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Domain Decomposition Approach for Efficient Time-Domain Finite
Element Computation of Winding Losses in Electrical Machines

Antti Lehikoinen1, Jouni Ikäheimo2, Antero Arkkio1, and Anouar Belahcen1

1Aalto University, Dept. of Electrical Engineering and Automation, P.O. Box 13000, FI-00076 Espoo, Finland
2ABB Oy, Vaasa 65101, Finland

Finite element analysis of winding losses in electrical machines can be computationally uneconomical. Computationally lighter
methods often place restrictions on the winding configuration or have been used for time-harmonic problems only. This paper
proposes a domain decomposition type approach for solving this problem. The slots of the machine are modelled by their impulse
response functions and coupled together with the rest of the problem. The method places no restrictions on the winding and naturally
includes all resistive AC loss components. The method is then evaluated on a 500 kW induction motor. According to the simulations,
the method yields precise results 70–100 faster compared to the established finite element approach.

Index Terms—Finite element analysis, eddy currents, proximity effects, reduced order systems.

I. INTRODUCTION

Accurate prediction of resistive winding losses can be
crucial for the design and optimization of both high-efficiency
and high-performance electrical machines. Due to complex ge-
ometries, numerical finite element analysis is usually required
for this purpose. However, a dense mesh is typically imperative
for sufficient accuracy, resulting in long computation times.
This problem is further compounded by the widespread use
of frequency converter supply, the analysis of which requires
a short time-step length to accurately model the effects of
supply harmonics.

Winding losses can be divided into two components: skin-
and proximity effects, and circulating currents. The former
two refer to an uneven current distribution inside a particular
conductor, due to the time-varying field generated by either
the same conductor or nearby ones. Typically, the proximity
effects dominate. By contrast, circulating currents refer to an
uneven distribution of total current between parallel conduc-
tors.

Several approaches have been proposed for the analysis
of proximity effect, most based on homogenization of the
winding [1]–[8]. However, practically all research has focused
on series-connected coils, or otherwise ignored the circulating
current effects altogether. Their inclusion would require some
further study. Furthermore, homogenization approaches are
normally based on a minimal symmetric region, so a regular
packing of conductors is required. Finally, their accuracy can
suffer near the borders of the homogenized region, although
it can be improved by subproblem modelling [9]. By contrast,
research on circulating currents has mostly utilized brute-
force analysis on problems with relatively few conductors
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or ignored the proximity effects altogether [10]–[19]. Some
analytical methods have also been studied, along with brute-
force approaches [20]–[23].

This paper proposes a domain decomposition type approach
for computationally efficient winding loss analysis in time-
domain. The slots are modelled by their pre-computed impulse
response functions, and coupled together with the rest of the
problem domain on the boundary. All three loss components
are naturally taken into account, and the method can be applied
to linear and nonlinear problems both. Furthermore, there are
no restrictions on the winding configuration or geometry. The
proposed method has been inspired by [24], but addresses
many of its limitations related to analysing electrical machines.
For instance, the method can be used with arbitrary conductor
packings and slot shapes, and has been extended to time-
domain.

The performance of the proposed method is evaluated on
a 500 kW induction motor with a stranded stator winding.
A 100-fold speed-up is observed in time-harmonic analysis,
compared to a reference solution. In time-stepping, the factor
is 70. In both cases, the method yields very accurate results.

According to the simulations, the analyzed motor can ex-
hibit significant circulating current losses, especially when
supplied with a pulse-width modulated voltage source. These
losses appear to be highly sensitive to the exact winding
configuration, i.e. whether or not the parallel strands are
transposed from slot to slot.

II. BASIC THEORY

This section briefly presents some basic finite element
(FE) theory, necessary for understanding the method proposed
in the next section. The well-known two-dimensional A-V
formulation will be used [25]. After discretization, the problem
consists of the nodal vector potentials a, the voltages u over
the conductors, plus a set of linearly independent currents
(typically loop currents) i. In time-domain, the problem can
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be expressed asS+M d
dt CJ 0

CE
d
dt −I RL

0 LT Z

au
i

 =

 0
0
us

 . (1)

S and M are the well-known stiffness and mass matrices
and us is the sum of supply voltages for each current loop.
Furthermore, the matrices CJ and CE

