
Aalto University

School of Science

Degree Programme in Security and Mobile Computing

Shiva Prasad Thagadur Prakash

Enhancements to Secure Bootstrapping
of Smart Appliances

Master’s Thesis
Espoo, July 31, 2017

Supervisors: Prof. Tuomas Aura, Aalto University
Prof. Danilo Gligoroski, NTNU

Advisor: Mohit Sethi, D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/92854875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Security and Mobile Computing

ABSTRACT OF
MASTER’S THESIS

Author: Shiva Prasad Thagadur Prakash

Title:
Enhancements to Secure Bootstrapping of Smart Appliances

Date: July 31, 2017 Pages: 70

Major: Security and Mobile Computing Code: T-3011

Supervisors: Prof. Tuomas Aura, Aalto University
Prof. Danilo Gligoroski, NTNU

Advisor: Mohit Sethi, D.Sc. (Tech.)

In recent times, there has been a proliferation of smart IoT devices that make
our everyday life more convenient, both at home and at work environment. Most
of these smart devices are connected to cloud-based online services, and they
typically reuse the existing Wi-Fi network infrastructure for Internet connectivity.
Hence, it is of paramount importance to ensure that these devices establish a
robust security association with the Wi-Fi networks and cloud-based servers. The
initial process by which a device establishes a robust security association with the
network and servers is known as secure bootstrapping. The bootstrapping process
results in the derivation of security keys and other connection parameters required
by the security associations. Since the smart IoT devices often possess minimal
user-interface, there is a need for bootstrapping methods with which the users can
effortlessly connect their smart IoT devices to the networks and services. Nimble
out-of-band authentication for Extensible Authentication Protocol (EAP-NOOB)
is one such secure bootstrapping method. It is a new EAP authentication method
for IEEE 802.1X/EAP authentication framework. The protocol does not assume
or require any pre-configured authentication credentials such as symmetric keys or
certificates. In lieu, the authentication credentials along with the user’s ownership
of the device are established during the bootstrapping process.

The primary goal of this thesis is to study and implement the draft specification of
the EAP-NOOB protocol in order to evaluate the working of EAP-NOOB in real-
world scenarios. During our implementation and testing of the initial prototype
for EAP-NOOB, we discovered several issues in the protocol. In this thesis, we
propose a suitable solution for each of the problems identified and also, verify the
solutions through implementation and testing. The main results of this thesis
work are various enhancements and clarifications to the EAP-NOOB protocol
specification. The results consequently aid the standardisation of the protocol at
IETF. We also design and implement several additional features for EAP-NOOB
to enhance the user experience.

Keywords: EAP, EAP-NOOB, Secure Bootstrapping, IoT, Out-of-Band
Authentication

Language: English

ii

Acknowledgements

This thesis work was carried at Aalto University, Finland under the super-
vision of Professor Tuomas Aura (Aalto University) and Professor Danilo
Gligoroski (Norwegian University of Science and Technology) as part of the
Erasmus Mundus NordSecMob program.

First and foremost, I would like to sincerely thank Professor Tuomas
Aura for his constant feedback and my sincere gratitude for taking the team
to IETF-99, Prague and IETF-96, Berlin. I would like to sincerely thank
Professor Danilo Gligoroski for his remote support and co-supervision.

I would also like to thank Dr. Mohit Sethi for all his timely advice and
his continuous support.

I thank my teammate Raghavendra Mudugodu Seetarama for his efforts
and contribution towards the project. Working with him had been an enjoy-
able experience.

Finally, I would like to express my sincere gratitude to my family and
friends for their encouragement and support.

Espoo, July 31, 2017

Shiva Prasad Thagadur Prakash

iii

Abbreviations and Acronyms

AAA Authentication Authorization and Accounting
AES Advance Encryption System
AMSK Application Master Session Key
AP Access Point
API Application Programme Interface
CCMP Counter-Mode-CBC-MAC
DH Diffie-Hellman
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
EAP Extensible Authentication Protocol
EAPOL EAP over LAN
ECC Elliptic Curve Cryptosystem
ECDH Elliptic Curve Diffie-Hellman
EMSK Extended Master Session Key
ESS Extended Service Set
ESSID Extended Service Set Identifier.
FQDN Fully Qualified Domain Name.
IEEE Institute of Electrical and Electronics Engineers
IETF International Engineering Task Force
IOT Internet of Things
IP Internet Protocol
KDF Key Derivation Function
LAN Local Area Network
MAC Message Authentication Code
MITM Man In The Middle
MSK Master Session Key
NAI Network Access Identifier
NAS Network Access Server
NFC Near Field Communication
NIST National Institute of Standards and Technology

iv

NOOB Nimble Out-Of-Band
OOB Out-Of-Band
PAE Port Access Entity
PE Protocol Entity
PMK Pairwise Master Key
PSK Pre-Shared Key
PTK Pairwise Transient Key
QR Quick Response
RADIUS Remote Authentication Dial-In User Service
RFC Request For Comment
RSN Robust Security Network
RSNA Robust Security Network Association
SSID Service Set Identifier
STA Station
TKIP Temporal Key Integrity Protocol
TLS Transport Layer Security
TTLS Tunneled Transport Layer Security
Wi-Fi Wireless Fidelity
WLAN Wireless Local Area Network
WPA Wi-Fi Protected Access
WPA2 Wi-Fi Protected Access 2
WPS Wi-Fi Protected Setup

v

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Problem Statement . 4
1.2 Structure of the Thesis . 4

2 Background 6
2.1 Lifecycle of an IoT Device . 6
2.2 Objectives of Network Security 7
2.3 Secure Bootstrapping . 8
2.4 Security Protocols for Wi-Fi Networks 10
2.5 WPA2 and RSN . 11

2.5.1 IEEE 802.1X . 13
2.5.2 EAP . 15
2.5.3 EAPOL . 16
2.5.4 RADIUS . 17
2.5.5 EAP Authentication Process 19
2.5.6 RSNA Establishment Procedure 20

2.6 ECDH Key Exchange Procedure 24
2.7 OOB Channels for Authentication 25

3 Protocol Overview 27
3.1 A Brief Overview of the Protocol 27
3.2 Motivation for EAP-NOOB 31
3.3 A Brief Overview of the Initial Implementation 31

4 Access Control to Network Resources 34
4.1 Need for Fine-Grained Access Control 34
4.2 Proposed Solution . 36
4.3 Implementation Environment 37
4.4 Access Control Based on Called-Station-ID and User-Name . . 38

vi

4.5 Access Control Based on NAS-ID and User-Name 39
4.6 Access Control Implementation for EAP-NOOB 42
4.7 Isolation of Network Clients 43

5 Enhancements to EAP-NOOB 45
5.1 Re-keying and Algorithm Agility 45

5.1.1 No Change in the Supported Cryptosuite 46
5.1.2 New Cryptosuite Negotiated 47

5.2 Timeouts . 48
5.3 Failure Recovery . 49
5.4 Handling Multiple Sessions . 50
5.5 Roaming . 50

6 Additional Features 52
6.1 IEEE 802.1X Wired Access 52
6.2 OOB Channel with NFC . 56
6.3 Web User-Interface to Configure the

RADIUS Clients . 58

7 Discussion 60
7.1 Thesis Contributions . 60
7.2 Open Questions . 62
7.3 Standards and Implementation Status 62

8 Conclusion 64

vii

List of Figures

2.1 Lifecycle of a device [38] . 7
2.2 Relationship of Wi-Fi to IEEE 802.11 11
2.3 802.1x architecture [15] . 14
2.4 WPA2-Enterprise network architecture 18
2.5 RSN key hierarchy . 22
2.6 RSNA establishment procedure(adapted and modified [34]) . . 23

3.1 EAP-NOOB server-peer association state machine [51] 28
3.2 EAP-NOOB key hierarchy . 30
3.3 EAP-NOOB setup . 33
3.4 An example scenario depicting the relationship between vari-

ous components of the EAP-NOOB protocol 33

4.1 Access control problem in home AP 35
4.2 Access control problem in enterprise environments 37
4.3 Policy file 1 based on Called-Station-ID 39
4.4 Policy file 2 based on Called-Station-ID 39
4.5 Access control based on NAS-ID attribute 40
4.6 Policy file based on NAS-ID 41

5.1 Reconnect Exchange . 46
5.2 New message sequence for the Completion Exchange [51] . . . 51

6.1 wpa supplicant architecture [14] 53
6.2 802.1X-based wired access . 55
6.3 OOB message transfer with NFC 57
6.4 Web UI to configure RADIUS clients 58

viii

Chapter 1

Introduction

The Internet of Things (IoT) is a concept of an interconnected world where
almost every physical object, as long as they are equipped with the necessary
electronic parts, can be seamlessly connected to the Internet. IoT has evolved
from the convergence of the Internet, embedded systems, wireless technology
and data science. It has enabled insights and data never available before,
culminating in improved decision-making and actions in the physical world.
For instance, consider the problem of road traffic management. It may be
inefficient to employ pre-programmed traffic signal lights for controlling the
road traffic as the traffic intensity may significantly vary throughout a day.
Deploying humans for this purpose could be costly and also, infeasible during
adverse weather conditions. In lieu, through IoT solutions [35], the traffic
can be efficiently managed by dynamically operating the traffic signal lights
over the Internet.

Smart IoT devices are on the path to form a ubiquitous network around
us. Examples of such smart objects include not only smartphones or tablets
but also objects of everyday life such as washing machines, dishwashers,
doors and so on. These smart IoT devices have made our daily lives more
convenient and have begun to transform our way of living. Therefore, it
is captivating for the researchers all over to address the issues that might
impede the adoption of IoT in our everyday life.

In all modern communication systems, security is an important consider-
ation. It is crucial to ensure that IoT devices from different manufacturers
interoperate as well as connect to the Internet securely. In other words, the
devices should communicate securely. Otherwise, they would remain vulner-
able throughout the rest of their operational lifespan, attracting adversaries.
If an adversary gains control over a vulnerable device, the consequences can
be very severe. Since physical objects are connected to the Internet, the
implications of device compromise are no longer limited to some monetary

1

CHAPTER 1. INTRODUCTION 2

loss but can also be to the extent of causing physical harm to humans. For
instance, consider the previously mentioned IoT-based road traffic signals. If
an attacker with malicious intent gains unauthorized access to these traffic
signals, he can cause traffic accidents. Thus, it is crucial to ensure that IoT
devices function securely. The process of making a device function securely
when it is first deployed can be termed as secure bootstrapping. After an
IoT device starts operating securely, managing it remotely with adequate
security is equally important and challenging as well. In this thesis, we will
see how secure bootstrapping of IoT devices can be performed so that they
securely function and can be managed remotely with security.

Wi-Fi networks are one of the most convenient and widely deployed means
to connect to the Internet. In simple words, access to the Internet is widely
obtained via Wi-Fi access points. Secure bootstrapping in Wi-Fi networks
can be defined as the process of establishing a security relation between an
unauthenticated client and a Wi-Fi access point. The bootstrapping process
also results in the derivation of security keys for both the parties to ensure
data confidentiality and integrity between them. Wi-Fi Protected Access 2
(WPA2) is a Wi-Fi security standard defined for securing Wi-Fi networks.
WPA2 has two modes of operation: WPA2-Personal and WPA2-Enterprise.
In either mode, as part of secure bootstrapping, each client has to be authen-
ticated. The authentication is performed with the help of credentials which
are typically distributed before their use. A user will have to provide the
authentication credentials to the wireless client at the time of authentication
or pre-install them.

WPA2-Personal networks are deployed in homes, or small-scale environ-
ments where security is of least consideration and the number of devices to be
managed is less. WPA2-Enterprise networks are deployed in scenarios where
security is of paramount importance and there are many devices belonging
to different users to be managed. In WPA2-Personal, pre-shared keys (PSK)
are used for authentication, and the authentication is performed at the access
point. All the users or devices in a given WPA2-Personal network use the
same PSK. Due to the use of the same PSK, in WPA2-Personal networks,
a presence of a single vulnerable device in a given network makes the en-
tire network vulnerable. On the other hand, WPA2-Enterprise has built-in
support for multiple authentication methods known as Extensible Authen-
tication Protocol (EAP) methods, and the authentication is performed at a
remote centralized authentication server. The WPA2-Enterprise mode offers
a better flexibility as all the devices can be authenticated and managed at
a central server. The type of credentials used for authentication depends
on the EAP method chosen by the authentication server. For instance, in
EAP-TLS method, digital certificates are used for authentication, and in

CHAPTER 1. INTRODUCTION 3

EAP-PSK, pre-shared keys are used. Unlike Personal networks, in Enter-
prise networks, each user in a given network possess different credentials.

There is an increased proliferation of smart IoT devices, for example in
smart homes [54], remote health monitoring [32] and industrial automation.
These IoT devices typically reuse the existing Wi-Fi network infrastructure
for Internet connectivity. It is of paramount importance to ensure that these
physical objects communicate securely. Also, per-device authentication and
network isolation are necessary to prevent an entire Wi-Fi network from being
compromised due to a single vulnerable device in the network. Therefore,
WPA2-Enterprise networks may soon be preferred even in home environ-
ments because Enterprise networks offer robust security, and flexibility in
managing the devices.

The enterprise and consumer IoT appliances are off-the-shelf devices.
They are sold and dispensed without any prior information on ownership
or a method to provision credentials. Therefore, the authentication creden-
tials, device ownership, and device registration must all be set up at the
time of their deployment. Also, many IoT appliances possess limited user-
interface (UI) that could be utilized to configure them. Examples of such IoT
devices are display screens, printers, speakers or cameras, which have either
an output or input interface. The manual distribution and management of
credentials in such scenarios demand both time and money, especially when
the devices are many in number, and it is certainly not scalable. It is non-
trivial to use any of the existing EAP authentication methods for secure
bootstrapping such IoT devices because they need pre-configured credentials
for authentication. Hence, there is a need for a user-friendly EAP authenti-
cation method to ease secure bootstrapping, so that the devices can be easily
authenticated at a central server from where they can later be managed and
controlled.

Nimble out-of-band authentication for EAP (EAP-NOOB) is one such
EAP method for authentication, cryptographic key agreement, and registra-
tion of smart IoT devices that intend to join an existing Wi-Fi Enterprise
network. EAP-NOOB was inspired by earlier work on secure bootstrapping
of digital signage by Sethi et al. [39]. Unlike other EAP methods currently
available, EAP-NOOB does not assume or require any pre-configured authen-
tication credentials such as symmetric keys or certificates. In this method,
a Diffie-Hellman (DH) key exchange is performed over an insecure channel,
and a user-assisted out-of-band (OOB) channel is employed to authenticate
the established key in order to avoid man-in-the-middle (MiM) attacks on
the in-band channel. The security is based on the assumption that the OOB
message is sent over a secure channel and cannot be modified or spoofed by
an attacker. EAP-NOOB is applicable to relatively capable devices that can

CHAPTER 1. INTRODUCTION 4

input or output dynamically generated messages of tens of bytes in length
and not to extremely resource-constrained sensors.

