each GPU consists of a number of streaming multiprocessors (compute units

for AMD devices) containing multiple cores. For example Nvidia Tesla K40 GPU

is comprised of 15 streaming multiprocessors and 2880 cores while AMD FirePro

W9100 consists of 44 compute units and 2816 cores. Each core can execute a

11

2. Future hardware architectures U. Locans

single thread, but the cores are grouped in SIMT (Single Instruction Multiple

Thread) fashion, which means that all cores in the same warp execute the same

instruction. This has an effect on how conditional statements are handled in the

GPU - some threads in the same group may be stalled if conditional operations

need to be executed. In Nvidia devices these groups are called warps and consist

of 32 threads while in AMD devices groups consist of 64 threads and are called

wavefronts.

Unlike the host side GPUs do not have a sophisticated cache structure to

improve memory performance, but there is a small software managed cache at-

tached to each streaming multiprocessor and shared among the cores. In CUDA

this is known as shared memory while OpenCL refers to it as local memory. While

global memory access can take hundreds of clock cycles shared or local memory is

a low-latency memory and runs close to register speeds since it is located on the

streaming multiprocessor. This memory is shared among the cores on the same

streaming multiprocessor and is used to communicate between the cores or for

storage of data that is reused frequently because of its low latency. Each core also

has it own private memory which is used for thread private variable storage. If

threads are using too much private memory it will limit how many warps can be

active on a single streaming multiprocessor or it is possible to spill the private

memory to the slower global memory.

An important part of the GPU threading model is the context switching

between warps. GPUs allow multiple warps to be active on a streaming multipro-

cessor and quickly switch the execution from one warp to another. This is done in

order to hide the latency of global memory access. Global memory access can take

hundreds of clock cycles - while one warp is waiting for data from global memory

the GPU can switch the execution of the instructions to a different warp.

2.1.2 CUDA

CUDA is a parallel computing platform and programming model developed by

NVIDIA to enable general purpose computing on Nvidia GPUs. The CUDA plat-

form allows developers to create GPU kernels using programming languages like

C, C++ and Fortran, which makes the programming of these devices more user

12

2. Future hardware architectures U. Locans

friendly.

A CUDA function written for execution on a GPU is called a kernel. When a

CUDA kernel is launched all the threads are executing the same code. Each thread

can be identified by a unique ID and all the threads are organized in groups, a

group of threads in CUDA is called a block. When a CUDA kernel is launched

the programmer needs to specify how many blocks and how many threads per

block to launch. Each block is then allocated to a streaming multiprocessor. The

threads allocated on each streaming multiprocessor need to share the registers

available on this core, hence the number of registers required by a single thread

and number of threads per block limits how many blocks can be allocated on

single core. The threads in the block are grouped in warps of 32 threads, as

described in the previous section, so it is usually beneficial to specify the number

of threads per block as a multiple of 32. For latency hiding of global memory

accesses it is also usually beneficial to have more than one warp per block. Since

the GPU delivers the best performance when all the GPU resources are utilized

it is beneficial to have enough threads active on a core to keep the GPU occupied

and allow switching of the warps to hide memory access latency. This adds an

additional challenge to the programmer since available resources differ between

different GPU devices.

The CUDA toolkit includes a wide range of GPU-accelerated libraries con-

taining algorithms and functions optimized for execution on the GPU. These

libraries were incorporated in the current work to avoid rewriting algorithms

that are already optimized for the GPU. During this work cuFFT, cuRand and

cuBLAS libraries were used for FFT transforms, random number generation and

BLAS functions. The CUDA toolkit also includes the Thrust library, which is a

C++ template library for CUDA based on the Standard Template Library (STL).

Thrust provides a large collection of data parallel primitives such as scan, sort,

and reduce which can be combined to implement more complex algorithms. Algo-

rithms created with Thrust can be used together with CUDA libraries and hand

written CUDA C kernels. During this work CUDA C kernels were complimented

with CUDA libraries and Thrust algorithms to create the necessary functionality.

CUDA kernels are usually stored in .cu files and compiled using a Nvidia

CUDA Compiler (nvcc). NVCC splits the program in two parts - the host part

13

2. Future hardware architectures U. Locans

compiled by the general C, C++ or FORTRAN compiler, and the GPU part

compiled by nvcc for execution on the GPU. During this work in addition to nvcc

compiler to create the GPU code Nvidias runtime compilation library (NVRTC)

was used as well. NVRTC allows to create GPU kernels from a source code stored

in character string format. This feature was used to create the GPU kernels at

runtime when full kernel functionality is unknown before the user input.

2.1.3 OpenCL

The Open Computing Language (OpenCL) is a framework for developing applica-

tions that can execute on heterogeneous platforms. The OpenCL execution model

consists of a host device (typically CPU) and a target device that executes the

OpenCL kernel. The target device can be any device that supports the OpenCL

framework CPUs, GPUs, Intel MICs, FPGAs or others. In this chapter we focus

on the use of OpenCL for the GPU programming.

OpenCL programs are written in a C-like language with extensions for parallel

programming such as memory fence operations and barriers. Using OpenCL it is

possible to run data and task parallel applications. Each OpenCL kernel is called a

work-item and is identified by its own id. The global work-size determines the total

number of work-items which can be split into work-groups. Work-items inside the

work-group can communicate trough local memory and can be synchronized using

barrier and fence operations.

An OpenCL application begins by querying the available platforms and de-

vices. There can be any number of OpenCL platforms available on a single system

allowing to run the application on a wide range of devices. The CUDA toolkit pro-

vides the Nvidia OpenCL platform allowing applications to target Nvidia GPUs,

the AMD OpenCL SDK gives access to the AMD platform for targeting AMD

CPUs and GPUs, and Intel OpenCL Runtime provides Intel OpenCL platform to

target Intel’s devices. There are other platforms available to target different de-

vices, but the three previously mentioned were used in this work to target CPUs,

GPUs and Intel MICs.

Once the devices, which will be used by the application, are identified a context

is created with one or multiple of these devices. Contexts are used by the OpenCL

14

2. Future hardware architectures U. Locans

runtime for managing objects such as command-queues, memory, program and

kernel objects and for executing kernels on one or more devices specified in the

context. Many operation are performed with the respect to a given context, but

there are also operation that are device specific. For example program compilation

and kernel execution are performed for a specific device. A command queue is

associated with each device in the context and all the work executed on the

device is scheduled trough this command queue. Many OpenCL programs follow

the same pattern. After selecting the platform and devices to use create a context,

allocate memory, create device-specific command queues, perform data transfer,

execute the kernels and read the data back to host memory.

2.2 Intel Many Integrated Cores

Intel MIC is a new technology developed by Intel specifically for HPC. The first

Intel MIC architecture co-processor is the Intel Xeon Phi Knights corner. These

co-processors combine many Intel PC cores on a single chip and allow developers

to develop application for these accelerators using standard C, C++ or FOR-

TRAN source code. Intel MIC co-processors run a Linux operating system and

can be used to run separate applications (native mode) or as a part of heteroge-

neous systems (offload mode), where CPU offloads part of the task to execute on

this device, similar as in the case when GPUs are used in HPC applications.

2.2.1 Intel MIC architecture

The Intel Xeon Phi co-processor runs its own Linux operating system and it

is connected to the host CPU trough the PCI Express (PCIe) bus. The use of

the Linux operating system allows a virtualized TCP/IP connection to be imple-

mented trough the PCIe bus, which allows to access the co-processor as a network

node. This allows users to connect to co-processor trough secure shell and directly

run individual jobs on it (native mode). Intel MIC also supports heterogeneous

applications where part of the code executes on the host while part executes on

the co-processor [16].

Each core of the Intel MIC is equipped with a private L2 cache that is kept fully

15

2. Future hardware architectures U. Locans

coherent by a global-distributed tag directory. The memory controllers provide

an interface to the global memory available on the co-processor while the PCIe

interconnect provides access to the memory on the host. All these components

are connected via the ring interconnect as shown in figure 3.1.

Figure 2.1: Intel MIC micro-architecture [16].

Intel MIC cores are designed to handle high throughput parallel workloads

while being power efficient. Each core can support up to 4 hardware threads

and contains a vector processing unit (VPU). The VPU features a 512-bit SIMD

instruction set and can execute 16 single-precision (SP) or 8 double-precision

(DP) operations per cycle. There is also support for Fused Multiply-Add (FMA)

instructions which allows to double the SP and DP instructions executed per

cycle [16].

During this work the first Intel Xeon Phi processor Knights Corner was used.

This processor was used in a co-processor mode where host offloads the compute

intensive parts of the calculation to the Xeon Phi.

2.2.2 OpenMP and vectorization

One of the main benefits of the Xeon Phi co-processors is the ability to use

standard programming tools and languages to program these devices. It is possible

to add OpenMP-like pragmas to C/C++ or Fortran code to mark regions of the

code that should be offloaded and executed on the Xeon Phi. The offload pragmas

are detected by compiler and the code is compiled for execution on the device,

the code to transfer the data between the devices is also generated automatically

16

2. Future hardware architectures U. Locans

although the programmer can influence the data transfer with additional clauses

in the pragmas.

To efficiently use all the available cores on the Intel MIC the code region

that is offloaded to the co-processor needs to be parallelized. During this work

OpenMP is used to parallelized the code for Intel MIC. To fully utilize the com-

puting resources on each core it is essential to take advantage of the VPU. The

vectorization of the code is done by the compiler, but additional OpenMP prag-

mas are available to assist the compiler in vectorizing the code. In most cases

some restructuring of the code is necessary to allow the compiler to vectorize the

code and optimize the benefits of the VPU. These optimization usually focuses

on creating a favorable memory access patterns to improve the performance and

removing memory dependencies to enable vectorization.

2.2.3 OpenCL

Intel Xeon Phi processors can also be programmed using OpenCL standard, but

while OpenCL is a portable programming model, than can be run across multiple

platforms, it does not guarantee performance portability. Since the GPUs and

Intel MIC have different hardware architectures the OpenCL code designed for

GPUs is not guaranteed to perform well on the Intel MIC.

One of the biggest differences of Intel MIC and GPU is the absence of pro-

grammable shared local memory. While GPUs relay on the programmable shared

memory to optimize memory accesses, Intel MICs have a fully coherent cache

hierarchy, similar to the one found on CPUs, that automatically speeds up mem-

ory accesses. Another difference is the number of threads launched by the device,

while GPUs rely on hardware scheduling of many tiny threads executed in a SIMT

fashion, Intel MIC uses the operating system to schedule medium sized threads.

Since OpenCL is not able to provide performance portability, multiple pro-

gramming models are used throughout this work. To program Intel MIC devices

OpenMP with offload pragmas was chosen, while OpenCL was used mainly to

target GPUs from vendors other than Nvidia.

17

2. Future hardware architectures U. Locans

2.3 Hardware accelerators

2.3.1 Hardware accelerators used during this work

During this work Nvidia and AMD GPUs were used as well as Intel MIC co-

processor. All the co-processors used during this work are summarized in table

2.1. Some tasks during this work were designed specifically for Nvidia GPUs while

other focused on all the available devices.

To compare the achieved results on the devices bench-marking results are pre-

sented trough-out the work comparing the performance of the various accelerators

and to the performance of the CPU. The CPU performance on a single core was

usually take as a baseline to compare the potential speedup. In applications where

multicore implementations are available, the performance of applications was also

measured using all the available CPU cores, for a more complete comparison of

the advantages of hardware accelerators.

Table 2.1: Specifications of used hardware accelerators

Name Memory
Memory

bandwidth
Processing
Power DP

Nvidia Tesla K20c 5GB 208GB/sec 1.17 Tflops

Nvidia Tesla K40c 12GB 288GB/sec 1.43 Tflops

AMD Radeon R9 390x 8GB 384GB/sec 0.739 Tflops

Intel Xeon Phi 5110p 8GB 320GB/sec 1.01 Tflops

18

Chapter 3

Dynamic Kernel Scheduler

3.1 Accelerator libraries

Many frameworks and libraries have been proposed to tackle the issue of inte-

grating hardware accelerators in large scale applications and ease the code devel-

opment for these new devices.

3.1.1 ArrayFire

ArrayFire is an open source matrix library for rapid development of general pur-

pose GPU (GPGPU) computing and parallel computing applications. ArrayFire

provides fine tuned functions for linear algebra, convolutions, reductions, and

FFT’s as well as signal processing, image processing, statistics, and graphics li-

braries [17]. ArrayFire is hardware neutral and contains CUDA, OpenCL and

C back-ends to support Nvidia GPUs, AMD GPUs/APUs and Intel Xeon Phi

co-processors [11].

ArrayFire functions operate on matrix objects (arrays) which can contain

floating point values (single or double precisions), real or complex values, and

boolean data. The arrays used in computations are multidimensional and can be

manipulated with arithmetic operations and ArrayFire functions as shown in the

example 3.1. A parallel for loop gfor is also provided by ArrayFire, which allows

to execute many instances of independent routines in a data-parallel fashion [17].

ArrayFire uses Just-In-Time compilation (JIT) to generate the device code

19

3. Dynamic Kernel Scheduler U. Locans

1 // sample 40 million points on the GPU

2 array x = randu (20e6), y = randu (20e6);

3 array dist = sqrt(x * x + y * y);

4
5 //the ratio of how many fell in the unit circle

6 float num_inside = sum <float >(dist < 1);

7 float pi = 4.0 * num_inside / 20e6;

Code example 3.1: Approximating pi on the device using ArrayFire.

on-the-fly and optimize memory transfers to maximize throughput. At runtime

ArrayFire aggregates arithmetic operations and function calls for a single variable

instance in a Abstract Syntax Tree (AST) data structure. A single kernel is

created on the fly to evaluate all the functions in a AST [17].

In many cases using just ArrayFire is not enough to provide all the necessary

functionality that an application needs. ArrayFire can be added to an existing

CUDA or OpenCL application, or custom CUDA or OpenCL kernels can be cre-

ated to supplement ArrayFire’s functionality. For CUDA devices ArrayFire man-

ages its own memory and operates in its own stream, while for OpenCL devices

ArrayFire creates its own context and command queue. ArrayFire also creates

custom IDs for the used devices. ArrayFire API provides a set of functions to

interface ArrayFire with custom code. These functions mostly focus on selecting

the correct stream/context and synchronizing the execution of the code, as well

as gaining access to memory objects on the device [11].

3.1.2 Thrust

Thrust is a CUDA parallel template library based on the C++ Standard Tem-

plate Library (STL). Thrust uses the high level interface to implement high per-

formance parallel applications and is fully interoperable with the rest of CUDA

software ecosystem [10].

With Thrust the developer describes the algorithm using a collection of highly

optimized functions, that map efficiently on the targeted Nvidia device architec-

ture. Thrust provides an abstract interface to fundamental algorithms such as

scan, sort and reduction. With the help of C++ templates Thrust makes these

algorithms generic and allows them to be executed with custom user defined data

20

3. Dynamic Kernel Scheduler U. Locans

types and operators [18].

1 // generate 16M random numbers on the host

2 thrust :: host_vector <int > h_vec(1 << 24);

3 thrust :: generate(h_vec.begin (), h_vec.end , rand);

4
5 // transfer data to device

6 thrust :: device_vector <int > d_vec = h_vec;

7
8 //sort data on the device

9 thrust ::sort(d_vec.begin(), d_vec.end());

10
11 // transfer data back to the host

12 thrust ::copy(d_vec.begin(), d_vec.end(), h_vec.begin ());

Code example 3.2: A Thrust program for sorting data on the GPU

Thrust program operates on vector containers, which can be stored on the

host side or on the device side. An example of thrust application to sort an array

of data is shown in 3.2. All the details of the device launch parameters such as

grid and block size, the details of memory management and CUDA kernels to

launch are handled by Thrust and completely hidden from the developer [18].

Thrust functions are derived from four fundamental parallel algorithms - for

each, reduce, scan, and sort. These algorithms are generic in both the data type

that needs to be processed and the operations to applied to the data [18].

Important feature of any GPU library is interoperability with external GPU

code, since in most cases no library provides a complete list of functions needed by

the applications. Thrust is implemented with CUDA C/C++ and is interoperable

with user defined CUDA kernels and external CUDA libraries. Thrust vectors can

be used by CUDA kernels and external libraries by extracting a raw pointer to

the data residing in a Thrust vector, and raw pointers to GPU memory can be

wrapped in Thrust containers to be used by the Thrust algorithms [18].

The main disadvantage of Thrust library is that it is written only in CUDA

and can only target Nvidia devices. Since Thrust is included in the CUDA toolkit

the best use of this library is to complement CUDA applications to avoid rewriting

algorithms that are already optimized in Thrust. During this work Thrusts sort,

reduce and scan algorithms were used to complement CUDA kernels and speed

up the code development.

21

3. Dynamic Kernel Scheduler U. Locans

3.1.3 Boost.compute

Boost Compute is a C++ library for GPU computing platforms based on OpenCL.

Boost Compute library is made up of multiple layers. The top layer provides a

C++ wrapper over the OpenCL API, to help manage the OpenCL objects such

as devices, kernels and command queues. On top of the core layer Boost Com-

pute implements the C++ Standard Template Library (STL) providing common

containers (such as vector and array) and algorithms (such as transform, reduce,

sort) [12]. An example of using Boost Compute library is shown in code example

3.3. The example includes the use of both layers of the library - the core layer

for device management and the algorithm layer to perform transformation of the

input data.

1 // get default device and setup context

2 compute :: device device = compute :: system :: default_device ();

3 compute :: context context(device);

4 compute :: command_queue queue(context , device);

5
6 // generate random data on the host

7 std::vector <float > h_vector (10000);

8 std:: generate(h_vector.begin(), h_vector.end(), rand);

9
10 // create a vector on the device

11 compute ::vector <float > d_vector(h_vector.size(), context);

12
13 // transfer data from the host to the device

14 compute ::copy(h_vector.begin(), h_vector.end(), d_vector.begin (), queue);

15
16 // calculate the square -root of each element in-place

17 compute :: transform(d_vector.begin(),

18 d_vector.end(),

19 d_vector.begin(),

20 compute ::sqrt <float >(),

21 queue

22);

23
24 // copy values back to the host

25 compute ::copy(d_vector.begin(), d_vector.end(), h_vector.begin (), queue);

Code example 3.3: Example of Boost.Compute library.

Similarly to the Thrust library Boost Compute allows the use of custom user

defined data types and operators to be used in the algorithms provided by the

library. In addition Boost Compute is designed to be able to operate together

with the OpenCL API which allows Boost Compute to be combined with custom

OpenCL kernels and external OpenCL libraries [12].

22

3. Dynamic Kernel Scheduler U. Locans

The main advantage of Boost Compute over Thrust is the use of OpenCL as

the backend, which allows to target different device types. While the disadvan-

tages are the need for a third party library (Thrust is supplied with the CUDA

toolkit) and the inability to inter operate applications written using CUDA.

3.1.4 VexCL

VexCL is a vector expression template library for OpenCL/CUDA. The aim of

this library is to reduce the amount of boilerplate code needed to develop algo-

rithms for GPUs. The library provides intuitive notation for vector arithmetic,

reductions, sparse matrix vector products and other algorithms [19].

VexCL provides OpenCL, CUDA and Boost.Compute backends to generate

GPU code to target devices of different types. VexCL uses intuitive notations for

vector operations and functions. In order to be used in the same expression all the

vectors must have the same size and must be allocated on the same device. If these

criteria are met VexCL generates GPU kernel code from the vector expression

which is executed at runtime. VexCL expressions can combine device vectors

and scalars with arithmetic, logic and bitwise operators, and also with built-in

OpenCL/CUDA functions. An example of launching VexCL vector operations

on the GPU is shown in code example 3.4. In addition VexCL contains parallel

implementations of some the most widely used vector algorithms such as reduce,

scan, sort and others [19].