[CJ]ij =
−σ

le

∫
Ωc

j

φidS (2)

[CE]ij = Ri

∫
Ωc

i

φjdS (3)

are used to consider the current density and average back-emf
in the conductors, with their cross-sectional domains denoted
by Ωc

i . The effective length and conductivity are denoted by
le and σ, whereas the shape function associated with the node
i is φi. The diagonal matrix R contains the DC-resistances
Ri of each conductor i, and the end-winding impedances are
collected in the matrix Z. Finally, the loop matrix L describes
the winding topology, with the entries

[L]ij = (4) 1 current j flows through conductor i forwards
−1 current j flows through conductor i backwards
0 otherwise.

III. PROPOSED DECOMPOSITION APPROACH

This section describes the proposed domain decomposition
approach. An electrical machine with a stranded stator winding
is used as an example application in this paper, although the
method could easily be applied for modeling other types of
windings as well. The method is based on the elimination of
the dense slot mesh from the problem, yielding a significant
reduction in the number of unknowns. Several details are
discussed in their respective subsections, such as different
initial conditions and loss computation. A brief comparison
to existing work is also presented.

For the remainder of this paper, the following terminology
is adopted. The slots shall be referred to as slave domain,
whereas the rest of the machine will be called main domain.
The terms slave problem and main problem will be used cor-
respondingly. Finally, the term reference shall be used to refer
to the established FE approach without any dimensionality
reduction techniques utilized.

A single slot segment of an electrical machine is used
as an example, illustrated in Fig. 1. This domain is easily
divided into the main and slave domains, with the boundary
highlighted in blue. The winding inside the slot is stranded,
with the conductors illustrated with the red circles. This
requires a very dense mesh, increasing the computational cost.
By contrast, the main domain could be easily modelled with a
much coarser mesh shown in Fig. 1. This fact can be exploited
by means of a decomposition approach shown next.

Fig. 1. Example segment.

A. Method Description

Next, the basic principle of the proposed approach is pre-
sented. Both the main and slave domains of the example prob-
lem are meshed independently. The main domain is governed
by simply

Sa = f , (5)

whereas the equations for the slave domain are are

M̃
d

dt
ã+ S̃ã+ C̃Jũ = 0 (6)

C̃E
d

dt
ã− ũ+RLĩ = 0 (7)

LTũ+ Zĩ = us. (8)

The quantities associated with the slot domain are identified
with the tilde notation ã, whereas un-tilded ones refer to the
main domain. Zero initial conditions at t = 0 are assumed for
now. The length of a and ã are Nm and Ns, respectively, with
Nm << Ns. The numbers of voltages and currents are Nu and
Ni.

In addition to (5)–(8), the continuity between ã and a on the
main-slave boundary has to be enforced. For that purpose, let
us denote the discrete potentials of the main mesh nodes that
are located on the boundary by ∂a, of length nmb. Likewise,
the nsb boundary nodes of the slave mesh are denoted by ∂ã.

Then, the continuity requirement between the slot and main
domains for the discrete problem can be expressed as

Pms∂a− ∂ã = 0. (9)

The nsb × nmb matrix Pms can be formed by e.g. the mortar
method, or by following the authors’ polynomial interpolation
approach in [26]. Both methods have been observed to yield
good results [27], [28], but a thorough comparison is beyond
the scope of this paper. Like was done in [29], let us also
define the selection matrices B and B̃ (of size nmb ×Nm and
nsb ×Ns) for extracting the boundary nodes

∂a = Ba (10)

∂ã = B̃ã. (11)

In other words, [B]ij = 1 if node j of the main mesh is also
the ith entry in ∂a, and zero otherwise.

As is well known, the continuity (9) can be enforced with
Lagrange multipliers h. The nsb×1 vector h can be understood
as the discrete equivalent of the normal derivative of the vector
potential on the boundary, i.e. the tangential component of the
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magnetic field strength (e.g. [30]–[32]). Eqs. (5)–(8) and (9)
are combined into the augmented system

S 0 0 0 (PmsB)
T

0 S̃+ M̃ d
dt C̃J 0 −B̃T

0 C̃E
d
dt −I RLĩ 0

0 0 LT Z 0

PmsB −B̃T 0 0 0



a
ã
ũ

ĩ
h

 (12)

=


f
0
0
us

0

 .

