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Nowadays adding a skill to the robot that can interact with the environment is the
primary goal of many researchers. The intelligence of the robot can be achieved by
segmenting the manipulation task into phases which are subgoals of the task and
identifying the transition between them.

This thesis proposes an approach for predicting the number of phases of a compliant
motion based manipulation task and estimating their corresponding HMM model
that best fit with each segmented phase of the task. Also, it addresses the problem
of phase transition monitoring by using recorded data. The captured data is utilized
for the building an HMM model, and in the framework of task segmentation, the
phase transition addressed. In this thesis, the concept of non-homogeneous HMM
is used in modeling the manipulation task, wherein hidden phase depends on
observed effect of performing an action (force). The expectation-maximization
(EM) algorithm employed in estimating the parameters of the HMM model. The
EM algorithm guarantees the estimation of the optimal parameters for each phase
of the manipulation task. Hence the modeling accuracy of the forced based
transition is significantly enhanced compared to position based transition. To see the
performance of the phase transition detection a Viterbi algorithm was implemented.
A Cartesian impedance controller defined by [6] for each phase detected is used to
reproduce the learned task. The proposed approach is investigated with a KUKA
LWR4+ arm in two test setups: in the first, we use parameter estimation for a
single demonstration with three phases, and in the second experiment, we find a
generalization of the parameter estimation for multiple demonstrations. For both
experiments, the transition between phases of the manipulation task is identified.
We conclude that our method provides a convenient platform for modeling and
estimating of model parameters for phases of manipulation task from single and
double demonstrations.

Keywords: Non-homogenous hidden markov model, Learning from Demonstra-
tion, Multi-class regression, Gradient decsent
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1 Introduction

Nowadays the usage of robots for industrial applications is increasing, but the usage
of such robots is limited to structured environments. To use robots in the unknown
environment, they must be intelligent, and flexible that can interact with their sur-
roundings. Such intelligence and flexibility can be achieved by using additional sensors
such as cameras, force/torque sensors or laser distance sensors. Force/torque con-
trolled robots are efficient systems in assembly task due to their position uncertainty
handling capability.

Assembly tasks is a combination of unconstrained motion and constrained motion
which involves contact with an unknown environment. The use of position control
alone for the contact phase of the assembly task can cause an unlimited rise of the
contact force, ultimately leading to behaviors such as breakage or unstable control [1].
Such tasks are called compliant motion i.e. "manipulation tasks which involve contact
between the tool and the environment, and during the execution of which the end-
effector movement is modified by the contact forces" [1]. In general, contact forces
are important for the correct execution of the assembly task. The structure of the
unknown environment can be used as guidance for the correct execution, by using
an impedance controller along the task.

The compliant motion realized by force-based control is called active compliant
motion. Active compliant motion can sufficiently solve the wider variety of problems in
complex situations compared to its counterpart passive solution which uses compliant
gripper which is an application specific. Such problems associated with the tool in
contact can be regarding the contact configurations and contact states.

In the context of compliant motion tasks, transferring a skill to a robot and making
it adaptable to the environment is a complicated process. One way of automating
assembly tasks is modeling the assembly task of the robot itself; by adding the
required skills to the robot that make it intelligent by making observe and interact
with its surrounding. In this context, learning mechanisms are needed to acquire
knowledge from such interaction with the environment. Learning from demonstration
(LfD) is one approach in which a robot can learn from human examples.

LD is a technique based on the direct demonstration of a task to a robot. The
teaching process can be achieved using teleoperation teaching as in [3], kinesthetic
teaching as in [4], or by observational teaching as in [5]. Kinesthetic teaching
technique is easy for small and light weight robots and results in relatively successful
demonstrations. LfD depends on

1. an environment setup to obtain data about a task from one or more demon-
strations;

2. a methodology to learn the probabilistic model from the recorded data;

3. a technique for converting the learned model into robot’s actions that can
reproduce the task.

During the demonstration phase, related to point 1) the required data is recorded.
Inspired by [6] and [7], in this thesis, our primary concern is with point 2) applied



to compliant motion tasks in which collected positions and forces are used for
probabilistic modeling and segmentation of manipulation task.

This thesis presents a contribution to LfD, in the context of compliant motion
based tasks. The biggest challenges in automatic translation a compliant motion
demonstration into an executable robot program that can repeat the same task are:

1. to find the number of phases which are subgoals of the task
2. to estimate model parameters of each phase

3. reproduction phase change detection

In assembly task, inspired by the relevance of contact force, the primary target of
this thesis is to study and analyze probabilistic modeling and segmentation of phases
of manipulation task. In LfD paradigm this is achieved by using the force data as a
feature vector in the hidden phase transition HMM model of the manipulation task.
The model learning is achieved by creating a generalized HMM model from one or
more demonstrations for the particular task [7]. The controller defined in [6] is used
to reproduce the learned compliant motion task.

This thesis aims to: (1) kinesthetically teach a robot a compliant motion task
which involves multiple phases. (2) estimate the phases and their corresponding
model parameters from the data obtained from the demonstration. (3) reproduce
the manipulation task using the model parameter estimated and a controller defined
by [6], i.e. an impedance controller defined by the desired direction of movement,
the number of compliant axes and their directions for each estimated phases.

To reach this objective, we conducted experiments with a KUKA LWR4+ arm in
two test setups, one for manipulation task starting from a single starting position
and another similar task with two different starting position. Based on the setup, a
kinesthetic teaching approach is used to teach the robot a three phase manipulation
task and the corresponding position and force are recorded. Matlab is used to estimate
the model parameters for each phase using soft-max based expectation-maximization
(EM) algorithm from the recorded data. Finally, during reproduction stage, an HMM
Viterbi algorithm is used to detect the phase of the manipulation task based on the
online reading of the position and force. And based on the estimated hidden phase
sequence an impedance controller assigned to each phase of the task is activated.
The impedance controller is defined by the desired direction of movement, compliant
axes, and their directions.

The main contributions are modeling and parameter estimation of a manipulation
tasks for a robot based on LfD paradigm. There has been active research in LD for
decades, mostly addressing how tasks are learned by kinesthetic teaching. In this
thesis, we explore how to use HMM probabilistic encoding approaches for modeling
observations and state transition uncertainties of the manipulation task as used
in [7]. The probabilistic model of the manipulation task has two aims: i) estimate
the number of hidden phases of the manipulation; ii) estimate the model parameters
corresponding to each phase. In addition to the modeling of the manipulation, the
impedance control framework developed in [6] is used in order to reproduce the
manipulation task.



Keeping in mind that our approach can be applied for a task with multiple phases,
we test our methodology with manipulation tasks which consist of three phases.
First, a human teacher kinesthetically demonstrates the manipulation task and the
position and effect of performing an action i.e. force are recorded. Using the recorded
data the number of phases and their corresponding parameters are estimated. In
addition to model parameter estimation, we use the technique used in [6] to identify
the desired direction of movement, the number of compliant axes and their directions.
We use this information to construct an impedance controller for each phase which
can reproduce the assembly motion despite uncertainty in the starting position.

The thesis is structured as follows. In Section 2 we review some relevant research
(and explain why our method is necessary). In Section 3, we introduce the basics of
Markov models and HMM models. Section 3, presents the parameters of the standard
HMM model definition, three problems that can be formulated within HMMs, and
their corresponding solutions. The comparison between generative and discriminative
HMMs is also part of Section 3. Section 4 introduces parameters used to describe
the model with their corresponding mathematical description. The algorithm used
for estimating parameters of the model from single and multiple demonstrations are
also part of this section. Section 5 presents hardware and software architecture used
in experiments. Section 6 discusses the experimental setup and the results obtained.
Finally, Section 7 concludes the work with a summary.



2 Learning from Demonstration

A major challenge in robotics is automating assembly tasks in unstructured environ-
ments. As proposed in [8] and [9], learning is a good approach for robots working
in dynamic environments. Teaching a robot a skill can be performed using direct
interaction with an environment or using demonstrations carried out by an operator
(which can be a human teacher or another robot) which is commonly known as
learning from demonstration (LfD) or imitation learning.

Consider a manipulation task (such as an assembly task) which has many phases,
as described in [10]. Such a task can be segmented into a series of finite phases. For
example, for a task that involves approaching and sliding across the environment, the
first stage corresponds to unconstrained motion in which the tool moves freely in the
air. The subsequent phase begins when the tool is in contact with the environment,
i.e. constrained motion, which can be executed by an impedance controller defined by
a direction of movement, number of compliant axes and their corresponding direction.
The transition between phases corresponds to events such as non-contact and in-
contact of the tool with the environment [7] that correspond the system dynamics
change as the result robot action. As shown in the approaching and sliding case, the
shift between subgoals of the task is represented by a shift of robot’s controller from
position to Cartesian impedance.

Here the main problem to be addressed (especially when we have multiple con-
strained motion phases) is how to estimate the number of phases of the manipulation
task and how to move our tool within each phase so that we can reach the desired
position in an unknown environment. One approach to avoid the application of large
force due to position uncertainty is to detect phases of the manipulation task based
on the contact force and assign an impedance controller as in [6] for each estimated
phases.

Since programming a robot is a complex process, one way to simplify the process
is to teach the task and its corresponding model parameters from the demonstration.
This section mainly offers an overview of how the teaching, modeling and reproduction
work in LfD paradigm.

LfD based paradigm involves the following three steps [3]:

1. Teaching
2. Learning

3. Reproduction

2.1 Teaching

Transferring of skills to a robot can be done by three methods that help us to perform
programming by demonstration. Those are teleoperation, kinesthetic teaching, and
observational learning [2].

Teleoperation (TO) uses a master manipulator like a joystick or haptic gloves
for teaching and a slave manipulator for execution. A human teacher controls the



master manipulator. In teaching the pouring skill [3], a haptic device was used to
record both force and position data. The biggest problem with TO is the teaching
process is dependent the experience of the demonstrator [11]. The complexity of
Teleoperating teaching increases with an increasing number of DOF (especially when
the robot has more than 6 DOF) [3].

In Kinesthetic Teaching (KT), is based on physically maneuvered of the robot
through the task by the human. Gravity compensation mode of the robot activation
is required for easy control of the robot. KT is useful for small and lightweight robots
and is more reliable for teaching complex in contact tasks [12], [13].