1 const size_t n = 1024 * 1024;

2
3 // Get compute devices supporting double precision:

4 vex:: Context ctx(vex:: Filter :: DoublePrecision);

5
6 // Prepare input data , transfer it to the device(s):

7 std::vector <double > c(n);

8 vex::vector <double > A(ctx , a), B(ctx , b), C(ctx , n);

9
10 // Launch compute kernel:

11 C = A + B;

12
13 // Get result back to host:

14 vex::copy(C, c);

Code example 3.4: Example of VexCL vector operations.

In cases where vector operations and VexCL algorithms are not enough cus-

23

3. Dynamic Kernel Scheduler U. Locans

tom kernels can be defined in VexCL to perform a user defined functions. The

custom kernels must be defined using CUDA or OpenCL code depending on which

backend is selected for the use of VexCL [20].

3.1.5 ViennaCL

The Vienna Computing Library (ViennaCL) is a linear algebra library for par-

allel computations on many-core architectures such as GPUs, Intel MICs, and

many core CPUs. The library is written in C++ and uses CUDA, OpenCL, and

OpenMP to target the devices [21].

Figure 3.1: ViennaCL architecture [21].

The algorithms in the ViennaCL library primarily focus on common linear

algebra operations (BLAS levels 1, 2 and 3) and also provides iterative solvers for

large systems of equations [21]. ViennaCL API follows existing programming and

interface conventions established with uBLAS, which is part of the Boost library.

This allows ViennaCL to be easily integrated in existing applications that use

BLAS libraries with minimal code changes [22].

3.1.6 Other libraries

Many drop in libraries are available for the GPU and Intel Xeon Phi, that pro-

vide functions that are highly optimized for these devices and can be used to

complement the custom kernels and ease the development process. The Nvidia

CUDA toolkit includes several libraries that provide highly optimized algorithms

and functions that can be used to offload tasks to the GPU [8]. Libraries such as

24

3. Dynamic Kernel Scheduler U. Locans

cuFFT, cuBLAS and cuRand are used throughout this work. Intel Math Kernel

Library (Intel MKL) provides optimized functions for Intel Xeon Phi processors

[9]. The Intel MKL library was used in this work for FFT and random number

generation for the Intel MIC code. AMD Compute Libraries (ACL) provide a

similar set of libraries as the CUDA toolkit including clFFT, clBLAS and clRNG

[23].

3.2 DKS concept and architecture

Developing applications that can take advantage of different types of hardware

accelerators will usually require use of multiple development frameworks and may

benefit from multiple of the libraries described in the section 3.1. The Dynamic

Kernel Scheduler was developed to unify the code development for hardware

accelerators using the most appropriate tools, as shown in figure 3.2. This allows

to ease the code development and tuning for specific devices, and helps with the

integration of new devices in existing applications [24].

DKS

CUDA libsThrust Intel MKL

CUDA OpenCL OpenMP

GPU CPUMIC

Figure 3.2: The Dynamic Kernel Scheduler.

The Dynamic Kernel Scheduler (DKS) is a slim software layer between the

host application and the hardware accelerator frameworks, as depicted in Figure

3.3. The aim of DKS is to allow the creation of fast fine tuned kernels using device

specific frameworks such as CUDA, OpenCL, OpenACC and OpenMP and accel-

erator libraries such as Thrust, Nvidia CUDA libraries, Intel MKL or others. On

25

3. Dynamic Kernel Scheduler U. Locans

top of that, DKS allows the easy use of these kernels in host applications without

providing any device or framework specific details. This approach facilitates the

integration of different types of devices in the existing applications with minimal

code changes and makes the device and the host code a lot more manageable.

CPU(s)

Application code

DKS

GPU(s)

MIC(s)

Figure 3.3: The Dynamic Kernel Scheduler concept

The architecture of DKS can be split in three main parts:

1. The first part provides communication functions that handle memory allo-

cation and data transfer to and from the device. All the memory manage-

ment is left to the user. This way the data transfers and memory allocation

can be scheduled only when necessary. DKS also supports GPU streams

such that asynchronous data transfer and kernel execution can be imple-

mented when possible.

2. The second part of DKS consists of a function library, which contains algo-

rithms written in CUDA, OpenCL, and OpenMP to target different devices.

DKS can switch between implementations based on the hardware that is

available. Writing functions using multiple frameworks results in extra work,

but provides the opportunity to fine tune kernels for each device architecture

for maximum performance. It also allows the targeting of systems contain-

ing different types of devices. The different implementations of the code are

always separated so the code is still easy to manage. Additionally if a host

26

3. Dynamic Kernel Scheduler U. Locans

application is targeted at a specific system, implementations that are not

needed can be omitted.

3. The third part of DKS is the auto-tuning functionality. The aim of auto-

tuning is to select the appropriate implementation of the algorithm and

change the launch parameters according to the devices that are available

on the system in order to gain the maximum performance. The auto-tuning

functionality relies on knowledge of device architecture and benchmark tests

that can be run on the system before running the application.

1 // allocate memory on device and write data

2 void *mem_ptr;

3 mem_ptr = dks.allocateMemory <Complex_t >(DATA_SIZE , NULL);

4 dks.writeData <Complex_t >(mem_ptr , DATA_ARRAY , DATA_SIZE);

5
6 // execute FFT or IFFT

7 if (direction == 1)

8 dks.callFFT(mem_ptr , DIMENSIONS , DIM_SIZE);

9 else

10 dks.callIFFT(mem_ptr , DIMENSIONS , DIM_SIZE);

11
12 //read data and free memory

13 dks.readData <Complex_t >(mem_ptr , DATA_ARRAY , DATA_SIZE);

14 dks.freeMemory <Complex_t >(mem_ptr , DATA_SIZE);

Code example 3.5: Example of DKS usage for FFT

Code example 3.5 shows DKS usage inside a host application to perform a

fast Fourier transform. The host application has full control over the memory

allocation and data transfer to the device, but there are no device specific details

in the host code. DKS evaluates the calls made by host application and chooses

the appropriate device to use, and algorithm implementation, to run the code on

the selected accelerator.

The Dynamic Kernel Scheduler is split into separate modules. Each module

contains function implementations using different frameworks. The base class for

each module contains functions which handles the device management, memory

management, and data transfer, this base class can be extended to cover all the

necessary algorithm specific functions. The base class of DKS receives all the

27

3. Dynamic Kernel Scheduler U. Locans

calls from the host application and decides which device specific implementation

should be used to run the code on the device. Figure 3.4 shows the architecture

of the latest version of DKS, for each module base class can be easily extended to

include other algorithms and the base class of DKS can be extended to include

other modules to handle different development frameworks.

DKSBase

Handle calls
from host

application

DKSAutoTuning

Handle autotuning
of the DKS library

OpenCLBase

Handle OpenCL
device, memory,

data transfer

CUDABase

Handle CUDA
device, memory,

data transfer

MICBase

Handle MIC
device, memory,

data transfer

CUDA Colli-
matorPhysics

Functions for OPALs
Collimator physics

solver offloads

CUDA ImageRe-
construction

Functions for PET
image reconstruc-
tion and analysis

CUDA
FFTPoisson

Functions for
OPALs FFT

solver offloads

CUDA
ChiSquare

Functions for
Chi-square

and max-log-
likelihood

function offload

OpenCL Colli-
matorPhysics

Functions for OPALs
Collimator physics

solver offloads

OpenCL
FFTPoisson

Functions for
OPALs FFT

solver offloads

OpenCL
ChiSquare

Functions for
Chi-square

and max-log-
likelihood

function offload

MIC Colli-
matorPhysics

Functions for OPALs
Collimator physics

solver offloads

MIC FFT-
Poisson

Functions for
OPALs FFT

solver offloads

MIC
ChiSquare

Functions for
Chi-square

and max-log-
likelihood

function offload

Figure 3.4: Architecture of the Dynamic Kernel Scheduler. The nodes shown in
red are planned in the future versions of DKS, in case other vendor GPU support
is required.

3.3 DKS algorithm library

The DKS algorithm library contains algorithm implementations written using

CUDA, OpenCL and OpenMP to allow host applications to offload the compute

intensive calculations to the co-processor. Before the algorithm is implemented

in DKS the host application is profiled to find the compute intensive parts of

the CPU code and if the algorithm can benefit from parallelization on the co-

processor a suitable device code is created in DKS. The algorithms in DKS are

specifically tailored to match the implementations in the host applications so the

offloaded code could recreate the results of the original code.

28

3. Dynamic Kernel Scheduler U. Locans

The hardware accelerators that will be used are dependent on the host appli-

cation. Some applications are targeting a wider range of hardware and therefore

algorithms are implemented using various frameworks, while some applications

target only Nvidia GPUs and only CUDA implementations of the offloaded code

are necessary.

The main benefit of the DKS algorithm library is the separation of the device

code from the host code. This allows for easier development and maintenance of

the device and host code. During this work algorithms form OPAL, musrfit and

Image Reconstruction applications were implemented in the DKS and integrated

back to host applications allowing these applications to offload the computations

to co-processors with limited changes to the original code.

The specific algorithms implemented in the DKS algorithm library are shown

in figure 3.4 and are described in the following sections. These sections contain

detailed explanations of the algorithms needed by the host applications, how these

algorithms were adapted for the massively parallel devices and the integration of

DKS back in the host application. In the future the DKS library can be extended

to include other algorithms for different applications and it can also be extended

to support other hardware accelerators not used during this work (for example

FPGAs).

3.3.1 DKS Base

The base part of DKS library provides the basic functions needed to communicate

with the hardware accelerators. A list of available base class functions is shown in

table 3.1, this list shows the most used functions to communicate with the devices.

The base class is implemented using CUDA, OpenCL and OpenMP allowing DKS

to target various hardware accelerators. Using the base class host application can

query the available devices and get the device information as well as select the

device that should be used. Base class also allows host application can perform

memory management and data transfers, including gathering and scattering the

data when multiple CPU cores share the same GPU memory region. For GPU

devices the base class also handles the creation of streams and synchronization

functions, that allow overlapping memory transfers and GPU kernel execution.

29

3. Dynamic Kernel Scheduler U. Locans

Table 3.1: Main class functions to interact with device
Function Description

setDevice Set device used by DKS

getDevices Get information about available devices

getDeviceCount Get number of available devices

pushData Allocate memory and transfer data to device

pullData Transfer data from device and free memory

allocateMemory Allocate memory on the device

registerHostMemory Page lock allocated host memory

unregisterHostMemory Unregister page locked memory

writeDataAsync Write data to the device

readDataAsync Read data from the device

gather3DDataAsync Gather 3D data from multiple mpi processes to one
memory region

scatter3DDataAsync Scatter 3D data to multiple MPI processes from one
device memory region

freeMemory Free memory allocated on device

sendPointer Send pointer to device memory from one MPI process
to another

receivePointer Receive pointer to device memory from another MPI
process

closeHandle Close handle to device memory created by receive-
Pointer

createStream Create stream for asynchronous kernel execution and
data transfer on GPUs

syncDevice Wait till all tasks running on device are completed

3.3.2 DKS and OPAL

DKS OPAL module provides CUDA and OpenMP implementations for algo-

rithms that allow OPAL to offload FFT Poisson solver and particle matter inter-

action simulations. Using DKS Base module OPAL can schedule memory man-

agement and data transfers to the devices and using the OPAL module schedule

the kernel execution on the device. For the FFT Poisson solver gather and scatter

data transfers are used with the GPU to allow multiple CPU cores to share one

GPU.

For the FFT Poisson solver DKS contains a FFT module, that allows to

perform the Fast Fourier transformations on the accelerator. For GPU devices

DKS uses cuFFT library provided by Nvidia, while for Intel MIC DKS uses

30

3. Dynamic Kernel Scheduler U. Locans

Intels MKL library. Additionally the FFT Poisson solver requires the calculation

of Greens function and element by element multiplication of arrays. DKS contains

optimized CUDA and OpenMP implementations of these algorithms. Detailed

description of the algorithm and the created GPU codes is given in section 4.3.

In order to perform Monte Carlo simulations for particle matter interaction,

DKS contains CUDA and OpenMP codes for energy loss and Coulomb scattering

calculations. For random numbers DKS uses Nvidias cuRand library and Intels

MKL VSL library. In addition DKS provides functions to move dead particles to

the end of the array, this is done by a loop on the Intel MIC and using Thrust

library to sort the array on the GPU. A detailed description of the algorithm and

the implemented CUDA and OpenMP methods in DKS is given in section 4.4.

3.3.3 DKS and Musrfit

DKS Musrfit module contains functions to perform χ2 and max-log likelihood

calculations as well as provides the mechanism to create and compile the GPU

code at runtime. Musrfit targets GPUs to accelerate the calculations, therefore

DKS contains kernel implementations using CUDA and OpenCL to allow target-

ing of Nvidia and AMD devices. The OpenCL implementation also allows using

the CPU and potentially Intel MIC devices for acceleration, although the code is

optimized specifically for GPU architectures. A Detailed description of the DKS

Musrfit module is given in chapter 5.

3.3.4 DKS and PET Image Reconstruction

The DKS PET image reconstruction module targets the Nvidia GPUs and con-

tains the CUDA implementation of forward and backward projections. These

functions allow to perform all the time consuming parts of the reconstruction on

Nvidia GPUs. The algorithms and their implementation are described in detail

in chapter 6.

31

3. Dynamic Kernel Scheduler U. Locans

3.4 DKS auto-tuning

Automatic performance tuning, or auto-tuning, describes a process of automatic

selection of runtime parameters to achieve the best possible performance. Perfor-

mance can be measured in multiple ways like execution time, power consumption

etc. In DKS we are focusing on the execution time so this measure of performance

will be used in the auto-tuning framework.

3.4.1 Auto-tuning concept

Performance of the code that is running on massively parallel processors like

GPUs can be affected by the number of launch parameters like the number of

threads per block and the number of blocks. The optimal launch parameters are

changing between GPU kernels since each function requires a different amount

of GPU resources. The optimal launch parameters also change between different

devices since each device has different resources available.

The selection of these parameters can be left to the programmers, but this

way it is usually based on trial and error tests, knowledge of hardware and the

specifics of the algorithm. It is not transferable to other algorithms and more

importantly it is not transferable to other devices. Auto-tuning frameworks aim

to solve this problem by automatically finding the optimal parameters.

The simplest method of auto-tuning is to perform a exhaustive search, in

which all the possible parameter configurations are tested [25]. This approach is

guaranteed to give the best possible solution, but is only suitable if the parameter

space is small. Another similar approach is line search where all the possible

parameter configurations are tested one parameter at the time. The results of

this approach are dependent on the order in which the parameters are tested

and it is up to the developer to provide the best search order for each case [26].

In general auto-tuning frameworks where the details of the algorithm are not

taken into account during the parameter optimization process heuristic search

algorithms are used to find the best configurations. There are many search based

algorithms that can be used, but the most widely used are hill climbing, simulated

annealing and genetic algorithm [27, 28, 29].

32

3. Dynamic Kernel Scheduler U. Locans

3.4.2 DKS and auto-tuning

There are several strategies when auto-tuning of an application can be performed.

They can be divided in three main categories:

• Compile time - auto-tuning is performed during installation of the appli-

cation by analyzing the source code, executing the kernels and taking into

account the knowledge of the hardware information that is available on the

system;

• Offline - auto-tuning is performed after installation, but before the applica-

tion is run;

• Online - auto-tuning is performed continuously during runtime allowing

application to adapt to changes in kernel parameters [30].

In DKS we are focusing on the offline auto-tuning by using previously cre-

ated benchmark tests. The benchmark tests provide the function that needs to

be tested and the parameters that should be adjusted. The parameters to be

configured for each function need to be set by developer. The limits of the pa-

rameters may be also set by the developer or these limits may be extracted from

device properties, depending on the device that is installed on the system (like

max threads per block on the GPU, or max threads for OpenMP, etc.).

1 // create the function to be timed , with the necessary parameters

2 std::function <int()> f = std::bind(& ChiSquareRuntime :: launchChiSquare ,

chiSq , fitType , mem_data , mem_err , length , numpar , numfunc , nummap ,

timeStart , timeStep , result);

3
4 //add the function to the auto -tuning framework

5 autoTuning ->setFunction(f, "launchChiSquare");

6
7 //set the adjustable parameters and their ranges

8 autoTuning ->addParameter (&chiSq ->blockSize_m , minThreads , maxThreads ,

step , "BlockSize");

9 autoTuning ->addParameter (&chiSq ->numBlocks_m , minBlocks , maxBlocs , step ,

"NumBlocks");

10
11 // perform the parameter search

12 autoTuning ->hillClimbing(restarts);

Code example 3.6: Example of setup of auto-tuning test

33

3. Dynamic Kernel Scheduler U. Locans

An example of auto-tuning test setup is shown in code example 3.6. The auto-

tuning framework executes the function varying the parameters in order to find

the parameter set that gives the best (fastest) execution time. The developer

is responsible of providing the function for the auto-tuning with the necessary

parameters, parameters that should be auto-tuned and there ranges, and the

search method that should be used. After the benchmark tests are done a small

database is created that stores the launch configurations for each kernel on the

tested devices. This database is used by DKS at run-time to determine the kernel

launch parameters. If the auto-tuning tests are not performed the DKS uses

default parameters, that are set by the developer.

34

Chapter 4

OPAL

4.1 OPAL and DKS

OPAL (Object Oriented Particle Accelerator Library) is a parallel, open source

C++ framework for general particle accelerator simulations which includes 3D

space charge, short range wake fields, and particle matter interaction. OPAL is

based on IPPL (Independent Parallel Particle Layer) which adds parallel capa-

bilities. Main functions inherited from IPPL are structured rectangular grids,

fields, parallel FFT, and particles with the respective interpolation operators.

Other features are expression templates, and massive parallelism (up to 65000

processors) which allows it to tackle the largest problems in the field.

OPAL

MAD-Parser Flavors: t,Cycl,Map Distributions

Solvers: Direct,MG Integrators Particle Matter Inter.

FFT D-Operators NGP,CIC,TSI

Fields Mesh Particles

Load Balancing Domain Decomp. Communication

Particle-Cache PETE Trillions Interface

C
L
A
S
S
IC

H
5h

u
t

B
O

O
S
T

Trilinos & GSL

DKS

D
K

S
A

P
I CUDA - Nvidia GPUs

FFTPoison solver

Particle matter interaction

OpenMP - Intel MICs
FFT Poisson solver

Particle matter interaction

Figure 4.1: The OPAL software structure and connection to DKS

35

4. OPAL U. Locans

4.2 FFT Poisson solver

4.2.1 FFT Based Particle-Mesh Solver

The Particle-Mesh (PM) solver is best described in the book by R.W. Hockney

& J.W. Eastwood [31]. Instead of calculating the mutual interaction of a large

number of particles, in the PM solver one discretises the computational domain

Ω := [−ax, ax]× [−ay, ay]× [−az, az] into a regular mesh of Mx ×My ×Mz grid

points. The beam sizes ax, ay, az are usually time dependent. Other geometries

are possible but not discussed here. The mesh sizes hx, hy, and hz are allowed

to change independently over time to assure a particle fitted grid. An essential

part of any self-consistent electrostatic beam dynamics code is the Poisson solver.