The NOOB protocol for EAP is specified to be a generic protocol appli-
cable to IoT devices of any make. In order to introduce the EAP-NOOB
protocol to a large community of users and also to make devices interoper-
able with the protocol, the protocol has been proposed for standardization.
A draft version of the specification for EAP-NOOB protocol can be found
at [50].

1.1 Problem Statement

The EAP-NOOB specification is currently being written. To aid the stan-
dardization of EAP-NOOB at the Internet Engineering Task Force (IETF),
real-world implementation experiences are crucial.

This thesis work was executed as part of the same research group which
has specified the EAP-NOOB protocol, and its main contributions are to-
wards the practical implementation part of the research. The primary goal
of this thesis is to influence the protocol specification through real-world im-
plementation experiences of the protocol. In other words, we verify and if
necessary modify the protocol specifications based on the real-world imple-
mentation experiences. As will be evident from this thesis, several issues
were found in the specification during our initial prototype implementation.
The identified issues needed to be addressed, and the protocol specification
has to be improved accordingly. In this thesis, we also design and implement
several additional features for EAP-NOOB to enhance the user experience.

1.2 Structure of the Thesis

The rest of this thesis is organized as follows. In chapter 2, we present all the
topics and technologies required to understand both the importance of IoT
security and the proposed solution to enhance the security of IoT devices.
A brief overview of the EAP-NOOB protocol, including a brief overview
of the initial prototype implementation, will be presented in chapter 3. In
chapter 4, we propose a way of implementing access control policy decisions
based on the Network Access Server (NAS). In chapter 5, solutions to each
discovered issue of the EAP-NOOB protocol is presented along with the
implementation details. Later, we explain the design and implementation of
various additional features for EAP-NOOB in Chapter 6. In chapter 7, we
discuss the contribution of the thesis and open questions. Finally, chapter 8

CHAPTER 1. INTRODUCTION 5

provides the concluding remarks.

Chapter 2

Background

This chapter begins by briefly describing the lifecycle of a smart object, fol-
lowed by the objectives of network security and a detailed explanation of
secure bootstrapping of an IoT device. After that, the security protocols
for Wi-Fi networks are discussed in detail. Since EAP-NOOB employs the
Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol, a summary
of the ECDH key exchange procedure is also provided. Finally, this chap-
ter ends with a short description of out-of-band (OOB) channels used for
authentication.

2.1 Lifecycle of an IoT Device

The following explanation is based on [37, 51]. As depicted in figure 2.1,
the lifecycle of a smart object begins when it is manufactured. Depending
upon the area of application, IoT devices are designed to perform various
tasks such as information gathering and automation tasks. In a particular
deployment of IoT devices, it is highly unlikely that all the devices are from
a single manufacturer. Hence, it is of vital importance to ensure that devices
from different manufacturers interoperate as well as connect to the Internet
securely.

After its manufacture, an installer installs and commissions the IoT device
within a network. Depending on the scenario in which the devices are de-
ployed, the installer may be the end user, a manufacturer or some third party.
All the essential configuration information such as credentials, addresses and
ownership that are necessary for the device to start functioning are provided
to it during this bootstrapping phase. This is the phase where EAP-NOOB
comes into action; to securely bootstrap IoT devices with ease. The device
enters the operational phase once it has been securely bootstrapped into the

6

CHAPTER 2. BACKGROUND 7

network.
The device will be under the control of its owner during the operational

phase. There might be occasional maintenance phases depending upon the
lifetime of a device. During a maintenance phase, the firmware or software
on the device is upgraded either locally or remotely. Re-bootstrapping of
the device may be required after a maintenance phase if the device has lost
the necessary state information. The device continues to loop between the
operational and maintenance phases until it is decommissioned. The decom-
missioning of the device signifies the end of its lifespan. However, this does
not imply that the device has become faulty or unusable. The detached
device can be re-commissioned to start over the lifecycle under a different
owner.

Figure 2.1: Lifecycle of a device [38]

Before diving into the details of secure bootstrapping, let us briefly look
at the primary goals of network security in the next section.

2.2 Objectives of Network Security

The primary goals of network security are confidentiality, integrity, and avail-
ability, often represented as CIA triangle. So, whenever the word “security”
is used in the context of communication networks, it typically means that
CIA triangle is being talked about.

• Confidentiality means to protect data from unauthorized access. In
other words, data should be made available only to authorized and in-
tended entities. The mechanism to achieve confidentiality is obscuring
or encryption of the data.

CHAPTER 2. BACKGROUND 8

• Integrity means to protect the data from unauthorized modification, so
as to ensure the accuracy and consistency of the data. The mechanism
to achieve integrity is hashing. In addition to integrity, the authenticity
of the message can be obtained through digital signatures and keyed
hashes.

• Availability means to ensure that data and network resources are al-
ways at the use of legitimate users. Availability usually cannot be
guaranteed, but the system should be designed so that denial-of-service
attacks are not very easy.

• Access Control and Authorization means providing access only to au-
thenticated and authorized entities. This is one way to ensure avail-
ability.

There are several security mechanisms or protocols developed to meet the
goals of network security. However, these protocols are typically designed in
such a way that they can be deployed at a particular layer of the TCP/IP
model. Hence, to enhance network security, it may be required to use multiple
security protocols. For instance, one might use the WPA2 protocol to secure
layer 2 data (data link layer), IPsec to secure layer 3 data (network or internet
layer), SSL/TLS to secure layer 4 data (transport layer), and so on. This
is because a security protocol employed at a higher layer of the TCP/IP
model cannot protect the data at lower layers and also the upper layers are
not aware of the functions performed by the lower layers. EAP-NOOB is a
security protocol employed to secure layer 2 data, i.e., the data link layer.
As will be discussed later, EAP-NOOB can also help secure the application
layer.

2.3 Secure Bootstrapping

The dictionary meaning of the term bootstrapping is “the technique of start-
ing with existing resources to create something more sophisticated and effi-
cient” [3]. The principle remains the same in the context of network security.
In network security, when a device tries to establish a connection with either
another device or an access network, appropriate security protocol entities
deployed within the device perform the task of establishing a security asso-
ciation. These security protocols are called bootstrapping methods, and the
process of creating a security association is called bootstrapping. Sethi [38]
has categorized the various bootstrapping methods into four types:

CHAPTER 2. BACKGROUND 9

• Managed methods: These methods depend on pre-established authen-
tication credentials and trust relations. They typically make use of
logically centralized servers for authentication. Examples are the Ex-
tensible Authentication Protocol (EAP) [21], Kerberos [25], Generic
Bootstrapping Architecture (GBA) [1, 41] and vendor certificates [18].

• Ad-hoc and peer-to-peer methods: These methods do not depend on
pre-established credentials. Instead, new credentials are established
for subsequent secure communications by the bootstrapping protocol.
Examples are various device pairing techniques [23, 36, 40].

• Leap-of-faith and opportunistic methods: These methods verify the
continuity of the initial connection or identity rather than the origi-
nal authentication. Examples are Secure Shell (SSH) [58] and Wi-Fi
Protected Setup (WPS) push button [16].

• Hybrid methods: These methods use components from both ad-hoc and
managed methods. Most of the deployed methods are hybrid methods.

The EAP-NOOB protocol can be considered as a hybrid method because
it uses a centralized server for managing the devices after their ad-hoc regis-
tration with the server.

Secure bootstrapping is a crucial phase in the lifecycle of an IoT de-
vice because it should securely attach to an access network. Otherwise, if
there is any breach or compromise during this phase, the device will remain
vulnerable throughout the rest of its operational lifespan. In this context,
bootstrapping may fulfil the following goals:

• Authentication and authorization of the devices desiring to join the
network by an authentication server. Also, optionally the server may
authenticate itself to the device.

• Configuration of security parameters for secure communication, i.e.,
deriving security keys between the server, network, and the device for
secure communication.

• Registration, establishing ownership, and grouping of authenticated
devices.

The types of access networks [57] relevant to this thesis are Ethernet and
IEEE 802.11 Wireless LAN, i.e., Wi-Fi. In other words, these are the two
technologies through which a device can obtain a connection to the Internet.

CHAPTER 2. BACKGROUND 10

Both the technologies offer their own benefits. However, the easy deploy-
ment and mobility feature that a wireless connection provides are most use-
ful. Also, almost all the modern day smart devices are Wi-Fi enabled. For
example, smartphones and laptops are the two most popular smart devices
with the capability to connect to a Wi-Fi network. In recent times, Wi-Fi
networks have become ubiquitous in home and work environments. This has
made it convenient for the users to connect large number of devices to the
Internet without any marginal cost. Besides, users are also acquainted with
Wi-Fi networks, especially in the office or home environments. This clearly
signifies that Wi-Fi has become an integral part of our daily life. Nonetheless,
as nicely stated by Morgan Rhodes ”All magic comes with a price.” This ap-
plies to Wi-Fi networks as well. Because the communication is over a wireless
channel in Wi-Fi networks, anyone within the coverage area of a Wi-Fi net-
work has access to the data transmitted in that network. Hence, compared to
its wired counterpart, Wi-Fi is more vulnerable to attacks. Therefore, robust
security mechanisms are essential to secure Wi-Fi networks. The subsequent
sections discuss these security mechanisms in detail.

2.4 Security Protocols for Wi-Fi Networks

Wi-Fi networks can be deployed to operate in two modes, either infrastruc-
ture mode or ad-hoc mode (peer-to-peer). Hereafter, our focus will only be
on Wi-Fi networks employed in the infrastructure mode, although solutions
also exist for securing Wi-Fi P2P communications [16, 56]. In the infras-
tructure mode, all the client stations (STA) are attached to an access point
(AP), such as a wireless network router, and all the communications happen
through this AP. In Wi-Fi terminology, a STA is a device with the capability
of connecting to the IEEE 802.11 networks. A Wi-Fi network could be either
secured or open, i.e., insecure or public. In public Wi-Fi networks, the link
layer data is not protected, or it is protected by a shared key that is known
to all stations. Hence, the users in such public networks are susceptible to
security breaches [46] and particularly to data sniffing. Therefore, it is always
advisable for the users to be cautious while using public Wi-Fi networks.

A secured Wi-Fi network tries to ensure that at least the minimum goals
of network security are met. As discussed in section 2.2, these goals are
confidentiality, integrity, availability and access control. Wi-Fi Protected
Access 2 (WPA2) is the current generation standard security protocol as
well as a security certification program developed by the Wi-Fi Alliance to
secure Wi-Fi networks. Wi-Fi Alliance was founded by a group of major
companies that bring us Wi-Fi [13]. It defines a subset of IEEE 802.11 stan-

CHAPTER 2. BACKGROUND 11

dards with some extensions, as depicted in figure 2.2. Any manufacturer
desiring to obtain the certification must satisfy the criteria defined by the
Wi-Fi Alliance. The Institute of Electrical and Electronics Engineers (IEEE)
is another professional association of technical professionals with the objec-
tives of educational and technological advancement in computer engineering,
telecommunications, electrical and electronic engineering, and allied disci-
plines. It operates a group called the Standard Association (SA) which is
responsible for the IEEE 802 family: LAN and MAN. IEEE 802 is subdivided
into groups and among these groups, the “.11” working group. IEEE 802.11
is responsible for making standards for wireless LANs. The next section
discusses WPA2 in more detail.

Figure 2.2: Relationship of Wi-Fi to IEEE 802.11

2.5 WPA2 and RSN

WPA2 is based on an addendum to original IEEE 802.11 standards called
IEEE 802.11i. The IEEE 802.11i defines a new type of wireless network
known as robust security network (RSN). Some of the primary security goals
of IEEE 802.11i are:

• Access control, and mutual authentication between the client STAs and
the network. As will be discussed later, this is achieved by using the
IEEE 802.1X protocol.

• Data confidentiality, integrity and authenticity. The IEEE 802.11i
standard provides two RSNA data integrity and confidentiality pro-
tocols: Counter Mode Cipher Block Chaining Message Authentica-
tion Code Protocol (CCMP) [29] and Temporal Key Integrity Protocol
(TKIP) [17], with mandatory implementation of CCMP. TKIP is dep-
recated because it was intended for use during a transition period and
is no more secure.

CHAPTER 2. BACKGROUND 12

• Key Management or key distribution. As will be discussed later, this
is also accomplished by employing the IEEE 802.1X protocol.

• Replay Detection using CCMP.

In RSN networks, the creation of robust security network associations
(RSNAs) is only allowed. RSNA is a type of connection used by an AP and
its client STA if 4-Way Handshake procedure is included in the process of
establishing authentication or association between them [15]. It is important
to note that, in a network, robust security is achieved when all the con-
nections between the AP and its client STAs are only RSNA. Section 2.5.6
discusses the RSNA establishment procedure between an AP and its client
STA in detail.

Table 2.1: WPA2-Enterprise and WPA2-Personal

Depending on the requirements of the network, WPA2 has two modes of
operation: Personal mode and Enterprise mode. In the Personal mode, a

CHAPTER 2. BACKGROUND 13

pre-shared key between the AP and its client STA will be used for the au-
thentication, whereas, in Enterprise mode, the IEEE 802.1X authentication
will be employed. WPA2-Personal, also called as WPA2-PSK, is intended
for small office and home networks. This is because it is easier to set-up
and maintain WPA2-Personal networks in comparison to WPA2-Enterprise
networks. There are few situations where WPA2-PSK is ideal to use. Firstly,
when there are only trusted devices and users in the network, and this could
be a small office or home. Secondly, it may be used as the means to restrain
casual users from accessing the Internet in a public network, which may be
reserved for the customers of a hotel or a coffee shop. Table 2.1 depicts the
differences between the two modes of WPA2.

EAP-NOOB is a protocol aimed at securing the IoT devices deployed
in a WPA2-Enterprise network. Before we look into the details of RSNA
establishment procedure and the part EAP-NOOB plays in it, let us first go
through various protocols required to understand the RSNA establishment
procedure.

2.5.1 IEEE 802.1X

One of the fundamental elements of network security is access control. It fol-
lows that security cannot be achieved unless there is a mechanism to perform
the segregation between authorized and unauthorized users.

IEEE 802.1X is a standard that defines a mechanism to implement Port-
based Network Access Control (PNAC). Port here refers to a point at which
a system gets attached to a LAN. The port can be either a physical port or
a logical one. For instance, each Ethernet connector in a LAN switch can
be considered as one port, or an IEEE 802.11 association between an access
point and a STA can be seen as a logical port. The 802.1X involves three
entities:

• Authenticator : An entity placed at one end of a point-to-point LAN
segment to facilitate the authentication of entities on the other end of
that link. In other words, an authenticator mediates the authentication
process between a supplicant and an authentication server. All the non-
EAP traffic through a port is blocked until the supplicant attached to
that port is successfully authenticated by the authentication server. In
simple words, the port remains unauthorized and disconnected until
successful authentication, as depicted in figure 2.3.