The third type of teaching is observational learning (OL), in which sensors
attached to the human operator are used to record the actions of the demonstrator.
S. Calinon and A. Billard [14] uses an active OL method that put the human in
the loop of the robot’s learning process, by letting the robot to observe the task
performed by the teacher through a motion sensor and then using kinesthetic teaching
for progressive refinement. Even though such learning process is natural, it is not
efficient for assembly applications because it requires many sensors such as data
gloves, magnetic trackers and stereo vision for collecting data from the demonstration.

2.2 Learning

Learning is the second stage of the LfD paradigm. And involves segmenting and
finding a model of the segmented task. Segmenting phases of a manipulation task
can be achieved by the non-probabilistic or probabilistic approaches. The non-
probabilistic approach exploits geometric knowledge of the contacted objects that
relies on force and torque data to estimate force component and contact location [19],
[20]. The proposed approach suffers from poor stochastic foundation which results in
an inaccurate modeling of the task due to sensor noise and slow phase transitions [23].
The probabilistic approach (more specifically HMM-based) which has a stochastic
basis and it is characterized with fast phase transition recognition [21], [22]. And
also overcome the problem of inaccurate modeling by using the stochastic variables
mean and variance incorporated with HMM.

There has been considerable work on segmenting a manipulation task into subtasks.
[23], [24] propose a Bayesian sequential Monte Carlo methods (also known as particle
filters) to estimate the continuous geometry parameters and recognize the discrete
contact information. In their proposal, they use a position of the contact point(s),
a direction of contact normal(s), as geometry parameters and contact formation
as discrete. Similarly, [25] proposed a Bayesian approach for state estimation and
monitoring the contact state transition for sensor-based robot tasks. The main
problem of [23] - [25] is the requirement of state graph for all possible contact
formations. In [26] impedance controller parameters (such as stiffness, damping, and
inertia forces) are learned by fitting dynamic equation using weighted least square. [28]
uses supervised learning algorithm (stochastic gradient boosting algorithm) to perform
segmentation. The algorithm does not depend on the geometric model, but it requires
training example.

Hidden Markov models based modeling of contact formation for compliant motion



robots have successfully used for the opening the door in [21], [29] - [32]. Relevant
related previous works assume predefined phases of the manipulation task [29],
[33], [34]. Romano [34] and Johansson [35] use a human-inspired controller for
grasping objects in which a lower level controller represents each grasping phases.
In the proposed framework tactile events are used to detect the transitions between
phases. Andrews [33] also proposes a controller for performing in-hand manipulation
organizing a problem into defined three phases. For given contact state network and
description of the states T. Debus ( [29]) propose an estimate of the contact state
for the peg-in-hole task using an HMM. The primary target of this thesis is to learn
a probabilistic model (specifically a time-varying HMM) of the task demonstrated
and the detailed description of the model will be clarified in Section 4.

2.3 Reproduction

The third and the final step of the LfD paradigm is the reproduction step. Assuming
that we have a model learned from the demonstrated manipulation task, many
research papers have proposed ways of reproducing the learned model. In [26]
transient behavior during reproduction results in a problem in detecting the transition
between the segmented subtasks. In [27], an active control strategy learned from the
position and force profile with variable stiffness is proposed to reproduce. The skill
learned is based kinesthetic teaching for the positional profile and haptic device for
the force profile.

In the context of reproduction, this thesis is mainly a continuation of [6]. Therefore
after segmentation of phases an impedance controller is assigned for each segmented
phase. Finally, a Viterbi algorithm is used to detect the phases of the manipulation
task in which it activates a controller specifically defined for the currently detected
phase.



3 Hidden Markov Models

This section describes Markov chain and the standard Hidden Markov Models
(HMMs). We start by defining Markov chain, then HMMs and the problems involved
with HMMs and their corresponding solutions. The basic idea behind the generative
and discriminative HMM models followed by their comparison.

3.1 Markov Model

Markov models are a stochastic model used for randomly changing systems. Markov
models are models in which future states depend only on the current state but not
on the whole history. For a set of distinct states p = {p1, pa,--- , pn}, the system
moves to one of the states according to a set of state transition probabilities A at
each discrete time step t.

For the first order Markov chain in Figure 1, the next state only depend on the
current state.

00— —©O

Figure 1: First order Markov Chain

For the first-order Markov chain shown in Figure 1, the edges represent the tran-
sition probabilities and the dependency on the previous state is given by conditional
probability

p(palpr, -+ pno1) = P(PnlPn—1) (1)

and the joint probability of a sequence of N observations is given by

plpr, + ,pN) = l:[lp(pn\pl,~-- , Pn—1) = p(p1) l:[2p(pn\pn—1) (2)

3.2 HMM Model Parameter Definition

The Markov model presented in Section 3.1 has limited power in many applications.
An extended version which is called Hidden Markov Model (HMM) is required to
increase the model’s representation power. The basic idea with HMM is that we do
not know what generates the observation sequence.

For a hidden state sequence set p = {p1, p2, - , pn} and for observed sequence
set Z ={z1,22, -+ ,2,} a generative (standard) hidden Markov model is described
in Figure 2

A standard HMM is defined by three parameters 8 = {A, B, 7}, where A is the
hidden state transition probability matrix, B is the emission probability matrix
assuming discrete observation, and = is the initial probability [36].
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Figure 2: Standard (generative) HMM model

1. Transition probability, A = [a; ;] is a transition between latent variable that
describes the probability of going from state p; to state p;

ai,j:p(pt:jlpt_1:i>, iaj:1727"'7N (3)

2. Initial probabilities 7 = [m;],i = 1,2,--- , N where m; = p(p; = i), describes
the probability of state ¢ being the initial state.

3. Observation (Emission) probability distribution, p(z|p; = ¢),i =1,2,--- | N,
which is the conditional distribution of the observation variable from specific
state. Depending on the distribution of the emission (observation probability),
the HMM model can be classified as a discrete or continuous HMM model

(a) Discrete: If z; is discrete, the distribution associated with each hidden
state specifies the probability of emitting each observable

bl(k>:p(zt‘ptzz)> 27921727 7N (4)

(b) Continuous: if the observation probability is continuous, then the param-
eters, b;, are defined by Gaussian distributions.

The multivariate M mixture of Gaussian distribution for vector valued
observations z € R is given by

() = 3 L et — o) S — )| )

i(2t) = 5 1 XD | —5(& — Mim) 2 (2t — Uim

m=1 (27‘-)% |Z"z,m|% 2 ’

which is commonly called a Gaussian-mixture HMM. The parameter
set of the PDF X, comprises scalar weigts c; ,,,, Gaussian mean vectors,
Wim € RP”, and Gaussian covariance matrices, Yim € RPxP

For a single multivariate model the state-dependent output PDF becomes
a unimodal Gaussian
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bi(z) = ———5——exp |—= (2t — fim) Sy (20 — Miim 6
)= G o [t S )] ©
the unimodal Gaussian is commonly called (continuous-density) Gaussian

HMM.

3.3 HMM Problem Definition and Solution

There are three standard problems that can be formulated within HMMs [36]. Those
three problems need to be solved before applying HMMs for a wide area of applications
are:

1. Evaluation problem: given the sequence of observations z = 2y, 25, -+ , 2N
and the HMM model 0, compute the likelihood p(z|6)

2. Decoding problem: given the sequence of observations z = z1, 29, , 2y
and the HMM model 6, infer the most likely hidden state sequence

3. Learning problem: given the observation sequence z = 2y, 29, - - - , 2, esti-
mate the parameters of the HMM model 6.

For a standard (generative) HMM model defined in Figure 2, the solution of the
three basic HMM problem is described in the following sections.

3.3.1 Solution to Evaluation Problem: Computing Likelihoods

Given a sequence of observations z = z1, 29, - -+ , zr and a HMM with complete model
parameter § = (A, B, 7) the main target of the evaluation problem is to evaluate
how well the model predicts the given observation sequence i.e. likelihood p(z|p, 0).
From the definition of emission probability B for state sequence p = {p1, p2, -+ , pr},

we have
N

|pv H Zt|pt7 - bm(z?)bpz (ZQ) o bﬂT (ZT) (7)

and from the definition of initial distribution m and hidden state transition A

p<p|0) = Tp1Qpy1,p2Qpo,ps * * " Apr_q,p7 (8)

the likelihood of the observed sequence can be obtained by summing the joint
probability of the hidden states sequence p and the observation sequence z over the
hidden states

p(zl0) = Zpip(z,pIQ)
= §p(Z|p,9)p(pl9) (9)
= Zp: Tp1bp1 Gy (22)bp2 (22)%)2703 by (ZT)apNA,pN

Evaluating Equation 9 directly results in exponential complexity with respect to
the length of observations T'. A better solution is to compute the joint probability
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distribution of the hidden state sequence p and the observation sequence z using the
forward algorithm [36]- [41]. The forward probability at time ¢ is given by

at(i) :p(zla227"' s 2ty Pt :Z|9) (10)
The forward algorithm is an efficient solution for the evaluation problem and can be
recursively computed as follows [37]

1. Initialization: fort =1,--- | N

aq (i) = mibi(z1) (11)

2. Induction: for j=1,--- , Nandt=1,--- T —1

N

) = (S i ) ) (12)

=1

3. Evaluating the probability:

N

p(zl6) = >_ ar(i) (13)

=1

Now the complexity of the forward algorithm becomes linear with 7" unlike the
direct calculation mentioned earlier, which had an exponential complexity. The
pseudo code representation of the forward algorithm is shown in Algorithm 1.

Algorithm 1 Forward Algorithm

1: function FORWARD(z, 6)

2 for :=1to N do > Initialization
3 al(i) = Wibi(Zl)

4 end for

5: for j =1to N do > Induction
6

7

8

9

fort=1toT —1do
apy1()) = (ZZJL at(z’)aij> bj(2t41)
end for
end for
1 p(z|0) = SN | ar(i) > Evaluating the probability
11: end function

3.3.2 Solution to Decoding Problem: Decoding Hidden States

For the observation sequence and the HMM model § = (A, B, ) given, the aim of the
decoding problem is to estimate the hidden state sequence that most likely results
the observation sequence. There are two solutions for the decoding problem, one
based on the forward-backward algorithm and the other on the Viterbi algorithm.
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a). Forward-Backward Algorithm

The state sequence for any point in time can be estimated using the forward-
backward algorithm. The algorithm is based on a two-step dynamic program-
ming. The first one goes forward in time computing the probability of ending
up in any particular state p(p; = j|z, j) which is called the forward algorithm
as described in 3.3.1, while the second goes backward in time computing the
probability of observations given a starting point p; = j: p(zi41, -+, 27|t = 7)
which is called backward algorithm.