The entire system is time-dependent, including the multipliers
h.

Now, as will be shown in Section III-B, h and ũ can be
written as

h = Cha∂a+Chĩi+ ch (13)

ũ = Cua∂a+Cuĩi+ cu, (14)

with some known matrices Cha,Chi,Cua,Cui and vectors
ch, cu. Eq. (13) can be understood as a discrete Dirichlet-to-
Neumann map, i.e. a mapping from the boundary potentials
and currents to the discrete fluxes h.

With (13), we see that block-rows 1 and 4 in (12) can be
fully decoupled from the rest of the problem, resulting in the
smaller system[

S+ (PmsB)
T
ChaB (PmsB)

T
Chi

LTCuaB LTCui + Z

] [
a

ĩ

]
(15)

=

[
− (PmsB)

T
ch

−LTcu + us

]
of size Nm + Ni. Indeed, the contribution of the entire slave
domain has been compressed into the C matrices and vectors.
Problem (15) is often an order of magnitude smaller than the
full problem with the slot included. Admittedly, the C matrices
are in general full, which results in a dense sub-block of size
nmb × nmb in the final system matrix. Nevertheless, it is still
typically much faster to solve than the full problem, as shall
be demonstrated later in the examples.

B. Deriving the Decoupling Matrices

Next, the matrices Cha,Chi,Cua,Cui and vectors ch, cu
are derived. We begin by realizing that the slave domain forms
a linear time-invariant (LTI) system (6)–(8). As such, it is
fully characterized by its impulse response function. In other
words, ã and ũ are fully determined by the values of ∂ã and
ĩ (both present and past). Specifically, due to the linearity, the
superposition principle can be utilized: the contribution from
each of the boundary node potentials ∂ãi and current ĩi can
be determined separately (while keeping the rest at zero), and
then summed together.

To arrive at (13), the main-side boundary potentials ∂a
and currents ĩ are regarded as inputs to the impulse response
function. Correspondingly, the Lagrange multipliers h and

voltages ũ are the outputs. For example, the response of h
to an impulse in ∂a can be written as

HI
a(t) =

[
hI
a1(t) hI

a2(t) . . . hI
aNcpl(t)

]
. (16)

Here, each hI
ai(t) denotes the continuous-time response of h

to an impulse in the boundary potential i. It can be obtained
by first solving (6) – (8) (of size Ns +Nu) in the time-domain
with the time-dependent boundary data

∂ã(t) = Pms∂a
δ(t) (17)

ĩ ≡ 0, (18)

where

∂aδj(t) =

{
δ(t) if j = i
0 otherwise, (19)

and δ(t) is the unit impulse function. Once the solution has
been computed, h can easily obtained in the post-processing
stage by multiplying the second row of (12) by B̃ and solving
for h.

Using a similar notation, let us also define the impulse
response functions HI

i(t). These are the responses of h to
an impulse in one of the currents ĩ, while keeping ∂ã ≡ 0.
Finally, let us treat the voltages ũ in a similar fashion, and
denote their responses to ∂a and ĩ by UI

a(t) and UI
i(t)

respectively.
With the impulse response functions, h and ũ at any point

t in time can be obtained with a convolution

h(t) =

t∫
0

[
HI

a(t− τ)∂a(τ) +HI
i(t− τ )̃i(τ)

]
dτ (20)

= HI
a ∗t0 ∂a+HI

i ∗t0 ĩ
ũ(t) = UI

a ∗t0 ∂a+UI
i ∗t0 ĩ. (21)

This fact can then be utilized in time-stepping analysis as
follows. The continuous-time solution ∂a(t) can be written
as

∂a(t) =
∑
k

∂aklk(t), (22)

where ∂a1, ∂a2, . . . are the solutions at each time-step, and
l(t) are some scalar-valued, piece-wise continuous functions
of time satisfying

lk(t) =

{
1 t = tk

0 t = ti for any i ̸= k.
(23)

The same holds for the currents ĩ(t). The exact form of l de-
pends on the time-stepping scheme used – e.g. the backward-
Euler method would correspond to piecewise-constant l.