From the – time to solution – point of view, we observe that in the order of 1/3

of the computational time is spent in this algorithm,

In many of the physics applications, the bunch can be considered as small

compared to the transverse size of the surrounding beam pipe (∂Ω). If this

is the case the conducting walls can be neglected and, we can solve an open

boundary problem. Here we follow the method of Hockney [32] and compute the

potential on a grid of size 23MxMyMz. The calculation then is making use of

Fast Fourier Transform (FFT) techniques, with a computational effort scaling as

O23MxMyMz log2(23MxMyMz) [31, 33, 32].

4.2.2 FFT-based Convolutions

Given a charge density ρ, we search for the scalar potential φ by solving Poisson’s

equation

∇2φ = −ρ/ε0, (4.1)

subject to φ = 0 at ∂φ→∞, i.e. in an unbound domain. If we know the Green’s

function G(x, x′, y, y′, z, z′), then the solution

φ(x, y, z) =

∫ ∫ ∫
dx′dy′dz′ρ(x′, y′, z′)G(x, x′, y, y′, z, z′)

36

4. OPAL U. Locans

is the convolution of the a source charge at (x′, y′, z′) and G. In our case of an

isolated charge distribution, we get

φ(x, y, z) =

∫ ∫ ∫
dx′dy′dz′ρ(x′, y′, z′)G(x− x′, y − y′, z − z′), (4.2)

with

G(u, v, w) =
1√

u2 + v2 + w2
.

We now discretise Eq. (4.2) on the previous mentioned Cartesian grid

φi,j,k = hxhyhz

Mx∑
i′=1

My∑
j′=1

Mz∑
k′=1

ρi′,j′,k′Gi−i′,j−j′,k−k′ . (4.3)

The two scalar fields ρi,j,k and Gi−i′,j−j′,k−k′ are now defined on the grid and we

efficiently obtain the solution of Eq. (4.3) using Fourier techniques by

φi,j,k = hxhyhz FT−1{(FT{ρi,j,k})⊗ (FT{Gi,j,k})},

with ⊗ denoting the Hadamard product. The notation FT{.} for the forward

FFT and FT−1{.} for the inverse FFT is used.

4.3 FFT Poisson solver and DKS

The algorithm implemented in OPAL to solve the Poisson equation 4.1 is sketched

in algorithm 1. To allow OPAL to offload the FFT Poisson solver to the GPU or

Intel MIC the algorithm is implemented in DKS using CUDA and OpenMP. Since

OPAL parallelizes the computations using MPI, the CUDA version allows mul-

tiple MPI nodes to share one GPU device for, the development of the OpenMP

version was discontinued after poor performance obtained by the single core im-

plementation.

37

4. OPAL U. Locans

Algorithm 1: FFT Poisson Solver

Host: Setup environment on the device;
Host: Allocate memory on the device for ρ and G;
Device: Compute integrated Greens function G on the device;
Device: FFT: G→ Ĝ;
Host: Transfer ρ to the device;
Device: FFT: ρ→ ρ̂;
Device: multiply complex fieds φ̂ = ρ̂ · Ĝ;
Device: IFFT: φ̂→ φ;
Host: Free memory on the device;

4.3.1 CUDA Implementation of the Poisson Solver in DKS

For use on NVIDIA GPUs the FFT Poisson solver is implemented in DKS in

double precision using CUDA. It uses NVIDIA’s cuFFT library to perform the

3D FFT, separate kernels to calculate the Greens function and, perform the

multiplication on the GPU. CUDA streams are used to overlap the transfer of

the ρ field to the GPU and the calculation of the Greens function. The sequence

diagram in Figure 4.2 shows the steps executed for the FFT Poisson solver on

the host and GPU.

Host

Stream 1

Stream 2

Initialize, data transfer, launch kernels

I

Receive data

Receive data FFT X IFFT Send data

Greens func. FFT

φ

ρ ρ̂ φ

G Ĝ

Figure 4.2: FFT-Poisson solver sequence diagram

OPAL allows to parallelize the simulation over multiple CPU cores using MPI.

When the simulation runs over multiple cores each core receives its own part of

the computational domain. One example of the domain decomposition is shown

in figure 4.3. Since the FFT needs to be run on the whole domain only one process

initializes the CUDA kernels, while other processes only provide the data to the

GPU and read the results.

In order to allow multiple CPU cores to write to the same memory space

38

4. OPAL U. Locans

core 1

core 2

core 3

core 4

Figure 4.3: FFT-Poisson 2D domain decomposition

CUDA inter-process communications (IPC) are used. The master process allo-

cates the necessary memory on the GPU and using CUDA IPC shares the pointer

to this memory with other processes using MPI. Once all the MPI processes have

finished writing the data to the GPU master process launches the FFT calcu-

lations. While the data transfer is performed the master process launches the

kernels to calculate the Greens function on the GPU, which can be performed in

parallel of data transfer.

4.3.2 OpenMP Implementation of the Poisson Solver in

DKS

To take advantage of Intel MIC devices the FFT Poisson solver was implemented

using OpenMP and the Intel Math Kernel Library. Intel MIC was used in the

offload mode and Greens function and multiplication of the complex fields was

parallelized on the device using OpenMP. To perform the FFT on the device the

Intel MKL library was used which provides the FFT optimized for MIC devices.

The algorithm flow is kept the same as in the CUDA case and the only change

in OPAL that is necessary to switch between GPU and MIC is to set the correct

device. The first results using Intel MIC showed that the performance of the FFT

Poisson solver on the devices is around 3 times slower that the performance on

a single CPU core and more than 40 times slower than the performance of the

39

4. OPAL U. Locans

GPU. The bad performance was due to the fact that the 3D FFT provided by

Intel MKL library performed slower than the cuFFT on the GPU and also slower

than the FFT implementation in OPAL. Because of the poor performance of the

FFT on Intel MIC the FFT Poisson solver was not developed further for Intel

MIC Knights corner and was not included in the final benchmarks [34].

4.3.3 Integration of DKS in OPAL

OPAL uses the DKS interface to initiate the Greens function computation, FFT

and the multiplication of the complex fields on the GPU. If multiple CPU cores

are used, the computation is only initiated by one core while other cores just

provide the data and read the results back from the GPU.

4.3.4 Performance Results

To test OPAL’s performance, we use a RingCyclotron example with a similar

problem setup as reported in [35, 36]. The test system consists of a host with two

Intel Xeon e5-2609 v2 processors and a Nvidia Tesla K20c or Tesla K40c. On the

host, 8 CPU cores are available. The first simulations where run using only the 8

CPUs available on the host. However in the second case, DKS is used to offload

the FFT Poisson solver to the GPU.

Table 4.1: FFT Poisson Solver results

FFT size DKS Total time (s)
OPAL

speedup
FFTPoisson

time (s)
FFTPoisson

speedup

64x64x32
no 324.98 22.53

K20c 311.17 ×1.04 7.42 ×3
K40c 293.7 ×1.10 7.32 ×3

128x128x64
no 434.22 206.73

K20c 262.74 ×1.6 32.15 ×6.5
K40c 245.08 ×1.8 25.87 ×8

256x256x128
no 2308.05 1879.84

K20c 625.37 ×3.6 202.63 ×9.3
K40c 542.73 ×4.2 160.87 ×11.7

512x512x256
no 3760.46 3327.14

K40c 716.86 ×5.2 302.49 ×11

40

4. OPAL U. Locans

Table 4.1 shows the results of these test runs for multiple problem sizes. The

results show that offloading the FFT Poisson solver to the GPU can provide a

substantial speedup even when we have multiple CPU cores sharing one accel-

erator. The limiting factor for the performance of the FFT Poisson solver is the

data transfer from the host side to the device. Since data needs to be moved to

and from GPU at every time step, for the largest problem size reported in the

benchmark tests, data transfer can take up to 55% of the total simulation time.

Another limiting factor is the performance of the FFT transform. FFT is a mem-

ory bound algorithm and is able to reach only a fraction (about 10% was observed

on our test system) of the devices peak performance. Since for the Poisson solver

time to perform FFT takes up to 80% of all time spent for calculations, the speed

of the solver depends severely on the speed of the FFT.

4.4 Particle matter interaction

One of the features in OPAL is the ability to perform Monte Carlo simulations

of the particle beam interaction with matter. A fast charged particle moving

through the material undergoes collisions with the atomic electrons and loses

energy. In addition, particles are also deflected from their original trajectory due

to the Coulomb scattering with nuclei, as shown in figure 4.4. The energy loss in

OPAL is calculated using the Bethe-Bloch formula and the change of the particle

trajectory is simulated using Multiple Coulomb Scattering and Single Rutherford

Scattering [37, 38, 39]. All the computation is done in double precision. At every

time step when the particle beam is inside a material, the following steps are

executed:

• calculate the energy loss of the beam,

• delete the particle if the particle’s kinetic energy is smaller than a given

threshold,

• apply Coulomb and Rutherford scattering to the beam.

41

4. OPAL U. Locans

E0 E

L

Figure 4.4: Particle matter interaction. With the final energy E < E0 and larger
momenta spread due to Coulomb scattering and the large angle Rutherford scat-
tering.

4.4.1 The Energy Loss

The energy loss is calculated using the following Bethe-Bloch equation:

−dE/dx =
Kz2Z

Aβ2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2

]
, (4.4)

where Z is the atomic number of absorber, A is the atomic mass of absorber, me is

the electron mass, and z is the charge number of the incident particle. K is defined

as 4πNAr
2
emec

2, where re is the classical electron radius, NA is the Avogadro’s

number, and I is the mean excitation energy. β and γ are the kinematic variables.

Lastly Tmax is the maximum kinetic energy that can be imparted to a free electron

in a single collision. It is defined as,

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
, (4.5)

where M is the incident particle mass.

For relatively thick absorbers, the number of collisions is large, and there-

fore the energy loss distribution is Gaussian in form. For non-relativistic heavy

42

4. OPAL U. Locans

particles, the spread, σ0, of the Gaussian distribution is calculated by:

σ2
0 = 4πNAr

2
em

2
ec

4ρ
Z

A
∆s, (4.6)

where ρ is the density and s is the thickness of the material.

4.4.2 Coulomb Scattering

The Coulomb scattering is treated as two independent events: the multiple Coulomb

scattering and the large angle Rutherford scattering.

Using the distribution given in [40], the multiple- and single-scattering distri-

butions can be written as:

PM(α)dα =
1√
π
e−α

2

dα, (4.7)

PS(α)dα =
1

8 ln(204Z−1/3)

dα

α3
, (4.8)

where α = θ
〈Θ2〉1/2 = θ√

2θ0
. The transition point between multi and single

scattering occurs at the angle θ = 2.5
√

2θ0 ≈ 3.5θ0, where the value of θ0 is the

scattering angle from Moliere’s theory and is defined as,

θ0 =
13.6MeV

βcp
z
√

∆s/X0[1 + 0.038 ln(∆s/X0)], (4.9)

where p is the momentum, ∆s is the step size, and X0 is the radiation length.

To perform a Monte Carlo simulation for the multiple Coulomb scattering two

independent Gaussian random variables (z1 and z2) are created with mean zero

and variance one. The new position and momentum can then be calculated by:

x = x+ ∆spx + z1∆sθ0/
√

12 + z2∆sθ0/2, (4.10)

px = px + z2θ0. (4.11)

The values for the y − py plane are calculated with the very same Monte-Carlo

algorithm.

43

4. OPAL U. Locans

4.4.3 Large Angle Rutherford Scattering

Only a small percentage of particles undergo large angle Rutherford scattering.

This percentage is given by:

χsingle <

∫∞
2.5
PS(α)dα∫ 2.5

0
PM(α)dα +

∫∞
2.5
PS(α)dα

= 0.0047. (4.12)

The process to define if a particle undergoes a Rutherford scatter is as follows:

• A random number ξ1 between 0 and 1 is generated. If and only if this ran-

dom number is smaller than χsingle the particle undergoes single Rutherford

scattering. The value of χsingle does not change significantly for different

materials, hence a fixed value of χsingle = 0.0047 is used, in order to avoid

unnecessary computation.

• A second random variable ξ2 between 0 and 1 is generated to calculate the

angle, the particle rotates about.

• The third and last random number ξ3 determines the direction of the rota-

tion:

θRu =

+2.5
√

1
ξ2

√
2θ0 if ξ3 < 0.5

−2.5
√

1
ξ2

√
2θ0 if ξ3 > 0.5.

(4.13)

4.4.4 OPAL implementation

This chapter describes how the particle matter interaction is implemented in

OPAL. It gives a brief description on how particles are stored and how simulations

for particle matter interaction are performed.

Particles are stored in structure as shown in code example 4.1, where V ector t

is a defined vector data type that holds 3 double values. All the particles in the

beamline are stored in a list called bunch. Once the particle enters the material it

is moved from bunch to the locParts m list which holds all the particles that are

currently in the material. Important variables that are needed for particle matter

interaction calculations are Rincol, which contains the position of the particle,

44

4. OPAL U. Locans

and Pincol which contain momentum of the particle. Also used is the label which,

for the CPU case can have two values, 0 (particle alive) or -1 (particle dead). For

random values that are necessary for this Monte Carlo simulation OPAL uses

GSL random number generator.

1 typedef struct {

2 int label; unsigned localID;

3 Vector_t Rincol; Vector_t Pincol;

4 long IDincol; int Binincol;

5 double DTincol; double Qincol;

6 long LastSecincol;

7 Vector_t Bfincol; Vector_t Efincol;

8 } PART;

9
10 std::vector <PART > locParts_m;

Code example 4.1: Struct to store one particle

OPAL code for executing particle matter interaction is shown in example 4.2.

The function checkHit checks if the particle is still inside the material. If checkHit

returns true and particle is inside the material EnergyLoss calculates the amount

of energy each particle loses. Each calculation of EnergyLoss requires two random

numbers of Gaussian distribution. After EnergyLoss, its momentum is updated

and Coulomb scattering is simulated, if the particle loses to much energy it is

considered ’dead’ and removed from the simulation. If checkHit returns false,

then the particle has exited the material, OPAL lets the particle drift during this

time-step and then adds the particle back to the bunch.

The Coulomb scattering is treated as two independent events: the multiple

Coulomb scattering and the large angle Rutherford scattering. Every particle un-

dergoes the Coulomb scattering, but only a small percentage of particles undergo

large angle Rutherford scattering.

To perform the Monte Carlo simulation for the multiple Coulomb scattering

two independent Gaussian random variables are created, with mean zero and

variance one: z1 and z2. The main parameters for evaluating the effect of the

multiple Coulomb scattering are the new spatial coordinate yplane and the new

angle θplane defined by:

45

4. OPAL U. Locans

1 for(int i = 0; i < locParts_m.size(); ++i) { //loop trough all particles

2 bool pdead = false;

3 Vector_t &R = locParts_m[i]. Rincol;

4 Vector_t &P = locParts_m[i]. Pincol;

5 double Eng = (sqrt (1.0 + dot(P, P)) - 1) * m_p;

6
7 if(checkHit(R,P,dT_m , deg , coll)) { //chekc if particle is in material

8 EnergyLoss (&Eng , &pdead , dT_m); //calc energy loss

9
10 if(! pdead) { // check if particle is still alive

11 double tot = sqrt((m_p + Eng) * (m_p + Eng) - (m_p) * (m_p)) / m_p;

12 P = P * tot / sqrt(dot(P, P));

13 CoulombScat(R, P, dT_m); //calc Coulomb scattering

14 locParts_m[i]. Rincol = R; // update R and P values in the list

15 locParts_m[i]. Pincol = P;

16 } else { //if particle dead set label to -1

17 locParts_m[i].label = -1.0;

18 }

19 } else { //if particle exits material drift and move out of the list

20 locParts_m[i]. Rincol += dT_m * Physics ::c * P / sqrt (1.0+ dot(P, P));

21 addBackToBunch(bunch , i);

22 }

23 }

Code example 4.2: Loop trough the particles, calculate energy loss, Coulomb
scattering and large angle Rutherford scattering for each particle.

yplane =
z1θ0∆s√

12
+
z2θ0∆s

2
(4.14)

and

θplane = z2θ0 (4.15)

Once the new spatial coordinate and the new angle have been evaluated, the

reference system of the particle is adjusted in OPAL to the new direction of

motion with the angle Ψyz [41]. The new coordinates of the particle are:

y = y + ∆spy + yplane · cos Ψyz (4.16)

z = z − yplane · sin Ψyz + ∆spz (4.17)

46

4. OPAL U. Locans

Large angle Rutherford scattering is done for only a small percentage of par-

ticles, this percentage is given by equation 4.12.

A random number ξ1 between 0 and 1 is generated. If and only if this random

number is smaller than χsingle the particle undergoes single Rutherford scattering.

The value of χsingle does not change significantly for different materials, hence a

fixed value of χsingle = 0.0047 is used, in order to avoid unnecessary computation.

A second random variable ξ2 between 0 and 1 is generated to calculate the angle,

the particle rotates about. The third and last random number ξ3 determines

the direction of the rotation. Code that performs Coulomb scattering and single

Rutherford scattering on a single particle is shown in example 4.3.

1 // Coulomb scattering

2 double z1 = gsl_ran_gaussian(rGen_m ,1.0);

3 double z2 = gsl_ran_gaussian(rGen_m ,1.0);

4 double thetacou = z2 * theta0;

5
6 while(fabs(thetacou) > 3.5 * theta0) {

7 z1 = gsl_ran_gaussian(rGen_m ,1.0);

8 z2 = gsl_ran_gaussian(rGen_m ,1.0);

9 thetacou = z2 * theta0;

10 }

11 updatePositionAndMomentum ();

12
13 // Rutherford Scattering

14 if(gsl_rng_uniform(rGen_m) < 0.0047) {

15 double P3 = gsl_rng_uniform(rGen_m);

16 double thetaru = 2.5 * sqrt(1 / P3) * sqrt (2.0) * theta0;

17 if(gsl_rng_uniform(rGen_m) > 0.5)

18 thetaru = -thetaru;

19 updatePositionAndMomentum ();

20 }

Code example 4.3: Calculate energy loss for a particle using Bethe-Bloch equation

To manage the particle array after calculation of the energy loss and Coulomb

scattering, dead particles are moved to the end of the list and deleted. The CPU

code for performing this action is shown in code example 4.4. Particles which are

dead have label -1, so they are moved to the end of the list.

4.4.5 Particle drift via time integration

In addition to particle matter interactions particle drift via time integration was

also offloaded to the accelerator. The time integration in OPAL is implemented

47

4. OPAL U. Locans

1 if (locParts_m.size() > 0) {

2 unsigned long i = 0;

3 unsigned long end = locParts_m.size() - 1;

4 while (i < end) {

5 if (locParts_m[i].label == -1) {

6 std::swap(locParts_m[i], locParts_m[end]);

7 --end;

8 } else {

9 ++ i;

10 }

11 }

12 if (locParts_m[end].label != -1)

13 ++end;

14 if (end < locParts_m.size())

15 locParts_m.erase(locParts_m.begin() + end , locParts_m.end());

16 }

Code example 4.4: Move dead particles to the end of the list and erase

using Boris-Buneman method and described in detail in [42]. From all the steps

of Boris-Buneman method only particle push, which updates the position of the

particle at every time step was offloaded to the device.

Algorithm 2: Push step of time integration.

Input : Particle position R
Input : Particle momentum P
Output: New particle position R
for i← 0 to N do

Ri ← Ri + 0.5 ∗ Pi ÷
√

1.0 + ‖Pi‖
end

The algorithm for particle push is fairly simple and is shown in 2. Since the

position of each particle can be updated independently the algorithm can be

easily parallelized for GPU and MIC architectures.