The backward algorithm starts at the end and works backward to the beginning
and is defined as

ﬁt(” = p(thrla B2yt 7ZT‘pt = ia 6) (14)

Similarly as the forward algorithm, the backward algorithm can also be com-
puted recursively as follows [37]:

1. Initialization: fort=1,--- | N
Pr(i) =1 (15)

2. Induction: fort =T —1,--- ,landori=1,--- N
N
Bi(@) =Y aijbi(2e41) Brya () (16)
j=1

3. The state sequence at time ¢ can be calculated by computing the maximum
of the smoothed variable max ~,(7), which is the normalized product of
the forward variable o and the backward variable 3,

N _ i1 gy = 2D5:()
V(i) = p(pe = i|z,0) () (17)

Pseudo code representation of the backward algorithm is shown in Algorithm
2. Pseudo code representation of the forward-backward algorithm is shown in
Algorithm 3.

b). Viterbi Algorithm

Viterbi algorithm is an algorithm which maintains the highest probability paths
at each possible state instead of a list of all possible paths. The algorithm
is structurally quite similar to the forward algorithm that makes uses of a
dynamic programming trellis. Assuming the probability being in state j is
represented by cell of the Viterbi trellis v;(7), the most probable state sequence
is given by [36], [38]

w(j) = max p(zi--z,p10 =) (18)
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Algorithm 2 Backward Algorithm

function BACKWARD(z, 0)

for:=1to N do > Initialization

1:

2

3 pr(i) =1

4 end for

5: for ) =T —1to1do

6 for t=1to N do

7 Bi(@) = 300, aijb(ze41) Braa ()
8 end for

9: end for

10: end function

> Induction

Algorithm 3 Forward Backward Algorithm

function FORWARDBACKWARD(z, )

fori=1to N do > Initialization of first forward message

1:

2

3 a1(i) = mbi(21)

4: end for

5: for j =1to N do

6 fort=1toT —1do

7 apy1(j) = (Zf\; at@az‘j) bj(zt41)
8

9

> Induction

end for

: end for
10: for i =1to N do > Initialization of last backward message
11: Br(i) =1
12: end for
13: for j =T —-1to1do > Induction
14: fort=1to N do
15: Bi(i) = E;V:1 aijb;(ze41) Bi1 (4)
16: end for

17: end for
— (@B

18 (i) = plpe = ilz,0) = =55~ > Most likely state sequence at time ¢

19: end function

The recursive computation of Viterbi algorithm is based on updating each

trellis cell from the previously computed cell [38] and is given by

0(7) = i v (i)t ()

(19)

Unlike the forward algorithm which computes the sum of probability, the
Viterbi algorithm calculates the maximum of the probability. To find the most
probable path, backtracking pointer £;(j) which points from state j at time ¢
to state i at time t — 1 is required [38]. The pseudo code representation of the

Viterbi algorithm is shown in Algorithm 4
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Algorithm 4 Viterbi Algorithm

function FORWARD(z, 0)

1:

2

3

4: for:=1to N do > Initialization
5: (%1 (Z) = m—bi(zl)
6

7

8

9

end for
fort=1to7T —1do > Induction
for j =1to N do

. N .
10: v (7) = max (ve(5')aj;) bj(ze41)

11: Bry1 = arg rjnjéf (v:(4")ajis)
12: end for

13: end for

14: Append f; to

15: Append p; to Path

16: return Path

17: end function

3.3.3 Solution to Learning Problem:Adjustment of the Model Parame-
ters

The main concern of the learning problem is adjusting the parameters of an HMM
given a set of observation sequences and initial guess of the model parameters using the
maximum likelihood as optimization criteria. In order to find the model that best fits
a given observation sequence, an Expectation-Maximization (EM) algorithm is used.
EM algorithm, when applied to HMM, is called Baum-Welch algorithm 3.3.1 and the
basic idea behind the algorithm is provided in Appendix-B. This algorithm makes
use of the forward-backward algorithm in order to calculate intermediate variables
which are used in order to re-estimate the model parameters. The intermediate
variables are

1. (i), the conditional hidden state probability can be calculated in terms of
the forward and backward messages obtained in Section 3.3.1
. . (i) By (4)
ryt(z) p(pt Z|Z, ) p(zle) ( )
The summation of v;(7) over ¢ represents the transition probability given the
model parameters and the observation sequence z [36], [37].

2. ((i,7), the joint probability of being in state ¢ at time ¢ and in state j at time
t + 1 that is a joint probability defined interms of the forward and backward
variables of Section 3.3.1.

N = (o — _ g gy = 2055 (241) 81 (7))
(i, ) = plpe = i, prv1 = j|2,0) o(2l6) (21)
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The summation of (; over t represents the expected number of transitions from
state ¢ to state j given the model parameters and the observation sequences
z [36], [37].

The update of the model parameters is obtained from the intermediate variables
defined as the transition probability is represented by the normalized summation of
v:(1) over t and the emission probability is the normalized summation of (; over ¢.
The algorithm for the re-estimation of model parameters is given by

1. fori=1,--- N, let
mi = 71(i) (22)

2. fori=1,--- ,Nand j=1,--- | N

Yt G, g)

ST () 23)

aij =

3. forj=1,---  Nand k=1,---,T

_ Dote{l e T},z=k Gt
Ethl ’Yt(i)

by (k) (24)

Pseudo code representation of the EM algorthm is shown in Algorithm 5

3.4 Generative and Discriminative HMM

HMDMs are models that are used to model the joint distribution. Depending on how
the joint probability distributions of the hidden and the observed variable are defined
p(z, p), HMMs can be classified as generative or discriminative HMMs [39]- [41].

3.4.1 Generative Hidden Markov Model

As described in Section 3.3, the joint probability of generative HMMs is decouples as
p(z, p) = p(z|p)p(p). Such type of joint distributions computation requires explicit
model of p(p), which is complex. The dependencies between the hidden and observed
are only from the former to the later: the hidden variable generates the observable
variable [39]- [41].

The problem of classification in a generative HMMs, i.e. predicting a discrete
hidden phases variable p = {p1,p2, -+ ,pn} given the a vector of observations
z = {21,209, -+, 2y} is modeled based the joint distribution p(z, p). To model the
joint distribution p(z, p), a generative HMM makes use the methodlogy described
in Section 3.3. That is, the joint probability of a hidden state sequence p and an
observation z factorized as

p(z, p) = p(pr) [T (el pe-1)p (2l pe) (25)

t=2
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Algorithm 5 EM algorithm

1: function EM(z, 0)
2
3 E-step
4 FORWARDBACKWARD(z, 0) > Algorithim 3
5 (i) = plp = ilz, ) = *20
g ¢ = p(pt =i, prat = j|Z, 9) _ at(l)aijb];(zzt‘%)ﬂwl(ﬂ))
8
9: M-Step
10: fori=1to N do > Initial distribution estimate
11: T = 71(1)
12: end for
13: for i =1to N do > Transition probability re-estimate
14: for j =1 to 7g\f1 do
D D
o G = S
16: end for
17: end for
18: for k=1to T do > Emission probability re-estimate
19: for j =1 tOZN do
. N\ Zate{l, -, T},z=k Gt
20: be(j) = ST
21: end for
22: end for

23:
24: end function

3.4.2 Discriminative Hidden Markov Model

If the purpose is to classify or segment data, we can directly model the conditional
probability p(p|z), as p(p) model is not a requirement. The direct conditional
probability modeling avoids the correlation of the observation variable z. Such
models try to model the difference or discrimination between different observed
variables and they are commonly called Discriminative HMM models [39]- [41].
The discrimination based HMM for state classification can be modeled by assuming
the logarithm of the conditional probability, logp(p|z), of each state, is a linear
function of feature vector ¢(s;). Such description of the conditional probability of the
hidden states leads to multi-class logistic regression distribution function [39]- [41]

, : exp(wi;P(sy))
PPt = JISt; pr—1 = 1) =
(P st P ) > exp(wird(st))
where Y, exp(wip(s;)) is the normalization constant.
To model the joint distribution p(z, p), a discriminative HMM makes two inde-
pendence assumptions. First, it assumes that each hidden phase p; depends only on

(26)
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its immediate predecessor p;_; and current observation z;. Second, it also assumes
that each observation variables z; depends on immediate predecessor z;_; and the
previous hidden state p;_;. With these assumptions, we can specify a discriminative
HMM in terms of the distributions p(p1|z1)p(z1) over initial states; the transition
distribution p(p¢|zt, pr—1); and the observation distribution p(z¢|z;—1, p:). That is, the
joint probability of a hidden state sequence p and an observation z factorized as

N

p(z, p) = p(z1)p(p1]21) t_Hzp(ptlzt, Pe-1)P(zt] 211, pr) (27)

Figure 3: Discriminative Hidden Markov model

One way to build a probabilistic classifier is to create a joint model of the form
p(z, p) and then condition on p, there by deriving p(z|p). This is called the generative
approach. Another approach is to fit a model of the form p(p|z) directly. This is called
the discriminative approach. Both HMM models, i.e. generative and discriminative
models describe distributions over p(z, p), but they work in different directions.

The main advantage of the discriminative HMM over its generative counterpart is
that the conditional distribution p(p|z) does not require a model for the probability
of observation p(z), which is not required for classification. It avoids the requirement
of modeling p(z) which is difficult to model due to highly dependent features.
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4 Learning and Estimation of Phases using Hid-
den Markov model

HMM models assume homogeneous of state transition distribution. However, this
assumption of stationarity of hidden state distribution does not hold for many real
life applications. In this section, a time sequence model that extends HMM to
time varying scenario will be introduced. The manipulation task we used for our
experiments has multiple phases, and it is modeled as discrete hidden variable evolving
over time similar to [7]. Each phase of the manipulation task has its corresponding
model parameters. In this section, a notation used for model description and the
proposed probabilistic model will be described. Here we explain the model parameter
definition and the techniques used to learn model parameters of the probabilistic
model.

4.1 Model Parameter Definition

Consider a state s, € R**! representing the position of the end effector of a robot at
time ¢. The effect of performing an action at time ¢, a, € R**! to cause transition to
the next state s;,; represent the contact force concatenated with 1. This transition
in state depends on the current hidden phase p; € N. The standard form of these
models is specified by bivariate processes {(z, p)} with {z} the distribution of the
observed process that governs p being an unobserved, or hidden, finite Markov chain.
The observed variable {z} is the column-wise concatenation of the observed state
and contact force. The next state transition depends on the current phase which is
hidden and the current effect of performing an action.