• Supplicant : An entity attached to one end of a point-to-point LAN
segment which intends to join a network to use the services offered by

CHAPTER 2. BACKGROUND 14

the authenticator and, hence, is authenticated by the authenticator at
the other end of that link. An example of services can be access to the
Internet. In this thesis, the terms supplicant, peer and client are used
synonymously.

• Authentication Server (AS): An authentication server provides authen-
tication service to the authenticators. In other words, the authentica-
tion server authenticates the supplicants and informs the Authenticator
of the result. The authentication server can be either co-located with
an authenticator or remotely accessed by the authenticator through a
network to which it has the access. In this thesis, the terms authen-
tication server and Authentication Authorization Accounting (AAA)
server are used synonymously.

Figure 2.3: 802.1x architecture [15]

Figure 2.3 illustrates the relationships between the entities described
above. In this figure, Port Access Entity (PAE) is a protocol entity asso-
ciated with a port. It supports the protocol functionality related to the
supplicant, the authenticator, or both.

WPA2 in enterprise mode adopts the IEEE 802.1x protocol for authenti-
cation and key management. However, the IEEE 802.1X standard does not
define any particular authentication protocol itself. Instead, it relies on an
upper-layer protocol 1 called Extensible Authentication Protocol (EAP) for

1any protocol residing in OSI layer five or above

CHAPTER 2. BACKGROUND 15

an authentication mechanism. It must be made categorical that 802.1X is
neither an authentication protocol nor does it ensure a secure authentication
mechanism for wireless applications. Its standard defines encapsulation rules
for the transport of EAP messages over LAN (EAPOL) and was originally
designed for wired LAN. But later 802.1X was recognized to be suitable for
other IEEE 802 LAN technologies such as 802.11 networks, i.e., WLANs.
CISCO first incorporated the 802.1X concepts into its enterprise network
products, and other vendors followed. Later, the approach was adopted in the
IEEE 802.11i addendum for RSN and, subsequently, by the Wi-Fi Alliance.
In figure 2.3, there is also a reference to a higher-layer protocol between the
authentication server and the authenticator. This protocol is employed to
transport the EAP messages over an IP network between the authenticator
and the remote authentication server. There are two such transport pro-
tocols available: Remote Authentication for Dial-in User Service protocol
(RADIUS) [26] and Diameter protocol [53]. The RADIUS protocol is widely
used in Wi-Fi networks, and for the implementations of this thesis, we will
use the RADIUS protocol.

2.5.2 EAP

Extensible Authentication Protocol (EAP) [21] is an authentication frame-
work, and it includes several authentication methods known as EAP methods.
A subset of EAP methods are used in WPA2-Enterprise networks and these
methods are responsible for performing the authentication and key agree-
ment in WPA2-Enterprise networks. EAP defines a set of messages that are
used by the EAP methods to perform the authentication and key exchange.
There are four types of EAP messages:

• EAP-Request: These request messages are sent or relayed by the au-
thenticator to the supplicant. The type field in the message specifies
what is being requested.

• EAP-Response: These response messages are sent by the supplicant as
a reply to a corresponding request message.

• EAP-Success: This message is sent by the authentication server (AS)
to the supplicant via the authenticator to indicate successful authenti-
cation.

• EAP-Failure: This message is sent or relayed by the authenticator to
the supplicant to indicate an authentication failure.

CHAPTER 2. BACKGROUND 16

Note: It is important to point out that the authenticator must not
send EAP-Failure or EAP-Success messages if the given method does
not explicitly specify to end the EAP authentication process at that
point.

EAP defines two types of authenticator modes: Stand-alone mode and
pass-through mode. In stand-alone mode, the authentication server is co-
located with the authenticator, whereas in pass-through mode, the authen-
ticator is connected to a remote authentication server and it just acts as a
mediator by relaying the EAP messages between the supplicant and the au-
thentication server during the EAP authentication process. In other words,
the authenticator does not have to understand any EAP methods as the
implementation of any EAP authentication method will be only on the au-
thentication server and the supplicant. The main advantage of this is that
new EAP methods can be added to the EAP framework without making any
modifications to the existing access network infrastructure. Another advan-
tage of the pass-through mode is that a centralized authentication server can
be used to serve multiple authenticators. This thesis work focuses only on
the pass-through mode.

2.5.3 EAPOL

The EAP specification does not specify how EAP messages should be car-
ried. For instance, it does not determine how EAP messages are trans-
ported over the Internet using IP. Actually, EAP is not a LAN protocol. It
was originally designed to be employed with dial-up authentication through
a modem. Hence, IEEE 802.1X defines EAPOL protocol to encapsulate
and transport EAP messages between the supplicant and the authentica-
tor. There are five types of EAPOL frames or messages. Among these, the
EAPOL-Encapsulation-ASF-Alert message is not used by WPA2/RSN. The
other four messages are:

• EAPOL-Start: The supplicant will not know the MAC address of the
authenticator when it first connects to the LAN. In fact, the supplicant
will not even know whether an authenticator is present. Hence, IEEE
802.1X defined this optional message to help get things started. By
sending this Start frame to a group-multicast MAC address specifically
reserved for the authenticators, a supplicant can discover an authenti-
cator and notify the authenticator that it is ready. However, in many
cases, the authenticator may already be aware that a new supplicant
device has connected. For instance, a switch knows that an ethernet

CHAPTER 2. BACKGROUND 17

cable is plugged in before it receives any data from the device. In
this case, the Start message may be preempted by the authenticator’s
EAP-Request Identity message. Nonetheless, in both the instances,
an EAP-Request Identity message encapsulated within EAPOL-Packet
frame will be sent by the authenticator (perhaps twice, if both simul-
taneously send the initial message).

• EAPOL-Key: This frame is used during the 4-way handshake proce-
dure to establish both data encryption and integrity keys, and also to
confirm that both the parties have the right keys before granting net-
work access. As will be described later, this frame is also used to send
the encrypted Group Transient Key(GTK) to the supplicant by the
authenticator.

• EAPOL-Packet: This is just a container frame for transporting the
actual EAP messages across the LAN, which is the original intention
of the EAPOL protocol.

• EAPOL-Logoff: This frame is sent by the supplicant to indicate that
it wants to disconnect from the network.

2.5.4 RADIUS

RADIUS, an acronym for Remote Authentication Dial-In User Service, is
defined in RFC 2865 [26]. RADIUS is based on the client/server model, and
it runs at the application layer. It describes two things: firstly, a set of
capabilities that should be common across authentication servers, secondly,
a protocol for allowing other devices to access those capabilities. The set
of capabilities is Authentication, Authorization, and Accounting, popularly
known as AAA. The AAA capabilities mean authentication of devices or users
before granting them access to the network, authorization of those devices
or users for specific services offered by the network, and accounting of the
usage of those services.

A Network access server (NAS), a gateway that controls the access to a
network, i.e., the IEEE 802.1X authenticator, generally contains a RADIUS
client that communicates with the RADIUS server to interact with the AAA
capabilities. In the WPA2/RSN context, the AP is the equivalent of the
NAS. As illustrated in figure 2.4, when we talk about a RADIUS server, it
refers to a part of the authentication server with AAA capabilities; and when
we talk about RADIUS, it relates to the protocol used to communicate with
the RADIUS server.

CHAPTER 2. BACKGROUND 18

RADIUS can carry the messages of a variety of authentication meth-
ods such as Point-to-Point Protocol Password Authentication Protocol (PPP
PAP), Challenge-Handshake Authentication Protocol (CHAP), and EAP.
However, our interest is only on the EAP, and RFC2869 [27] specifies how
to use EAP over RADIUS. RADIUS has four types of relevant messages to
carry EAP messages. They are:

• Access-Request: These messages are sent by NAS to AS and are used
to encapsulate EAP response messages from the supplicant.

• Access-Challenge: These messages are sent by AS to NAS and are used
to encapsulate EAP request messages to the supplicant.

• Access-Accept: This message is sent by AS to NAS as a result of EAP
authentication process. This message encapsulates the EAP-Success
message and a cryptographic session key.

• Access-Reject: This message is sent by AS to NAS as a result of the
EAP authentication process. This message encapsulates the EAP-
Failure message, and no session key is transmitted.

Figure 2.4: WPA2-Enterprise network architecture

In addition to EAP messages, RADIUS messages also carry specific ad-
ditional information in the form of attribute-value pairs (AVPs) pertaining
to authentication, authorization, and accounting. In fact, an EAP message

CHAPTER 2. BACKGROUND 19

is also carried as an AVP. Though RADIUS can either use UDP or TCP for
transport, for the reasons stated in section 2.4 of RFC 2865 [26], UDP is
used. A RADIUS server can also function as a proxy client to other kind of
ASs or other RADIUS servers. There are several ways through which the link
between the RADIUS client and the RADIUS server can be secured: a shared
secret can be used between them or RADIUS over TLS [49] or RADIUS over
DTLS [20] can be employed.

2.5.5 EAP Authentication Process

As discussed in the earlier subsections, the EAPOL protocol carries the EAP
messages between the supplicant and the authenticator, and the RADIUS
protocol carries the EAP messages between the authenticator and the AS.
The EAP authentication process triggers when the authenticator sends an
EAP-Request/Identity message to the supplicant. After receiving the request
message, the supplicant responds with an EAP-Response/Identity message.
This identity message contains a Network Access Identifier (NAI). As de-
fined in RFC 4282 [22], the NAI consists of two parts: a username part
that may uniquely identify the supplicant at least within its home domain
and a realm part that identifies the supplicant’s home realm. The identity
message is particularly used for two purposes. First, it is used to select an
EAP method for authentication, and second, it may also be used for routing
purposes, i.e., domain part of the NAI is used to decide the server to which
the messages are supposed to be sent. The supplicant may opt to disclose its
username part of the NAI only to its home server via a secured connection.
Hence, section 5.1 of RFC3748 [21] recommends the EAP methods to in-
corporate a method-specific mechanism to obtain the proper NAI, therefore
avoiding sending it in the EAP-Response/Identity message. After receiving
the identity response message, the AS chooses an appropriate EAP method
and the method specific authentication begins. The authentication process
may include the exchange of multiple EAP-Request/Response messages. It
is imperative to note that EAP is a “lock-step” protocol, which means that
a new EAP-Request message cannot be sent before receiving a valid EAP-
Response to the previous Request. After the authentication is complete, the
AS conveys the result to the authenticator.

In the case of successful authentication, a Master Session Key (MSK)
will be derived between the supplicant and the AS. The MSK along with
the EAP-Success message will be delivered to the authenticator by the AS.
The authenticator keeps the MSK for itself and forwards only the EAP-
Success message to the supplicant. This marks the end of EAP authentication
process.

CHAPTER 2. BACKGROUND 20

On the other hand, if authentication fails, the AS notifies the authentica-
tor via an EAP-Failure message which will also be forwarded to the suppli-
cant, and this marks the end of EAP authentication process. The supplicant
will remain blocked from accessing any services offered by the authenticator
until a successful authentication happens.

Now that the concepts required to understand the RSNA establishment
procedure have been covered, the RSNA establishment process will be dis-
cussed in the next subsection.

2.5.6 RSNA Establishment Procedure

Figure 2.6 depicts the 802.11i Robust Security Network Association (RSNA)
establishment procedure. The establishment procedure can be divided into
6 stages [34]. This section describes each stage in detail.

Stage 1, the network and security capability discovery phase, involves the
exchange of messages numbered (1) to (3) between the AP and the supplicant.
There are two ways through which a supplicant may discover the available
APs and their security capabilities. First, it may actively probe every wireless
channel for a Probe Response frame from an AP. Second, it may passively
monitor the Beacon frames which are periodically broadcasted by the APs.
The Beacon or Probe Response frame sent by an AP contains the Robust
Security Network Information Element (RSN IE) which indicates its security
capabilities: all enabled authentication suites, all enabled cipher suites for
unicast, and cipher suite for broadcast.

Stage 2, the 802.11 authentication and association phase, involves the
exchange of messages numbered (4) to (7) between the AP and the suppli-
cant. The supplicant selects one access point from the list of available access
points. Then, the supplicant tries to authenticate and associate with the
selected access point. Initial 802.11 standards had defined two types of au-
thentication methods: Open System Authentication and WEP Shared Key
authentication. These two authentication mechanisms are known to be inse-
cure [42, 43]. However, open system authentication, which is just two empty
messages, has been retained for backward compatibility and is supplemented
by further steps. Also, pre-shared key (PSK) or 802.1x/EAP authentication
should not be confused with the open system authentication. After the open
system authentication, which is always successful and does not provide any
security, the supplicant indicates its security capabilities in the Association
request. At the end of this stage, the supplicant and the AP will be in au-
thenticated and associated state. However, no real authentication has yet
taken place, the 802.1X port will remain blocked, and no data packets are
allowed.

CHAPTER 2. BACKGROUND 21

Stage 3, authentication process based on the IEEE 802.1X protocol,
consists of the messages numbered (4) to (7). The authentication server
and the supplicant execute an EAP method, for example, EAP-TLS [28], for
mutual authentication, with the AP usually acting as a relay agent. The EAP
authentication process is carried out as described under subsection 2.5.2. At
the end of this stage, the AS and the supplicant have authenticated each other
and derived a common secret, called the MSK. The MSK will be securely
delivered to the NAS or AP by the AS, indicated by message (15). Another
common secret, called the Pairwise Master Key (PMK), will be generated by
the supplicant and the AP from the MSK. This phase might be skipped in two
scenarios. First, during a re-association, if a cached PMK is used. Second,
in WPA2-Personal mode, where the supplicant and the AP are configured to
use a pre-shared key as the PMK. These two scenarios can also be considered
as other two means to get the PMK.

Stage 4, the 4-Way Handshake procedure, involves the exchange of mes-
sages numbered (16) to (19) between the AP and the supplicant. The 4-Way
Handshake procedure is executed regardless of the means by which the PMK
was obtained. The three different ways to get the PMK are as mentioned
above. The 4-way handshake procedure between the supplicant and the AP
serves three purposes: to confirm that both have the same PMK, to verify
the cipher suite selection, and to derive a new Pairwise Transient Key (PTK)
for protecting the data exchanged during the following data session. At the
same time, the AP might also issue a Group Transient Key (GTK), which
is encrypted using the PTK, via message (18). All the supplicants within
a network are given the same GTK by the AP, and the GTK is used to
protect the broadcast messages. Figure 2.5 depicts the RSN key hierarchy.
After this phase, the supplicant and the AP share the new PTK (and maybe
GTK) and the IEEE 802.1X port is unblocked for data packets. Through
the 4-Way handshake, the AP and the supplicant mutually authenticate each
other and begin a secure session for data communication. Also, any tamper-
ing of RSN IE exchanged between the supplicant and AP will be detected
during the 4-Way handshake as both the parties retransmit their respective
security capabilities with integrity protection.