At the time-step k + 1, the values of ∂a and ĩ are only
known up to k. Hence, we can split the convolution into two
parts, and write

hk+1 =
(
HI

a ∗t
k+1

tk Ilk+1
)
∂ak+1 +

(
HI

i ∗t
k+1

tk Ilk+1
)
ĩk+1

+HI
a ∗t

k

0

(
k∑

l=1

∂alll

)
+HI

i ∗t
k

0

(
k∑

l=1

ĩlll

)
, (24)

where I is the identity matrix. Now we see that this expression
corresponds to (13), with the first line representing the two
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matrix terms and the second line corresponding to the vector.
The voltages ũ can be treated equivalently.

1) Constant Time-Step Length
The above is valid for a general time-dependency. However,

it can be considerably simplified if a constant time-step length
∆t is assumed. In this case, the decomposition approach will
yield exactly the same solution as solving the original problem
would, up to numerical accuracy.

We begin by replacing the impulse function δ by its discrete
equivalent

δkd =

{
1 k = 1
0 otherwise. (25)

Equivalently to (16), the impulse response functions are re-
placed by their discrete-time equivalents

HI
a

k
=
[
hI
a
k

1 hI
a
k

2 . . . hI
a
k

Ncpl

]
, (26)

i.e. sets of matrices. These can be easily computed numerically
by starting from all-zero initial conditions at k = 0. Finally,
the convolutions are replaced by discrete convolutions, i.e.

hk+1 = HI
a

1
∂ak+1 +HI

i

1
ĩk+1 (27)

+

k∑
l=1

(
HI

a

k−l+2
∂al +HI

i

k−l+2
ĩl
)

and similarly for ũ. In practice, the impulse responses will
often decay to zero in a few time-steps. In this case, they can
be truncated, so the summation begins at some l > 1.

2) Variable Time-Step Length
In the case of a variable time-step length, discrete-time anal-

ysis cannot be utilized. Thus, approximate impulse response
functions have to be obtained by numerical means. Similarly,
the convolutions have to be computed as integrals, rather than
finite sums. Otherwise, the basic principles remain unchanged.

C. General Workflow of the Proposed Method

For clarity, the workflow of the proposed method has been
illustrated in Fig. 2, for a fixed time-step length. The problem
domain is first divided into the main and slave parts, and
both are meshed independently. The impulse responses of the
slave domain are computed, utilizing the boundary nodes of
the main mesh as per (17). Once the response computation is
finished, the system (15) is assembled, with the help of (27).

Next, time-stepping analysis can be performed. At each
step, the load-vector side of (15) is updated by computing the
convolution term of (27). The nonlinear problem is then solved
with the Newton-Raphson method. After the time-stepping,
typical post-processing tasks can be performed.

D. Non-zero Initial Conditions

Until now, zero initial conditions have been assumed. How-
ever, time-stepping analysis of electrical machines is often
started from the conditions obtained from harmonic analysis,
instead. Two approaches are next proposed for this situation.

The first one is to compute an additional zero-input decay
term. In other words, hdecay(t) and ũdecay(t) are pre-computed
with initial conditions corresponding to the harmonic analysis

Divide problem geometry

Mesh slave domain Mesh main domain

Compute impulse responses

Assemble decoupled system

Begin time-stepping

Update load vector
with convolution

Solve nonlinear problem
with Newton-Raphson

All steps
finished?

Post-process results

Pr
e-

co
m

pu
ta

tio
n

Ti
m

e-
st

ep
pi

ng

no

yes

Fig. 2. Flowchart of the proposed method.

solution, with ∂a and ĩ set to zero for all t > 0. The final h and
ũ will then be a sum of this decay term, plus the convolution
term described in the previous Section.

Another solution is to extend ∂a(t) and ĩ(t) to t < 0
by using a sinusoidal time-dependency corresponding to the
harmonic solution. Obviously, the convolution then has to
be started from negative time, too. Additionally, the solution
obtained by this method will not generally be exactly the same
as given by the first approach, as the contribution of the t < 0
conditions are handled in a different way. The accuracy of
both approximations will be evaluated in the results section.

E. Harmonic Analysis and Nonlinearity

The proposed method can very easily be applied to time-
harmonic analysis as well, with two minor changes. The
impulse response function is replaced by a complex single-
frequency response [24], [26]. Additionally, computing the
convolution is no longer necessary.