Therefore the effect of performing an action a; in state s, and phase p; are modeled
by transition probability p(s;i1|s¢,as, pr) [7]. The state transitions p(s;i1|ss, ag, pr)
dynamic behavior humans rely on internal models [15]. The expected next state fi,,
of each phase maps a state s; and effect of performing an action a; of the system
to the next state s;y1. In our case we assume that the next state is represented by
a linear Gaussian model, si41 = p,, + w,, similar as [7], where w,, ~ N (0,%,,) is
independent identically distributed (i.i.d.) Gaussian noise. Such model represents the
transition dynamics of the robot and the distribution of the next state is represented
as

St41 ™~ N (Aptst + Bptat> Ept) (28)

where A, € R™" is a state matrix, B; € R™*(m+1) ig effect of action matrix and
Y € R™™ covariance matrix corresponding to phase p = i. By multiplying the state
s; and the effect of performing an action a, in state s; with the state matrix A, and
effect of performing an action matrix B,,, respectively, the state transition function
becomes linear in its arguments. Thus, the state transition of the model assumes
linear system dynamics.

The model parameters A; and B; used for the model description are parameters
used to describe the linear proportionality of the next state dynamics that are com-
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pletely different from the hidden state transition matrix and observation probability
matrix described in Section 3.3.

The Gaussian assumption of the dynamics of the robot for each phase is completely
specified by a corresponding mean p1,, = A, s+ B,,a; and a covariance ¥£,,. The mean
allows to integrate prior knowledge about the underlying observed state dynamics,
and the covariance incorporates some high-level structured assumptions about the
underlying function (e.g., smoothness).

We model the dynamics of the position of the end effector s; through an HMM
with non-homogeneous transition matrix at time ¢ denoted by P = [Pz-(jt)] (p(ps =
jlst, pi1 = i)). The latent variables p;.y represent the hidden phases that have
generated the observed data.

We assume that the hidden phases p is represented by time-varying transition
probability p(p: = j|zt, pi—1), the values of which are modeled by multi-class logistic
regression where the feature vector is the corresponding effect of performing an action
i.e. forces. The time-varying transition probability depends on the previously hidden
phase and the joint observation vector z.

Observed state-based transitions auto-regressive hidden Markov model (STAR)
proposed by Kroemer Et al. [7], has considered similar assumption except that feature
vectors are considered a subset of the full state vector. Our approach is different in
two ways. First, we use the forces as a feature vector which changes the assumption
made by [7] (state-based transitions (STAR)) to effect-of-action based transitions
auto-regressive hidden Markov model (ETAR). Secondly using the learned model an
impedance controller is defined for each estimated phase as in [6] to reproduce the
manipulation task.

The algorithm we propose has the following key points. First, the current phase
depends on previous phase which allows the model to represent effects such as
hysteresis [7]. Second, the Markovian property of the hidden phase and dependency
on the current state allows us to estimate model parameters in an efficient manner [7].
Third, the dynamics of the manipulation task are modeled according to a linear
Gaussian model which depends on state s; and on the effects of performing an action
a,; in-state s;,. Fourth, the weighted linear regression coefficients are obtained using
least square estimates, and the weighted logistic regression coefficients are obtained
using the gradient descent algorithm. Finally tuning the learning rate of the gradient
descent is done by adapting the learning rate at each iteration.

The probability of current phase depends on the current effect of performing an
action and on the previous phase p(p¢|as, pi—1). The first phase depends on the first
effect of action only p(p1|a;). The dependency of the current phase on the previous
is the most important of the model because the model can model hysteresis effects
and transient state information which is done with the help of the force data.

In this thesis, we propose a time sequence model that extends the standard HMM
to a non-homogenous i.e. time varying scenario. Instead of assuming transition
probability at a different time constant, the transition between the hidden phases is
modeled by probabilistic classifiers. The time-varying transition matrix P®) = [Pi(;)]
(p(pe = jlag, pi—1 = 1)) of the hidden phases is modeled as function of the observed
effect performing an action a; in-state s; at time ¢. The multi-class logistic regression
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(soft-max regression) is used to link the observed effect of performing an action a;
and the entries of the phase transition matrix P®)

eXp(w’LJ d(ay))
Z eXp(wzkgb(at))

plpdlag, pr-1) = (29)

where w;; € R4 is a weight vector for transitioning from p =i to p = j, and ¢(a;)
is a function mapping the effect of action to a d + 1 dimensional feature vector. In
our case, we use force as a feature vector.

The initial phase distribution only depends on the first effect of performing an
action and is given by

exp(wo;¢(a1))
> exp(wor(as))

where wy; is the weight vector for each pha,se.

In this thesis work the probability of effect of performing an action p(a;) at time
t is assumed to be equal to 1 because learning phases of the model are based on the
exploratory actions [7].

p(pilar) = (30)

Figure 4: Observed state based transitions auto-regressive HMM (STAR) model [7]

The graphical model of the system is given in Figure 5, where the red filled nodes
represent the observed variables i.e. the states s; and the effect of the action a; and
the white filled represent the hidden phases p;. In order to spot the modification of
the model description with respect to [7], the model defined by [7] is also shown in
Figure 4.

Given the description of the model, the probability of observing a sequence

of T samples of states s;.7 = {s1, -+ ,sr}, actions a;.r = {ay, - ,ar}, phases
p1.nv = {p1, -+, pr} and the next state so.p = {s1,- -+, $r41} is given by
T T
p(str41, arr, pr7) = )p(pilar) [T p(seilse ae, po)p(ae) [T p(pelae, pe—1) — (31)

t=1 t=2
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5337

Figure 5: Observed effect of action based transitions auto-regressive HMM (ETAR)
model

As seen from Figure 5, the transition between phases depends on the previous
phase and the effect of performing an action a;. The hidden states also satisfy the
Markovian property which allows efficient ways to model parameter estimation.

Our model is different from STAR [7] in the following aspects:

1. The state dynamics are modeled by a linear Gaussian model same as [7], but
the dimension of effect action matrix changed to B; € R™ (™1 instead of
B; € R™™,

2. uses contact forces of the tool concatenated with scalar one as the feature vector
instead of a subset of the state vector (relative position) as defined by [7].

3. due to new definition of the feature vector the dimension of the weight vector is
now w;; € R4 instead of w;; € R? (for transitioning from p =i to p = j, and
¢(s¢)) which introduces a bias term to the hidden phase transition probability.

4. our model estimation includes estimation of parameters from single and multiple
demonstrations with different starting positions.

4.2 Model Selection by AIC and BIC

For HMM with N states, the model order N is directly related with the improvement
of the fit of the model. However, an improvement in fit comes with a cost of model
parameters quadratic increment. Such improvement in fit due to increasing model
number has to be traded off against an increasing number of parameters. A criterion
for model selection that solves the trade off between the fit and the number of model
parameters is therefore needed.
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The goal of the model selection is to identify the model which fits best. The
number of hidden state can be selected either with Akaike information criterion
(AIC) or Bayesian information criterion (BIC) [50].

Due to large number of parameters, an N -state model will always represent a
better fit than an (N — 1) state model. Both model selection criterion are used to see
if the improvement in the fit was great enough to indicate that the N -state model
captures more heterogeneity in data than the (N — 1) state model [50]- [55]. Both
AIC and BIC, try to find a model that optimally balances the trade off between the
model fit and number of model parameters (complexity).

The model selection criterion based on AIC is given by [51]:

AIC = —2log(L) +2p (32)

where log(L) is the log-likelihood that measures the fit of the model and decreases
with increasing model order. The parameter p refers to the number of parameters with
in the model and is called a penalty term. The penalty term has direct relationship
with model order.

The Bayesian approach another method for estimating model order and differs
from AIC in the penalty term [52], [53]. For normally distributed emission probability
HMM with N states, there are N? + 2N — 1 free parameters (N — 1 for the initial
distribution, N(N — 1) for the other)

BIC = —2log(L) + plog(T) (33)

where log(L) and p are as for AIC, and T is the number of observations.

Model selection is based on the AIC/BIC value computed for different orders of
the HMM model. The best fit of the model is the model with the lowest value. And
because of BIC selects models with fewer parameters compared to AIC, we choose
BIC as our model section criteria.

4.3 Model Parameter Estimation

From the model parameter definition of Section 4.1, the system is described by four
model parameters, § = {w, A, B,>}. These four parameters are the weight vector w
corresponding to the hidden phase, matrices A and ¥ corresponding to the observed
state and matrix B corresponding to the effect of performing an action.

To learn the parameter of the model, demonstrations are recorded for kinesthetic
teaching of a robot a compliant motion based task which includes three phases. Using
the recorded position and force data, the EM algorithm is used to estimate the
parameters of the model. In the modeling of the system, the observed positions are
considered as states and forces as feature vectors of the phase transition probability.

The observed distribution of the next state for each phase of the manipulation
task is modeled according to linear Gaussian model

St+1 ™ N(Aptst + BPtat7 2Pt> (34)
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which can equivalently be expressed as
St41 = Aptst + Bptat + Vp, (35)

where A,, and B, are state and effect of performing an action matrix respectively,
relating the next states linearly to the current states and v,, Gaussian noise with
mean zero and covariance X,,. The Gaussian noise v, models the uncertainty
introduced by the state transition. It has the same dimension as the state vector.
Equation 35 p(s;11]ss, as, pi) can be calculated using the multivariate normal
distribution where the mean is given by p,, = A,,s; + B,,a; and the covariance X,

;6(7%(8t+1,upt)TZ;tl (St+1ﬁupt)> (36)
1
(@) )

The EM algorithm finds the maximum likelihood estimates by beginning with an
initial guess of the model parameters. It iterates between the E-step and M-step.
The algorithm adjusts the parameters of the HMM given a set of observations, using
the maximum likelihood criteria. That is it involves the re-estimate of the initial
model parameters 6 = (w, A, B, ) in order to find the parameters that maximizes
conditional probability of observation p(z|6).

p(5t+1ysta ay, Pt) =

4.3.1 Expectation Step (E-step)

During the E-step of the EM algorithm, the marginal likelihood p(p; = j|ai.y) and
the joint distribution p(p; = i, p; = j|ai.y) of the hidden phases given the observed
sequence of variables are computed by assuming the model parameters are fixed.
During the E-step the marginal likelihood and the joint distribution variables are
efficiently evaluated using the forward-backward message passing approach.