4.5 Particle matter interaction and DKS

4.5.1 The DKS Implementation of the Particle Matter In-

teraction Model

For particle matter interactions, DKS has CUDA and OpenMP implementations

of all the algorithm steps described above. This allows the computation of the

48

4. OPAL U. Locans

energy loss, the Coulomb scattering, and the Rutherford scattering to be offloaded

to the GPU or Intel MIC. On top of particle matter interaction, DKS is also able to

offload to the accelerators the transport of particles before and after the material

using a time integration scheme. The sequence diagram for the integration is

shown in Figure 4.5, where stream1 updates the particle position, while stream2

updates the local coordinate system.

Host

Stream 1

Stream 2

Initialize, data transfer, launch kernels Receive data

I

Receive data Integrate Send data

Receive data Integrate Send data

R,X

X, dt

R, P

X

R

Figure 4.5: Integration sequence diagrams

To increase the performance, the data transfer is minimized as much as pos-

sible and particles that are drifting before or after the material are kept on the

device. They are updated only when there are a some particles returning from

the material or there has been an MPI update to balance the workload between

MPI processes. Pinned host memory and streams are used with the GPU ver-

sion to increase the date transfer speed, and overlap the data transfer and kernel

execution for the particle drift.

Particles that are in the material are also kept in the device memory. NVIDIAs

cuRAND and Intels MKL VSL libraries are used to generate random numbers to

determine the necessary distributions for energy loss and scattering. NVIDIA’s

Thrust library is used to sort and count the particles on the GPU in order to

manage the particles that need to come out of the material, but also to exclude the

dead particles from Monte-Carlo simulations. Because of the high complexity of

the algorithm, the CUDA version uses shared device memory for variable storage

to reduce the register pressure of the kernels in order to achieve higher GPU

occupancy. Structure of arrays data layout is used to store all the particles in

order to allow Intel compiler to better vectorize the code for the Xeon Phi co-

processor. The sequence diagram of the particle in matter simulations on the

CPU and the device is shown in Figure 4.6.

49

4. OPAL U. Locans

Host

GPU

Init, send, launch kernels

I Receive Part. mat. inter. Sort Send

Receive B

B B B

Figure 4.6: Particle in matter sequence diagrams, where B denotes particle bunch

4.5.2 Particle matter interaction on the GPU

This chapter describes the CUDA kernels used to offload the particle matter inter-

action code to Nvidias GPUs. There are three main consideration when creating

the CUDA algorithm for the OPALs Monte Carlo code:

• Data structure - a new data structure is created to store the particle data

that is needed for Monte Carlo simulation;

• CUDA kernel - CUDA kernel is created that performs the Monte Carlo

simulation on a single particle;

• Thrust sort - sort the particle array to remove dead particles or particles

that are coming out if the material.

The data structure used on the GPU is similar to the one used on the CPU

version, but only elements that are needed for the simulation are moved to the

GPU, the rest of the particle data stays in the host memory. This is done in order

to decrease the amount of GPU memory used, the time needed for data transfer

and to create a better data access patterns for the CUDA kernel. The CUDA

data structure to store the particle is shown in code example 4.5. The rest of the

particle data is stored in structure 4.1 and the are linked using the localID.

1 typedef struct {

2 int label;

3 unsigned localID;

4 double3 Rincol;

5 double3 Pincol;

6 } CUDA_PART;

Code example 4.5: Data structure for storing particles that are in the material
on the GPU

50

4. OPAL U. Locans

Each CUDA kernel executes the MC simulation for one particle. The shared

memory on the GPU is used to store the parameters that are reused throughout

the simulation. These parameters include the size dimensions of the degrader and

the properties of the material. The shared memory is also used to store the po-

sition of the particle while the momentum of the particle is stored in the private

memory of each thread. The shared memory usage allows to access the particle

position with low latency while reducing the number of registers needed by each

thread. For random numbers cuRand library is used. The library is initialized at

the beginning of the simulation and each thread receives its own random num-

ber state initialized with a different seed. Libraries curand normal double and

curand uniform double functions are used to get the random numbers with the

distribution as required by the algorithm.

All of the steps of the algorithm are implemented in a single kernel call. The

pseudo code for the kernel call is shown in the code example 4.6. The kernel con-

tains some conditional statements so some divergence in the threads of the same

warp will be observed mostly towards the end of the simulation when particles

start leaving the material or loose too much energy. Since most of the time for

the MC simulation is spent when all the particles are inside the material this

divergence of the threads will not influence the performance of the algorithm too

much. In order to avoid warp divergence at the end of the material additional

sort by the position and energy of the particle would be necessary after every

iteration, which would be more inefficient than the effects of some warps having

divergent threads.

To sort the particles the Thrust library is used. The particles are sorted by

label in descending order, so particles that are moving out of the material are at

the end of the array. Before the sort is performed the particles that are moving

out of the material are counted and sort is performed only if such particles are

found. The pseudo code to perform the particle sort on the GPU is shown in code

example 4.7.

51

4. OPAL U. Locans

1 __shared__ double p[NUMPAR]; // shared memory variables

2 __shared__ double3 R[BLOCK_SIZE];

3 if (tid < NUMPAR)

4 p[tid] = par[tid]; //load parameters to shared memory

5 __syncthreads ();

6
7 R[tid] = data.Rincol[idx]; //load the data from global memory

8 double3 P = data.Pincol[idx];

9 curandState s = state[idx];

10 double sq = sqrt (1.0 + dot(P, P)); // calculate constants

11 bool pdead = false;

12
13 if (checkHit(R[tid].z, p)) { // check if particle is in material

14 double Eng = (sq - 1) * M_P;

15 energyLoss(Eng , pdead , s, p); // calculate energy loss

16 if (!pdead) { //check if particle not dead

17 double ptot = sqrt((M_P + Eng) * (M_P + Eng) - (M_P * M_P)) / M_P;

18 sq = sqrt(dot(P, P));

19 P = P * ptot / sq;

20 coulombScat(R[tid], P, s, p); // simulate Coulomb scattering

21 data.Pincol[idx] = P;

22 } else {

23 data.label[idx] = -1; //set particle to be deleted

24 }

25 } else {

26 R[tid] = R[tid] + p[DT_M] * C * P / sq; // drift particle

27 data.label[idx] = -2; //set particle to be moved out of material

28 }

29 data.Rincol[idx] = R[tid];

30 state[idx] = s;

Code example 4.6: CUDA kernel for MC simulation.

4.5.3 Particle matter interaction on the MIC

This chapter describe steps taken to offload the simulation of particle matter

interaction on the Intel MIC co-processor. Four major points are emphasized to

improve the performance of the code for the MIC architecture.

• Data size - not all the data that is stored for each particle is needed for this

Monte Carlo simulation, so only the necessary data needs to be transferred

to the MIC to decrease the data transfer times;

• Data layout - array of structures layout was changed to structure of arrays

and all of the data was aligned properly for the MIC in order to improve

the vectorization of the code;

• Parallelization - CPU version of the particle matter interaction was designed

to run on single core and it is possible to split the whole simulation to

52

4. OPAL U. Locans

1 //wrap mem_ptr with thrust device ptr

2 thrust ::device_ptr <CUDA_PART_SMALL > dev_ptr((CUDA_PART *) mem_ptr);

3
4 //count -2 and -1 particles

5 compare_particle_small comp;

6 comp.set_threshold (0);

7 numaddback = thrust :: count_if(dev_ptr , dev_ptr + numparticles , comp);

8
9 //sort particles

10 if (numaddback > 0)

11 thrust ::sort(dev_ptr , dev_ptr + numparticles , comp);

Code example 4.7: Sorting of the particles on the GPU.

multiple nodes or cores using MPI. For the MIC version it was important

to parallelize the code so it is able to take advantage of all the cores available

on the MIC. For this reason OpenMP was used;

• Vectorization - to take advantage of Intel MIC vector processing unit it

is important to vectorize the code, for this reason the data layout and

alignment was changed, and also OpenMP pragmas where inserted to let

the compiler know which code is safe to vectorize.

1 typedef struct {

2 int *label;

3 unsigned *localID;

4 double *rx, *ry, *rz;

5 double *px, *py, *pz;

6 } PART_SoA_DKS;

Code example 4.8: Data structure for storing particles that are in the material
on the MIC

The data layout of the particle was changed from array of structures to struct

of arrays, and since only label, position and momentum of the particle is used for

calculations these are the only values transferred to the co-processor. In addition

localID of the particle was stored in order to move the particle back to the

bunch correctly once it exits the material. The data structure used on the MIC is

shown in example 4.8. The rest of the particles data is kept on the host side and

when particle is moved back to bunch it is retrieved using localID. Another small

change from the CPU version was the introduction of a new label for particles in

53

4. OPAL U. Locans

addition to 0 (particle alive and in material) and -1 (particle dead) label -2 was

added for particles which are alive and leaving the material.

1 #pragma omp for

2 for (int ii = 0; ii < totalpart; ii += MIC_WIDTH) {

3 // vectorize main loop

4 #pragma vector aligned

5 #pragma simd

6 for (int i = ii; i < ii + MIC_WIDTH; i++) {

7 if (!checkHit(rz[i], par)) {

8 double sq = sqrt (1.0 + dot(px[i], py[i], pz[i]));

9 rx[i] = rx[i] + dT_m * C * px[i] / sq;

10 ry[i] = ry[i] + dT_m * C * py[i] / sq;

11 rz[i] = rz[i] + dT_m * C * pz[i] / sq;

12 label[i] = -2;

13 }

14 }

15 }

Code example 4.9: Vectorization of checkHit and particle drift if it leaves material

The first part of the simulation that was vectorized was checking if the particle

is still in the material. The outer loop traverses the particles with the stride

MIC WIDTH and splits all the particles across the threads of the Xeon Phi.

The inner loop is vecotrized using the simd instruction and the compiler is also

informed about the proper alignment. This loop checks if the particle is still in

the material. If the particle has left the material drift the particle and change the

label of the particle to -2.

The MKL VSL random number generator was used for Monte Carlo sim-

ulations. To vectorize energy loss calculations the same strip mining technique

as shown if code example 4.9 was used. The code loops trough all the particle

with a stride MIC WIDTH, generates 2*MIC WIDTH random values (two ran-

dom values per particle) for the EnergyLoss function, and then the inner loop

is vectorized using simd instruction, as shown in the code example 4.10. Since

all the memory is aligned properly #pragma vector aligned is used to inform the

compiler about the correct alignment. In the CPU version of the code random

values are generated directly in the EnergyLoss function, but for the MIC all the

necessary random values are generated beforehand and passed to this function.

This is one more reason to use strip mining technique to parallelize and vectorize

the loop - by using strides we limit the necessary memory for temporary storage

of pregenerated random values. If after the energy loss the particle is still alive its

54

4. OPAL U. Locans

1 //array of size 2*WIDTH for storing random values for the energyloss function

2 double randv [2* MIC_WIDTH] __attribute__ ((aligned (64)));

3
4 //for loop trough particles if label == 0 eneregy loss and if pdead update

label to -1

5 #pragma omp for

6 for (int ii = 0; ii < totalpart; ii += MIC_WIDTH) {

7 // create array of rand values (2 per thread)

8 vdRngGaussian (GAUSSIAN , stream , 2* MIC_WIDTH ,randv , 0.0, 1.0);

9 #pragma vector aligned

10 #pragma simd

11 for (int i = ii; i < ii + MIC_WIDTH; i++) {

12 double sq = sqrt (1.0 + dot(px[i], py[i], pz[i]));

13 double Eng = (sq - 1) * M_P;

14
15 if (label[i] == 0) //calc energy loss

16 energyLoss (&Eng , &dEdx , randv , i - ii);

17 if (Eng > 1e-4 && dEdx < 0) { // update momentum if particle alive

18 double ptot = sqrt((M_P + Eng) * (M_P + Eng) - (M_P * M_P)) / M_P;

19 sq = sqrt(dot(px[i], py[i], pz[i]));

20 px[i] = px[i] * ptot / sq;

21 py[i] = py[i] * ptot / sq;

22 pz[i] = pz[i] * ptot / sq;

23 }

24 if (Eng < 1e-4 || dEdx > 0) // update label if particle dead

25 label[i] = -1;

26 }

27 }

Code example 4.10: Vectorization of energy loss calculations

momentum gets updated, if the particle is dead after the energy loss calculations

its label gets set to -1.

To vectorize the Coulomb scattering the same technique is used where possi-

ble. In parts of the code number of iterations per loop is dependent on the gen-

erated random values, these loops can not be vectorized so they are calculated

separately and temporary arrays are used to hold intermediate values between

loops. The outer loop is the same as in previous cases and goes trough the particles

with the stride MIC WIDTH and splits the work to multiple OpenMP threads.

Inside this outer loop for calculating the Coulomb scattering the code is split into

multiple loops vectorizing the ones that are possible. This is demonstrated in the

code example 4.11.

Rutherford scattering is vectorized in the same way as previous loops as it is

shown in 4.12, where P1, P2 and P3 are temporary arrays of size MIC WIDTH

with random values generated with vdRndGaussian.

55

4. OPAL U. Locans

1 double z1[MIC_WIDTH] __attribute__ ((aligned (64)));

2 double z2[MIC_WIDTH] __attribute__ ((aligned (64)));

3 double thetacou[MIC_WIDTH] __attribute__ ((aligned (64)));

4
5 // vectorize generation of necessary number of random values and calculation

of thetacou

6 vdRngGaussian(GAUSSIAN , stream , MIC_WIDTH , z1, 0.0, 1.0);

7 vdRngGaussian(GAUSSIAN , stream , MIC_WIDTH , z2, 0.0, 1.0);

8 #pragma vector aligned

9 #pragma simd

10 for (int i = ii; i < ii + size; i++) {

11 int idx = i - ii;

12 thetacou[idx] = z2[idx] * theta0[idx];

13 }

14 // unknown number of iterations , cannot vectorize

15 for (int i = ii; i < ii + MIC_WIDTH; i++) {

16 int idx = i - ii;

17 if (label[i] == 0) {

18 while(fabs(thetacou[idx]) > 3.5 * theta0[idx]) {

19 vdRngGaussian(GAUSSIAN , stream , 1, &z1[idx], 0.0, 1.0);

20 vdRngGaussian(GAUSSIAN , stream , 1, &z2[idx], 0.0, 1.0);

21 thetacou[idx] = z2[idx] * theta0[idx];

22 }

23 }

24 }

25 #pragma vector aligned

26 #pragma simd

27 for (int i = ii; i < ii + size; i++) {

28 if (label[i] == 0)

29 updataPositionAndMomentu ();

30 }

Code example 4.11: Vectorization of coulomb scattering

For particle management after each iteration all the particles that are dead

or that are moving out of the material (label<0) are counted using OpenMP

parallel reduction and these particles are moved to the end of the arrays. The

particle movement is done in a single serial pass over particles. All the particles

with label<0 are then transferred back to the host side, particles with label=-1

are deleted while particles with label=-2 are moved back to the bunch.

4.5.4 Integrating DKS in OPAL

When a new degrader object gets created in OPAL, DKS gets initialized and

memory management is performed. The pseudo code for the initialization and

memory management is shown in code example 4.13. The initialization consists

of setting the device and framework to use, allocating memory for the particles

and parameters, and initializing the random number generator.

56

4. OPAL U. Locans

1 #pragma vector aligned

2 #pragma simd

3 for (int i = ii; i < ii + MIC_WIDTH; i++) {

4 if (label[i] == 0) {

5 if(P1[idx] < 0.0047)

6 double thetaru = 2.5 * sqrt (1 / P3[idx]) * sqrt (2.0) * theta0 ;

7 if (P2[idx] > 0.5)

8 thetaru = - thetaru ;

9 updataPositionAndMomentu ();

10 }

11 }

Code example 4.12: Vectorization of Rutherford, P1, P2 and P3 are temporary
arrays of size MIC WIDTH with pregenerated random values.

1 DKSBase dksbase; // initialize DKS

2 dksbase.setAPI(api_name);

3 dksbase.setDevice(device_name);

4 dksbase.initDevice ();

5
6 // allocate memory for particle array and parameters

7 par_ptr = dksbase.allocateMemory <double >(numpar , ierr);

8 mem_ptr = dksbase.allocateMemory <PART_DKS >((int)size , ierr);

9
10 //init random number generator for each thread

11 dksbase.callInitRandoms(size);

12
13 //get all material properties and transfer parameter array to GPU

14 dksbase.writeDataAsync <double >(par_ptr , params , numpar);

Code example 4.13: Initializing DKS for particle matter interaction in OPAL.

To offload the actual calculations of particle matter interaction on the co-

processor OPAL uses DKS interface to invoke the functions described in sections

4.5.2 and 4.5.3. Before the calculations begin the particles entering the material

are removed from bunch and transferred to the GPU using DKS communication

interface. After the particle transfer the kernels are invoked and when necessary

data is transferred back to the CPU side. This process is illustrated in the pseudo

code in 4.14.

If OPAL is running without DKS the version reverts to the original CPU

implementation described in section 4.4.4.

57

4. OPAL U. Locans

1 // remove particles that are going in material from bunch to dksParts_m

2 copyFromBunchDKS(bunch);

3
4 //write particles to GPU if any are going to material

5 dksbase.writeDataAsync <PART_DKS >(mem_ptr , &dksParts_m [0],

6 dksParts_m.size(), -1, numparticles);

7
8 // execute CollimatorPhysics kernel and sort on GPU

9 if (numparticles > 0) {

10 dksbase.callCollimatorPhysics(mem_ptr , par_ptr , numparticles);

11 dksbase.callCollimatorPhysicsSort(mem_ptr , numparticles , numaddback);

12 }

13
14 //read particles from GPU if any are comming out of material

15 if (numaddback > 0) {

16 dksbase.readData <PART_DKS >(mem_ptr , &dksParts_m [0], numaddback ,

17 numparticles - numaddback);

18
19 //add particles back to the bunch or delete

20 for (unsigned int i = 0; i < dksParts_m.size(); ++i) {

21 if (dksParts_m[i].label == -2)

22 addBackToBunchDKS(bunch , i);

23 else

24 stoppedPartStat_m ++;

25 }

26 }

Code example 4.14: Integrating DKS in OPAL for particle matter interaction
simulations.

4.6 Performance Results

To test the OPAL and DKS Monte Carlo simulations, an example was run where

particles are shot through a L = 1 cm thick graphite slab. This mimics a degrader

device used in the proton therapy. Timings were obtained for the integration of the

equation of motion, before and after the material, as well as when the particles

are moving through the material. The system setup used during the degrader

benchmark tests is similar to the setup used for the FFT Based Particle-Mesh

(PM) Solver tests, but the Nvidia Tesla K20c GPU is replaced with the Intel Xeon

Phi 5110p co-processor. The CPU and GPU benchmarks are done using 1 and 8

CPU cores, in the cases where GPU is used all 8 cores share a single GPU. The

benchmarks for Intel MIC were done using a single CPU core together with a Intel

MIC co-processor, the setup with multiple CPU cores sharing a single Intel MIC

card was abandoned during the work, because of the poor performance. The Intel

MIC benchmarks also stop after 106 particles because of memory limitations.

Table 4.2 shows the benchmark results for the particle matter interaction and

58

4. OPAL U. Locans

the integration using various number of particles. The speedup of the particle

transport through the material is ×64 to ×201 compared to the one core of the

host processor, while the integration is able to achieve a speedup of around ×8

to ×13 on the GPU. The Intel MIC on the other hand shows a speedup of ×41

for the degrader and ×5 for the integration compared to the host.