Likewise, nonlinear problems can easily be solved with
the Newton-Raphson method. Since the slots are linear, their
contribution to the Jacobian

J =
∂ (S (a)a)

∂a
= S+

∂S

∂a
(28)

is limited to the first term S only.

F. Several Slots and 3D Problems

The proposed approach should prove increasingly more
powerful in practical problems that contain several slots.
Since the slots are typically geometrically identical, the same
impulse response functions can be utilized for all of them.
To take into account the fact that the slot currents ĩj for a
particular slot j are a linear function ĩj = Lji of the main
problem currents i, all slave-domain strands can be assumed
parallel-connected in the pre-computation stage. This has the
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added benefit that different winding configurations can be
analysed by simply changing L. Likewise, only a subset ∂aj
of the main problem boundary potentials will be used as input
for each slot.

Of course, this is not valid if the geometry of the slots
differs, e.g. due to a different packing of conductors. In this
case, separate functions must be computed for each slot.
However, based on the simulation results presented later, this
should still have a relatively minor effect on total computation
time. Furthermore, a stochastic response-surface approach
could probably further decrease the computational cost, as the
exact packing is in reality uncertain.

The method appears applicable to 3D problems, as La-
grange multipliers are often used in them as well. The im-
pulse response-convolution approach also works, as the slots
and conductors are still LTI systems. However, a numerical
verification is of course sorely needed, as is analysis of the
computational benefits.

G. Eddy Current Loss Computation

It must be noted that the methodology presented so far is
not sufficient for computing the total resistive losses. Indeed,
for that purpose also the vector potential ã(t) has to be known
at least in the conductive parts of the slave domain, in addition
to ũ(t).

This problem can be solved by storing also ã when com-
puting the impulse response functions of ũ and h. If memory
becomes an issue, the values can be stored on the hard drive as
they are only needed in the post-processing stage. Then, both ã
and ũ can be obtained from ∂a and i with the earlier-described
convolution approach. From these, the current densities and
losses can be easily computed.

H. Comparison to Previous Approaches

Some comparison to previously-published winding mod-
elling approaches is probably in order. The proposed method
has been heavily inspired by the approach in [24], where a
Dirichlet-to-Neumann mapping was also used for coupling
between the problem domains. In this method, the slave
domain comprised a single conductor only. This obviously
reduces the pre-computation cost, but correspondingly also
increases the number of unknowns in the full problem. Also,
a regular packing of conductors is needed for this approach
to work. Furthermore, it appears that the Neumann-side of
the boundary coupling was implemented in the continuous
sense. This can introduce additional error into the solution,
as the Neumann boundary condition is only satisfied in the
weak sense. Finally, the analysis was limited to time-harmonic
problems only, although extension to time-domain could be
handled in a similar way as here.

A somewhat different approach was used by the authors in
[26]. Rather than using Lagrange multipliers, a set of slave do-
main solutions A =

[
ã1 ã2 . . . ãNcpl

]
was stored, each

corresponding to a different Dirichlet boundary conditions
via ∂a. The pre-computed solutions were then used as shape
functions in the main problem, resulting in the appearance of
reduced matrices of type Ŝ = ATS̃A. This approach would

also yield an exact solution. However, extending it to time-
domain would require storing the impulse response function
of entire ã, and re-computing large matrix-vector products of
type S̃ã at each time-step.

It must be noted that in [26], the concept of coupling
nodes was introduced. These were an extra set of unknowns,
defined on the main-slave boundary and shown to improve
calculation accuracy in some conditions. If required, they can
also straightforwardly applied to the method proposed here
as well. Indeed, the presented approach is a special case
of the coupling node methodology, with the coupling nodes
corresponding to the main-mesh boundary nodes.

IV. SIMULATIONS

To evaluate the proposed method, a random-wound 500
kW four-pole induction machine was used as a test problem.
The machine had a double-layer winding with four parallel
paths. The other main dimensions can be found in Table I,
and the cross-section in Fig. 3. Since the machine had a large
symmetry sector of 48 stator slots, the problem had a total of
5376 conductors in the stator alone. The uncertainty inherent
in random-wound windings was not modelled, i.e. the winding
configuration was regarded as fully known.

TABLE I
MAIN DIMENSIONS OF THE MACHINE.