To improve the clarity of the methodology we assume a combined observation
variable z;, = {s;,a;} for the observed variable states s, and effect of the action
a; as [7]. The joint observation conditional probability is therefore described by
p(ze41) = p(Se41|pt, 8t, a)p(ars1) and similarly the phase transition can be described
in terms of the joint observation variable as p(p:|pi—1, 2t) = p(pe|pi—1,a:) because as
seen from graph description of the model the phase transition is independent of the
state s;.

The forward message per phase which is the joint probability of observing all
given observed data up to time ¢ and the value of p; is defined by [7]

a;(t) = p(2rat1, e = J) (37)
The first forward message is initialized according to
a;(1) = p(z2|p1, 21)p(p1 = jl21)p(21) (38)

and the remaining messages are computed recursively (as the derivation shown in
Appendix-A) based on

a;(t) = p(zi1lpr = J, 2t) Z a;(t — 1)p(p: = jlp—1 = 1) (39)
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The backward message is the conditional probability of all future data from ¢t = N
given the current phase and next observable data is defined by [7]

Bi(t) = p(ztr1:n|pe = J, 2041) (40)
Similarly the recursive computation of the backward variable as derived in Appendix-
A is given by

B;(t) = ZB(PtH = i)p(2er1lpe = i, 20)p(pr41 = ilpe = J) (41)
The initialization OIZC the backward message is done at time ¢t = N with
Bi(N) =1 (42)
The backward recursive computation is done to find the previous messages using
Bt —1) = ZP(Pt = i|p—1, 2)p(z — t + 1pe = i, ) 3;(¢) (43)

Given the forward and backward messages, the intermediate variables i.e. the
marginal likelihood v;(j) = p(p: = j|z1.x+1) and the joint distribution (i, j) = p(p: =
i,pt = jlz1.n11) can be easily computed. The marginal likelihood p(p; = j|z1.x41) of
the phase is given by [7]

plpe = J, 2unea) _ oy(t)55(t)
p(z1:n41) > ai(t)Bi(t)
Similarly, the joint distribution (;(i,7) = p(p; = i, pr = jlz1.8+1) is calculated using

G, ) = . ()p(pe1 = Jlpe = 4, 2e41)P(Zes2lpria = J, 2041) B5(t + 1)
’ p(Z'l:NH)

Y:(j3) = plpr = jlzin) = (44)

(45)

4.3.2 Maximization Step (M-step)

During the M-step of the EM algorithm, the parameters of the HMM model are
updated by finding the maximum of expected log-likelihood of the joint observed
and hidden variables distribution [7].

Onew = arg max > p(p1n|z1N+1s Ootd) M p(Prv, 21:80410) (46)
P

where the summation is over all sequences of phases p, and the conditional distribu-
tions p(p1.n|21:841, Goia) are computed during previous iteration using the un updated
model parameters 0,,4. Using the same simplification criteria as [7] the maximization
problem is given by

Onew = arngaXZp(Pl;NVLNH,Qozd) lﬂp(21)
P

gp(plzN’ZLN—i-la eold) lﬂp(m |21)

=z

47
t p(p1:n|21:N 41, Oota) N p(2141| prs 2¢) (47)
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By using the same techniques as [7]
Onew = arg maXZP(P1|Zl-N+17 Ootd) In p(p1|21)

+ tZ 2 p(pel2rn 1, ota) M p (2|1, 22) (48)

+ tzlpZ p(ﬁt—lapt|zlzN+1790ld) lnp(pt|pt—1azt)
= t—1:t

Using the marginal likelihood p(p; = j|z1.811,0014) and the joint distribution
p(pi—1 = i, pt = jlz1.n+1,00a) of the E-step, the update of model parameters is
achieved using the weighted linear regression for parameters related to the state
dynamics i.e A; and B; and using weighted logistic regression for parameter of the
hidden phase transition w.

As defined in Section 4.3.2, the dynamics of the state is defined by

Str1 ~ Ajst + Bjat = |: A B ] [ a, ] (49)

in matrix form it is the product of the row wise concatenation of the model matrices
and column wise concatenation of state and effect of performing an action

y=[4, B |X (50)

where the additional variable X is the column-wise concatenated variables of the
state s; and the effect of the action a;

0/1 PR aN

oo o

and Y is the next state represented by its column

Y:|:82 SN+1} (52)
Let the sum of weight errors be defined by W,

N
Z Wy ; et g (53)
its equivalent representation in matrix form is
T
We=EW,El =(Y-[ 4 B |x)w;(vy-|4, B |X) (54)
the expanded form of the above equation is

YWY — YTW[ B | X -xT[ 4 B | 'wy+
XT | A Bj} m[A B; | X

s —

(55)

which is simplified to
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W,=Y"WY —2x"[ 4, B | Wy + X[ 4, B | W[4, B ]X (56)

We wish to find A; and B; which minimizes the weighted sum error W;. Therefore
the parameter estimate A; and B; can be derived by taking the derivative of sum of
weighted errors on the parameters A; and B; as follows [54]

0

WWS_O 2XTWyY +2XTWiX | A; By | =0 (57)

The new estimates of the parameter matrices are then given by

(4 B = [ féﬂ: ] = (xwx™) " XTW,Y (58)

J

where the T indicates the transposes of the matrices, and W; is a diagonal matrix,
where the " diagonal element is given by [W],, = p(pr = jlai.n41,00a) as in [7].

Consider the case when the observed state s; is i.i.d. linear Gaussian with mean
vector and covariance matrix depending on the current phase p;:

St+1 N(Aptst + BptatJ ZPt) - N(/’LPN Ept) (59)

The p.d.f can be written as [36]

exp (60)

<—(3t+1 - lupt)Z;tl(SH‘l - #m))
2

1
P(se1lze-1, pro1,0) = ———
t—i—l‘tl t—1 ) \/W\/fpt

Differentiating Equation 60 with respect to the mean vector and the covariance
matrix gives us

8p(8t+1|st7 0) [ S5 se =) G pr=1 (61)
o 0 otherwise
8P(5t+1’St,9) _ %251 - %(StJrl - MPt)T(8t+1 —fip,) i pr=13] (62)
32}1 0 otherwise

Taking the summation of the partial derivative over all the hidden phases as
indicated on [17] will result in the new estimate of the covariance matrices

N
> p(pi = Jls1n+1: Oota) (Siv1 — 1150)" (Si1 — 150)
Zj — =1 (63)

N
kx_:lp(Pk = J|s1.8+1, Ootd)

where p;; = A;s;+ Bja; is the expected next state for the reestimate state parameters
Aj and Bj.
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The probabilistic classifier parameter (weight vector) w is calculated using
weighted logistic regression. Logistic regression is calculated iteratively using gradient
descent as in [7]. The gradient of the j — th phase given the ¢ — th phase can be
obtained by derivation with respect to the weight vector.

exp(wi;p(ar))

G = vp(pt‘atv Pt—l) - V (64)
explw; a
= exp(uwio(a)
dj-- (ewij¢(at)) ) eWik®(st) _ ewim(at)dg“ (Z ewik¢(at))
G = Vp(pilag, pi-1) = k k (65)

2
<Z ewik¢(at)>

k
after simplification of Equation 65 as in [55], the gradient is given by

G = Vp(pilay, pi—1) = ¢(ar) (05 — p(pelag, pi-1)) (66)

where ¢;; in Equation 66, represents the joint distribution from E-step. For simplified
computation of the gradient, for transition from p;_; = ¢ three matrices are defined
as [7]

1. Fis a feature matrix with the columns containing the sampled effect of per-
forming an action ¢(a).

2. The matrix L obtained from E step and it is defined by [L];; = p(p—1 = i, py =
Jlz1:n41,001a). The L matrix contains the joint hidden phase distribution.

3. The matrix P has the same dimension as the L matrix, and it contains the
hidden phase transitions p(p; = jla, pr_1 = i) for a given weights w.

The gradient of the hidden phase transition with respect to w is equivalent
representation of Equation 66

G=FP-L) (67)

In this iterative process between the E-step and M-step, the HMM utilizes two
mathematical principles to estimate model parameters as shown in Figure 6. The
first is the E-step which is based on the forward-backward algorithm. For each
observation data points, the algorithm evaluates the forward and backward variables,
a and . The forward algorithm is used to compute the forward variable and the
backward algorithm for the backward variable.

By using, the forward and backward variables, intermediate variables v and (
are obtained. By using those variables model parameters update is done during
M-step. The M-step of the EM algorithm is based weighted linear regression and
weighted logistic regression. The update of the model parameters is done based
on the intermediate variables obtained from the E-step. The algorithm continues
iteration either until the maximum number of iterations or until the convergence.
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Figure 6: Block diagram representation of the EM algorithm

4.4 Optimization Method: Tuning Learning Rate

As mentioned in Section 4.5, the logistic regression of the hidden phase distribution
is optimized using a gradient descent algorithm. Gradient descent exploits first-order
local information in the gradient to iteratively approach the point at which the
multi-class logistic regression distribution achieves its minimum value. The weight
vector at each iteration can be expressed as a function of the gradient as follow

W1 :Wk—)\G:Wk—/\(F(P—L)) (68)

where \ is step size of the gradient descent algorithm which is commonly known as
learning rate.

One of the problems in the updating the weight vector i.e. choosing the right value
of learning rate. The step size can be constant or variable. In practice, determining
a fixed step size that is adequate for a particular function can be challenging because
choosing a step size which is too small results in slow convergence and on the other
side selecting a step size which is too large may cause repeatedly overshoot the
minimum and eventually diverge.

Automatic adaptation of the step size as the iterations progress is a solution
for the above problem. One of the solutions is to search for the minimum of the
function along the direction of the gradient which is commonly known as line search.
To minimize the cost of computation a modified version of the line search called
backtracking line search can be used.

The backtracking line search starts at large value of A\ and decreases it until the
logistic function is below f(w) — 1[|Af(w)|[3, a condition known as Armijo rule [56].
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Gradient descent can be included in the M-step of EM algorithm and run for a
certain number of iterations or until convergence criterion, before moving the E-step
which might depend on computational constraints, or until a stopping criterion is
met. The possible termination rule for the logistic regression function f(w) can be

1. Af(whl)y =0
2. |F(wht1) — f(wh)| < e
3. |[whtt — wh|| < e

The flow chart of the EM algorithm including the internal loop gradient descent
update of the weight vector is shown in Figure 7.