Stage 5, the Group key handshake, involves the exchange of messages
numbered (20) to (21) between the AP and the supplicant. To protect the
broadcast traffic, the AP generates a new GTK from the Group Master Key
(GMK), a random key generated by the AP, and distributes the GTK to all
its supplicants. This stage might be skipped if the GTK was issued to the
supplicant during the 4-Way Handshake. However, the Group key handshake
may be rerun multiple times using the same PMK in order to update the
group key. Though both the data and broadcast messages are protected in a

CHAPTER 2. BACKGROUND 22

given WPA2 network, there is no message origin authenticity for broadcast
messages as all the supplicants use a same GTK to protect the broadcast
messages.

Stage 6, secure data communication between the AP and its supplicants,
is indicated by (22). The supplicant and the AP can protect the data pack-
ets between them by employing the negotiated cipher suites from the above
stages along with the PTK (or GTK). Data protection means confidentiality
and integrity protection of the data using CCMP.

In a WPA2-Enterprise network, secure bootstrapping occurs during stage
3 of the RSNA establishment procedure. Hence, Stage 3 can be considered
a crucial stage, and this is when EAP-NOOB comes into action, assisting a
user to bootstrap new IoT devices to the network with ease.

Figure 2.5: RSN key hierarchy

CHAPTER 2. BACKGROUND 23

Figure 2.6: RSNA establishment procedure(adapted and modified [34])

CHAPTER 2. BACKGROUND 24

2.6 ECDH Key Exchange Procedure

The cornerstone of the EAP-NOOB protocol’s capability to securely boot-
strap IoT devices without any pre-configured credentials is the Diffie-Hellman
(DH) key exchange method, a public-key cryptography protocol defined by
Whitfield Diffie and Martin Hellman [55]. The DH key exchange procedure
enables two entities that do not have prior knowledge of each other to derive
a common secret key over an insecure communication channel mutually. This
key can then be utilized to either secure the subsequent communications or
derive more secure keys between those two entities. The security offered by
DH key exchange procedure relies on the discrete logarithm problem.

Elliptic Curve DH (ECDH) is a variant of the DH algorithm, including the
benefits of Elliptic Curve Cryptography (ECC) [24]. In other words, ECDH
uses points on elliptic curves to perform key agreement rather than tradi-
tional integers as employed in DH. The primary advantage of using ECDH
is reduced private key size in comparison to other public key cryptosystems
to get the same level of security [4]. The shorter key implies relatively less
computation. Hence, ECDH key exchange mechanism is employed in our
EAP-NOOB protocol for key distribution. A detailed explanation of ECDH
key exchange procedure is as follows,

Let us consider Alice and Bob as communicating parties.

• Initially, the involved parties share or agree upon the system parame-
ters, p: a finite field, a and b: curve constants and G: a base point.

• Alice chooses a random number r and computes l = Gr. Here, l is the
public key and r is the private key. Alice then sends her public key to
Bob.

• Likewise, Bob chooses a random number s and computes m = Gs. Bob
then sends his public key to Alice.

• Shared secret key, Z = mr is computed by Alice. And, Bob calculates
Z = ls.

• Both Alice and Bob have derived same secret key Z = Grs.

Similar to DH key exchange mechanism, the security offered by ECDH key
exchange procedure relies on the elliptic curve discrete logarithm problem. In
simple words, the security depends on the difficulty in computing the secret
’r’ given the public parameters ‘p’, ‘G’, ‘l’ and ‘m’.

CHAPTER 2. BACKGROUND 25

The major downside of the ECDH or DH key exchange mechanism is the
anonymity of the process, i.e., the established common secret is not authen-
ticated. Therefore, ECDH or DH algorithms are vulnerable to man-in-the-
middle (MiM) attacks. In general, ECDH or DH key exchange algorithms are
complemented by other methods to authenticate the established shared se-
cret key. For example, in TLS [52], an extended version of the Diffie-Hellman
algorithm is used in conjunction with TLS communication protocol to estab-
lish an authenticated common secret key between two parties. As used in the
EAP-NOOB protocol, another method to authenticate the common secret
established via ECDH or DH key exchange is through out-of-band (OOB)
channels. The next section provides a brief discussion of OOB channels.

2.7 OOB Channels for Authentication

Out-of-band (OOB) channel refers to a physically or logically separate com-
munication channel other than the main communication channel, also called
the in-band channel, between two communicating parties. Other synonyms
for OOB channels include human-assisted channels, auxiliary channels, and
manual channel [48]. OOB channels are generally employed to exchange spe-
cific or confidential information. For instance, online banking systems utilize
email services or SMS services as an OOB channel either to alert a user about
his account transactions or deliver one-time passwords (OTPs) required to
complete a particular transaction on the in-band channel, which in that case
is the Internet.

In the case of network security, OOB channels are extensively employed
for bootstrapping the communication security for the in-band channel by
performing authentication using an OOB communication channel. In other
words, to either authenticate the information sent over the in-band channel
or else establish an authenticated shared secret key to be used for subse-
quent secure communications. This is typically due to the reason that OOB
channels are considered to be robust against Man-in-The-Middle (MITM)
attacks. Different OOB channels may offer different security properties. For
example, the security properties of OOB channels, as stated by Shahab et
al.˜[]oob-channels, may include: authentication based on a proven identity,
data integrity, data origin authenticity and data confidentiality. Examples
of various types of OOB channels are NFC, Quick Response (QR) Code,
Bluetooth and Audio waves.

As discusses in the previous section, an OOB channel may be employed
between two entities to authenticate a common secret established between
them using ECDH or DH algorithms via in-band. Since EAP-NOOB also

CHAPTER 2. BACKGROUND 26

utilizes the ECDH algorithm for key agreement, the established key needs to
be authenticated via an appropriate OOB channel. The implementation of
the OOB channel is not a part of the EAP-NOOB protocol specification and
it is left as an implementation choice. However, the protocol assumes that the
OOB channel is secure, and the message sent via the OOB channel cannot
be both sniffed and modified by an attacker. The next chapter provides an
overview of the EAP-NOOB protocol.

Chapter 3

Protocol Overview

The objective of this chapter is to give an overview of the EAP-NOOB pro-
tocol and its initial prototype implementation as it is imperative to know
these to understand the subsequent chapters. This chapter begins by giving
a brief overview of the EAP-NOOB protocol. After that, the motivation for
EAP-NOOB along with security goals and a brief description of the imple-
mentation details of the initial prototype are provided.

3.1 A Brief Overview of the Protocol

One execution of the EAP-NOOB protocol spans multiple EAP sessions. As
explained below, this is required to provide time for the delivery of the OOB
message. Figure 3.1 depicts the association state machine for this protocol.
The state machine remains the same for both the server and the supplicant.

Initially, as shown in figure 3.1, both the supplicant (also called EAP peer)
and the authentication server will be in the Unregistered state. The sup-
plicant starts off by searching for an AP that supports WPA2-Enterprise and
tries to associate with it. Once the AP and the supplicant have completed
the 802.11 open authentication successfully and are associated, the AP re-
quests the supplicant to send its identity or Network Access Identifier (NAI).
The supplicant then sends the generic NAI string ‘noob@eap-noob.net’ for
the first time because there will be no pre-configured identities for the suppli-
cant or any information between the supplicant and the server. The AP will
then forward the received NAI to the server to trigger an EAP-NOOB con-
versation between the server and the supplicant. From this point onwards,
the only task of the AP is to relay the EAP messages between the supplicant
and the server.

After the server receives the generic NAI from the supplicant, it detects

27

CHAPTER 3. PROTOCOL OVERVIEW 28

Figure 3.1: EAP-NOOB server-peer association state machine [51]

that the supplicant is new from the generic NAI and both the parties enter the
Initial Exchange phase. During the Initial Exchange, the server assigns
a unique identifier called PeerId to the supplicant, and they negotiate the
EAP-NOOB protocol version and the cryptographic algorithm suite. The
supplicant uses the assigned PeerId to construct the NAI for sending it in
the subsequent EAP sessions. In addition, nonces are exchanged, and an
Elliptic Curve Diffie-Hellman (ECDH) key exchange is performed between
the server and the supplicant. The Initial exchange always ends in EAP-
Failure, and both the parties move to the Waiting for OOB state.

The user-assisted OOB step is then performed. A single OOB message
consisting of the PeerId assigned by the server to the supplicant, a nonce
called ‘Noob’ and a hash value called ‘Hoob’ is delivered either from the
server to the supplicant or from the supplicant to the server with the aid of
the user. The direction of this OOB message is negotiated during the Initial
Exchange. The nonce ‘Noob’ will be used in the derivation of cryptographic
keys during the following Completion Exchange. The hash value ‘Hoob’ (i.e.
cryptographic fingerprint) is calculated using all the parameters exchanged
during the Initial Exchange and the OOB step. The delivery of this hash
value along with a nonce over the OOB channel ensures the integrity pro-

CHAPTER 3. PROTOCOL OVERVIEW 29

tection of the parameter negotiation and authenticates to the recipient the
ECDH key exchange performed during the Initial Exchange phase. The party
that receives the OOB message moves to the OOB Received state, and the
other party remains in the Waiting for OOB state. However, the implemen-
tation of the OOB channel is not a part of the protocol specification, and it is
left as an implementation choice. For instance, if we consider the university
example stated at the beginning, the displays can render their OOB messages
as a QR code, and the user can scan and deliver it to the Authentication,
Authorization and Accounting (AAA) server via a secure university website
after authentication, i.e. after logging in to his or her account.

The supplicant might probe the server while waiting for the completion of
the OOB step. The probe may result in the Completion Exchange phase
on the satisfaction of two conditions. First, the OOB message should have
been delivered successfully to the intended party, i.e., between the server
and the supplicant. Second, the hash value ‘Hoob’ received in the OOB
message should match the one computed locally by the recipient. During
the completion exchange, the key confirmation and mutual authentication
happen between the supplicant and the server. The secret nonce Noob from
the OOB message is used as the shared authentication key.

If the key confirmation or the mutual authentication fails, it leads to an
error. A mismatch or an error at any stage of the protocol leads to the
delivery of an error message from one party to the other and is followed by
an EAP-Failure message from the server to the supplicant. Based on the type
of error, an appropriate action as specified in the draft [51] will be performed
by the parties.

On the other hand, if the OOB message has not yet been delivered by
the user, the probe results in a Waiting Exchange. There could be sev-
eral Waiting Exchanges before the delivery of the OOB message. The time
span between each Waiting Exchange and the number of times the Waiting
Exchange can occur are specific to the server implementation. The Waiting
Exchange always results in EAP-Failure, and both the parties remain in their
respective current state.

At the beginning of the Completion Exchange phase, both the par-
ties derive cryptographic keys using a Concatenation Key Derivation Func-
tion (KDF). The KDF is defined in the National Institute of Standards and
Technology (NIST) specification [30]. The keys derived by both the parties
are:

• Their respective and other party’s key confirmation keys, i.e., the server
key ‘Kms’, and the supplicant key ‘Kmp’.

• A common key ‘Kz’.

CHAPTER 3. PROTOCOL OVERVIEW 30

• Application-layer session key: Application MSK (AMSK).

• The temporal keys: MSK and EMSK.

All the nonces exchanged via the OOB and in-band channels along with
the common secret ‘Z’ derived through the ECDH key exchange will be used
as the inputs to the KDF. Then, both the parties calculate and exchange their
respective keyed-hash message authentication codes (HMAC): MACs and
MACp. These HMACs are calculated using all the parameters exchanged
both in the OOB and in-band channels along with the respective party’s
key confirmation key. HMACs mutually authenticate both the parties and
help in key confirmation along with ensuring the integrity protection of the
exchanged information [31]. The received HMACs will be compared with the
ones computed locally on both the sides. If the comparison is successful, it
results in EAP-Success and both the parties move to the Registered state,
or else it results in EAP-Failure, and both the parties remain in their current
states assuming that the failed Completion Exchange did not happen.

Also, both the parties store the common key ‘Kz’, negotiated cryptosuite
and the assigned NAI in persistent storage in order to avoid the repetition
of the OOB step. This persistent data will be used in the future during the
Reconnect Exchange. The section 5.1 will discuss the Reconnect Exchange
in more detail. Figure 3.2 shows the EAP-NOOB key hierarchy.

Figure 3.2: EAP-NOOB key hierarchy

The detailed explanation of the protocol along with the message ex-
changes between the authentication server and the supplicant can be found
in the IETF draft [51].

CHAPTER 3. PROTOCOL OVERVIEW 31

3.2 Motivation for EAP-NOOB

The main motivation for EAP-NOOB is that it eases security bootstrapping
of smart IoT devices with minimal UI, especially when they are many in
number. Consider, for instance, an enterprise that has hundreds of new
smart displays to be connected to their existing Wi-Fi network. It will be a
tedious task to configure each of the displays with manual input manually.
But employing EAP-NOOB solves this problem because a user just has to
hang all the displays and transfer an OOB message for each of the displays
to securely connect them to the existing Wi-Fi network. For example, each
display can display its OOB message as a QR code, and the user can scan and
deliver it to the server via a secure university website after authentication,
i.e. after log-in.

In EAP-NOOB, the secret nonce ‘Noob’ and the hash value ‘Hoob’ are
used in combination to provide protection. Both the nonce Noob and the
hash value Hoob are sent in the OOB message. The delivery of the nonce
Noob authenticates the ECDH key exchange performed during the Initial
Exchange. The hash value ‘Hoob’ (i.e. cryptographic fingerprint) is calcu-
lated using the parameters exchanged during the Initial Exchange and the
OOB step. The delivery of this hash value ensures the integrity protection
of the parameter negotiation. In other words, if an attacker has performed a
man-in-the-middle attack on the in-band channel, the mismatching crypto-
graphic fingerprint will notify the OOB receiver, which will discard the OOB
message. The user can easily detect this as the peer device does not seem to
be registered on the network or server.

To break the protocol, an attacker has to perform both man-in-the-middle
attack on the in-band channel and modification of the OOB message. It
is more strenuous to spoof or modify messages on a human-assisted OOB
channel, such as a QR code or sound burst, than it is to spy on them. The
EAP-NOOB establishes a different master secret for each of the peer devices.
This is clearly more resilient to device compromise than a shared common
secret and also, makes device revocation easier.