Rated frequency (Hz) 50
Slip (%) 0.637

Number of winding layers 2
Number of strands per slot 112

Number of turns 2
Number of stator slots 96
Number of rotor slots 74
Stator diameter (mm) 600

Length (mm) 760

Fig. 3. Cross-section of the machine and flux lines at t = 38 ms in the
sinusoidal supply simulation.

The main domain, i.e. the cross-section of the machine
excluding the stator slots, was meshed with 4766 first-order
triangular elements, corresponding to 3319 nodes. For the slot
domain, an approximately hexagonal packing was generated
for the strands, resulting in the slot mesh illustrated in Fig.
4. The impulse response functions were then computed and
stored.

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or
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Fig. 4. Part of the slot mesh used in the simulations.

To obtain a reference solution at a tolerable computational
cost, a non-conforming meshing approach was chosen. Most
commonly used for modelling motion, these approaches have
been used for decades, and their accuracy studied and demon-
strated (e.g. [32]–[34]). Indeed, the reference solution mesh
was formed as the union of the main domain mesh, and the
slave domain mesh replicated and rotated to cover all 48
slots. The continuity of the solution was enforced with the
polynomial interpolation approach [28]. This way, the density
of the mesh could change sharply over the slot boundary,
limiting the number of nodes to roughly 150 000. Even so, the
problem size was on the upper limit for direct linear solvers
on typical desktops.

A. Focus of Analysis

It must be emphasized that each parallel path of the machine
consisted of 28 strands connected in parallel. Thus, circulating
currents - uneven division of the total current between the
parallel strands - could be of special interest. For this purpose,
the circulating current factor will be used

kcc =

N
N∑

k=1

i2k(
N∑

k=1

ik

)2 − 1 (29)

to quantify the relative increase in resistive losses due to
circulating currents, in each parallel path [35]. The number
of parallel current loops has been denoted by N , and the loop
currents by ik.

Furthermore, the term loop current will be used to denote
the current flowing in a set of strands connected in series. By
contrast, the term path shall refer to the four parallel paths
in each phase. In other words, the total current of each path
would be the sum of 28 loop currents.

Finally, two different strand configurations were analyzed.
In the ”good” one, the strands were fully transposed between
slots. In other words, a strand on the bottom of a layer in
one slot would be on the top of the layer in the next one.
Thus, the loop matrix L consisted of diagonal and counter-
diagonal blocks, and zero blocks. By contrast, in the ”bad”
configuration the relative positions were unchanged, and L
had diagonal blocks only.
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Fig. 5. Current phasors of all stator current loops of the machine, with the
good (a) and bad (b) winding configurations. Phases are denoted with the
different colors. For clarity, the same scale is used in both subfigures.

B. Time-Harmonic Analysis

The machine was first analyzed with harmonic analysis,
using the good strand configuration. The nonlinear problem
was solved with the Newton-Raphson method, by splitting
it into its real and imaginary components [36]. With both
methods, the iteration converged in 15 steps to the rather strict
relative residual norm of < 10−9.

A comparison of the computational times can be found in
Table II. The number of free variables, with all continuity
conditions eliminated, is also shown. As can be seen, the
reference solution took more than 100 times longer compared
to the proposed approach, with the majority of the time
spent on solving the large linear problems. With the proposed
method, roughly 28 % of the total time was spent on pre-
computation. Obviously, this ratio would probably be larger
if a more forgiving tolerance had been used for convergence,
decreasing the number of iterations.

TABLE II
COMPUTATIONAL COSTS IN HARMONIC ANALYSIS.

Proposed Method Reference
No. of unknowns 6824 372 008
Total computation time 3.20 s 4 min 17.46 s
• Pre-computation 0.70 s -
• Jacobian factorization 1.67 s 3 min 14.52 s

As expected, the results from both methods were very close
to each other. Indeed, the discrete error norms of the main-
mesh nodal potentials, rotor voltages, and stator loop currents
were 2.68×10−12, 5.02×10−13, and 1.78×10−11 respectively.
These minor differences can probably be attributed to the
finite floating-point precision, causing the nonlinear iterations
to converge to slightly different points.

Fig. 5(a) shows the current phasors for all parallel current
paths in the machine. Phase (a) is denoted by the black color,
and phases (b) and (c) with red and blue, respectively. As
can be seen, the total phase currents were almost evenly
divided between the strands. Indeed, the circulating current
factor for each path was only 0.23 %. This conforms to the
common assumption that stranded windings can be modelled
by a uniform equivalent current density.