4.5 Model Parameter Estimation from Multiple Demonstra-
tions

For estimating model parameters from multiple demonstrations an EM algorithm
which similar EM algorithm from a single demonstration data is used.

During the E-step the forward and backward messages are separately computed for
each demonstration data’s with same procedure as described in Section 3.4.1. From
the forward and backward messages the intermediate variables marginal likelihood and
the joint probabilities of the hidden phases is also derived from the forward-backward
algorithm variables.

During the maximization step a combined marginal likelihood variable v is defined
which is a concatenation of the marginal likelihood of multiple demonstrations

Y1572, ---VD -

’VD:[% V2o 'YD} (69)

Similar to the single demonstration case a new definition of the matrix X and Y
is assigned in order to estimate the state and effect of action matrices using weighted
linear regression. Each column of matrix X consists of the concatenated state s
and action a of the sample for both demonstration combined and matrix Y, has
Ni + Ny + --- Np columns corresponding to the a sampled next state of multiple
demonstrations.

1 (@2 2 D D
Y s ngl) sP . ngg P SSVD) (70)
o .0 2 2 D . (D)
aj an, @ an, aj anp,
where the superscript (1), (2),---, (D) is used to indicate the data is from demon-
stration 1,2, --- D respectively and similarly Y is defined as
1 N 2 D D
Y:{Sg) ngz s& ngz R T ngD)} (71)

The new estimates of the parameter matrix from the combined demonstrations
are then given by
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Figure 7: Simplified Flow chart EM algorithm with logistic regression

[ A By | =ywxT (Xw;x7) (72)

where W; is the modified combined diagonal matrix corresponding to vp, where the
¢ diagonal element is given by [W],, = p(p: = jlai.n+1,0014)-
The gradient computation of the logistic regression is also modified as we have

separate values of F, P and L for each demonstration. Therefore the combined
gradient G5 is calculated by
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Gp = F(l)(p(l) — L(l)) + F(2)(p(2) — L) 4 ... 4 FDO(pD) _ (D)) (73)

where the variables F(P?), P(P) and L") have the same definition as F, P and L
corresponding to each demonstration. Then the update of the weight vector is done
using

wi1 = Wi — AGp
=W — \ (F(l)(p(l) — LW) 4+ F@(P@ _ [@)) 4 ... 4 pO)(pD) _ L(D))>

(74)
In each iteration the smoothed probabilities such as marginal likelihood and joint
distribution of the phase are calculated and solve the new parameters of the model

Onew = (W, A, B, ¥) as a function of the previous estimation 6,4.
For the expected next state given the updated A and B matrices for each demon-
strations ,uﬁ) = Ajsgl) + Bjagl), uﬁ) = Ajsz(?) + BjaZ@), e ,;L;?) = AjS,ED) + BjagD),

we define a new variable As, which is equal to

Ao=[ (- ul) (-af) - (B-uP)]

Using the combined As, the new estimate of the covariance matrices

N
;p(pi = j\31:N+1, eold)<A5)T<A5)

3

J

(76)

M=

p(ﬂk = j|51:N+17 Qold)

k=1

As an example the modified simplified flow chart of the EM algorithm for com-
bining two demonstration is shown in Figure 8



31

Model Parameters Intialization

\

E-step
E-step 1 (71,¢1) E-step 2 (72, ()
yes
End
no
M-step

G=F (P — L)+ F(P— L)
Updated Parameters <

no
Wg+1 = Wi — G

Exit

I%
@

Figure 8: Simplified Flow chart of EM algorithm with logistic regression for two
demonstrations
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5 Hardware and Software Architecture

The implementation and testing of the approach developed in this thesis needs an
integrated hardware and software infrastructure to carry out the experiments. This
section describes the HW /SW architecture required and the detailed implementation
procedure followed during the experiment will be discussed

5.1 Software Architecture

The LfD approach involves three phases. First, an operator demonstrates the task
and data required for the learning phase is recorded. Then, during the learning phase,
the position and force data obtained from the teaching phase are used to segment
and estimate the parameters of the model of each segmented manipulation task. The
final step is reproduction phase. During this phase, the model learned during the
learning phase are used to reproduce the targeted manipulation task. The block
diagram representation of the three stages of LfD paradigm presented in Figure 9.

l’,y,Z a:afy7fz

Learning Phase
( Model order and )

Model Parameter Estimation

Figure 9: Block diagram representation of the three phases involved in LfD approach

Therefore the software architecture includes the components required for these
three phases. All the ROS (Robot Operating System) packages and Orocos (Open
RObot Control Software) nodes are written in C++. The existing frame work
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includes the Orocos components such as the "FT Senor', "KUKACommanderROS",
"KUKACommander" and "FRI Server" for real-time and ROS for all other parts [45].
The learning phase of the HMM is done in Matlab environment. The controller
component (Stiffness_phase controller) that makes use of off-line model parameters
estimated is the developed Orocos component.

5.1.1 Teaching Phase

During the teaching phase, a human teacher guides the robot to accomplish the
manipulation task (aka kinesthetic teaching). The LfD is carried out using one com-
ponent from the basic framework, the ROS package Recorder. First, the Recorder
asks the user for the trajectory type (i.e. Cartesian or Joint space) and the inclusion
of force measurements from the F/T sensor. Based on these choices, the Recorder
subscribes to different topics. Then, using the services provided by the KUKACom-
manderROS, the arm is put in gravity compensation. Therefore, the arm can be easily
moved, and the task can be demonstrated in kinesthetic teaching. After reaching the
starting position, the measurements published by the FRIServer and the FTSensor
are recorded to bag files with a frequency of 100 Hz. After one demonstration of the
task, the arm is moved to the starting position. The program allows the teacher to

demonstrate several times the task, recording each demonstration in separate bag
files.

5.1.2 Learning Phase

During the learning phase, the HMM is trained using EM algorithm and the required
parameters are estimated. The training of HMM is based on the data obtained from
teaching phase and it is done offline using Matlab as described in Section 4.3.

5.1.3 Reproduction Phase

Assuming the reproduction step starts from phase one, for the first time instant the
controller defined for the starting phase is used to initiate the reproduction.

We use the learned parameters for each phase to iteratively predict the current
phase based on the previous position i.e. the state and force i.e. the effect of
performing an action. Orocos component consists of a controller that make use of the
learned HMM model have been developed. The controller is an orocos component
which consists of a predefined Cartesian impedance controller parameters as in [6]
for each phase of the task.

The next step is to compute the next state prediction using the model parameters
estimated and the previous state and effect of action and solve for the difference
between the actual value and the predicted value. Using the difference between
the actual value and the predicted value and the estimated covariance matrix for
each phase, a state transition probability is computed. Finally, using the on-line
force and position data, the forward message is calculated based on the phase
transition probability and previous forward message and state transition probability.
Normalizing the forward message gives us the probability phase measure. The most
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likely phase is obtained from the forward message and then based on the entries
of the forward variable corresponding to each phase of the controller we defined
desired direction of movement, the number of compliant axes and their directions
corresponding to the impedance controller for each phase. The impedance controller
used for reproduction is a feed back controller defined by [6]

F=Kx"—x)+D+fy, (77)

where x* is desired position, x is current position, K is gain matrix, D is linear
damping term and fy,,, is the feed-forward dynamics of the robot. Assuming the
direction of compliance learned is represented by a rotation matrix R, the stiffness
matrix of the controller is defined by [6]

K = RVRT (78)

5.2 Hardware Architecture

The hardware of the experiment includes the following components as shown in
Figure 10.

e KUKA Light Weight Robot (LWR4+) (1),
e F/T sensor (2),
e KUKA Robot Controller (KRC) (3) with KUKA Control Panel (KCP) (4) and

e an external computer (5).

Figure 10: Hardware setup (Source: [42])
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The KUKA LWRA4+ robot which is a kinetically redundant robot with 7 DOF
designed to overcome the limits of industrial robots in unstructured human environ-
ments [43]. The robot weighs 15 kg and is able to handle payloads of 7 kg. The
two main features offered by the LWR which make for implementation of the thesis
experiments are

1. Actively compensate robot weight due to accurate dynamic model and force-
torque sensing

2. Compliant motion behavior by setting the parameters of the robot impedance
controller (stiffness and damping)

The ATI Multi-Axis Force/Torque Sensor is an external sensor attached to the
tool used to measure the contact force and torque. The sensor can measure up to
290 N in x and y directions, 580 N in the z-direction for force and up to 10 Nm in
all directions for torque [44].

The LWR is connected to the KRC, a computer that controls the arm and ensures
safe operation and controls the robot.

Both the KRC and the F/T sensor are connected to the external computer with
dedicated UDP connections over Ethernet. Due to the hard real-time requirements of
the communication, the external computer is equipped with two additional network
cards and runs a real-time version of Linux [45].

The external computer is an octa-core computer using Linux operating system
Ubuntu 14.04 LTE with a Xenomai real-time kernel. The KUKA’s Fast Research
Interface (FRI) is used to control the robot through the external computer [45].

5.3 Cartesian Impedance Controller

The targeted manipulation task of this thesis or in general assembly task is based
on the in-contact motion of the tool with the environment. To use the compliant
behavior of the controller a Cartesian impedance controller integrated into the LWR
arm is used. The Cartesian impedance controller works in conjunction with the
torque controllers of the joints. If this controller is used, the robot behaves like a
spring/damper system with stiffness and damping parameters defined along the axes
of the chosen frame [48], [6].
The control law implemented can be described as

Temd = JT(kc(xFRI - xmsr) + D(dc) + FFRI) + fdynamics(q) Q7 Q)a (79)

where J7 is the Jacobian converting forces at the end-effector in the resulting
joint torques T.,q. The control law represents a virtual spring k.(Txpr; — Tpmsr)-
The Cartesian stiffness of the virtual spring k., the Cartesian normalized damping
parameter d., the desired Cartesian position zrg; and the superposed force/torque
term Fpprr can be dynamically set. The term fuynamics(¢, ¢, §) takes care of the
dynamic model of the robot and compensates for gravity torques, Coriolis and
centrifugal forces [45], [49].
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If the stiffness parameters k. are set to zero, the desired position xpr; will not
be reached and only the superposed force Frgr; will be controlled. The impedance
controller will move the arm in the direction of the force to be exerted and provide the
requested force if some reaction is found. It is noteworthy to recall that the two force
components composing the control law (the virtual spring force Fy, = k.(zrprr — Tmsr)
and the superposed force component Fgg;) can counteract each other.