3.3 A Brief Overview of the Initial Imple-

mentation

The EAP-NOOB implementation can be split into two fundamental com-
ponents: EAP-NOOB method implementation and the OOB channel im-
plementation. The EAP-NOOB method implementation comprises EAP-

CHAPTER 3. PROTOCOL OVERVIEW 32

NOOB peer and server implementations. We implemented and integrated
the EAP-NOOB method into an open-source project [7] which has focused on
UNIX-like operating systems. We choose this open-source project based on
considerations such as the number of users, size of the community that sup-
ports the project and the frequency of updates. The two components of the
open-source project that we are interested are hostapd and wpa supplicant.
The Host access point demon (hostapd) component is a user space daemon
for authentication servers and APs. In other words, hostapd can be indepen-
dently deployed to turn any regular network interface cards into authentica-
tion servers and APs. The authentication server part implements EAP server
and RADIUS authentication server. The EAP-NOOB server was imple-
mented within the authentication server part of hostapd. The wpa supplicant
component is an implementation of the IEEE 802.1X/WPA supplicant for
UNIX-like operating systems. Like hostapd, wpa supplicant also runs as a
daemon program, and it controls the wireless connection. The EAP-NOOB
peer was implemented within the wpa supplicant.

As part of the OOB channel implementation, we developed a web server
using Node.js. The users create their account with the web server, and
the web server serves two purposes. First, it acts as one end of the OOB
channel and runs alongside the EAP server. In other words, this web server
is used to deliver the OOB messages to and from the EAP server, and it
communicates with the EAP server via a local database. Second, it tracks
the EAP-NOOB authentication process and also manages the successfully
authenticated supplicant devices. Another important component involved in
the implementation of the OOB channel is an OOB device. An OOB device
contains the applications and tools required for the user to convey the OOB
messages either in the server-to-peer direction or peer-to-server direction. In
this implementation, we extensively used smartphones as they are commonly
available and possess the necessary applications and tools such as camera,
QR code scanner and NFC for automating the OOB message transfers. As
part of the initial implementation, two OOB channels were implemented:

• Transfer of OOB messages in either of the directions with QR codes.
In other words, scan and deliver an OOB message displayed as a QR
code on the smart display to the server, or fetch and show the OOB
message from the server as a QR code to the smart camera.

• Transfer of OOB messages in the peer to server direction with NFC.
As part of this thesis work, we have implemented an OOB channel
based on NFC for transferring OOB messages in the other direction,
i.e., server to peer direction.

CHAPTER 3. PROTOCOL OVERVIEW 33

Figure 3.3 depicts the EAP-NOOB setup where a user registers or creates
an account with the web server. Figure 3.4 depicts the relationship between
all the components that were discussed above. In other words, the figure
illustrates a scenario in which EAP-NOOB is employed for secure bootstrap-
ping a Display device. All the implementations of this thesis work were done
on top of this initial implementation. Mudugodu Seetarama [47] describes
the initial prototype implementation in detail.

Figure 3.3: EAP-NOOB setup

Figure 3.4: An example scenario depicting the relationship between various
components of the EAP-NOOB protocol

Chapter 4

Access Control to Network Re-
sources

This chapter begins by describing the problem that arises due to the lack of
fine-grained access control on the Network Access Server (NAS), also known
as the Access Point (AP), in IEEE 802.1X authenticated wireless access.
Then, an appropriate solution to the problem is presented along with the
implementation details.

4.1 Need for Fine-Grained Access Control

Let us understand this problem with a real life scenario. As discussed in
the introduction, one assumption behind our current project is that WPA2-
Enterprise networks may soon be preferred even for home environments.
However, it is unlikely that the users in home environments would want
to set up local Authentication Authorization Accounting (AAA) servers. In-
stead, they could opt to buy it as an on-demand software, i.e., Software as
a Service (SaaS), from any of the cloud computing vendors such as Amazon,
Google, Microsoft, etc. The two most obvious reasons to choose so would
be that all the users may not be aware of technical aspects of AAA servers,
and the second reason would be the cost and maintenance overhead. Some
device or cloud vendors might even offer the AAA server services for free or
part of some larger service packages.

Now, let us consider two neighbours: Alice and Bob. In order to securely
connect their new smart home IoT appliances to the Internet and to manage
them with adequate security over the Internet, they both decide to set up
a Wi-Fi Enterprise network. Somehow, unknowing to each other, they both
choose to purchase the AAA server service from a same cloud computing ven-

34

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 35

dor. Let the name of the vendor be ‘Example-Cloud’. It is implausible that
the cloud computing vendors would provide individual AAA servers for each
customer as the load on each server would be very low and resources would
be reserved unnecessarily. Hence, rather than maintaining per-user AAA
server, a typical implementation would use a single AAA server for serving
several or all the users. In other words, let us assume that the remote AAA
server is same both for Alice and Bob. Because of the various advantages
offered by the EAP-NOOB protocol, they both decide to employ it for se-
cure bootstrapping and then, manage their IoT devices at a central server.
Consequently, they both create their respective web accounts at the same
cloud vendor’s website ‘www.example-cloud.com’. These accounts would be
used during the OOB steps to deliver OOB messages and also to manage the
successfully bootstrapped IoT devices.

Figure 4.1: Access control problem in home AP

In this scenario, it is possible for Bob to advertently or inadvertently
utilize Alice’s access point (AP) to connect his IoT devices to the Internet as
he also holds a valid account in the same AAA server. In other words, Bob
can use Alice’s Internet connection service for free, meaning that Bob takes a
free ride for which Alice may have to pay if her Internet connection is not free.
Similarly, the reverse also holds, i.e., Alice can utilize Bob’s AP to connect her
IoT devices to the Internet. This problem arises due to the following reason.
The server side comprising the AAA and web server that authenticates Alice
and Bob is the same, and it only validates two things. First, the AAA server
checks whether the NAS through which the EAP-NOOB authentication is

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 36

happening is trusted. Second, the web server checks whether the user has a
valid web account. But, the server side does not implement any policies to
check whether a user is authorized to attach his or her IoT devices to a given
NAS or AP. In other words, the AAA server does not distinguish between the
authentication requests coming via different NAS devices. Figure 4.1 depicts
this problem scenario.

The above-described problem is not unique to the EAP-NOOB method.
It is a common problem with any EAP authentication method when the AAA
server serving multiple NASs does not implement policies to check whether
an entity authenticating through a NAS is authorized to access the NAS.
For instance, consider an enterprise with employees having different levels of
access. Perhaps it is desirable to allow the full-time permanent employees
to connect to any NAS, whereas the visiting and temporary employees may
only be allowed to connect to certain NASs. This would prevent any visiting
or temporary employee using the NASs intended for the full-time permanent
employees, even though they have valid authentication credentials at the
AAA server. Figure 4.2 illustrates the described scenario. The figure depicts
two sites of an enterprise with their respective local AAA servers connected
to the central AAA server of the enterprise. In site A of the enterprise,
it is desirable to restrict the visiting and temporary employees to NAS-1
and NAS-2. Similarly, in site B, the visiting and temporary employees must
be allowed to only connect to NAS-4 and NAS-5. However, the full-time
permanent employees may have access to all the NASs at their respective
site.

4.2 Proposed Solution

In order to overcome the problem, fine-grained access control based on the
NAS from which the RADIUS Access-Requests originate is required. The
access control can be achieved at the AAA server by using some identity in-
formation that uniquely identifies the NAS from which the Access-Requests
arrives. There are two RADIUS attributes that are appropriate for obtain-
ing the required identification information about the NAS: Called-Station-ID
and NAS-ID. As defined by RFC 3580 [44], the Called-Station-ID attribute
carries the MAC address of the NAS originating the Access-Request in ASCII
format (upper case only), with octet values isolated by a “-” and the NAS-ID
attribute carries a string identifying the NAS originating the Access-Request.
Either using Called-Station-ID or NAS-ID or both, the authentication server
can implement access control policies set by the administrator to decide
whether a user requesting to authenticate via a NAS is authorized to use

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 37

Figure 4.2: Access control problem in enterprise environments

the NAS. In other words, for each incoming authentication request from the
users, the user identity is matched against the Called-Station-ID or NAS-ID
attribute to decide whether the user is authorized to use the NAS based on
the specified policies.

In the case of 802.1X/EAP wired authentication, another RADIUS at-
tribute named NAS-Port-ID, which uniquely identifies each Ethernet con-
nector in a LAN switch, can be used in conjunction with NAS-ID or Called-
Station-ID or both to define similar access control policies for each of the
available Ethernet ports.

In the case of 802.1X/EAP wireless authentication, the NAS-Port-ID at-
tribute may uniquely identify each of the associations between the supplicant
and the NAS. Nonetheless, most of the currently available access points pop-
ulate this attribute with either a constant value or a dynamic random unique
value for each of the associations. Hence, in the case of wireless authentica-
tion, the NAS-Port-ID cannot be used to define the access control policies as
done in the case of wired authentication.

4.3 Implementation Environment

First, the general implementation of access control policies based on NAS is
described. Then, the EAP-NOOB particular details follow, as the implemen-

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 38

tation is a bit tricky in the case of EAP-NOOB in contrast to other EAP
authentication methods.

For implementing the general solution, we used FreeRADIUS software [5].
FreeRADIUS is an open source implementation of the RADIUS server with
support for EAP authentication. In other words, the software is an open
source AAA server implementation. The RADIUS server implemented in
FreeRADIUS software supports a simple application-specific language called
“unlanguage” [10], also known as Unlang in short. The objective of Unlang
is to let RADIUS administrators define simple policies with minimum effort.
So, based on the results of conditional checks performed by the established
policies, the RADIUS request or response attributes can be updated. In other
words, an administrator can write a script to perform editing of RADIUS
attributes and attribute lists based on simple conditional checks. Unlang
is intended only for performing specific actions on RADIUS responses and
requests.

4.4 Access Control Based on Called-Station-

ID and User-Name

The Called-Station-ID attribute contains the MAC address of a NAS origi-
nating the Access-Request, and it uniquely identifies the NAS device. This
attribute is included in every Access-Request message sent to the AAA server
by the NAS. As already described in the background section, any supplicant
intending to connect to a NAS sends an EAP-Response/Identity message
containing its Network Access Identifier (NAI) to the NAS. The NAS copies
the NAI to a RADIUS attribute called User-Name before forwarding the re-
ceived request, encapsulated in a RADIUS packet, to the AAA server. The
User-Name attribute typically identifies the supplicant uniquely. So, a set
of simple access control policies can be defined at the AAA server, mapping
each NAS device, i.e., the Called-Station-ID attribute to their authorized
supplicants, i.e., the User-Names. A simple policy file can look as shown in
figure 4.3. According to the policy file 1, the only users authorized to access
the NAS with Called-Station-ID ‘AB:CD:EF:GH:11:12’ are Alice and Bob.
Similarly, Mallory and Alex are the only users allowed to access the NAS
with Called-Station-ID ‘12:AB:34:DA:11:12’. The AAA server proceeds with
the authentication process if and only if the validation against the defined
policies returns true, i.e., the AAA server checks whether a mapping exists
between the received User-Name and Called-Station-ID attributes. The vali-
dation against the established policies prevents supplicants from using a NAS

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 39

Figure 4.3: Policy file 1
based on Called-Station-ID

Figure 4.4: Policy file 2
based on Called-Station-ID

to which they are unauthorized, even though they have valid authentication
credentials at the AAA server.

As discussed in section 2.5.2, the NAI of a supplicant consists of two parts:
a username part and a realm part. The realm part may identify the domains
or roles to which the users belong. So, using the realm part, role-based
or domain-based access control can be employed, typically in large enter-
prises such as universities and companies, instead of defining access control
policies for individual users. In other words, instead of mapping the Called-
Station-ID to a set of User-Names, it can be mapped to the various roles
or domains to which the users belong. For example, consider the policy file
2 as shown in figure 4.4. All the students at the University, i.e., users with
realm as ‘stud.example.org’, can only access the NAS with Called-Station-ID
‘AB:CD:EF:GH:11:12’. On the other hand, all the professors at the Univer-
sity, i.e., users with realm as ‘prof.example.org’, can access both the NAS
devices.

4.5 Access Control Based on NAS-ID and User-

Name

Similar to the above approach, the NAS-ID attribute can also be used to
define the access control policies. The NAS-ID attribute contains a string
identifying the NAS originating the Access-Request. For example, in our test
deployment, this attribute is populated with a fully qualified domain name
(FQDN) such as “fi.aalto.iot.guest.nas1” to uniquely identify each NAS. How-
ever, unlike Called-Station-ID, not all the NAS devices currently support
this attribute. In other words, not all the NAS devices add this attribute in
the RADIUS Access-Request messages which they send to the AAA server.
Hence, in our implementation, a local RADIUS server was setup to include

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 40

this attribute in the RADIUS Access-Accept messages. At the local RADIUS
server, we stored the mappings that map a Called-Station-ID to its corre-
sponding NAS-ID in the MySql database table. An Unlang script was writ-
ten at the local RADIUS server to fetch and append the NAS-ID attribute
to each Access-Request message based on the Called-Station-ID attribute
present in the message. At the final remote authentication server, the vali-
dation against the policies happens in the same way as performed in the case
of Called-Station-ID based access control, but the NAS-ID is used instead of
Called-Station-ID to define and apply the policies. Figure 4.5 illustrates the
solution. The figure is for illustrative purpose only, and it does not depict
the actual message and database structures.

Figure 4.5: Access control based on NAS-ID attribute

One might wonder the necessity of NAS-ID based access control when
Called-Station-ID is already readily available. In fact, the NAS-ID attribute
offers a great benefit of flexibility in defining the access control policies. Since
the NAS-ID attribute takes a string value, it can be given an FQDN value.
In other words, various NAS devices in a particular deployment, such as in
a large enterprise, can be grouped. The flexibility in defining access control
policies is primarily due to the grouping of NAS devices. By grouping, access
control policies can be set based on the various domains or groups of the NAS
devices rather than the individual NAS devices. For example, a policy can
be defined as shown in figure 4.6. According to the policy, all the users with
realm “staff.example.org” are allowed to access all the NAS devices belonging

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 41

to the domain “nas.researchlab.example.org”.

Figure 4.6: Policy file based on NAS-ID

Another advantage of assigning an FQDN is, in the presence of support-
ing infrastructure like a Dynamic Host Configuration Protocol (DHCP) and
name servers, each domain and its members can be provided services based
on their role or type.

An important question to be answered before moving to the next section
is: can the AAA server trust the RADIUS attributes sent by the RADIUS
client? In a home office, small Office or isolated enterprise deployments, the
network administrator will be having the authority over the entire network
setup including the NAS devices (RADIUS client) and AAA servers (RA-
DIUS server). Since administrator only can configure the NAS devices and
AAA servers, the RADIUS attributes received at the RADIUS server can be
trusted. In other words, the NAS devices always send authorised RADIUS
attributes.