Table 4.2: OPAL degrader results

Particles Cores DKS
Degrader
time (s)

Degrader
speedup

Integration
time (s)

Integration
speedup

105

1 no 15.84 3.45
8 no 3.95 x4 0.53 x6.6
1 K40 0.18 x86 0.26 x13
8 K40 0.24 x64 0.41 x8
1 MIC 1.02 x15 1.37 x2.5

106

1 no 163.22 35.20
8 no 42.18 x3.8 4.76 x7
1 K40 1.26 x128 2.71 x13
8 K40 0.96 x169 2.67 x13
1 MIC 3.92 x41 7.05 x5

107

1 no 1757.31 352.54
8 no 454.01 x3.8 46.66 x7.5
1 K40 14.94 x117 26.65 x13
8 K40 8.74 x201 26.05 x13.5

The limiting factor for GPU/MIC performance for the integration is the data

movement. This operation requires data to be sent to the device and received

from the device, at every time step. In the GPU case kernel execution can be

completely overlapped with the data movement, and thus only limited by the

memory bandwidth of our device.

The limiting factor for particle movement through the material is global mem-

ory access times. Each execution of the kernel requires a load of position and

momentum vectors as well as the state of the random number generator for the

thread. When the kernel finishes position, momentum, random number state and

possibly particle state needs to be written back to global memory. If there are any

dead particles, or particles that are coming out of the material, these particles

need to be removed from the bunch on the accelerator. This requires a sorting

of the particles which also requires a lot of memory movement on the device and

59

4. OPAL U. Locans

limits the performance.

60

Chapter 5

Musrfit

5.1 Musrfit and DKS

Minuit2 is a C++ library allowing a multi-parameter minimization of a user-

defined function [43]. It is a re-implementation of the FORTRAN library Minuit

[44], a very popular minimization package used by high energy physicists. In addi-

tion to minimization algorithms, it contains methods for analyzing the solutions

and can estimate the parameter error correlation matrix. These combined capa-

bilities are very difficult to find in other existing minimisers. Its drawback for

inexperienced users is that the user-defined function needs to be implemented,

compiled, and linked. This is a common practice in high energy physics, but is

less common in the solid state physics community. Therefore, for the µSR com-

munity, the Musrfit framework [45] has been developed. This framework eases

the analysis of muon spin rotation, relaxation, and resonance (µSR) experiments

by allowing the user to define all the relevant input parameters and functions

for Minuit2 in a scripting manner. We will describe the problem for the spe-

cific needs of µSR, however the problem and the described solution is much more

generic.

61

5. Musrfit U. Locans

5.2 Problem description

The schematic of a time differential µSR experiment is shown in Figure 5.1.

During an experiment, ∼ 100% polarized positive muons (µ+) are implanted

in a solid sample where they rapidly thermalise (∼ 10 ps) without noticeable

polarization loss.

Electronic Clock

Positron
Detector

Muon
Detector

Sample

Spin-Polarized
Muon Beam

e+

μ+

νe

νμ

Bμ

Figure 5.1: Schematic of a time differential µSR experiment

After the implantation the spin evolution of the muon ensemble is measured

as a function of time. The evolution can be monitored by using the fact that

the parity violating muon decay is highly anisotropic. During the decay an easily

detectable positron is emitted preferentially along the direction of the µ+ spin.

The time differential µSR spectrum takes the form:

N j(t, ~P) = N j
0e
−t/τµ [1 + Aj(~pj, t)] +N j

bkg, (5.1)

where the time is measured in discrete steps t = n · ∆t [n ∈ N0, ∆t the time

resolution] and j indexes the positron detectors. The “physics” of the system

under consideration is described by the function Aj(~p, t). More details about the

62

5. Musrfit U. Locans

function Aj(~p, t) can be found in Ref. [46]. The muon lifetime is given by τµ and

N0 gives the scale of the positron count. Lastly the constant N j
bkg originates from

uncorrelated background events. For a given positron histogram, j, the optimal

parameter set

~P j =
{
N j

0 , N
j
bkg, ~p

j
}

(5.2)

needs to be determined, where ~pj describes the parameters for each positron

histogram. Depending on the level of statistics of the positron histograms, the

parameter set, ~P , is determined by minimizing the χ2 function:

χ2(~P) =
∑
j

∑
n

[djn −N j(t, ~P j)]2

(djn,err)2
, (5.3)

where djn are the measured data points of the jth positron detector. The theory

describing the data is given by Eq. (5.1), and djn,err is the estimated error of djn

(djn,err =
√
djn for the Poisson distributed positron events).

For data sets with rather limited statistics, Eq. (5.3) is not leading to satis-

factory results. In this case the max log-likelihood (MLH) function

L(~P) = 2 ·
∑
j

∑
n


[
N j(n ·∆t, ~P j)− djn

]
+ djn log

[
djn

N j(n ·∆t, ~P j)

]
, djn > 0[

N j(n ·∆t, ~P j)− djn
]

djn ≤ 0

(5.4)

should be maximized, which leads to a much better estimate of ~P .

With the improvements in detector technologies, it is possible to achieve higher

time resolution (smaller ∆t) during the experiments. This is leading to increasing

sizes of data sets that need to be analyzed, and the associated minimization/-

maximization times are increasing drastically.

To perform the parameter fitting, Musrfit uses the Minuit2 library. Mus-

rfit contains the implementations of Eqs. (5.3) and (5.4) while the minimiza-

tion/maximization process is executed by Minuit2. The main, and most time

consuming, part of the parameter fitting is the calculations embedded in Eqs.

(5.3) and (5.4) respectively. Offloading these calculations to the GPU could lead

63

5. Musrfit U. Locans

to a significant improvement in the total time needed to perform a parameter fit

which would allow to perform real time data analysis. In the following discussion

we will use χ2 synonymous for L(~P) fits.

What does ’real time’ data analysis in the context of µSR mean and why

is it important? Muon Spin Rotation/Relaxation/Resonance (µSR) is a spectro-

scopic, accelerator based technique where measurement slots are awarded through

a highly competitive proposal system. In the best case a researcher is granted a

beam time slot twice a year. During these short beam periods (typically 2-4 days),

all the necessary measurements need to be performed. The material classes stud-

ied by µSR are often showing a very reach and complex physics and hence it

is initially hard to judge what will be the best measuring strategy in terms of

available external parameters, like temperature, field, pressure etc. The online

modeling of the data is crucial to conclude on an optimal measurement program.

However, for some µSR instruments, currently the parameter fitting time which

is needed in this modeling process is comparable to the actual measurement time.

This makes it very hard to come to a clever and decisive decision how to use the

beam time. Wrong decisions will force researcher to re-apply for beam time which

is a waste of resources. Therefore it is crucial to reduce the fitting time to a level

allowing to come to the right conclusions during online analysis. To exemplify

the above stated, the numbers for the HAL-9500 instrument at the Paul Scherrer

Institut can help. A typical measurement time for a given field and temperature

is 2-4 hours. Robust fitting results are only available after about half of the mea-

surement time. A single fit with the current version of Musrfit which utilizes

OpenMP takes about 15 min. During the first day of data taking various fitting

models need to be applied and refined. This means that the full online analysis

takes longer than the measurement. This is drastically improved by the DKS so-

lution which brings the fitting times down to about 20 sec allowing to find the

appropriate fitting model needed to guide the experiment successfully.

5.3 χ2 and MLH kernels on GPU

To ease the process of adding GPU support to Musrfit, the Dynamic Kernel

Scheduler (DKS) [24] was used. All the device specific code is developed in DKS

64

5. Musrfit U. Locans

and Musrfit only receives a simple interface that it can use to invoke the task

execution on the GPU. DKS uses CUDA or OpenCL to create the GPU code.

CUDA is used to target Nvidia GPUs while the OpenCL implementation is used

to target devices from other vendors (Intel, AMD).

GPU memory management

Parse user function

Compile GPU code

DKS
Calculate χ2

MINUIT2
calculate parameters

Finish parameter fitting

χ2

~P

Figure 5.2: Flow diagram of parameter fitting with Musrfit using Minuit2 and
DKS

Using DKS, Musrfit allocates memory on the GPU for every data set used

in the fitting and transfers the data to the device. Since the data sets do not

change during the fitting, this operation can be performed only once.

One of the most important features of Musrfit is the ability for users to

define the theory function using an input file. A mechanism needs to be created

where this user defined function can be passed to the GPU at run-time and used

in the kernel code. To handle this problem, run-time compilation was used. The

user defined function is parsed by Musrfit from the input file and passed to

DKS where a CUDA or OpenCL device function is created to be used in the

GPU kernels. This process is described in more detail in section 5.4. When the

new GPU program is created and compiled by DKS, Musrfit begins the process

of minimizing the χ2 value by invoking the CUDA or OpenCL kernels to calculate

the χ2 value and using Minuit2 to fit the parameter set. The sequence diagram

65

5. Musrfit U. Locans

of this process is shown in Figure 5.2.

The most time consuming part of the parameter fitting are the calculation

of the χ2 function for each data set. This calculation can be easily parallelized

and therefore is an ideal candidate to offload to the GPU. The CUDA kernel

to compute the χ2 value creates a thread for each data point in a data set.

Shared memory is used to store parameter, function, and map (see section 5.4)

values since these values are accessed multiple times by each thread. Using the

new parameters, functions, and maps for the data set, the theory function is

evaluated at each point and the χ2 value at that point is calculated and stored

in a temporary allocated global memory array. After the kernel completes the

calculation of χ2 for each individual data point, all these values are summed up

using CUBLAS [47] to get the χ2 value of the whole data set. This process is

repeated for every data set used in the calculation.

5.4 User defined kernels

To allow users to define functions, the GPU code must be created at run-time.

For OpenCL this is the standard execution method, while for the CUDA frame-

work the CUDA run-time compilation library [48] was used. Musrfit parses the

user input file to get the user defined function and creates a string with a C++

mathematical expression. This expression can use standard C++ mathematical

operators and functions, and in addition it is able to utilize a set of predefined

functions which are commonly used in the µSR field. CUDA implementations

of exponential and Gaussian distribution functions are shown below in the code

sample 5.1. A full list of available predefined functions is listed in Musrfit user

guide [45].

The mathematical expression can use the parameter array to access parameter

values and the function array to access precomputed function values. The function

array is a convenience feature for the user. A subset of the parameter array is data

set specific. In order to keep the mathematical expression compact, an indirect

addressing of these parameters is needed. This is accomplished with the map

array. For more details see [45, 49]. An example of a created user function for use

in CUDA kernels is shown in code sample 5.2.

66

5. Musrfit U. Locans

1 __device__

2 double se(double t, double lambda) {

3 return exp(-lambda*t);

4 }

5
6 __device__

7 double ge(double t, double lambda , double beta) {

8 return exp(-pow(lambda*t, beta));

9 }

10
11 __device__

12 double sg(double t, double sigma) {

13 return exp(-0.5 * pow(sigma*t, 2));

14 }

15
16 __device__

17 double stg(double t, double sigma) {

18 double sigmatsq = pow(sigma*t,2);

19 return (1/3) + (2/3) *(1 - sigmatsq) * exp(-0.5 * sigmatsq);

20 }

Code example 5.1: CUDA examples of predefined functions that can be used to
create the user function.

1 __device__

2 double fTheory(double t, double *p, double *f, int *m)

3 {

4 return p[m[0]] * sg(t,p[m[1]]) * tf(t,p[m[2]],f[m[3]]);

5 }

Code example 5.2: Example of parsed user defined function ready for compilation.

After Musrfit has created the string containing the mathematical expres-

sion of the user defined function, it is added to the string containing the CUDA

program. The CUDA program consists of a user defined function definition, pre-

defined functions, and the kernel for χ2 calculation. This newly created program

is compiled at run-time and used by DKS to evaluate the χ2 of a given data set.

5.5 Musrfit speedups with GPUs

The parameter fitting tests were run on two systems. The first system was

equipped with two Intel(R) Xeon(R) CPU E5-2609 v2 processors and one Nvidia

Tesla K40c GPU. The second system was equipped with two Intel(R) Xeon(R)

CPU E5620 processors and AMD Radeon R9 390x. Musrfit parallelizes CPU

code using OpenMP so the performance of the fitting using this implementation,

67

5. Musrfit U. Locans

with 8 threads, was chosen as the baseline. To test the CUDA and OpenCL per-

formance, the same example was run on the GPU using both of these frameworks.

Another benchmark was run with OpenCL using the CPU as the target device

on the first machine.

For the tests, a typical muon polarization function was chosen to determine

the magnetic shift of a para-/diamagnetic material [46]. It is given by:

Aj(~p, t) = Aj0 exp

[
−1

2
(σt)2

]
cos(γµBt+ φj), (5.5)

where j = 1 to 16, where 16 is the number of positron detectors in this example.

Aj0 is the asymmetry of each positron detector, σ is the depolarization rate of the

muon spin ensemble, γµ is the gyromagnetic ratio of the muon, B is the magnetic

induction at the muon stopping site, t is the time, and φj is the phase of the

initial muon spin in respect to the positron detector.

Table 5.1: Parameter fitting with χ2 function running on the GPU. The given
time is for the execution of the minimize command of Minuit2 [43].

χ2 MLH
Data size Device Iter. Time(s) Speedup Iter Time(s) Speedup

16x142200

Intel

9319

4029.4

9028

5294.5
OpenMP Intel 513.672 x8 673.718 x8
OpenCL Intel 439.864 x9 685.638 x8
CUDA Nvidia 18.262 x221 18.0678 x293

OpenCL Nvidia 22.7205 x177 23.2791 x227
OpenCL AMD 45.8842 x88 51.7018 x102

16x213300

Intel

8052

5237.12

8318

7294.39
OpenMP Intel 658.485 x8 927.567 x8
OpenCL Intel 729.055 x7 927.046 x8
CUDA Nvidia 20.0328 x261 21.6166 x337

OpenCL Nvidia 24.6488 x212 26.9296 x271
OpenCL AMD 42.992 x122 54.3796 x134

16x426601

Intel

6313

8128.89

8439

14238.2
OpenMP Intel 1028.31 x8 1877.73 x8
OpenCL Intel 885.274 x9 1242.16 x11
CUDA Nvidia 25.6257 x317 35.9603 x396

OpenCL Nvidia 29.5987 x275 41.92 x340
OpenCL AMD 43.6503 x186 68.5996 x208

The results of these tests are shown in the Table 5.1. The results show that

for the chosen test function, the total execution time of the parameter fitting

68

5. Musrfit U. Locans

can be improved by around ×30...×40 on the GPU, compared to multi CPU

performance, depending on the size of the problem. Such a performance allows

one to analyze the experimental data in real time.

●
●

●

●

●

100000 150000 200000 250000 300000 350000 400000

0.001

0.002

0.005

0.010

0.020

0.050

0.100

Total dataset size

Ti
m

e
(s

)

● E5−2609 OpenMP(8)
E5−2609 OpenCL
Tesla K40c OpenCL
Tesla K40c CUDA

E5−2690 OpenMP(8)
E5−2690 OpenMP(16)
E5−2690 OpenMP(48)

Figure 5.3: Parameter fitting with χ2 function running on the GPU. The time is
shown for the execution of one iteration of the minimize command of Minuit2
[43].

The OpenCL implementation of parameter fitting in DKS allows the use of

other accelerator devices to speed up the calculations. This makes the application

more portable and more accessible to users. The results of OpenCL tests are

shown in Figure 5.3. This figure also shows OpenMP results when using up to

48 CPU cores to run the fitting on the second test system equipped with two

Intel(R) Xeon(R) CPU E5-2690 v3 processors each consisting of 24 virtual cores

with hyper-threading enabled.

69

Chapter 6

PET Image reconstruction and

analysis

6.1 PET Image reconstruction basics

The SAFIR (Small Animal Fast Insert for MRI) project is developing a fast PET

insert (positron emission tomography scanner that can be integrated in MRI

system) for a pre-clinical MRI (Magnetic Resonance Imaging) system for dy-

namic in vivo PET-MRI studies with excellent temporal resolution. This requires

tomographic image reconstruction followed by image data analysis adapted to

the conducted study. While, under idealized assumptions, the image can be ob-

tained analytically by a filtered inverse Fourier transform. Modeling the system

details and irregularities results in better images. However, this second approach

involves the manipulation of huge matrices. Therefore typically iterative image

reconstruction algorithms are applied, which still constitute a significant compu-

tational burden.

Image analysis, such as feature finding, is computationally time intensive as

well. Moreover, in dynamic studies sequences of dozens of images need to be re-

constructed and analyzed. In particular the aim is to reconstruct one image about

every 5 seconds. Thus 60 images need to be reconstructed for a typical acquisi-

tion of 5 minutes, each comprising 5 seconds worth of data. Computation times of

hours to days would be required for data acquired in a few minutes. Speeding up

70

6. PET Image reconstruction and analysis U. Locans

the computation is therefore of prime importance. A first big improvement would

be the reconstruction of the image series on a time-scale of one hour. Ultimately,

a quasi-online visualization of the process dynamics would be very beneficial to

control and optimize the experiments requiring to reconstruct one image within

5 seconds.

There are several articles in the literature that describe the efforts of accel-

erating PET image reconstruction codes using GPUs [50, 51, 52]. The algorithm

described in this work uses list-mode data for image reconstruction and follows

a similar approach as proposed in [50] and [52]. The results obtained in previous

works show that PET image reconstruction is a good algorithm for GPU accel-

eration and would greatly benefit the reconstruction algorithms used in SAFIR

project.

6.1.1 Image reconstruction

In PET image reconstruction, the goal is to find the source activity distribution

in the object to be studied. The activity distribution is found from the projection

measurements of the set of coincident detector pairs, which form the whole PET

scanner. In PET imaging, a positron emitting radiotracer is used. The positron

annihilates producing two back-to-back photons with 511 keV energy. These are

measured, typically with a set of cylindrically arranged detectors surrounding the

source. A schematic sketch of one ring of such an arrangement is shown in figure

6.1.

If within a short time window, two detectors each register a photon, it indicates

that an annihilation event has occurred on the line joining the two detectors (line-

of-response, LOR). The list of all these coincidence events (listmode data) can

directly be used to reconstruct the image. A general description of PET image

reconstruction can be found in [53].

Consider a discrete tracer distribution ~f = (f1, . . . , fJ)T on a 3D Cartesian

grid, where the index labels the volume elements called voxels and J is the number

of voxels. The coincidence measurement yields an estimation of the mean counts

~̄y = (ȳ1, . . . , ȳI)
T per detector pair i, where I is the number of possible pairs.

Using a linear model for ȳi, the relationship between tracer distribution and

71

6. PET Image reconstruction and analysis U. Locans

Detector ring

Photon

Photon

Image region

Line of
response (LOR)

Point of
annihiliation

Figure 6.1: PET imaging basic principles.

mean measured counts can be written as

ȳi =
J∑
j=1

aijfj + ni, (6.1)

where the matrix a is called the system matrix and ~n is a noise term. PET

reconstruction aims at solving the inverse problem, i.e. finding ~f given ~̄y. Inverting

the matrix a is computationally unaffordable due to its size. Therefore, iterative

approaches are employed.

The aim of the iterative image reconstruction algorithm is to find ~f such that

equation 6.1 produces ~̄y which matches the measured coincidence events ~m. Most

iterative algorithms aim to minimize the distance measure between ~̄y and the

measured data ~m [53].

The stochastic nature of the radioactive decay, together with the detection of

the events, can be modeled with a Poisson process. The likelihood function is

p(~̄y|~f) =
I∏
i=1

p(mi|ȳi) =
I∏
i=1

e−ȳi
ȳmii
mi!