Finally, if the stiffness k. and the superposed force Frr; are set to zero, the robot
is controlled in the same way as with gravity compensation. The robot can be freely
moved while gravitational and frictional torques are computed and then compensated.
However, the positioning accuracy on the set point xpg; in the individual Cartesian
direction is influenced by the parameters of the impedance controller. In case of low
stiffness or small relative displacement (xprr — Tms:), it is possible that the spring
force Fj, is no longer sufficient to overcome static friction [48].
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6 Experiments and Results

As mentioned in Section 4, the first research question if model order can be identified.
The second question is how precise is the prediction of phase transition from the
model learned.

The main objective was to segment phases of a manipulation task and find model
parameters that best fit the phases of each task. Then, based on the obtained model
parameters, we tried to identify the phases during reproduction and activate an
impedance controller defined by its corresponding direction of motion, compliant
axes, and their directions for each segmented phase.

The first experimental setup was a valley consisting of two aluminum plates set
on 45 degrees angle on the table as shown in Figure 11 with single starting position
(SP). The demonstrated task included three phases (i.e. one unconstrained motion
and two constrained motions): non-contact, sliding along one of the aluminum plate
set on 45 degrees angle and sliding across the intersection of the two aluminum
plates.

Figure 11: Experimental setup for single demonstration

The second setup was similar to the first experimental setup except that it had two
different SPs, one from left and the other from the right side of the setup as shown in
Figure 12a and 12b respectively. The demonstrated two tasks included three phases
one unconstrained motion and two constrained motions. The first demonstrated
include non-contact, sliding along the first aluminum plate set at 45 degrees angle
and sliding across the intersection of the two aluminum plates with starting position
shown in Figure 12a. The second demonstrated task was the same as the second
demonstrated task, however it had different starting position as illustrated in figure
12b and the sliding phase is along the second metal plate.

The experiments we conducted included

e Kinesthetically teaching the robot and recording data
e Model order and model parameter estimation from position and force data

e Reproduction of the manipulation task based on the estimated model parameters
by choosing a controller that best fits with the estimated phase
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(a) Experimental setup from SP 1 (b) Experimental setup from SP 2

Figure 12: Experiment setup for demonstrations from two different SPs

6.1 Model parameter Estimation from Single Demonstra-
tion

In the model parameter learning from a single demonstration, six similar demon-
strations starting from the same starting position were used. During the kinesthetic
teaching of the robot, we recorded the position and the forces of the tool as shown in
Figure 13a and Figure 13b respectively. The first phase is represented by decreasing
position of z-component while the other components remain constant, the second
phase is represented by increasing y-component and decreasing z-component and the
last phase is represented by decreasing x-component and uniform other components
as shown in Figure 13a. Each phase of the manipulation task is represented with
specific feature vector as shown Figure 13b: zero contact force for the first phase, a
sudden increase of force in the y and z components and the last phase is represented
by a non-zero force along all components.

Then BIC was used for estimating the model number as described in Section 4.2
for all the six separate demonstrations. The estimated model number was consistent
as shown in Figure 14 which is equal to N = 3.

BIC model selection criterion plot of Figure 14 is with respect to a possible
number of states N of the HMM. According to BIC, the model with three states
(N = 3) was the most appropriate model number for the modeled manipulation
task. The implemented BIC was also compared with as BIC Matlab function "bic" as
shown in the Figure 14. Our implemented BIC was specifically designed for Gaussian
emission with defined penalty term that is why the two graphs do not overlap.

Using the estimated model number we ran the EM algorithm to estimate the
model parameters. The algorithm was able to predict the phases of the assembly task
as shown in the Figure 15a which corresponds to the normalized forward variable
of HMM «. The marked 3D plot of the position of the tool corresponding to the
estimated sequence of phase Figure 15a is shown in Figure 15b

To validate how well the estimated parameters for each phase can predict the
dynamic behavior of the observed state of the model, we used the model parameters
of each phase to predict next state.

§t+1 ~ AjSt -+ Bjat (80)
where j € [1,2,3], corresponding to the estimated phase. And we subtract the
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Figure 13: Position and force of the tool for six similar demonstrations (each color is
a demonstration)

predicted state from the actual measured to find error of prediction for each phase
using

ét ~ §t — St (81)

The average error bar of the prediction corresponding to the three phases estimated
parameters is shown in Figure 16, 17 and 19 respectively. As shown in the Figure
16, the state prediction using the model parameters of the initial phase is able to
predict well the first phase as it is represented with lower error until the first vertical
line compared with the other two phases.

Using the same principle, the predicted states using the model parameters of
the second phase were able to predict the second phase accurately as it is shown in
Figure 17 with lower error in the region between the two vertical lines.

From Figure 17, the prediction error of the first phase and the second phase states
obtained from the second phase model parameters looks like the same, but they are
not. We took a zoomed version of the phase and part phase two to see the difference.
As shown in Figure 18, the prediction error of phase two is smaller than phase two
which indicates a better prediction of phase two compared other phases.

The prediction of states using the last phase model parameters were also done as
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Figure 14: BIC based estimated model number using single demonstrations
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Figure 15: Estimated phases and the corresponding position of the tool for the target
manipulation task

shown in Figure 19. As indicated in the figure, the phase after the second vertical is
represented with lower error which indicates the correct prediction of phase 3.

To support the goodness of our prediction of state from the learned model
parameters, a qualitative measure of the average error variance was made. Here
E,,(0;) represents the average error of phase ¢ (p;) due to the prediction of state
using model parameter ;. As shown in Figure 20, state predicted using the model
parameters of the first phase has lower error compared to other phase predictions
using the same model parameters. All yellow colors bar are average error variance
related to phase 1 and all magenta, and cyan colors are related to phase two and three
respectively. The pair of three colors represents average prediction error variance of a
phase, starting from phase one and then phase two and final phase three. Comparing
the first three colored bar, the bar with label £, (6;) has lower average error variance
which indicates a good prediction of phase one p; using model parameters of phase
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Figure 16: Prediction error bar for state prediction using phase 1 model parameters
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Figure 17: Prediction error bar for state prediction using phase 2 model parameters

one f;. The same conclusion can be made for state prediction using phase two and
three.

6.2 Model parameter Estimation for two Demonstrations
with Different Starting Points

To learn model parameters from multiple demonstrations, we used two demonstra-
tions with different starting positions. The setup and the number of phases of the
manipulation task were similar with the single demonstration setup as shown in
Figure 12a and 12b. We used two demonstrations which were symmetric in z-axis in
the path they follow. The x,y and z position of the tool for the two different starting
positions are shown in Figure 21a and 21b and their corresponding Cartesian force
is shown in Figure 24a and 24b. The symmetry of the demonstrated task can be
seen Figure 21a and 21b in which the x and z components are similar, and the y
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Figure 18: Prediction error bar for state prediction using phase 2 model parameters
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Figure 19: Prediction error bar for state prediction using phase 3 model parameters

component of the first task is negative of the second task. Similarly, the feature of
the first demonstration is negative of the second demonstration.
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Figure 20: Prediction error bar for state prediction using phase 3 model parameters

After we recorded the required information for the two demonstrations, BIC was
used to find the combined model number of the two demonstration pair with different
starting positions. As it is pointed out in the single demonstration case, we found
that the model number of the combined HMM model was the same as the model
number estimated from single demonstration as shown in Figure 22

For estimating combined model parameters of the estimated model number, we
ran the modified version of EM algorithm described in Section 4.5. To check if
the implemented EM algorithm works we first used two similar demonstrations in
order estimate the model parameters. The estimated phases sequence corresponding
to the two concatenated demonstrations is shown in Figure 23. As indicated in
the figure, the algorithm identifies the start of the next demonstration. Also the
estimation works well as clearly shown by the approximately equal length of phases
for both demonstrations and approximately equal model parameters for both cases.
The comparison of model parameters estimated for the combined case with model
parameters obtained from single demonstration was made as shown in Table C1.
The model parameter obtained were approximately equal.

We tried two demonstrations with different starting position to estimate combined
model parameters that generalize our model for both sides of our setup. As in the
case of estimation from a single demonstration, the algorithm is able to estimate
the phases of the assembly task as shown in Figure 15a which corresponds to the
combined normalized forward variable of the HMM «a. And the marked 3D plot of
the position of the tool corresponding to the estimated phase sequence Figure 24a is
shown in Figure 24b

To explain why the system behaves as it should, the time-varying transitions
between the hidden phases were captured during reproduction. The plot with its
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Figure 21: Position and contact force for two demonstration with different SP

corresponding feature vector and the estimated phase sequence is plotted side by
side for reproduction phase as shown in Figure 25. The time varying transition
from initial phase to the rest of the phases of the manipulation as clearly indicated
in Figure 25a was executed smoothly which is shown by the only transition from
the initial phase to subsequent phase. The phase transition change occurs when
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there is a change in the feature vector i.e. the contact force as indicated in Figure
25b. The time-varying phase transition nature with respect to the feature vector
corresponds to the soft-max hidden phase transition definition of Section 4.1. The
phase sequence which corresponds to the normalized forward variable is also plotted
to show switching between the controller assigned for each phase as shown in Fig.
25c.

6.3 Comparison of STAR and ETAR

For showing the prediction accuracy, our approach was compared with the state
based phase transition [7]. The comparison was made between effect-of-action based
phase transition as shown in Figure 26a with the state based transition as shown in
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Figure 25: Hidden phase, feature vector and normalized forward variable

Figure 26b. For the state based transition, we took the relative position of the tool
to a target (end) position as a feature vector. As shown in Figure 26a and Figure
26b a smooth phase transition is achieved when forces were considered as feature
vector compared to the state based transition.

In addition, the state based estimation of model parameters results in inaccurate
prediction of state compared to force based transitions especially during transition
between phases.
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6.4 Model parameter Estimation for Hose Coupler

As the final part of our experiment to make sure our proposed implementation can
also work for setups that include rotation as a phase of the manipulation task, we use
the hose coupler experimental setup as shown in Figure 27. The experimental setup
includes two phases; the first phase is the unconstrained motion in which the hose
tool moves toward the coupler. The second phase starts when the hose touches the
coupler which then continues with rotational motion and ends when the hose-coupler
is coupled. In this experiment since one of the two phases includes a rotational
motion the state represents position and orientation instead of position only. Also,
the feature vector is represented by concatenated force, torque and a scalar one.