On the other hand, in roaming scenarios or scenarios described in figure
4.1, the AAA server cannot trust the RADIUS client to have sent authorised
RADIUS attributes. This is because the administrator at the server side
is not in control of the client. It is important to note that authenticating
the RADIUS clients does not guarantee that they send legitimate attributes.
Hence, the AAA server could maintain mappings that associate the identity
of the client to its authorized attributes. The server can use this mapping to
verify whether the client has sent legitimate attributes. The client identity
is its IP address or TLS identifier [49]. In RADIUS over TLS, the RADIUS
attributes that are required to be authorised could be included in the client
certificate.

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 42

4.6 Access Control Implementation for EAP-

NOOB

Before we look into the implementation details, it is important to clarify that,
for EAP-NOOB, the User-Name attribute in the RADIUS Access-Request
messages contain the PeerId of a device rather than the actual username
of a user. The implementation of access control based on NAS for EAP-
NOOB remains the same as described in the above subsections, but with a
few tweaks. In EAP-NOOB, the policy decisions are made during the OOB
step at the application-layer device registration server rather than the RA-
DIUS server. This is because the user authentication happens over the OOB
channel when he or she logs-in to deliver the OOB message in either direc-
tion. Consequently, the identity of the user, such as the username, required
to make access-control decisions, is available only during the OOB step. In
addition to the user identity, an association between the identity of the NAS,
i.e., Called-Station-ID or NAS-ID, to which the user is trying to attach his or
her device and the PeerId of the device must be available to the registration
server. So, when a user logs-in to the registration server account to deliver
the OOB message in either direction, a check can be performed to verify
whether the user is allowed to attach the devices to the given NAS. If the
check fails, the user is not allowed to deliver the OOB message to the au-
thentication server in the peer-to-server direction, and in the server-to-peer
direction, the user is denied from fetching the OOB message from the au-
thentication server. Then, the EAP-NOOB authentication process does not
proceed further because the OOB step has not been completed. On the other
hand, if the check succeeds, the OOB message is allowed to be delivered in ei-
ther direction, and the EAP-NOOB authentication process proceeds further.
This implies that any device can perform the Initial Exchange via NAS, but
only the authorized users can attach the devices to the NASs.

As mentioned above, we need to associate the NAI of the supplicant
device with the NAS identity. This may be done by the RADIUS server or
EAP server. For EAP-NOOB, we choose to do this inside the EAP code
because the RADIUS server initially only sees the generic NAI ‘noob@eap-
noob.net’. However, in the current hostapd software implementation, the
EAP server has access only to the EAP messages and not the RADIUS
attributes. Therefore, the Called-Station-ID or NAS-ID attribute required to
create the association or mapping with the PeerId is not available to the EAP
server. To overcome this obstacle, we made a small change to the hostapd
code. The change was to send, along with the EAP message, the RADIUS
attributes: Called-Station-ID and NAS-ID from the RADIUS server to the

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 43

EAP server. Now, since the EAP-NOOB server has access to the required
RADIUS attributes, it can store the mapping between the PeerId and NAS
identity.

In this paragraph, a detailed explanation for not choosing the RADIUS
server to store the required mappings is provided. Throughout any partic-
ular EAP session, the NASs use the NAI they received at the beginning of
the EAP session via the EAP-Response/Identity message to populate the
User-Name attribute in the RADIUS Access-Request messages sent to the
RADIUS server. The EAP-NOOB always uses a generic NAI to start the
Initial Exchange and a unique PeerId is assigned only during the Initial Ex-
change. In the current hostapd software implementation, the RADIUS server
can only access the RADIUS attributes and not the EAP message contents.
Hence, during the Initial Exchange, the RADIUS server does not have access
to the unique PeerId assigned to the device. Consequently, the mapping be-
tween the PeerId and NAS identity to be used by the registration server to
make access-control decisions cannot be stored during the Initial Exchange
by the RADIUS server. However, the RADIUS server can store the required
mappings during the next EAP session, i.e., during the Waiting Exchange
phase as the NAS would have received the latest PeerId from the device via
the EAP-Response/Identity message at the beginning of the EAP session.
However, this forces the OOB step to happen only after at least one waiting
exchange is performed, causing a significant delay in completing the EAP-
NOOB authentication. To circumvent a mandatory Waiting Exchange, we
chose the EAP server to store the required mappings.

The necessity for sending the RADIUS attributes from the RADIUS
server to the EAP server is not unique to the EAP-NOOB method. This
would also be necessary for any tunneled EAP methods such as EAP-TTLS [45]
or EAP-PEAP since the RADIUS server will only see the outer anonymous
identity, and the real NAI of the user is available only to the EAP server.
Hence, to make the access-control decisions inside the EAP code, the RA-
DIUS attributes must be made available to the EAP code.

4.7 Isolation of Network Clients

Before moving onto the next section, let us very briefly see how isolation or
grouping of devices or users within a network can be achieved. It can be
accomplished by creating a Virtual LAN (VLAN) for each group of users or
devices and then, after a successful authentication, the user or device can be
assigned to the appropriate VLAN group. The grouping of users or devices
can be done in several ways. For example, in the case of users, grouping can

CHAPTER 4. ACCESS CONTROL TO NETWORK RESOURCES 44

be based on the user role and in the case of devices, grouping can be based
on device type. More details about the VLANs can be found at [19].

Chapter 5

Enhancements to EAP-NOOB

This chapter describes the various issues discovered during the prototype im-
plementation and deployment of EAP-NOOB. We propose a suitable solution
for each of the problems found. Then, we verify the proposed solutions by
redeploying the EAP-NOOB prototype with necessary changes.

5.1 Re-keying and Algorithm Agility

In EAP-NOOB, re-keying is performed during the Reconnect Exchange phase.
Figure 5.1 depicts the message sequence in the Reconnect Exchange.

The fields within square brackets are optional. Several reasons that can
lead to the Reconnect Exchange are:

• A timeout has occurred for the temporal keys: Master Session Key
(MSK) and Extended Master Session Key (EMSK).

• A hardware or software failure has occurred.

• The non-persistent temporal keys MSK and EMSK have been lost due
to the user action such as resetting the non-persistent state of the peer.

• The supported cryptosuites at the EAP peer or server have changed.

During the implementation of the initial prototype for EAP-NOOB, we
discovered the re-keying specification to be unclear. According to the initial
specification, the key confirmation keys were part of the EAP-NOOB persis-
tent association, and if the ECDH public keys were exchanged between the
server and peer during the reconnect exchange, both the parties obtained
their respective new key confirmation key by concatenating the previously

45

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 46

Figure 5.1: Reconnect Exchange

stored key confirmation key with certain bytes of the Key Derivation Func-
tion (KDF) output. This concatenation would increase the length of key
confirmation keys after every successful Reconnect Exchange. Hence, we re-
worked the re-keying, and subsequently, verified the changes by deploying
the prototype after modifying it according to the new re-keying procedure.
According to the new re-keying specification, the key confirmation keys are
no longer part of the persistent association and certain bytes of the KDF
output during the reconnect exchange form the new key confirmation keys.
There are two ways of re-keying. They are:

• Re-keying with no change in the supported cryptosuite.

• Re-keying with a new cryptosuite negotiated.

5.1.1 No Change in the Supported Cryptosuite

When there is no change in the supported cryptosuite, the two parties per-
form the re-keying only to refresh or recalculate the temporal keys: MSK,

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 47

Table 5.1: Re-keying Input [51]

EMSK and Application MSK (AMSK). The AMSK can be used for application-
layer security. This re-keying can happen as a result of expired or lost tem-
poral keys, or hardware or software failure at the peer or authenticator, due
to user action. Table 5.2 shows how the Key Derivation Function (KDF)
output bytes are used.

During the Reconnect Exchange phase, if the ECDH public keys were
not exchanged (or if ECDH public key was sent by only one party), a special
case of the re-keying happens where the computational cost of the ECDH
key exchange is avoided. However, in this case, the trade-off for avoiding
the computational cost is the loss of forward secrecy. When no ECDH key
exchange was performed, the long-term common key Kz from the persistent
association replaces the input Z. This enables re-keying without the compu-
tational cost. Table 5.1 shows the various inputs to the KDF for re-keying
with and without ECDH key exchange.

5.1.2 New Cryptosuite Negotiated

When there is a change in the supported cryptosuites, the two parties re-
derive their long term common key Kz. There could be several reasons for a
change in the supported cryptosuites such as deprecation of cryptosuites or
standardization of more efficient or more secure cryptosuites. The derivation
of a new long-term common key also results in refreshing or re-calculating of
the temporal keys. The usage of the output bytes is shown in table 5.2. For
this type of re-keying, the ECDH public keys are always exchanged, and the

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 48

Table 5.2: Re-keying output [51]

various inputs to the KDF are the same as in the case of re-keying with the
ECDH key exchange, as shown in table 5.1.

5.2 Timeouts

As discussed in section 3.1, depending upon the negotiated OOB direction,
either the peer or the server sends an OOB message to the other party during
the user-assisted OOB step. The OOB message consists of the PeerId of the
peer, a nonce value Noob and the hash value Hoob.

The initial specification of the EAP-NOOB protocol did not define any
timeout for the nonce value Noob, after which the Noob expires or becomes
invalid. This may open doors for attackers. An attacker may misuse an un-
delivered and misplaced OOB message even after a long period. For example,
an OOB message printed as a QR code on a paper by a smart printer could be
left lying around, and the attacker may later pick it up to connect the printer
to his user account provided that the printer remains unregistered. So, to
avoid the misuse of undelivered OOB messages by an adversary and thereby
enhance the security, an application-dependent timeout called NoobTimeout,
after which the nonce value Noob expires, was introduced. The Noob timer
is configured at the sender of the OOB message. The sender may remem-
ber multiple previous OOB messages until the NoobTimeout timer for them
expires. Nonetheless, the receiver only accepts the first valid OOB message
delivered by the user. It will not accept another one until the following Com-

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 49

pletion Exchange has either failed or succeeded. The OOB messages sent by
the server expire immediately after the NoobTimeout period, and the server
will not accept the OOB messages older than that in the Completion Ex-
change. The peer, on the other hand, may remember the OOB messages
until it has probed the server at least once even if the OOB message has
expired. The peer will discard all the OOB messages that have expired after
it has probed the server at least once. The peer discards the expired OOB
messages irrespective of whether the probe to the server succeeded or failed.
The probe may fail due to various reasons such as MAC failure during the
Completion Exchange or because the peer is unable to connect to the EAP
server.

Since the OOB messages expire after the NoobTimeout, the sender may
output multiple OOB messages with different Noob values periodically at an
implementation-dependent time interval NoobInterval. The recommended
value for the NoobInterval is NoobTimeout/2 so that the sender accepts two
latest OOB messages. The sender may also output different OOB messages
to different user-assisted out-of-band channels or on demand when prompted
by the user. For example, in the case of the server-to-peer OOB direction,
multiple authenticated users may fetch multiple different OOB messages to
be delivered to the same peer device.

5.3 Failure Recovery

In the initial specification of the EAP-NOOB protocol, it was specified that
when the EAP peer or server detects an incorrect cryptographic fingerprint
value Hoob, the recipient remains in the Waiting for OOB state as if no out-
of-band message was received. This may lead to a persistent denial of service
(DoS) attack if an attacker modifies any of the in-band message parameters
that are used in the calculation of the Hoob. It is important to note here
that all the in-band messages are communicated in plain text without any
protection. In this scenario, the peer can never complete the authentication
with the server until it is reset. This is because the Hoob value comparison
always fails at the recipient. So, in order to recover from the failure and to
thwart this attack, the recipient should limit the number of OOB messages
delivered with wrong Hoob value. After an application-dependent number of
invalid OOB messages have been received, the recipient should go back to the
Unregistered state. This application-specific number is called OobRetries in
the latest specification of EAP-NOOB.

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 50

5.4 Handling Multiple Sessions

As described in the previous section the sender can send multiple OOB mes-
sages with different Noob values. Naturally, the hash value ‘Hoob’ in each
of the OOB messages also differs as the Noob value is one of the inputs to
calculate the hash value. So, to help the sender choose the appropriate Noob
value for deriving the keys during the Completion Exchange, an identifier
called ‘NoodIb’, which uniquely identifies an OOB message, is conveyed to
the sender by the receiver during the Completion Exchange. In other words,
NoodIb helps the sender to handle multiple sessions with the same recipient
by uniquely identifying each session. The NoobId is a hash value obtained
by hashing the Noob value concatenated with a constant string “NoobId”.
Figure 5.2 shows the new message sequence during the Completion Exchange.

As shown in the message sequence, the Completion Exchange now consists
of one or two EAP-NOOB request-response message pairs. If the out-of-band
message was sent in the peer-to-server direction, the Completion Exchange
has only one request-response message pair. In the Request message, the
server sends the NoobId with which the peer can identify the exact out-of-
band message that the server received. On the other hand, if the OOB mes-
sage was delivered in the server-to-peer direction, the Completion Exchange
has two request-response message pairs. With the first request message, the
EAP-NOOB server discovers the NoobId value, which determines the exact
out-of-band message that the peer received.

5.5 Roaming

Roaming is a scenario where a supplicant is not in the vicinity or the coverage
area of the home network. In the case of roaming, the peer device may try to
connect to any of the available local networks if there is a service agreement
between the home network service provider and the visited network service
provider.

Authentication Authorization Accounting (AAA) architectures [33] sup-
port roaming of network-connected devices that are authenticated over EAP.
While in a visited network, the authentication still happens between the peer
or supplicant and an authentication server in its home network. To support
such roaming in EAP-NOOB, the peer device is assigned a Realm. The server
may assign the Realm to the peer during the Initial Exchange phase, and the
Realm can also be assigned or re-assigned during the Reconnect Exchange
phase. Once the peer has been assigned with a Realm, the visited network
can route the EAP session to the home AAA server of the peer using the

CHAPTER 5. ENHANCEMENTS TO EAP-NOOB 51

Figure 5.2: New message sequence for the Completion Exchange [51]

realm i.e. domain name part of the peer’s Network Access Identifier (NAI).
Before roaming, a peer device should have established an EAP-NOOB

association with its home server. After creating an EAP-NOOB association
with the home server, the peer device can perform the Reconnect Exchange
from the visited network. As an alternative, the peer device may also provide
the user with some method to configure the home network’s Realm. In that
case, the peer device could establish an EAP-NOOB association with its
home AAA server while roaming. For example, a camera could read a QR
code shown by the user which contains the home network’s Realm. The user-
assigned Realm is used by the peer device in the Initial Exchange, which
enables the visited network to route the EAP messages to the user’s home
AAA server.

Chapter 6

Additional Features

This chapter begins by describing how EAP-NOOB specification was verified
to suit wired Ethernet networks. After that, the design and implementation
of additional features to the EAP-NOOB prototype are explained.