, (6.2)

where mi is the actually measured number of counts in the i-th line-of-response

(LOR).

The Bayes factors for the inversion of the conditional probability are neglected.

72

6. PET Image reconstruction and analysis U. Locans

Finding the minimum of the likelihood function with respect to ~f yields an iter-

ative formula for the distribution

fk+1
j =

fkj∑I
i=1 aij

I∑
i=1

aij
mi

ȳki
,

ȳki =
J∑
j=1

aijf
k
j + ni.

(6.3)

This algorithm can be rewritten for listmode processing

fk+1
j =

fkj∑I
i=1 aij

L∑
l=1

I∑
i=1

δi,c(l)
aij
ȳki

=
fkj∑I
i=1 aij

L∑
l=1

ac(l),j

ȳkc(l)
,

c(l) = index of detector paircorresponding to l-th listmode event

(6.4)

where L is the number of listmode events and δij is the Kronecker delta. The

matrix element ac(l),j describes the probability of detecting an annihilation from

the j-th voxel in the c(l)-th LOR, in which the l-th coincidence event was detected.

Equation (6.3) implicitly reappears in the denominator of the last term of

(6.4) and is called forward projection because it constitutes a map from the

spatial activity distribution to the number of counts in the LORs. The sum over

l in (6.4) is called backward projection because it constitutes a map from the set

of LOR count values to the spatial activity distribution.

The matrix elements aij can be estimated using an adapted raytracing al-

gorithm. To reduce the computation effort, the LOR’s predominant direction of

propagation is determined to be along the x- or y-axis and the planes perpendic-

ular to that axis, through the voxel centers, are considered. For each plane, the

intersection point ~p = (px, py, pz)
T of the LOR i with that plane is determined

and the voxel j with center coordinate (vjx, vjy, vjz)
T , containing this intersection

point is identified.

Without loss of generality, let the predominant direction be along the x-axis.

In each plane, the matrix element is calculated for the voxel j and its three

neighbors j′, j′′, j′′′ in the positive y- and z-directions. The matrix element aij is

approximated to be related to the distance of the voxel to the intersection point

73

6. PET Image reconstruction and analysis U. Locans

in the following way

aij ≈ md −
√

(py − vjy)2 + (pz − vjz)2, (6.5)

where md is the matrix distance factor. The matrix distance factor acts as a

weight for the influence of the distance of the voxel to the intersection point to

the system matrix element.

6.1.2 Image analysis

An important task for the envisaged research is to identify a small spot, with a

volume of about 5 to 10 mm3, in a rodent brain with enhanced activity. This spot

needs to be identified in non-uniform background and with the enhanced activity

of the order of 20% compared to its normal state. The stochastic nature of the

data and the relatively low number of counts in the few second time intervals

results in large variance of the reconstructed activity concentration. It is there-

fore important to distinguish true features from fluctuations with quantifiable

significance.

As explained above, the goal is to find the relative activity increase in a region

over some normal (background) activity. Hence the excess E and its standard

deviation ∆E are defined

E =
S −B
B

,

∆E =
S

B

√(
1

S
+

1

B

) (6.6)

where B is the background activity and S is the activity in the region of interest

including the background. For simplicity, two concentric spheres are used, the

smaller (inner) one representing the signal region and the larger, with the volume

of the smaller sphere cut out, representing the background region. The significance

of the excess can be expressed in terms of its standard deviations and a threshold

can be used to separate true from random signals.

The image is processed by displacing the center of the sphere into the center

of each voxel. Applying a threshold to the transformed image allows to locate

74

6. PET Image reconstruction and analysis U. Locans

features of a certain significance.

6.2 GPU kernels for PET image reconstruction

and analysis

For image reconstruction, the most time consuming parts of the algorithm are

the forward and backward projections. Both of the projections loop through the

projection lines and either accumulate image data along the line (forward pro-

jection) or distribute projection values into the image data along the same lane

(backward projection). Every line in the list can be processed independently so

this problem can be parallelized to take advantage of the computational resources

available on GPU. However, there are several challenges that must be considered

for the GPU algorithm to achieve the desired performance:

• Some lines in the list do not require processing and different predominant

line directions require alternative processing which results in a large thread

divergence;

• Each line requires a different set of voxels from the image resulting in ran-

dom memory access;

• Multiple lines need to update the same voxel in the image and thus requires

atomic operations.

For image analysis, the most time consuming part is the calculation of the

average value and the standard deviation of the voxels inside a sphere. Two

spheres are placed at the source location. First the average value and standard

deviation of voxels that are inside the smaller of the two spheres (source value)

are calculated. The second part of calculations finds the same values for voxels

that are outside of the smaller sphere, but inside the larger sphere (background

value).

Since the spheres are placed at the center of each voxel, this can be parallelized

on the GPU by every thread calculating the average value for a different sphere.

To add GPU support to host application CUDA kernels for forward projec-

tion, backward projection, source calculation and background calculations were

75

6. PET Image reconstruction and analysis U. Locans

implemented in DKS. The host application was updated to use DKS instead of

CPU implementation when a GPU is available. The host application uses DKS

interface to invoke memory management, data transfer and kernel calls while all

the temporary memory, kernel details and kernel launch parameters are handled

by DKS.

6.2.1 Forward and backward projections

The forward projection in DKS is implemented as two kernel calls. The first kernel

call calculates the predominant direction of each line, and assigns a label to it:

• 0 - line does not need to be processed

• 1 - predominant direction in the x plane

• 2 - predominant direction in the y plane

Once the predominant direction of the line is known, the Thrust sort by key func-

tion is used, sorting the lines according to its direction. In this way we minimize

the thread divergence in the kernel call that performs the forward projection.

After the lines are sorted, the forward projection processes the image in slices

along the predominant direction as shown in Figure 6.2. Whether the line requires

any values from a slice is determined by the position and angle of the line. This

process is the same for both forward and backwards projections. For each slice

the position where the line crosses the slice is determined, if this position is inside

the image region the values are loaded from global memory (forward projection)

or global memory is updated with the correction value (backward projection).

The assigned label allows us to process all the lines with a single kernel call

and avoid repeated calculations on how the line should be processed. After the

lines are sorted, they are grouped by the predominant direction. The divergence

of threads within the warp will be very minimal.

Since the lines require very few values from a slice and not all the lines use

every slice, each thread checks if any voxels from the slice are needed and only

then perform a load from global memory. This will result in an un-coalesced global

memory access since lines in the same warp are accessing random voxels in the

76

6. PET Image reconstruction and analysis U. Locans

x-LORs

x-LORs

x-LORs

x-slice

cross section of image

x

y

region of interest

Figure 6.2: Cross section of the image showing LORs, with predominant direction
in the x plane, and a slice of the image along this direction being processed.

image. Since only a few of the slices are used for each line, and only a few values

from each slice are used, this results in a better performance than loading all of

the voxels in the slice in shared memory.

Backward projection takes the correction value calculated for each line and

distributes it back to the voxels along this line. During backward projection, the

same sorted list of lines is used to tackle thread divergence. The main bottleneck

for the backward projection is the need for multiple threads to update the same

voxels because different lines can cross the same positions in the image. To avoid

race conditions when multiple threads need to write to the same global memory

address CUDAs atomic operations are used.

DKS calls are inserted in the host application to offload tasks if a GPU device

is present. Using the DKS, the host application allocates memory on the device

and transfers data from the host, holding voxel positions, voxel values, detector

pair list and detector positions. In addition memory is allocated on the GPU to

hold the correction values for each detector pair calculated by forward projection

and corrected voxel values calculated by background projection. After memory

allocation and data transfer the host application loops trough the set reconstruc-

tion iterations and uses DKS to call forward and backward projection kernels

on the GPU. Every iteration requires a read of corrected voxel values from the

77

6. PET Image reconstruction and analysis U. Locans

GPU, and since the final processing of the image is done by the host application,

before the next iteration new voxel values are written back to the GPU. Each

iteration also requires a write of list of detector pairs used for reconstruction.

Since after every iteration half of the detector pairs are discarded this list needs

to be updated and resorted before every forward projection. The example code

of host application and DKS integration for image reconstruction is shown in the

code sample 6.1.

1 for (int iter = 0; iter <num_of_iteration; iter ++)

2 {

3 // transfer image data to GPU every time step

4 dksbase.writeData <float >(* image_gpu , *recon_image_host , image_size);

5
6 //calc forward projections on the GPU

7 dksbase.callForwardProjection (* line_correction , *image_gpu ,

*list_detectors , *detector_position , *image_position , event_number);

8
9 //calc backward projections on the GPU

10 dksbase.callBackwardProjection (* line_correction , *image_correction ,

*list_detectors , *detector_position , *image_position , event_number ,

image_size);

11
12 //read recon_image_3d_corrector form GPU

13 dksbase.readData <float >(* image_correction , *recon_image_host , image_size);

14
15 //final processing of the reconstructed image

16 // output operations

17 }

Code example 6.1: Example code of DKS interface integrated in the host appli-
cation for image reconstruction.

6.2.2 Source and background calculation

Source and background calculations are separated in two kernels. To calculate

the source values at each voxel position, every thread places a sphere with the

center at this voxel. Then knowing the diameter of the sphere, the position of the

voxel, and the size of each voxel, a box is calculated that contains this sphere.

This process is illustrated in Figure 6.3.

After the box is formed the thread loops through the voxels in this box and

calculates the average value and standard deviation using only voxels that lie

inside the sphere. The box is necessary to minimize the number of voxels that

each thread has to process. This approach requires a lot of global memory access.

78

6. PET Image reconstruction and analysis U. Locans

source

background

Figure 6.3: 2D representation of sphere placement at the voxel position for source
and background calculation.

Shared memory usage could be explored to improve the performance of the kernel,

since voxels used by threads in the same thread block are overlapping.

To calculate source and background values on the GPU, the host application

first needs to allocate memory on the device and transfer data for voxel positions

and voxel values in the image. Then memory is allocated to hold temporary values

for average values and standard deviation at each sphere. When all the necessary

data is transferred to the device, kernels to calculate source and background

values are invoked trough DKS. In the final stage of the algorithm the host

application reads the average and standard deviation values for each sphere from

the GPU and performs final signal to noise ratio calculations. As in the case of

forward and backward transformation the host application is responsible when

memory allocation and data transfer is scheduled, in order to ensure that the

host application can access the data from GPU when needed, but DKS handles

all the device code details and kernel launch parameters.

6.3 Results

The tests for image reconstruction and analysis where performed on two different

systems. The first system uses Intel(R) Xeon(R) CPU E5-2609 v2 processor and

79

6. PET Image reconstruction and analysis U. Locans

Nvidia Tesla K40c GPU, while the second system uses Intel(R) Xeon(R) CPU

E5-2690 v3 CPU. The CPU implementation of reconstruction and analysis is

not parallelized, so the single CPU core performance was chosen as the baseline

performance.

To test the GPU performance, simulated data were used. The data were gen-

erated using GEANT4 [54, 55] for an idealized scanner made from 91 rings of 180

detectors. The detector crystals are 2.0 mm x 2.0 mm and are 12.0 mm long in

the radial direction. The pitch between adjacent detectors in a ring, as well as

between the rings, is 2.2 mm. Simulations of a Derenzo [56] type phantom were

performed: six groups of spheres with different diameters (1.0 mm, 1.2 mm, 1.6

mm, 2.4 mm, 3.2 mm, and 4.0 mm) were embedded into a rat phantom. The

rat phantom was implemented as a high density polyethylene cylinder, with a

length of 150 mm and a diameter of 50 mm. The simulation was performed for

one second with 500 MBq distributed evenly over the spheres volume. This corre-

sponds to 1.42 MBq/mm3 and zero activity in the rat phantom. Reconstruction

and image analysis were performed using the algorithms as described above.

The reconstructed image size was 90x90x50 voxels with a voxel size of 0.7

mm x 0.7 mm x 0.7 mm, and the reconstruction was performed using 13, 901, 607

coincidence events. The reconstruction uses all of the available coincidence events

and performs forward and backward projections for 15 iterations.

Table 6.1: Performance of image reconstruction and analysis example.
Device Recon Speedup Analysis Speedup

E5-2609 v2 800s 8.8s
E5-2690 v3 599s 5.9s

Nvidia Tesla K40c 14s ×57 2.7s ×3

When performing image analysis, the example performs two separate types

of analysis. The first analysis places the spheres at previously defined source

positions and the second analysis places the spheres at every voxel that lies inside

the image region.

The results of the reconstruction for 1s of data and the analysis are shown in

Table 6.1. As can be seen from the results, the implemented GPU version cuts

the execution time from almost half an hour to around 30 seconds. The time

80

6. PET Image reconstruction and analysis U. Locans

●

●

●

●

●

●

●

0 2000000 6000000 10000000 14000000

0.
00

1
0.

01
0

0.
10

0
1.

00
0

10
.0

00

Number of events

T
im

e
(s

)

● Backward projection CPU
Forward projection CPU
Backward projection GPU
Forward projection GPU

Figure 6.4: Execution time for forward and backward projections. Run on Intel(R)
Xeon(R) CPU E5-2690 v3 and Nvidia Tesla K40c

represented in the table shows the total execution time of the reconstruction

algorithm, including the input and the output operations. For image analysis

input and output operations are excluded from the benchmarking, because they

take more that 50% of total analysis time. For the image analysis, the diameter

of inner and outer spheres are chosen to be 2mm and 4mm. The performance

of individual kernels, for image reconstruction, offloaded to GPU are shown in

Figure 6.4. The results in Figure 6.4 illustrate the execution time for forward and

backward projections using different numbers of lines for image reconstruction on

a CPU and a GPU.

To test the GPU performance and scaling of kernels used for image analysis,

tests were repeated with different sphere sizes. Figure 6.5 shows the execution

time of calculating source and background values at each voxel position with

different sphere diameters. The diameter of the outer sphere is always twice the

diameter of the inner sphere.

The computation time for the image reconstruction depends on the total num-

ber of detected events and on the number of iterations, but is independent of the

true image and the physical scanner used to obtain the data. The computation

81

6. PET Image reconstruction and analysis U. Locans

●

●

●
●

●
●

●

2 3 4 5 6 7 8

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Inner sphere diameter (mm)

T
im

e
(s

)

● Intel(R) Xeon(R) E5−2690 v3
Nvidia Tesla K40c

Figure 6.5: Calculation of source and background values with different sphere
diameters.

time of the image analysis will scale with the number of voxels and the size of

spheres, as can be seen in Figure 6.5. However the computed time is indepen-

dent of the content of the image and of how the image was actually obtained.

Therefore, the results of the examples are representative for all other possible

PET systems, applying similar reconstruction and feature finding. In the given

application using list-mode processing, the reconstruction time scales linear with

the amount of data. Thus reconstructing an image of 5 s using the GPU requires

a total of 72.7 s, and the reconstruction of a series of 5 minutes of data into 60

images would require 1 h and 12.7 min. This is a significant improvement com-

pared to the ˜66 hours required in the CPU case and already close to the first

objective to reconstruct within the order of one hour.

82

Chapter 7

Multi-bunch tracking code -

mbtrack

The final chapter of the thesis moves away from DKS and integrating hardware

accelerators in large scientific codes, but rather shows the efforts of porting a

smaller application to CUDA. This was done in order to allow moving the simu-

lations from multi-core CPU clusters to a heterogeneous CPU and GPU systems.

Since the targeted GPUs for mbtrack were Nvidia Tesla K40c, CUDA was chosen

as the language to create the device code.

The application that was ported to the GPUs was mbtrack, which is a single

and multi bunch tracking code created at SOLEIL (French National Synchrotron

Facility). The reason that the previous approach with DKS was not used for

mbtrack, was that in this case we are not looking to offload parts of the code to

the accelerator, but rather rewrite the application to create mbtrack-cuda version,

so that all the heavy calculations are done on the GPU side, while the CPU is

only used for setting up the simulation and input/output operations. Another

reason for not using the DKS in mbtrack-cuda version was for the simplicity of

distributing the mbtrack application. Since mbtrack is a rather small application

and does not use any external libraries a stand alone CUDA version would be

easier to distribute and use to current mbtrack users. And the last reason for not

using DKS in porting mbtrack to the GPUs was that the targeted accelerators

were Nvidias GPUs, so only a CUDA implementation of the application was

83

7. Multi-bunch tracking code - mbtrack U. Locans

needed.

The mbtrack application is used at PSI for simulations of bunch instabilities

in the SLS-2 (Swiss Light Source upgrade) project. The rest of the chapter will

describe in more detail the algorithms implemented in mbtrack, the simulations

that will be run using this application and why a CUDA version was needed as

well as the process of porting mbtrack to CUDA. Finally, results achieved with

the mbtrack-cuda version will be shown.

7.1 MBTRACK

7.1.1 Collective effects in synchrotrons

A synchrotron is ring-shaped machine to accelerate charged particles or store the

particles without changing the energy (storage rings). The particles travel in a

cyclic vacuum tube (beam pipe) along which magnets and radio-frequency (RF)

cavities are placed. The magnets are used to bend the trajectory of the particles

and to focus the beam, while RF cavities are used to accelerate the particles and

to shape the particle bunch [57].

While circulating in an accelerator beam pipe, particles create and leave be-

hind wake-fields. The created fields influence the trailing particles, which may

lead to energy losses and instabilities in the beam [58].

Mbtrack is a multi-bunch tracking code for the study of beam instabilities in

synchrotrons. It is developed to simulate single bunch effects such as head-tail,

microwave or transverse mode coupling instabilities and bunch lengthening due to

short range geometric and resistive wall wakes. Mbtrack can also simulate multi-

bunch effects due to high order mode impedance or long range resistive wall. The

simulations of effects from harmonic cavities is also possible with mbtrack [59].

7.1.2 Limitations of mbtrack MPI version

At PSI, mbtrack is used for the detailed study of both single-bunch and coupled-

bunch instabilities and transient beam-loading in the SLS-2 upgrade proposal.

In the case of the SLS-2 base-line proposal with 500MHz main RF cavity and

84

7. Multi-bunch tracking code - mbtrack U. Locans

a passive third harmonic cavity, it is necessary to simulate the interaction of up

to 484 bunches with their wake-fields. Simulations of this scale would require a

cluster with 485 CPU cores. This scale is too big for the available cluster at PSI

and would require access to a supercomputer, for example at the Swiss Computing

Center. Fortunately, mbtrack can be adapted to benefit from GPU-acceleration.

This enables us to run our simulations on a relatively cheap GPU accelerated

desktop computer.

The original mbtrack version (mbtrack-mpi) uses MPI to parallelize the multi-

bunch simulations. Each bunch in the simulation is assigned to a different core.

This requires N+1 cores to complete the simulation, where N is the number of

bunches. This scale of the simulations is too big for the available computing re-

sources at PSI and therefore a different solution is required in order to allow the

necessary simulations to be completed.

7.1.3 Parallelization in mbtrack MPI version

Mbtrack is parallelized with one ’master’ task responsible for the setup of the

simulation, data processing and distribution of the data to ’worker’ processes.

The worker processes are each responsible for single bunch formed of a large

number of particles.

The manager process of mbtrack-mpi is responsible of generating the initial

conditions for each bunch and sending this information to the cores that are

handling this bunch. After the simulation starts the manager process receives the

statistics information after every turn from all the bunches and calculates the

average statistics over all the bunches.