Figure 27: Hose coupler experimental setup

For the recorded data of the hose coupler setup of Fig. 27, BIC model selection
criteria was run similarly as Valley setup case and we obtained a model order of
N = 2. For the estimated model order EM algorithm for the modified state and
feature definition was ran, as shown in Figure 28a, the algorithm was able to find
actual phase sequence. To check if our model parameters estimated can predict we
followed a similar procedure as the Valley case and average error bar corresponding
to predictions from model parameters of phase one and two are shown in Figure 28b
and 28c respectively. As shown in the Figure 28b the model parameters for phase
one were able to predict next state of the first phase as lower error shows before the
horizontal line. Similarly, the model parameters of phase two were able to predict
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the second phase as shown with lower prediction error after the horizontal line of
Figure 28c.
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Figure 28: Estimated phase sequence and prediction using model parameters of phase
one and two

The same procedure as Valley setup was followed for estimating the average error
variance qualitatively. As shown in Figure 29, the prediction using the non-contact
estimated model parameters predicted the next state of the initial phase with lower
error labeled with E,, (6;) compared to the coupling phase labeled with E,,(6,). A
similar conclusion can be made for the second phase prediction using the second
phase model parameters.
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7 Conclusion and Future Work

We presented an LfD approach based on a probabilistic modeling of a compliant
motion based manipulation tasks with multiple phases. The phases were represented
as hidden variables corresponding subgoals of the task. We focus on how the
model parameters could be learned from a single and multiple demonstrations using
the expectation-maximization algorithm for various definition of state and feature
vectors. More specifically we propose a more generalized model for two different
demonstrations. The proposed model incorporates the observed effect of performing
an action when predicting the transitions between the hidden phases. Experiments
evaluate the performance of the approach, showing that the off-line estimated model
parameters are able to detect the current phase and transition between phases in which
a defined controller assigned to each subtask is activated during the reproduction
phase. The results showed that the effect of performing an action-based transitioning
allows the robot to predict the phase changes more accurately than state based phase
transition, resulting in better predictions overall.

The effect-of-action based transitions AR-HMM (ETAR) has feature vectors
which are approximately constant for each phase of the task compared to STAR that
makes it accurate phase transition prediction and robust against possible environment
variations.

Our implemented algorithm can be used for any general manipulation task as it
is proved for the hose coupler experimental setup with different effect-of-action and
state definition that includes force, torque, position and orientation.

For future work a generalization, our work for practical application such as
underwater assembly can be done by incorporating a visualization method to lead the
tool to the target position and then our proposed method can be used for the final
assembly task. In a case of better estimation of parameters requirement that can be
used for general any complex assembly task modified model that can incorporate
friction between the tool and the environment can be included for future work.
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A Forward and Backward Variable Derivation

Using the forward variable definition, conditional independence and Bayes rule, the
forward variable can be derived as follows

a;(t)

p(pr = J) = p(21e41, pt = J)

P21l = J)p(pe = J)

Pz lpe = Js 20)p(z14|pe = 3)p(pr = 9)
p(2e1lpr = 3, 20)p(214, pr = J)
p(Zt+1|Pt =7, Zt) ZP 215 Pr—1 = Uy P = ])

= pzev1lpe = Js 2 ZP 21, Pt = Jlpe—1 = D)p(pr—1 = 1)

= p(zalor = 5, 2) Yo p(zaalpes = Dplpe = Glor-1 = D)p(per = 1)
= pzev1lpe = Js 20) ZP(len pr—1 =1 pr = J)p(pe = jlpi—1 = 1)

= pzev1lpe = Js 20) Z a;(t — Dp(pe = jlpe—1 = i)

Similarly using the backward variable definition, conditional independence and
Bayes rule, the backward variable can be derived as follows

Bi(t) = plp: = j) = p(2er1:n1pt = J; 2e41)
= p(ze41n, Pl e = 1, Z2e41)
= p(zer1:n |21, pr1 = ilpe = §)P(per = ilpe = 7)
= p(zer1n| 241, prer = Op(pes1 = ilpe = J)

= Zp(zt+2:N‘pt+1 = i)p(ZtJrl‘,Ot =1, Zt)P(,Ot+1 = i\pt = j)

=2 Blorr = D)p(zialpe = i 2)p(prer = ilpe = j)
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B Expectation-Maximization Algorithm (Deriva-
tion)

The target of EM algorithm is maximizing log-likelihood of the observation data
log(p(z)). But maximizing log-likelihood of the observation data is not tractable,
which means there is closed form solution.

Instead we introduce hidden variables to make it tractable. The probability of
the observed data in terms of the hidden variable is given by using Baye’s rule

_ plz,p)
PE) = ol

its corresponding log-likelihood is given by

log(p(z)) = log(p(z, p)) — log(p(p|z))

adding and subtracting the same variable will result

—oelnlz. o)) —lo loe(nlola)) 1o oo P2P) [, Plrlz)
lg(0(2)) = og((z, ) -loglalp) o (p(plz) +os(a(p)) = log 2 +( log q(p))

multiplying both sides by ¢(p) results in

0(p) 08 (p()) = a(a) o A20) 14 (‘ log Wm)

q(2) q(2)
Integrating both sides with respect to dp

[ ato)os((@)dp = [ a(p) o pf;’pg’) dp— [ alp)log wdﬂ — F(q,6) + KL(plg)

The second term in the right hand side of the equation is the expectation of
log % under the probability distribution ¢(p) and is known as Kullback-Leibler
(KL) divergence. The term K L(p|q) is always greater than 0. Since K L(p|q) > 0,
F(q,0) becomes strictly lower bounded on log-likelihood of the observed data.

Generally the purpose of the EM algorithm is make ¢(p) as close as possible to
p(p|z) and maximize the lower bound F(q, ) with respect to the model parameter.
This done in two steps the expectation step (E-step) and the maximization step

(M-step).
1. E-step:
make ¢(p) as close as possible to p(p|z)

q(p) = p(plz) (B1)
2. M-step:

Maximizing lower bound F'(q, #) with respect to model parameters 6

maxeF(q,0) (B2)
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when maximizing F'(q,6), q becomes different with p and we need to go back to
E-step to make close ¢(p) = p(p|z)

F(0.0)= [ alp)log pfj’pf) dp= [ alp)loenz. p)dp — [ a(p)loga(p)dp

q(p) is independent of the model parameter 6, therefore maximizing F'(q,0) is
equivalent to

mazgF(q,0) = maasg/q(p) log p(z, p)dz (B3)
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Parameter Estimated Comparison for Two Sim-
ilar Demonstrations

Demo. 1 Demo. 2
—0.0718 0.2224 —0.7329 —0.2044 —0.1713 0.2406 —0.9238 —0.6807
—0.1365 1.2335 —3.5037 —0.5463 —8.6553 6.6203 —100.4144 —8.0383
—3.4286 4.3417 —25.5330 —2.1910 —0.0844 0.0330 —0.7543 —0.1498
—0.1017 —0.1490 0.1187 —0.1101 —0.0449 0.0312 —-0.3236 —0.1209
—0.1721 0.7842  —2.4817 —0.4314 —0.1777 0.2804 —0.8905 —0.7561
—3.4891 3.5624 —23.7947 —1.9888 —9.2343 2.2641 —91.5347 —7.2839
0.2391 0.2146 0.5619 —0.1566 —5.8055 9.5197 —83.4395 —7.3135
0.1663 1.1163 —1.9635 —0.4747 —0.0197 0.0980 —0.2985 —0.1554
—2.7362 4.4064 —22.7675 —2.0791 —0.1981 0.3496 —1.3217 —0.8315
0.9807 0.0082 —0.0011 0.9853 —0.0016 —0.0006
0.0086 0.9574 —0.0053 —0.3154  1.0290 0.0063
1.4011 0.0997 1.0066 0.2408 0.0045 0.9983
0.9776 —0.0001 —0.0019 0.9720 —0.0665 0.0602
0.1193 0.9547  0.0585 —0.0462 1.1060 —0.1106
0.0796 0.0149  0.9944 —0.0702  0.2020 0.7935
1.0133 —1.3959 0.1248 0.9871 0.1002 0.2423
0.0002 0.9941 0.0988 —0.0004 1.0167 0.0453
—0.0001 0.0433 1.1840 0.0004 0.0681 1.2284
—0.0000 —0.0001 0.0002 —0.0086 0.0002 —0.0000 —0.0000 -—0.0012
0.0008 —0.0012 —0.0006 0.0325 0.0000 0.0002 0.0000 —0.0745
0.0009 —0.0013 —0.0009 0.1577 —0.0001 —0.0000 0.0000  0.0367
—0.0001 —0.0001 —0.0000 —0.0030 0.0000 —0.0000 0.0000  0.0256
—0.0003 0.0003  0.0001 0.0351 0.0003 0.0002 —0.0001 —0.0535
—0.0003 0.0002 0.0001 0.0032 0.0003 0.0002 —0.0001 —0.0998
—0.0005 —0.0002 0.0000  0.7163 —0.0001 0.0003 0.0001 —0.0773
—0.0000 0.0000 —0.0000 —0.0045 —0.0000 0.0000 —0.0000 —0.0121
—0.0000 0.0000 —0.0000 —0.0367 —0.0000 0.0000 0.0000 —0.0528
0.0119 —0.0319 —0.0499 0.0195 —0.0066 —0.0325
1079 x | —0.0319 0.5800  0.4603 1078 x | —0.0066 0.0328 —0.0354
—0.0499 0.4603 0.8842 —0.0325 —0.0354 0.6798
0.0409 —0.0845 —0.0757 0.0604 —0.0390 —0.0580
1077 x | —0.0845 0.4565 0.4003 1077 x | —0.0390 0.8151 0.3356
—0.0757  0.4003 0.4545 —0.0580 0.3356  0.8566
0.2777  0.0044 —0.0088 0.1381 —0.0016 —0.0002
1076 x 0.0044  0.0008 —0.0003 1078 x | —0.0016 0.0020 —0.0005
—0.0088 —0.0003 0.0006 —0.0002 —0.0005 0.0003

Table C1: Model parameter comparison for two

similar demonstrations
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