6.1 IEEE 802.1X Wired Access

The 802.1X authentication framework can be employed both in wired and
wireless networks. In fact, it was originally defined for IEEE 802.3 Ether-
net LAN, i.e., wired LAN, and later was clarified to be suitable for other
IEEE 802 LAN technologies such as 802.11 networks, i.e., wireless LAN.
EAP is an application-layer protocol and is defined independently of the un-
derlying network access technologies: Ethernet or wired access and Wi-Fi or
wireless access. Naturally, the EAP-NOOB authentication method also was
defined independently of the underlying network access technologies. The
EAP-NOOB specification was verified to suit Wi-Fi networks through the
initial prototype implementation and subsequently, testing by deploying in
a testbed. However, the specification was not tested on Ethernet networks.
Therefore, as part of this thesis work, we verified that the EAP-NOOB spec-
ification also works for wired devices. To test, we made necessary changes
to the prototype and then, deployed it in an Ethernet network. Changes
were required only at the supplicant side, i.e., the wpa supplicant code, as
the EAP server operations are independent of the network access technology
used by the supplicants. A detail explanation of the changes made to the
wpa supplicant code follows.

Before we look into the details of the modifications done to the proto-
type to support wired authentication, it is imperative to understand the
wpa supplicant architecture. Since wpa supplicant is built to support both

52

CHAPTER 6. ADDITIONAL FEATURES 53

secure and open wireless connection establishment, we have only considered
the part that involves 802.1X components. Figure 6.1 depicts the architec-
ture. As shown in the figure, each layer maintains its state machine during
the 802.1X-based authentication process to keep track of the message trans-
fers and also the authentication results. Each EAP authentication method is
an individual module implemented over the EAP state machine. The EAP
state machine, in turn, operates on top of the EAPOL layer state machine.
Sections 2.5.2 and 2.5.3 in the background chapter discuss the functionality
of the EAP and EAPOL layers respectively.

Figure 6.1: wpa supplicant architecture [14]

In the case of Wi-Fi networks, the EAP-NOOB peer tries to authenticate
with all the reachable SSIDs that support the EAP-NOOB method before
successfully authenticating with the AP that the user chooses and authorizes.
Hence, the EAP-NOOB peer code keeps track of the various ongoing authen-
tication processes and associated contexts on a per-SSID basis. Here, the
intermediate EAP-NOOB authentication parameters such as nonces, ECDH
keys, etc. are collectively called the context. On the other hand, in the case

CHAPTER 6. ADDITIONAL FEATURES 54

of IEEE 802.1x wired network authentication, the supplicant only authenti-
cates with the NAS to which it is connected via the Ethernet cable. In other
words, the EAP-NOOB peer needs to maintain only one context for the net-
work interface. This implies that the EAP-NOOB peer implementation must
distinguish between wired and wireless access. Since the initial implementa-
tion of the EAP-NOOB supplicant was aimed at Wi-Fi networks, there was
no distinction between the wireless and wired authentication. So, to support
wired authentication, the first change we made to the prototype was to dis-
tinguish between the wired and wireless access and handle the authentication
process accordingly. The distinction was made based on the driver interface
specified in the configuration file for wpa supplicant, i.e., wired or wireless
driver, with which the wpa supplicant was started. This is depicted in figure
6.1. In wpa supplicant, the EAPOL layer stores the driver name as a string in
a variable, and the variable is also accessible to the EAP methods. Hence, we
used this variable to make the distinction between wired and wireless access.

In EAP-NOOB, it may take several minutes for the OOB message to
be delivered. The peers may unnecessarily probe the server several times
before the OOB message is delivered. Hence, the server may assign a wait
time to the peers during the Initial and Waiting Exchanges to limit the
rate at which they probe the server. If a wait time was assigned, the peer
should not probe the server until it elapses. As explained by Mudugodu
Seetarama [47], the waiting functionality for 802.1X-based wireless access
was implemented using a provision in wpa supplicant to disable association
tries to an SSID temporarily. In other words, the wpa Supplicant temporarily
abstains from sending the probe requests, the message two of Stage 1 in
RSNA establishment procedure 2.5.6, to an SSID. wpa supplicant provides
this functionality to avoid contacting SSIDs which recently returned an EAP-
Failure. Instead, the supplicant can attempt to associate with other reachable
SSIDs. On the other hand, for 802.1X-based wired access, wpa supplicant
currently has no such provisions. It could be because an Ethernet port on
the supplicant device can be connected to only one NAS at a time. The
requirement for the supplicant to wait for a random period, assigned by the
EAP server, before again probing the server is a new requirement introduced
by the EAP-NOOB method. So, we had to implement the waiting feature
from scratch for 802.1X-based wired access.

In the case of wired access, the peer probes only one NAS. Hence, it is
important for the peer to wait for the wait time to elapse before it probes
the server again. Otherwise, if the peer neglects to wait and keeps probing
the server repeatedly before the OOB message is delivered, it might quickly
reach the maximum number of Waiting Exchanges allowed by the server.
Once the maximum number of Waiting Exchanges are reached, the peer will

CHAPTER 6. ADDITIONAL FEATURES 55

receive the Unwanted-Peer error from the server.
As explained in section 2.5.3, the EAP authentication is triggered either

by the supplicant via an EAPOL-start message or the NAS can send an
EAP-Request Identity message before it receives the EAPOL-Start message.
To introduce wait time before triggering the EAP authentication, we added
two features in the EAPOL layer. One was to prevent the EAPOL layer from
sending the EAPOL-Start message until the wait time elapsed. Another was
to silently discard the EAP-Request Identity message if received from the
NAS before the wait time elapsed. With these features we ensured that the
peer device waits until the wait time assigned by the server has elapsed. To
communicate the waiting time to the EAPOL layer from the EAP-NOOB
peer code, we added a new integer variable to the EAP state machine con-
text which is accessible to the EAPOL layer. The EAP-NOOB peer code
populates this variable with the epoch 1time until which the server should
not be probed.

Figure 6.2: 802.1X-based wired access

With the changes mentioned above, the EAP-NOOB prototype was de-
ployed for authenticating supplicant devices in 802.1X-based wired access
network. The deployment scenario is shown in figure 6.2. The only differ-
ence, when compared to 802.1X-based wireless access, is that a LAN switch is
used instead of a wireless access point. We were able to successfully authenti-
cate and attach the supplicant devices to the wired network, and hence, it is

1the number of seconds that have elapsed since January 1, 1970

CHAPTER 6. ADDITIONAL FEATURES 56

verified that EAP-NOOB specification also suits IEEE 802.1X wired access.

6.2 OOB Channel with NFC

As discussed in section 3.3, in our implementation, smartphones were ex-
tensively used for automating the OOB message transfers between the server
and peer. In this thesis work, we implemented another new method for trans-
ferring the OOB messages in the server-to-peer direction with NFC. Unlike
the cameras, the browsers on smartphones currently do not have support for
accessing NFC from a web application. Hence, it was not possible to build
an entirely platform-independent application to transfer OOB messages in
the server to peer direction with NFC. Instead, we used Android WebView,
an Android system component powered by Chrome, with which applications
can display web content [12] while also having access to native Android APIs.
This way, the web application can interface with the NFC feature in the An-
droid phone. Before looking at the implementation details, let us briefly
review some important concepts of Android application development related
to our implementation.

• Shared Preferences [11] - It is one of the ways provided by Android
through which an application can save and retrieve its data in the form
of a key-value pair.

• JavaScript Interface [2] - It is a functionality with which an interface
can be created between the JavaScript code and the client-side Android
code. In other words, using JavaScript Interface, JavaScript code on a
web page can call a method in the client-side Android code.

• Host-based card emulation [6] - Host Card Emulation (HCE) is an on-
device technology that allows a smartphone to emulate an NFC card on
an NFC-enabled device. Host-based card emulation is an implementa-
tion of HCE technology available on Android phones for the developers
to emulate an NFC card.

Figure 6.3 depicts the architecture of the Android application that we
developed using the Android WebView. First, the user logs in to the EAP-
NOOB web application via this application. Once the OOB message to be
delivered to a peer device is ready, the user clicks ‘NFC send’ button. When
the ‘NFC send’ button is clicked, the EAP-NOOB web application calls a
native Android function ‘sendOOB’ with the OOB message as the function
parameter through the Android JavaScript Interface. The Android function,

CHAPTER 6. ADDITIONAL FEATURES 57

in turn, stores the received OOB message in the sharedpreferences in the
form of a key-value pair. Once the OOB message is successfully stored in
the key-value store, the user is prompted to hold the phone close to the NFC
reader of the peer device for which the OOB message has to be delivered. An
NFC card with the OOB message stored in the key-value store is emulated by
the host-based card emulation service running on the Android smartphone.
The card emulation service retrieves the OOB message stored in the key-
value store via the same key with which it was stored. The NFC reader of
the peer device reads the emulated NFC card to get the OOB message and
then continues the EAP-NOOB authentication process.

Figure 6.3: OOB message transfer with NFC

CHAPTER 6. ADDITIONAL FEATURES 58

6.3 Web User-Interface to Configure the

RADIUS Clients

Currently, the RADIUS server code inside the hostapd reads the RADIUS
client configuration file ‘hostapd.radius clients’ only once, at the beginning
when hostapd is started. After starting hostapd, if the RADIUS clients con-
figuration file is modified, the hostapd does not re-read the configuration
file itself. The hostapd needs to be restarted to trigger the re-read. Re-
starting hostapd just to re-read the RADIUS client configuration file is not
efficient. Hence, to make hostapd re-read the configuration file on the fly
without restarting, and also to allow remote modification of the file, we de-
signed and implemented a web functionality as part of the EAP-NOOB web
application. The proposed model can be easily extended to any AAA server
implementations deployed in real world scenarios. Figure 6.4 illustrates the
implementation setup.

Figure 6.4: Web UI to configure RADIUS clients

To make hostapd re-read the configuration file on modifications without
restarting, we made use of Linux Interrupts and inode notify. Inotify or
inode notify is part of the Linux kernel subsystem with which applications
can watch certain files and get notified when the files are deleted, modi-
fied, renamed or opened [9]. Firstly, we added code to register for a Linux
user-space interrupt signal ‘SIGUSR2’ inside the source code of the hostapd
RADIUS server. Secondly, as a response to the SIGUSR2 interrupt signal,

CHAPTER 6. ADDITIONAL FEATURES 59

an interrupt service routine (ISR) was written to re-read the RADIUS client
configuration file. A Python script was written to watch for modifications to
the configuration file with the inotify API. As soon as the script gets notified
of any modifications to the configuration file, it sends the SIGUSR2 inter-
rupt signal to hostapd, and the hostapd re-reads the configuration file upon
receiving the interrupt signal.

Chapter 7

Discussion

This chapter begins by presenting a summary and contributions of this thesis
work. After that, few open questions on EAP-NOOB are discussed.

7.1 Thesis Contributions

Firstly, the issue of fine-grained access control to network resources was
addressed in chapter 4. The access control was implemented at the AAA
server by associating the user identity with the identification information
that uniquely identifies the Network Access Server (NAS) from which the
Access-Requests are generated. We decided to address this issue first because
it was a common problem associated with all EAP authentication methods
including the EAP-NOOB method. Through implementing a model of the
proposed solution, we have clarified that the proposed solution can be em-
ployed to achieve access control based on the NAS irrespective of the EAP
method used. Also, while implementing the solution, we identified that there
might be a necessity of sending certain RADIUS attributes from the RADIUS
server to the EAP server, which is a different layer of software in the server,
to help the EAP server in making access control policy decisions based on
the NAS identity. This necessity arises when the proper user identity is only
available to the EAP server as in the case of EAP-NOOB and tunneled EAP
methods such as EAP-TTLS or EAP-PEAP. We have also explained how
to send the RADIUS attributes from the RADIUS server code to the EAP
server code.

Secondly, several issues that are specific to EAP-NOOB were addressed
in chapter 5. At first, we took up the issue of re-keying as it was a flaw in the
specification. Following the original specification, the size of key confirmation
keys would have grown after every Reconnect Exchange phase. The issue was

60

CHAPTER 7. DISCUSSION 61

primarily because the key confirmation keys were part of the EAP-NOOB
persistent association, and during the Reconnect Exchange phase, new key
confirmation keys were derived by concatenating the previously stored key
confirmation keys with certain bytes of the KDF output. To fix this issue,
we no longer include the key confirmation keys as part of persistent EAP-
NOOB association. The new re-keying procedure is as described in section
5.1. As a result of the new re-keying procedure, the memory size required to
store EAP-NOOB persistent association is also reduced. Then, as discussed
in section 5.2, a potential bug in the EAP-NOOB protocol where an attacker
could cause a persistent denial of service attack by just modifying any of
the in-band messages was fixed by limiting the number of tries to deliver
invalid OOB messages at the receiver side. Also, an application-dependent
timeout value after which the nonce Noob expires was introduced to prevent
the misuse of undelivered OOB messages and, consequently, to enhance the
protocol security. Since the Noob values expire, the sender may generate
multiple OOB messages with different Noob before the start of the Comple-
tion Exchange. Hence, as described in section 5.4, to help the sender choose
the appropriate Noob value for deriving the keys during the Completion Ex-
change, an identity field called NoodIb, which uniquely identifies an OOB
message, has been introduced in the Completion Exchange. Finally, as dis-
cussed in section 5.5, to support roaming in EAP-NOOB, the peer device is
now assigned with a Realm by the server. Once the peer has been assigned
with a Realm, the visited network can route the EAP session to the home
AAA server of the peer using the domain name part of the peer’s Network
Access Identifier (NAI).

Apart from fixing the issues in EAP-NOOB protocol, as described in
chapter 6, we have also designed and implemented additional features for
EAP-NOOB to enhance the user-experience. Firstly, we have added sup-
port for IEEE 802.1X-based wired access in the EAP-NOOB implementa-
tion. Through this, we also confirmed that the EAP-NOOB specification
also works for wired devices. Then, we have designed and implemented a
new OOB channel based on NFC to transfer the OOB messages in the server-
to-peer direction. Finally, as discussed in section 6.3, we have designed and
implemented a web application to modify the RADIUS clients configuration
file. As part of this web application design and implementation, we have
shown how a RADIUS server can re-read the configuration file, if modified,
on the fly without having to restart.