The worker process receives the initial bunch conditions from the manager and

generates the initial particle distribution. After the tracking starts the selffield

and optic transformations are performed for each particle and resistive wall effects

are calculated. The detailed descriptions of the particle transformations can be

found in [58]. After each turn the bunch statistics are sent to the master process

and bunch moments are sent between the worker processes.

The biggest disadvantage of the tracking code is that each of the bunches is

handled serially by one core and there is no parallelization over the particles in

85

7. Multi-bunch tracking code - mbtrack U. Locans

the bunch. This means that it is necessary to add more cores to the simulation

when the total number of bunches is increasing.

7.2 GPU acceleration of MBTRACK

The mbtrack-cuda version of the multibunch tracking software uses CUDA to

offload all the heavy computation to the GPU, while the host is used only for

setting up the simulation, updating the statistics and logging the results of the

simulation. The mbtrack-cuda version is able to simulate all the same physics

effects as mbtrack-mpi version, but instead of requiring N + 1 CPU cores to run

the simulation it requires CPU + GPU system. The advantage of this version is

that if the CUDA version is able to complete the simulation in reasonable time

the CPU+GPU system is more cost effective to set up than a small CPU cluster,

which would allow to set up a dedicated system for SLS-2 simulations.

7.2.1 mbtrack CUDA

For the ease of porting the application to CUDA, mbtrack-cuda is built on top of

the original mbtrack application and reuses most of the original code. The code

to setup of the simulation, store data structures, storing and updating statistics,

as well as writing output to the files is kept identical to the original version.

In contrast to the mbtrack-mpi version, the mbtrack-cuda version parallelizes

the simulation over the macro particles in the bunch rather then over the number

of bunches. Since the number of particles is usually large (over 50,000), this

parallelization technique ensures, that, even for simulations where the number of

bunches is relatively small, all the GPU resources are still utilized.

7.2.2 GPU memory management

After the simulation is initialized and initial particle distributions are generated,

all the data needs to be transferred from the host memory to the GPU memory.

For the simplicity of porting the application to CUDA all the data structures

used in the CUDA code are kept the same as the ones used in mbtrack-mpi

86

7. Multi-bunch tracking code - mbtrack U. Locans

version. After the simulation is initialized on the host side all the data structures

are copied to the GPU using cudaMemcpyToSymbol function. This function copies

the variables in the data structure from the host memory to the GPU memory.

The arrays that are used in the data structures need to be copied separately using

the cudaMalloc and cudaMemcpy to allocate the needed space and copy the data.

The copying of the data structures and the arrays needed in the data structures

are shown in the code example 7.1.

1 //copy ring to device constant memory

2 cudaMemcpyToSymbol(dring , ring , sizeof(ring_t));

3
4 // allocate memory for dactive_HC in GPU global memory

5 cudaMalloc ((void **) &hactive_HC , sizeof(active_HC_t) * ring ->active_HC_size);

6 //copy the data to device

7 cudaMemcpy(hactive_HC , ring ->active_HC , ring ->active_HC_size *

sizeof(active_HC_t), cudaMemcpyHostToDevice);

8 // assign the copied array to device variable , that can be used inside CUDA

kernel

9 cudaMemcpyToSymbol(dactive_HC , &hactive_HC , sizeof(hactive_HC));

Code example 7.1: Allocate the arrays for the data structures.

The memory is also allocated to hold the particle data for every bunch and

the bunches are transferred to the GPU memory one by one. Since particle data

is transferred back from GPU at every turn for statistics calculations and output

purposes cudaHostRegister is used to page-lock the CPU memory for particles.

The page-locking of the CPU memory allows to increase the transfer speed be-

tween the CPU and GPU, and also allows to use asynchronous data transfer

allowing to overlap data movement and calculations on the GPU.

The memory setup of the GPU ends with allocation of all the temporary

arrays used by kernels to hold the intermediate results.

7.2.3 The basic single particle transformations

The basic optics transformation is performed once per turn. Mbtrack stores the

position of every particle in phase space in a 6 dimensional vector (x, x′, y, y′, τ, δ).

The x and y are the horizontal and vertical positions, while x′ = dx
ds

and y′ = dy
ds

are

transverse momenta at longitudinal position s. Parameter δ = ∆E
E0

describes the

energy deviation relative to the reference particle’s energy E0 and the longitudinal

87

7. Multi-bunch tracking code - mbtrack U. Locans

coordinate τ is the arrival time with respect to the reference particle [58].

The relative energy spread δi at turn i+ 1 is computed by:

δi+1 = δi + εi −
Urad
E0

(7.1)

where εi is the relative energy gain in the RF cavities and Urad is the synchrotron

radiation losses.

The longitudinal coordinate is updated every turn using:

τi+1 = τi + δiT0αc (7.2)

where αc is the momentum compaction factor. The relative energy gain εi from

RF cavities is determined by:

εi =
e

E0

[VRF sin (ωRF τi + φs) +
∑
j

V̂j sin (njωRF τi + njφj)] (7.3)

where VRF is the peak voltage, ωRF is the angular RF frequency, φ is the phase

of the synchronous particle and e is the electron charge. The first term in the

equation describes the relative energy gain from main RF cavity. The second

term in the equation describes the effect of additional cavities, where V̂j is the

peak voltage of the jth harmonic cavity with angular frequency njωj and phase

njφj.

In transverse planes the particles in the beam perform betatron oscillations.

These oscillations are described using Twiss parameters αx,y, βx,y, γx,y, which de-

scribe the beam shape, size and orientation, and a phase advance per turn Ψxy

[58]. For particles with non-zero energy deviations the phase advance can be cal-

culated by:

Ψxy = Ψx0y0(1 + ξxyδ) (7.4)

where ξxy is the chromaticity of the lattice. Given the presence of the horizontal

dispersion D the transformation in transverse planes are expressed by the transfer

88

7. Multi-bunch tracking code - mbtrack U. Locans

matrices: xx′
δ

 =

cos Ψx + α sin Ψx βx sin Ψx D

−γx sin Ψx cos Ψx − α sin Ψx D′

0 0 1


xx′
δ


(
y

y′

)
=

(
cos Ψy + α sin Ψy βy sin Ψy

−γy sin Ψy cos Ψy − α sin Ψy

)(
y

y′

) (7.5)

Changes in the beam energy are also caused by quantum excitation and radi-

ation damping shown in the equations below.

δ̃i+1 =δi+1(1−DE) + σE
√

2Deδrand

x̃i+1 =xi+1 + σx
√
Dxxrand

x̃′i+1 =x′i+1

1 + δi+1

1 + δi+1 + εi+1

+ σx′
√
Dxx

′
rand

(7.6)

where coefficients D and σ correspond to radiation damping times and bunch

energy spread, while δrand, xrand and x′rand are random numbers from normal dis-

tribution with unit standard deviation [58].

The application launches one kernel that performs these transformations for

every bunch. Since calculations for each particle are independent, one thread

per particle is created inside the kernel. The random numbers needed for the

calculations of the radiation damping and quantum excitation are generated using

the Nvidias cuRand library. Shared memory is used to hold the data for additional

harmonic cavities, since they are shared by all the threads, and shared memory

usage allows to improve the load time from global memory.

7.2.4 Geometric ring impedance

The simulations in mbtrack can include arbitrary number of resonators as well

as purely resistive and inductive components, all contributing to the total geo-

metric wake [58]. The macro-particles in each bunch are grouped into cells (bins)

depending on their longitudinal position. The wake functions are calculated cor-

responding to ensemble of resonators. Each turn the excitation of this wake by

89

7. Multi-bunch tracking code - mbtrack U. Locans

each bin is calculated and the resulting kick is given to each bin. All particles in

the same bin receive the same kick. In this way presence of the self-field to which

each bunch is subjected is taken into account [59].

The longitudinal wake function of a resonator, when τj > 0, is given by:

W ‖(τj) =
ωrRs

Q
exp− ωr

2Q
τj(cosωr

√
1− (4Q2)−1τj −

sinωr
√

1− (4Q2)−1τj

2Q
√

1− (4Q2)−1
)

(7.7)

where ωr is the resonant angular frequency, Q is the quality factor and Rs is

the longitudinal shunt impedance and τj is the position at the bin j. Similarly

transverse wake of such a resonator (τj > 0) can be expressed as:

W⊥(τj) =
ωrRs

Q
√

1− (4Q2)−1
exp− ωr

2Q
τj sinωr

√
1− (4Q2)−1 (7.8)

The components describing purely resistive and inductive impedances are R

and iLω and form the corresponding wake function:

W2‖(τj) = Rδ(τj)− L
dδ(τj)

dτj
(7.9)

where δ(τ) is the delta-function.

The wake voltage induced by this bunch is then calculated by:

V (τj) =

j−1∑
k=0

qkW
‖(τj − τk) +

qjW2‖

2
(7.10)

where qj,k is the total charge in the bins j and k.

In the longitudinal and transverse planes the transformation is expressed as

change in particle energy, where horizontal and vertical planes are treated iden-

tically:

∆δj =
qjV (τj)

E0

∆x′j =
qj
E0

j−1∑
k=0

qkDp(τk)W
⊥(τj − τk)

(7.11)

90

7. Multi-bunch tracking code - mbtrack U. Locans

where Dp(τk) is the dipole-moment of the bunch at position τk.

The resistive-wall effects for longitudinal and transverse planes are also cal-

culated and added to the wake voltage V (τi):

W
‖
RW (τj) = − 1

4πa

√√√√ Z0

σcπτ
3
2
j

W⊥
RW (τj) = − 1

πa3

√√√√ Z0c

σπτ
1
2
j

(7.12)

where Z0 is the impedance of free space, c is the speed of light and a the effective

beam pipe radius.

The transformation begins by assigning each particle to a bin (mesh cell),

since the calculations of the bin to which the particle belongs is independent this

process can again be parallelized over the number of particles in the bunch. A

kernel is launched where each thread handles one particle and finds and saves

the bin number to which this particle belongs to. The bin number is saved in a

temporary memory reserved in the beginning of the calculations and is reused

between bunches. The number of bins and the bin size is taken from the configu-

ration file and transferred to the GPU at the start of the simulation as described

in the 7.2.2 section.

After each particle has been assigned to a bin a kernel is launched that counts

the particles in each bin and the dipole-moments Dp for horizontal and vertical

planes. This kernel is also launched with one thread per particle, but since there

are multiple particles per bin atomic operations are needed to sum up the particle

counts in the bins.

After the particle counts per bin are known a kernel is launched that finds

the min and max bin that holds any particles. Since searching for the min and

max bins requires communication between threads and it is not a good problem

to parallelize, it is done serially on the GPU. One block with multiple threads

are launched on the GPU, the multiple threads parallelize the loading of the data

from the slow GPU memory to the faster shared memory and then one thread

searches for the first and last bins that contains any particles. Since we do not

need to loop over all the cells this serialization of the kernel will not cause a

91

7. Multi-bunch tracking code - mbtrack U. Locans

bottleneck for the simulation.

After the particles are assigned to bins and the bins that hold any particles

are found, a kernel is launched that constructs the wake potentials at each cell

for each of the planes. First a kernel is called that performs the calculations on

the LON plane and then separate kernels for HOR and VER planes. To construct

the wake potentials one thread is launched for each bin which holds the particles

and the wake potential effect on this bin is calculated by the thread and saved in

a temporary storage on the GPU memory.

Once the wake potentials are constructed a kernel is called that applies the

effects of the wake potentials to each particle in the bunch. This kernel parallelizes

the simulation over the particles in the bunch and launches one thread for each

particle. Shared memory is used to store the data that is frequently reused by the

kernel to minimize the loads from global memory. And the same kernel handles

all three planes if they are enable in the simulation. The kernel that applies

the effects of the wake potentials to all the planes enabled in the simulation is

demonstrated in 7.2

Additionally passing charges also deposit an oscillating field in the resonant

structures which decays over time. The following charges experience a kick from

the resulting voltage depending on their arrival time [58]. The wake potential VHC

acting on a charge at the longitudinal position τ , excited by the last k bunches

with the charge distribution ρk, depends on the wake field WHC of the harmonic

cavity [60]:

VHC(τ) =
bunches∑

k

∫ ∞
−∞

dτ ′ρk(τ
′)WHC(k∆τb + τ − τ ′) (7.13)

where ∆τb is the distance between two bunches. The wake field WHC is modeled

by:

WHC(τ) =2αRs exp−ατ (cosωτ − α

ω
sinωτ)

α =
ωr
2Q

, ω =
√
ω2
r − α2

(7.14)

A kernel that calculates the wake potential Vhc is launched for each bunch

and the calculated wake potential is stored in temporary GPU memory lr wake.

92

7. Multi-bunch tracking code - mbtrack U. Locans

1 __global__ void kernelWakePotentialEffect(particle_t *particles , int

*mapcell , double *GL1 , double *GlambdaV , double *GlambdaH , double

bunchIb , int Np, int Ncell) {

2
3 int idx = blockIdx.x * blockDim.x + threadIdx.x;

4 int tid = threadIdx.x;

5
6 //load wake potentials in shared memory

7 extern __shared__ double smem [];

8 double *sGL1 = (double *)smem;

9 double *sGlambdaV = (double *)&smem[Ncell];

10 double *sGlambdaH = (double *)&smem [2* Ncell];

11 while (tid < Ncell) {

12 sGL1[tid] = GL1[tid];

13 sGlambdaV[tid] = GlambdaV[tid];

14 sGlambdaH[tid] = GlambdaH[tid];

15 slr_wake[tid] = lr_wake[tid];

16 tid += blockDim.x;

17 }

18 __syncthreads ();

19
20 if (idx < Np) {

21 int map = mapcell[idx]; //get the bin of the particle

22 //apply wake potential effects

23 double factG = -dring.T0 * bunchIb / (Np * dring.E0 * FGIGA);

24 particles[idx].slope.xtau += factG * sGL1[map] + slr_wake[map];

25 //if VER and HOR planes enabled apply wake potentian effects

26 if (dSelfFieldModel.PlaneV > 0)

27 particles[idx].slope.z += -factG * sGlambdaV[map];

28 if (dSelfFieldModel.PlaneH > 0)

29 particles[idx].slope.x += -factG * sGlambdaH[map];

30 }

31 }

Code example 7.2: Kernel to apply wake potential effect to particles in a bunch.

These effects are applied to particles together with geometric ring impedance

effects as it is shown in the code example 7.2.

At the end of the transformation when the wake potential effects are applied

the temporary storage that holds the wake potential data is transferred to the

host side and written to disk. After the turn the temporary storage is cleared (all

values set to 0) since it is reused by the following bunch.

7.2.5 Statistics calculations

After each turn statistics of each bunch are calculated. Statistics are used to

log the information of about the bunches during the simulation and in the cal-

culations of long-range resistive wall effects. Most time consuming part of the

statistics calculations is the calculation of average position and momentum for

93

7. Multi-bunch tracking code - mbtrack U. Locans

each dimension, as well as standard deviation of position and momentum for each

dimension. Since all the particle data is kept on the GPU these calculations are

also performed on the GPU side and results transferred to the CPU. To calculate

the average value Thrust libraries reduce function is used to calculate the sums

of position and momentum for each dimension. After reduce is performed data

are sent to the CPU side where the average values are computed. To compute the

standard deviation Thrusts transform reduce function is used. Transformation is

performed for every data point calculating its deviation from the average and

reduction is performed to calculate the sums for each dimension. The sums are

transferred to the CPU side where square root of the sums is taken to get the

standard deviation.

Since each particle in the bunch in mbtrack is represented as a structure of 6

variables a custom operators are defined to perform reduction and transformations

correctly on the arrays of particles. The statistics are calculated for each bunch

as well as averaged for all the bunches in the simulations. Only the calculations

for the individual bunches are performed on the GPU while the rest is done by

the host side.

7.3 Results

7.3.1 Verification of the mbtrack-cuda

To validate the results from the GPU version of mbtrack-cuda the results are

compared with the original mbtrack-mpi version. Since no new features are in-

troduced in the CUDA version the simulations results should agree from both

versions of the code.

The difficulty of comparing the results arises because of the use of random

numbers in the simulation. Since for the calculation of synchrotron radiation (SR)

effects random numbers are needed and different random number generators are

used in both versions, it is not possible to reproduce the results of mbtrack-mpi

version with mbtrack-cuda version. For this reason the validation of the code was

done without the synchrotron radiation effects.

The achieved results show agreement between the two versions, meaning that

94

7. Multi-bunch tracking code - mbtrack U. Locans

the results of the original application can be reproduced using the GPU version.

This allows us to move the simulation from a CPU cluster to a heterogeneous

CPU/GPU system.

7.3.2 Performance of the mbtrack-cuda

The performance tests of the mbtrack were performed on a system equipped with

2x Intel E5-2609 CPUs and a Nvidia Tesla K40c. The aim of the tests was to

demonstrate the ability to enable the full ring simulations using the mbtrack-cuda

version. These simulations are not possible with the mbtrack-mpi version without

a computing cluster. The computing time is shown in the tables 7.1 and 7.2.

In the first test simulations each bunch consists of 100,000 particles and the

simulation is run for 10,000 turns. This simulation includes basic optics trans-

formations and long range resistive wall effects. The simulation is performed for

longitudinal and horizontal planes while the vertical plane is ignored. The sim-

ulations are performed with synchrotron radiation effects included and excluded

to show the effect of generating random numbers on the simulation time for the

CPU version. The reported results show the full execution time of the simulation

including the input and output operations. The results for this simulation are

presented in table 7.1

Table 7.1: Comparison of mbtrack-mpi and mbtrack-cuda on 8 core machine with
1 Nvidia Tesla K40c GPU for the first test simulation.

Number of bunches
No SR effects With SR effects

mbtrack-mpi mbtrack-cuda mbtrack-mpi mbtrack-cuda
1 116s 44s 942s 44s
2 117s 65s 940s 65s
3 122s 86s 970s 86s
10 457s 231s 2059s 360s
138 - 2992s - 2982s
416 - 9452s - 9461s

The second simulations simulates the MAX IV 3GeV ring. The simulation

includes the effects of two harmonic cavities and one broad band resonator, but

does not simulate the long range resistive wall effects. The simulation also includes

95

7. Multi-bunch tracking code - mbtrack U. Locans

100,000 particles per bunch and is run for 10,000 turns, but in this case transfor-

mations are performed only in longitudinal plane. The results for the second test

simulation are shown in the table 7.2.

Table 7.2: Comparison of mbtrack-mpi and mbtrack-cuda on 8 core machine with
1 Nvidia Tesla K40c GPU for the second test simulation.

Number of bunches
No SR effects With SR effects

mbtrack-mpi mbtrack-cuda mbtrack-mpi mbtrack-cuda
1 82s 33s 357s 33s
2 81s 59s 355s 60s
3 87s 86s 362s 86s
10 273s 249s 856s 356s
58 - 1668s - 1689s
176 - 7514s - 7511s

The results show, that for a small number of bunches the GPU version offers

a significant speedup over the CPU version. This is because for a small number

of bunches the CPU versions does not utilize all the available parallelism of the

system. The results also show that mbtrack-cuda version is able to handle full

ring simulations in reasonable time, enabling to run the simulations when a CPU

cluster is not available.

96

Chapter 8

Conclusions

The author has developed Dynamic Kernel Scheduler (DKS) during this work

to ease the integration of hardware accelerators in existing scientific applications.

DKS allows to separate all the device specific code, written using CUDA, OpenCL

or OpenMP, from the host application. This separation eases the development,

management and optimization of the device code, while also requiring minimal

changes in the original application to integrate the use of new devices. DKS

is developed to be easily extendable in the future to support new development

frameworks and new devices.