However, this changed when the winding configuration was
changed to the bad one. As can be seen in Fig. 5(b), there
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were now major differences between different current loops.
Indeed, the circulating current factor was now equal to 21 %.

Obviously, the latter situation was unrealistically bad as
some kind of strand transposition is usually employed in prac-
tice. Nevertheless, it demonstrated how circulating currents
could be a significant loss component even in large machines
supplied by grid-frequency, and thus have to be considered in
the winding design and manufacture.

C. Time-Stepping Analysis with Sinusoidal Supply

Next, time-stepping analysis was performed using a sinu-
soidal supply voltage. Two periods were analyzed, with a
relatively modest 200 time-steps per period. Rotor rotation was
modelled with the moving band technique [37]. The backward
Euler method was used, and the time-step length was fixed.
The number of Newton iterations was fixed to 5, which was
enough to ensure convergence to a relative residual norm of
10−10...10−9. A variable number of iterations was also tested,
but it was found to cause minor differences (< 10−5) in the
convergence behaviour of the two methods.

With the proposed method, the impulse response functions
were truncated once they had decayed to the level of the
machine epsilon 10−15. 15 time-steps were needed for this.
The non-zero initial conditions were handled by computing
the decay term described in Section III-D.

A comparison of computation times can again be found
in Table III. It can be seen that the proposed method was
approximately 73 times faster. The on-line computation time
was again mostly spent on solving the linear systems. Neither
the pre-computation nor computing the discrete convolutions
took significant amounts of time.

TABLE III
COMPUTATIONAL COSTS IN TIME-STEPPING ANALYSIS.

Proposed Method Reference
Total computation time 1 min 52 s 2 h 12 min
• Pre-computation 3.10 s -
• Convolution 5.87 s -
• Jacobian factorization 1 min 6 s 1 h 28 min

The accuracy of the proposed method is illustrated in Fig.
6. Shown are the range of absolute differences of loop currents
between the proposed method and the reference solution, i.e.
max

j
[|i− iref|]j and min

j
[|i− iref|]j for each time-step. As can

be seen, even the highest deviations are negligible compared
to the rms values of several Amperes in each current loop. No
differences were found in the convergence of the nonlinear
iteration, and no particular current loop was more prone to
higher errors than the others.

Fig. 7 shows the total resistive losses in the stator, i.e.
losses due to circulating currents plus skin- and proximity
effects both. For clarity, the losses have been presented both as
absolute values, and as a relative increase from the RI2 losses
computed from the phase currents and DC resistances. As can
be seen, both additional loss components were almost negligi-
ble, with circulating currents contributing only 11 W and other
eddy current effects 25 W on average, respectively. Compared

5 10 15 20 25 30 35 40
10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

Time (ms)

C
u
rr
en

t
er
ro
r
(A

)

max(Iref - I)

min(Iref - I)

Fig. 6. Differences of loop currents obtained from the two methods, as
functions of time.
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Fig. 7. Additional losses due to circulating and eddy currents as functions of
time (a) as relative increases from the RI2 approximation (b) absolute values.

to the RI2 losses of 3.6 kW, their relative contributions were
only 0.28 % and 0.70 % respectively.

A much larger effect was seen with the bad winding
configuration. The circulating losses were increased to 740
W, corresponding to a 20.3 % addition to the RI2 losses. The
eddy current losses remained almost unchanged. Otherwise,
the behaviour was similar to Fig. 7.

D. Time-Stepping Analysis with PWM Supply

The simulations were then repeated using a simplified
pulse-width modulated (PWM) voltage supply. The voltage
waveforms were generated using the well-known sine-triangle
comparison with a switching frequency of 2 kHz and mod-
ulation and amplitude indices of π/4 and 1, respectively. To
limit aliasing due to the finite time-step length, the average
input voltage for each time-step was used instead of the
instantaneous value. The number of time-steps was set to 800
per period, translating to roughly 10 steps per the second
switching harmonics around 4 kHz.

Fig. 8(a) again shows the current errors between the two
methods as a function of time. Again, the errors were very
small, staying below 10−9. The total computation time was
9 h 55 min for the reference solution and 7 min 3 s for the
proposed approach, corresponding to an 85-fold speed-up.