During this work DKS was used to integrate the GPUs and Intel MICs in

different scientific applications used at PSI and ETH for particle accelerator sim-

ulations and experimental data analysis.

Author used DKS to allow OPAL (Object Oriented Particle Accelerator Li-

brary) to offload FFT Poisson Solver and Monte-Carlo simulations for particle

matter interaction to GPU or Intel MIC. CUDA and OpenMP was used in DKS

to target these devices. Speedup of up to ×11 was demonstrated for FFT Poisson

solver on Nvidia Tesla K40 compared to MPI implementation using 8 CPU cores.

For particle matter interaction simulations on the GPU speedups of up to ×50

was achieved compared to multicore CPU performance.

The musrfit application for µSR experiments was enhanced to allow the use

of GPUs to speed up parameter fitting. CUDA and OpenCL were used to create

the GPU code and DKS was used to ease the integration of the created algorithm

in musrfit. The demonstrated speedups using the GPU compared to multi-core

97

8. Conclusions U. Locans

CPU implementation where around ×30...×40, which would allow for almost real

time analysis of experimental data.

The author added the option to offload the time consuming parts of the al-

gorithm to GPU for PET image reconstruction application developed at ETH.

DKS was used together with CUDA to allow application to target Nvidia GPUs.

The speedups achieved with the GPU (×57) brings the application closer to the

main goal - real time PET image reconstruction.

Mbtrack application used at PSI to analyze collective bunch instabilities in the

SLS-2 upgrade was optimized to take advantage of the computational power of

GPUs. The application uses CUDA to target Nvidia GPUs and the performance

improvements using GPUs allows for the full SLS-2 ring simulation to be run on

a single GPU instead of requiring a large CPU cluster.

The results achieved during this work show, that using hardware accelerators

can provide a significant boost in application execution time, when compared to

more traditional CPU systems. The use of DKS can also ease the integration of

these devices in existing applications with a large code base.

98

References

[1] Top500 supercomputers. 2016. URL: http://www.top500.org/lists/

2016/11/. 1

[2] NVIDIA CUDA Zone. 2015. URL: https://developer.nvidia.com/cuda-

zone. 1

[3] Khronos Group, OpenCL. 2015. URL: https://www.khronos.org/

opencl/. 2

[4] Intel Xeon Phi coprocessor. 2015. URL: https://software.intel.com/en-

us/mic-developer. 2

[5] OpenACC. 2015. URL: http://www.openacc.org/. 2, 3

[6] OpenMP. 2015. URL: http://openmp.org/wp/openmp-specifications/.

2

[7] OpenMP. OpenMP Application Program Interface. The OpenMP Forum,

Tech. Rep, (July):320, 2013. doi:10.1080/08905769008604595. 3

[8] Gpu-accelerated libraries. 2016. URL: https://developer.nvidia.com/

gpu-accelerated-libraries. 3, 24

[9] Intel Math Kernel Library (Intel MKL). 2015. URL: https:

//software.intel.com/en-us/articles/intel-mkl-on-the-intel-

xeon-phi-coprocessors. 3, 25

99

http://www.top500.org/lists/2016/11/
http://www.top500.org/lists/2016/11/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://software.intel.com/en-us/mic-developer
https://software.intel.com/en-us/mic-developer
http://www.openacc.org/
http://openmp.org/wp/openmp-specifications/
http://dx.doi.org/10.1080/08905769008604595
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors

REFERENCES U. Locans

[10] Thrust. 2016. URL: http://docs.nvidia.com/cuda/thrust. 3, 20

[11] Arrayfire. 2016. URL: http://www.arrayfire.com/docs/index.htm. 3,

19, 20

[12] Boostcompute. 2016. URL: https://boostorg.github.io/compute/. 3,

22

[13] Mathias Bourgoin, Emmanuel Chailloux, and Jean Luc Lamotte. Efficient

abstractions for GPGPU programming. International Journal of Parallel

Programming, 42(4):583–600, 2014. 3

[14] J. Svensson, K. Claessen, and M. Sheeran. GPGPU kernel implementation

and refinement using Obsidian. Procedia Computer Science, 1(1):2065–2074,

2010. 3

[15] M. Viñas, B.B. Fraguela, Z. Bozkus, and D. Andrade. Improving OpenCL

Programmability with the Heterogeneous Programming Library. Procedia

Computer Science, 51:110–119, 2015. 3

[16] Intel xeon phi x100 family coprocessor - the architecture. 2012.

URL: https://software.intel.com/en-us/articles/intel-xeon-phi-

coprocessor-codename-knights-corner. 15, 16

[17] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath Venu-

gopalakrishnan, Krunal Patel, and John Melonakos. ArrayFire: a GPU ac-

celeration platform. Proc. SPIE 8403, Modeling and Simulation for Defense

Systems and Applications VII, 8403, 2012. doi:10.1117/12.921122. 19, 20

[18] Nathan Bell and Jared Hoberock. Thrust: A Productivity-Oriented Library

for CUDA. GPU Computing Gems Jade Edition, pages 359–371, 2012. doi:

10.1016/B978-0-12-385963-1.00026-5. 21

[19] Vexcl. 2016. URL: http://vexcl.readthedocs.io. 23

[20] Denis Demidov. VexCL Documentation. 2016. 24

[21] Viennacl. 2016. URL: http://viennacl.sourceforge.net/. 24

100

http://docs.nvidia.com/cuda/thrust
http://www.arrayfire.com/docs/index.htm
https://boostorg.github.io/compute/
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://dx.doi.org/10.1117/12.921122
http://dx.doi.org/10.1016/B978-0-12-385963-1.00026-5
http://dx.doi.org/10.1016/B978-0-12-385963-1.00026-5
http://vexcl.readthedocs.io
http://viennacl.sourceforge.net/

REFERENCES U. Locans

[22] Karl Rupp, Florian Rudolf, and J Weinbub. ViennaCL-a high level linear

algebra library for GPUs and multi-core CPUs. Intl. Workshop on GPUs and

Scientific Applications, pages 51–56, 2010. URL: http://www.iue.tuwien.

ac.at/pdf/ib_2010/Rupp_GPUScA.pdf. 24

[23] Acl - amd compute libraries. 2016. URL: http://developer.amd.com/

tools-and-sdks/opencl-zone/acl-amd-compute-libraries/. 25

[24] Andreas Adelmann, Uldis Locans, and Andreas Suter. The Dy-

namic Kernel SchedulerPart 1. Computer Physics Communications,

207:83–90, 2016. URL: http://linkinghub.elsevier.com/retrieve/pii/

S0010465516301370, doi:10.1016/j.cpc.2016.05.013. 25, 64

[25] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda. Software au-

tomatic tuning: From concepts to state-of-the-art results. Software Auto-

matic Tuning: From Concepts to State-of-the-Art Results, pages 1–377, 2010.

doi:10.1007/978-1-4419-6935-4. 32

[26] Ping Guo and Liqiang Wang. Auto-tuning CUDA parameters for sparse

matrix-vector multiplication on GPUs. Proceedings - 2010 International

Conference on Computational and Information Sciences, ICCIS 2010, pages

1154–1157, 2010. doi:10.1109/ICCIS.2010.285. 32

[27] Chih-Sheng Lin, Shih-Meng Teng, and Pao-Ann Hsiung. Auto-

tuning for GPGPU applications using performance and energy model.

Journal of Systems Architecture, 62:40–53, 2016. URL: http://

linkinghub.elsevier.com/retrieve/pii/S1383762115001514, doi:10.

1016/j.sysarc.2015.11.012. 32

[28] Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, and Walter F.

Tichy. Application-independent autotuning for GPUs. Advances in Parallel

Computing, 25(1):626–635, 2014. doi:10.3233/978-1-61499-381-0-626.

32

[29] Michael Vollmer. Meta-Programming and Auto-Tuning in the Search for

High Performance GPU Code. pages 1–11, 2015. 32

101

http://www.iue.tuwien.ac.at/pdf/ib_2010/Rupp_GPUScA.pdf
http://www.iue.tuwien.ac.at/pdf/ib_2010/Rupp_GPUScA.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/acl-amd-compute-libraries/
http://developer.amd.com/tools-and-sdks/opencl-zone/acl-amd-compute-libraries/
http://linkinghub.elsevier.com/retrieve/pii/S0010465516301370
http://linkinghub.elsevier.com/retrieve/pii/S0010465516301370
http://dx.doi.org/10.1016/j.cpc.2016.05.013
http://dx.doi.org/10.1007/978-1-4419-6935-4
http://dx.doi.org/10.1109/ICCIS.2010.285
http://linkinghub.elsevier.com/retrieve/pii/S1383762115001514
http://linkinghub.elsevier.com/retrieve/pii/S1383762115001514
http://dx.doi.org/10.1016/j.sysarc.2015.11.012
http://dx.doi.org/10.1016/j.sysarc.2015.11.012
http://dx.doi.org/10.3233/978-1-61499-381-0-626

REFERENCES U. Locans

[30] Natalia Kalinnik, Matthias Korch, and Thomas Rauber. Online auto-tuning

for the time-step-based parallel solution of ODEs on shared-memory sys-

tems. Journal of Parallel and Distributed Computing, 74(8):2722–2744, 2014.

URL: http://dx.doi.org/10.1016/j.jpdc.2014.03.006, doi:10.1016/

j.jpdc.2014.03.006. 33

[31] R.W Hockney. Methods in computational physics. pages 136–211, 1970. 36

[32] R.W. Hockney and J.W. Eastwood. Computer Simulation using Particles.

Adam Hilger, 1988. 36

[33] J. W. Eastwood and D. R. K. Brownrigg. J. Comp. Phys, 32, 24-38, 1979.

36

[34] Benjamin Ulmer, Uldis Locans, and Andreas Adelmann. Performance anal-

ysis of mkl fast fourier transform and fft-poisson solver on intel xeon phi.

ETH Zurich, Semester project, 2015. 40

[35] Y.J. Bi, A. Adelmann, R. Dölling, M. Humbel, W. Joho, M. Seidel, and T.J.

Zhang. Towards quantitative simulations of high power proton cyclotrons.

Physical Review Special Topics - Accelerators and Beams, 14(5), 2011. 40

[36] J.J. Yang, A. Adelmann, M. Humbel, M. Seidel, and T.J. Zhang. Beam

dynamics in high intensity cyclotrons including neighboring bunch effects:

Model, implementation, and application. Physical Review Special Topics -

Accelerators and Beams, 13(6), 2010. 40

[37] A Allisy, AM Kelleler, RS Caswell, et al. Stopping powers and ranges for

protons and alpha particles. ICRU Report, 49, 1993. 41

[38] K.A. Olive et al. Particle data group. Chin. Phys. C, 38, 090001, 2014. 41

[39] William R. Leo. Techniques for nuclear and particle physics experiments.

Springer-Verlag, Berlin Heidelberg New York, 2nd edition, 1994. 41

[40] J. D. Jackson. Classical Electrodynamics. John Wiley &. Sons, New York,

3rd edition, 1998. 43

102

http://dx.doi.org/10.1016/j.jpdc.2014.03.006
http://dx.doi.org/10.1016/j.jpdc.2014.03.006
http://dx.doi.org/10.1016/j.jpdc.2014.03.006

REFERENCES U. Locans

[41] Helene Stachel, Andreas Adelmann, and Prof Klaus Kirch. Double Degrader

for Proton Therapy. ETH Zurich, Masters thesis, 2013. 46

[42] Matthias Toggweiler. An adaptive time integration method for more efficient

simulation of particle accelerators Supervised by. 2011. 48

[43] Lorenzo Moneta, M Winkler, A Zsenei, P Mato-Vila, M Hatlo, and F James.

Developments of mathematical software libraries for the LHC experiments.

IEEE Transactions on Nuclear Science, 52:2818–2822, 2005. 61, 68, 69

[44] CN/ASD Group. Minuit users guide. Program Library D506, CERN, 1993.

61

[45] A Suter and BM Wojek. Musrfit: a free platform-independent framework for

µsr data analysis. Physics Procedia, 30:69–73, 2012. 61, 66

[46] A Youanc and P Dalmas de Réotier. Muon spin rotation, relaxation and

resonance. Oxford University Press, Oxford, 2011. 63, 68

[47] CUDA Toolkit 4.2. CUBLAS Library. PG-05326-041 v01, (March), 2012.

66

[48] CUDA Toolkit 7.5. Nvrtc - cuda runtime compilation. (September), 2015.

66

[49] Musrfit user manual. 2015. URL: http://lmu.web.psi.ch/musrfit/user/

MUSR/WebHome.html. 66

[50] Jing-Yu Cui, Guillem Pratx, Sven Prevrhal, and Craig S Levin. Medical

physics, 38(12):6775–86, 2011. 71

[51] J. L. Herraiz, S. Espana, R. Cabido, A. S. Montemayor, M. Desco, J. J.

Vaquero, and J. M. Udias. IEEE Transactions on Nuclear Science, 58(5

PART 1):2257–2263, 2011. 71

[52] Guillem Pratx, Jing Yu Cui, Sven Prevrhal, and Craig S. Levin. 3-D to-

mographic image reconstruction from randomly ordered lines with CUDA.

NVIDIA Corporation and Wen-mei W. Hwu, 2011. 71

103

http://lmu.web.psi.ch/musrfit/user/MUSR/WebHome.html
http://lmu.web.psi.ch/musrfit/user/MUSR/WebHome.html

REFERENCES U. Locans

[53] Andrew J. Reader and Habib Zaidi. Advances in PET Image Re-

construction. PET Clinics, 2(2):173 – 190, 2007. PET Instrumenta-

tion and Quantification. URL: http://www.sciencedirect.com/science/

article/pii/S1556859807000193, doi:http://dx.doi.org/10.1016/j.

cpet.2007.08.001. 71, 72

[54] S. Agostinelli, J. Allison, et al. Geant4 – a simulation toolkit. Nu-

clear Instruments and Methods in Physics Research Section A: Accel-

erators, Spectrometers, Detectors and Associated Equipment, 506(3):250–

303, 2003. URL: http://www.sciencedirect.com/science/article/pii/

S0168900203013688, doi:http://dx.doi.org/10.1016/S0168-9002(03)

01368-8. 80

[55] J. Allison, K. Amako, et al. Geant4 developments and ap-

plications. IEEE Transactions on Nuclear Science, 53(1):270–278,

2006. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=1610988, doi:10.1109/TNS.2006.869826. 80

[56] T. F. Budinger, S. E. Derenzo, et al. Emission computer assisted tomography

with single-photon and positron annihilation photon emitters. J Comput

Assist Tomogr, 1(1):131–145, Jan 1977. 80

[57] Stefan Hegglin. Simulating Collective Effects on GPUs. ETH Zurich, Masters

thesis, 2016. 84

[58] Galina Skripka, Ryutaro Nagaoka, Marit Klein, Francis Cullinan, and

Pedro F. Tavares. Simultaneous computation of intrabunch and inter-

bunch collective beam motions in storage rings. Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 806:221–230, 2016. URL: http://

linkinghub.elsevier.com/retrieve/pii/S016890021501236X, doi:10.

1016/j.nima.2015.10.029. 84, 85, 88, 89, 92

[59] Jack Borthwick, Francis Cullinan, Ryutaro Nagaoka, and Galina Skripka.

mbtrack : Multi-bunch tracking code. mbtrack manual, 2015. 84, 90

104

http://www.sciencedirect.com/science/article/pii/S1556859807000193
http://www.sciencedirect.com/science/article/pii/S1556859807000193
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpet.2007.08.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpet.2007.08.001
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1610988
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1610988
http://dx.doi.org/10.1109/TNS.2006.869826
http://linkinghub.elsevier.com/retrieve/pii/S016890021501236X
http://linkinghub.elsevier.com/retrieve/pii/S016890021501236X
http://dx.doi.org/10.1016/j.nima.2015.10.029
http://dx.doi.org/10.1016/j.nima.2015.10.029

REFERENCES U. Locans

[60] M Klein, R Nagaoka, and Synchrotron Soleil. Multibunch Tracking Code

Development To Account for Passive Landau Cavities. International Particle

Accelerator Conference 2013, (5):5–7, 2013. 92

105

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Research background and motivation
	1.2 Novelty of the work
	1.3 Thesis and research questions
	1.4 Research methodology
	1.5 The aim and tasks of the research
	1.6 Main results of the thesis and approbation of the results
	1.7 Publications of the research results
	1.8 Outline of the thesis

	2 Future hardware architectures
	2.1 GPU Accelerated Computing
	2.1.1 GPU Architecture
	2.1.2 CUDA
	2.1.3 OpenCL

	2.2 Intel Many Integrated Cores
	2.2.1 Intel MIC architecture
	2.2.2 OpenMP and vectorization
	2.2.3 OpenCL

	2.3 Hardware accelerators
	2.3.1 Hardware accelerators used during this work

	3 Dynamic Kernel Scheduler
	3.1 Accelerator libraries
	3.1.1 ArrayFire
	3.1.2 Thrust
	3.1.3 Boost.compute
	3.1.4 VexCL
	3.1.5 ViennaCL
	3.1.6 Other libraries

	3.2 DKS concept and architecture
	3.3 DKS algorithm library
	3.3.1 DKS Base
	3.3.2 DKS and OPAL
	3.3.3 DKS and Musrfit
	3.3.4 DKS and PET Image Reconstruction

	3.4 DKS auto-tuning
	3.4.1 Auto-tuning concept
	3.4.2 DKS and auto-tuning

	4 OPAL
	4.1 OPAL and DKS
	4.2 FFT Poisson solver
	4.2.1 FFT Based Particle-Mesh Solver
	4.2.2 FFT-based Convolutions

	4.3 FFT Poisson solver and DKS
	4.3.1 CUDA Implementation of the Poisson Solver in DKS
	4.3.2 OpenMP Implementation of the Poisson Solver in DKS
	4.3.3 Integration of DKS in OPAL
	4.3.4 Performance Results

	4.4 Particle matter interaction
	4.4.1 The Energy Loss
	4.4.2 Coulomb Scattering
	4.4.3 Large Angle Rutherford Scattering
	4.4.4 OPAL implementation
	4.4.5 Particle drift via time integration

	4.5 Particle matter interaction and DKS
	4.5.1 The DKS Implementation of the Particle Matter Interaction Model
	4.5.2 Particle matter interaction on the GPU
	4.5.3 Particle matter interaction on the MIC
	4.5.4 Integrating DKS in OPAL

	4.6 Performance Results

	5 Musrfit
	5.1 Musrfit and DKS
	5.2 Problem description
	5.3 2 and MLH kernels on GPU
	5.4 User defined kernels
	5.5 Musrfit speedups with GPUs

	6 PET Image reconstruction and analysis
	6.1 PET Image reconstruction basics
	6.1.1 Image reconstruction
	6.1.2 Image analysis

	6.2 GPU kernels for PET image reconstruction and analysis
	6.2.1 Forward and backward projections
	6.2.2 Source and background calculation

	6.3 Results

	7 Multi-bunch tracking code - mbtrack
	7.1 MBTRACK
	7.1.1 Collective effects in synchrotrons
	7.1.2 Limitations of mbtrack MPI version
	7.1.3 Parallelization in mbtrack MPI version

	7.2 GPU acceleration of MBTRACK
	7.2.1 mbtrack CUDA
	7.2.2 GPU memory management
	7.2.3 The basic single particle transformations
	7.2.4 Geometric ring impedance
	7.2.5 Statistics calculations

	7.3 Results
	7.3.1 Verification of the mbtrack-cuda
	7.3.2 Performance of the mbtrack-cuda

	8 Conclusions
	References