This time, also the harmonic approach of Section III-D was
evaluated for modeling the initial conditions. The correspond-
ing current errors are shown in Fig. 8(b). As can be seen, the
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Fig. 8. Differences of loop currents obtained from the two methods, as
functions of time. Initial conditions were handled with the decay function
approach in (a), and the harmonic approximation in (b).

harmonic method was roughly two orders of magnitude less
accurate compared to the decay-term method. However, the
errors were still very small compared to e.g. the rms values
of the loop currents

Fig. 9 then shows the simulated phase currents. As can
be seen, the PWM supply caused considerable ripple in the
currents. The effect on losses was also pronounced, as is
evident from Fig. 10. The average resistive stator losses were
4.2 kW, of which 202 W and 712 W were caused by circulating
and eddy currents. These correspond to 6.1 % and 21.4 %
increases from the RI2 losses respectively. Both terms varied
significantly with time, peaking immediately after the supply
voltage switches.

Shifting to the bad winding configuration resulted in much
more pronounced loss increase than with sinusoidal supply.
The total losses were increased to 7.2 kW, of which 3.4 kW
was due to circulating currents. Eddy current losses again
remained roughly the same, and the behaviour was otherwise
similar to Fig. 10.
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Fig. 9. Phase currents with PWM supply.

E. Comparison to an Established Approach

Finally, the PWM supply case was re-analysed with a more
widespread approach. The stator winding, being stranded after
all, was modelled with a uniform current density. The eddy
current losses were then estimated in the post-processing
stage with the squared-field derivative (SFD) method [38].

30 32 34 36 38 40
0

20

40

60

80

100

120

140

Time (ms)

In
cr
ea
se

in
lo
ss
es

(%
)

Circulating currents
Eddy currents

(a)

30 32 34 36 38
1

2

3

4

5

6

7

Time (ms)

S
ta
to
r
w
in
d
in
g
lo
ss
es

(k
W

)

RI2

Circulating current losses
Eddy current losses

(b)

Fig. 10. Additional losses due to circulating and eddy currents as functions
of time (a) as relative increases from the RI2 approximation (b) absolute
values.

Obviously, both the circulating currents and the effect of strand
transpositions (good versus bad winding) were ignored. The
computation time was 3 min 55 s.

The computed loss distributions are compared in Table
IV, with the same loss components again considered. The
post-processing approach appears reasonably accurate if the
circulating are suppressed by the strand transpositions (good
winding). However, it is clearly insufficient for problems with
significant circulating currents (bad winding).

TABLE IV
COMPARISON OF THE LOSSES.

PDC (W) Pcirc. (W) Peddy (W)
Squared-field derivative 3222 0 887
Proposed (good winding) 3324 202 712
Proposed (bad winding) 3347 3391 416

V. CONCLUSION

An efficient numerical approach is proposed for time-
domain analysis of winding losses in electrical machines. The
slots are modelled with their pre-computed impulse response
functions and coupled together with the rest of the problem
domain on the boundary. The method can be used on windings
of arbitrary configuration and considers all resistive AC loss
components. Under suitable conditions, it will yield results
very close to those obtained via traditional finite element
analysis. Finally, similar methodology can also be used for
time-harmonic analysis.

The proposed method was evaluated by simulating a 500
kW induction machine with a stranded stator winding. The
method yielded precise results in both time-harmonic and
time-stepping analysis. Compared to the reference solution
obtained by normal FE analysis, the proposed method was
more than 100 times faster in the harmonic case, and 70–85
times faster in time-stepping. The convergence behaviour of
the nonlinear iteration was identical to the reference solution.

According to the simulations, the analyzed machine exhibits
very small additional resistive losses in the stator, if the
parallel strands are transposed between slots and the machine
is supplied with a sinusoidal voltage. However, without any
transpositions, the circulating currents increase the losses
considerably. The situation is exacerbated if PWM supply is
used.
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Some further work is still required. The method should
be implemented and verified with second-order FE basis
functions, as they are commonly used in analysis of electrical
machines. 3D analysis could also be tested. Additionally,
statistical analysis of the AC losses could be of interest, as
the winding topology of a random-wound machine is indeed
uncertain.
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