CHAPTER 7. DISCUSSION 62

7.2 Open Questions

From all the discussions we had, it is evident that EAP-NOOB is a secure
open standard and generic protocol for secure bootstrapping of smart IoT de-
vices in IEEE 802.1X-based access networks. However, a remaining challenge
for EAP-NOOB in the case of IEEE 802.1X wireless access is the authen-
tication latency [47]. In other words, in Wi-Fi networks, the EAP-NOOB
authentication process may be time-consuming. This is mainly because a
peer device has to sequentially try to associate with all the available SSIDs
that support WPA2-Enterprise and attempt to perform the Initial Exchange.
This process adds a significant delay to the authentication process. To re-
duce the authentication latency, we propose to parallelize this initial process,
i.e., a peer device can attempt to perform the Initial Exchange via various
available SSIDs in parallel and only complete the authentication with the
SSID for which the user delivers the OOB message. This might require some
modifications to the current implementations of the WPA/WPA2 supplicant,
but no changes to the EAP-NOOB protocol are required. Alternatively, the
EAP-NOOB peer device may provide some method for the user to configure
the SSID to which the device has to connect. In that case, the peer device
can use the user-configured SSID to perform the EAP-NOOB authentication.
This would significantly reduce the authentication latency as the peer device
has to deal with only one SSID rather than several of them.

Another improvement that could be made is in the software architecture
proposed in figure 6.4. Instead of watching for changes to the RADIUS client
configuration file from the Python script, the source code of the hostapd
RADIUS server could use C APIs to watch for changes to the configuration
file. This approach would simplify the architecture as watching and signalling
from the Python script would be avoided.

7.3 Standards and Implementation Status

Based on the experiences gained from this thesis work, the EAP-NOOB
protocol specification has been improved. The latest draft specification has
been published on the Internet and can be found at [51]. The protocol has
been proposed for standardisation at the IETF. As there is always scope for
the improvement, it cannot be claimed that the specification of the protocol
is complete. We will continue to analyse and improve the protocol to make
it more secure and user-friendly.

A working prototype of EAP-NOOB and the instructions for installing
and using it can be found at [8]. The implementation of the prototype is

CHAPTER 7. DISCUSSION 63

according to the latest draft specification of the EAP-NOOB protocol. We
are working to improve its performance and user experience.

Chapter 8

Conclusion

As the prices of electronic components such as memory and processors are
getting cheaper, devices and appliances of our everyday life are becoming
more intelligent and productive. Smart home devices from major vendors
are already available in the market. Soon these smart IoT devices are ex-
pected to proliferate both in our work and household environments, and
consequently, influence our daily life. Since physical objects are connected to
the Internet, the ramifications of device compromise are no longer limited to
some monetary loss but can also be to the extent of causing physical harm
to humans. Moreover, the methods for bootstrapping and managing the de-
vices securely have to be usable and scalable enough to be repeatedly applied
to thousands or more devices. Hence, it will be wise to investigate and be
prepared with robust security solutions to make our work and home environ-
ments safe and secure. In this thesis work, we have implemented, tested and
enhanced one such solution, the Nimble out-of-band authentication for EAP
(EAP-NOOB), which performs the secure bootstrapping of IoT appliances
intending to connect to the Internet via IEEE 802.1X-based access networks.

More specifically, we have produced an updated prototype implemen-
tation of EAP-NOOB and successfully addressed the various issues of the
EAP-NOOB protocol that were discovered during the implementation of its
initial prototype. An appropriate solution to each of the problems identified
was provided along with the implementation details. Also, new additional
features were designed and implemented to enhance the user-experience of
EAP-NOOB. This thesis work has contributed in numerous ways to enhanc-
ing the EAP-NOOB protocol specification, and the latest version of the EAP-
NOOB Internet-Draft can be found at [51]. The EAP-NOOB protocol is
currently proposed for standardization with the Internet Engineering Task
Force (IETF), and gathering implementation experiences is a crucial part of
the specification and standards process.

64

Bibliography

[1] 3GPP TS 33.220 version 13.0.0 Release 13. http://www.3gpp.org/

DynaReport/33220.htm. Generic authentication architecture (GAA);
generic bootstrapping architecture (GBA).

[2] Building Web Apps in WebView — Android Developers. https:

//developer.android.com/guide/webapps/webview.html. (Accessed on
05/22/2017).

[3] Definition of bootstrap in English, ”bootstrap”. https://

en.oxforddictionaries.com/definition/bootstrap. (Accessed on
04/26/2017).

[4] Elliptic Curve Cryptography - OpenSSLWiki. https://wiki.

openssl.org/index.php/Elliptic_Curve_Cryptography. (Accessed on
04/22/2017).

[5] FreeRADIUS: The world’s most popular RADIUS Server. http://

freeradius.org/. (Accessed on 05/05/2017).

[6] Host-based Card Emulation — Android Developers. https:

//developer.android.com/guide/topics/connectivity/nfc/hce.

html#HCE. (Accessed on 05/22/2017).

[7] hostapd and wpa supplicant. https://w1.fi/. (Accessed on
05/08/2017).

[8] Implementation of Nimble out-of-band authentication for EAP (EAP-
NOOB). https://github.com/tuomaura/eap-noob. (Accessed on
07/30/2017).

[9] inotify(7) - Linux manual page. http://man7.org/linux/man-pages/

man7/inotify.7.html. (Accessed on 05/22/2017).

[10] Manpage of unlang. http://freeradius.org/radiusd/man/unlang.html.
(Accessed on 05/05/2017).

65

BIBLIOGRAPHY 66

[11] SharedPreferences — Android Developers. https://developer.

android.com/reference/android/content/SharedPreferences.html.
(Accessed on 05/22/2017).

[12] WebView — Android Developers. https://developer.android.com/

reference/android/webkit/WebView.html. (Accessed on 05/22/2017).

[13] Who We Are — Wi-Fi Alliance. http://www.wi-fi.org/who-we-are.
(Accessed on 04/24/2017).

[14] wpa supplicant / hostapd: Developers’ documentation for
wpa supplicant and hostapd. https://w1.fi/wpa_supplicant/devel/.
(Accessed on 05/19/2017).

[15] IEEE SA - 802.11i-2004 - IEEE Standard for information technology-
Telecommunications and information exchange between systems-Local
and metropolitan area networks-Specific requirements-Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications: Amendment 6: Medium Access Control (MAC) Security
Enhancements. Specification, 2004.

[16] Wi-Fi Alliance. Wi-Fi protected setup. Specification, 2007.

[17] IEEE Std 802.11-2012 (Rev. of IEEE Std 802.11-2007). Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. Specification, 2012.

[18] IEEE std. 802.1ar-2009, Standard for local and metropolitan area net-
works - secure device identity, December, 2009.

[19] Institute of Electrical and Electronics Engineers, Virtual Bridged Local
Area Networks. IEEE Standard 802.1Q, May 2006.

[20] Alan DeKok. DTLS as a Transport Layer for RADIUS. Internet-Draft
draft-dekok-radext-dtls-03, Internet Engineering Task Force, 2010. Work
in Progress.

[21] B. Aboba, L. J. Blunk, J. R. Vollbrecht, J. Carlson and H.
Levkowetz. Extensible authentication protocol (EAP). IETF. RFC
3748, June, 2004.

[22] B. Aboba, M. Beadles, J. Arkko AND P. Eronen. The Network
Access Identifier. IETF. RFC 4282, December, 2005.

BIBLIOGRAPHY 67

[23] B.Groza and R.Mayrhofer. Saphe: Simple accelerometer based
wireless pairing with heuristic trees. In Proceedings of the 10th Inter-
national Conference on Advances in Mobile Computing & Multimedia
(2012), ACM.

[24] Certicom Research. Standards for efficient cryptography, SEC 1:
Elliptic Curve Cryptography. Version 2.0, May 21, 2009.

[25] C.Neuman, T.Yu, S. Hartman and K. Raeburn. The Kerberos
network authentication service (V5). IETF. RFC 4120, June, 2004.

[26] C.Rigney, S.Willens, A.Rubens and W.Simpson. Remote dial-in
user authentication service (RADIUS). IETF. RFC 2865, June, 2000.

[27] C.Rigney, W.Willats and P.Calhoun. RADIUS Extensions.
IETF. RFC 2869, June, 2003.

[28] D.Simon, B.Aboba and R.Hurst. The EAP-TLS authentication
protocol. IETF. RFC 5216, March, 2008.

[29] D.Whiting, R.Housley and N.Ferguson. Counter with CBC-
MAC (CCM). IETF. RFC 3610, September, 2003.

[30] E. Barker, L. Chen, A. Roginsky AND M. Smid. Recommen-
dation for pair-wise key establishment schemes using discrete logarithm
cryptography. In Technical Report; National Institute of Standards and
Technology (NIST): Gaithersburg, MD, USA, 2006. 2012 (2006), Cite-
seer.

[31] H. Krawczyk, M. Bellare AND R. Canetti. HMAC: Keyed-
hashing for message authentication. IETF. RFC 2104, February, 1997.

[32] Hassanalieragh, M.Page, et al. Health monitoring and manage-
ment using Internet-of-Things (IoT) sensing with cloud-based process-
ing: Opportunities and challenges. In 2015 IEEE International Confer-
ence on Services Computing (SCC).

[33] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G.
Gross, B. de Bruijn, C. de Laat, M. Holdrege AND D.
Spence. AAA Authorization Framework. IETF. RFC 2904, August,
2000.

[34] J.C.Mitchell and C.He . Security Analysis and Improvements for
IEEE 802.11 i. In The 12th Annual Network and Distributed System

BIBLIOGRAPHY 68

Security Symposium (NDSS’05) Stanford University, Stanford, Citeseer,
2005.

[35] L.Foschini, T.Taleb, A.Corradi and D.Bottazzi. M2M-based
metropolitan platform for IMS-enabled road traffic management in IoT.
IEEE Communications Magazine (2011).

[36] M.Antikainen, M.Sethi, S.Matetic and T.Aura. Commitment-
based device-pairing protocol with synchronized drawings and compar-
ison metrics. Pervasive and Mobile Computing (2015).

[37] M.Sethi. Security in smart object networks. http://urn.fi/URN:NBN:

fi:aalto-201210313327, 2012. Master’s Thesis, Aalto University.

[38] M.Sethi. Security for Ubiquitous Internet-Connected Smart
Objects. https://aaltodoc.aalto.fi/bitstream/handle/123456789/

23874/isbn9789526072241.pdf, 2016. Doctoral Thesis, Aalto University.

[39] M.Sethi, E.Oat, M.D. Francesco and T.Aura. Secure bootstrap-
ping of cloud-managed ubiquitous displays. In Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous Computing
(2014), ACM.

[40] M.Sethi, M.Antikainen and T.Aura. Commitment-based device
pairing with synchronized drawing. In International Conference on Per-
vasive Computing and Communications (PerCom) (2014), IEEE.

[41] M.Sethi, P.Kortoci, M.D Francesco and T.Aura. Secure and
low-power authentication for resource-constrained devices. In 5th Inter-
national Conference on the Internet of Things (IOT) (2015), IEEE.

[42] N.Borisov, I.Goldberg and D.Wagner. Intercepting mobile com-
munications: the insecurity of 802.11. In Proceedings of the 7th Annual
International Conference on Mobile computing and Networking, ACM
(2001).

[43] N.Shankar, J.Wang and W.A.Arbaugh. Your 802.11 Network has
no Clothes. In Proceedings of the First IEEE International Conference
on Wireless LANs and Home Networks (2001).

[44] P. Congdon, B. Aboba, A. Smith, G. Zorn AND J. Roese.
IEEE 802.1X Remote Authentication Dial In User Service (RADIUS)
Usage Guidelines. IETF. RFC 3580, September, 2003.

BIBLIOGRAPHY 69

[45] P. Funk AND S. Blake-Wilson. Extensible Authentication Proto-
col Tunneled Transport Layer Security Authenticated Protocol Version
0 (EAP-TTLSv0). IETF. RFC 5281, August, 2008.

[46] P.S.Henry and H.Luo. WiFi: what’s next? IEEE Communications
Magazine, December 2002.

[47] R M Seetarama. Secure Device Bootstrapping with the Nimble
Out of Band Authentication Protocol. http://urn.fi/URN:NBN:fi:

aalto-201706135412, 2017. Master’s Thesis, Aalto University.

[48] S. Mirzadeh, H. Cruickshank AND R. Tafazolli. Secure De-
vice Pairing: A Survey. IEEE Communications Surveys and Tutorials
(2014).

[49] S. Winter, M. McCauley, S. Venaas AND K. Wierenga.
Transport Layer Security (TLS) Encryption for RADIUS, May, 2012.

[50] T.Aura AND M.Sethi. Nimble out-of-band authentication for EAP
(EAP-NOOB). Internet-Draft draft-aura-eap-noob-01, Internet Engi-
neering Task Force, 2016. Work in Progress.

[51] T.Aura AND M.Sethi. Nimble out-of-band authentication for EAP
(EAP-NOOB). Internet-Draft draft-aura-eap-noob-02, Internet Engi-
neering Task Force, May 2017. Work in Progress.

[52] T.Dierks and E.Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. IETF. RFC 5246, August, 2008.

[53] V. Fajardo, J. Arkko, J. Loughney AND G. Zorn . DIAME-
TER Base Protocol, October, 2012.

[54] Wang, M.Zhang, et al. An IoT-based appliance control system for
smart homes. In 2013 IEEE International Conference on Intelligent
Control and Information Processing (ICICIP).

[55] W.Diffie and M.Hellman. New directions in cryptography. IEEE
transactions on Information Theory (1976).

[56] W.Shen, B.Yin, X.Cao, L.Cai X AND Y.Cheng. Secure device-
to-device communications over WiFi direct. IEEE Network (2016).

[57] W.Wei, B.Wang, C.Zhang, J.Kurose and D.Towsley. Classi-
fication of access network types: Ethernet, wireless LAN, ADSL, cable
modem or dialup. Computer Networks. Elsevier, 2008.

BIBLIOGRAPHY 70

[58] Ylonen, T., and Lonvick, C. The secure shell (SSH) transport layer
protocol. IETF. RFC 4253, January 2006.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Lifecycle of an IoT Device
	2.2 Objectives of Network Security
	2.3 Secure Bootstrapping
	2.4 Security Protocols for Wi-Fi Networks
	2.5 WPA2 and RSN
	2.5.1 IEEE 802.1X
	2.5.2 EAP
	2.5.3 EAPOL
	2.5.4 RADIUS
	2.5.5 EAP Authentication Process
	2.5.6 RSNA Establishment Procedure

	2.6 ECDH Key Exchange Procedure
	2.7 OOB Channels for Authentication

	3 Protocol Overview
	3.1 A Brief Overview of the Protocol
	3.2 Motivation for EAP-NOOB
	3.3 A Brief Overview of the Initial Implementation

	4 Access Control to Network Resources
	4.1 Need for Fine-Grained Access Control
	4.2 Proposed Solution
	4.3 Implementation Environment
	4.4 Access Control Based on Called-Station-ID and User-Name
	4.5 Access Control Based on NAS-ID and User-Name
	4.6 Access Control Implementation for EAP-NOOB
	4.7 Isolation of Network Clients

	5 Enhancements to EAP-NOOB
	5.1 Re-keying and Algorithm Agility
	5.1.1 No Change in the Supported Cryptosuite
	5.1.2 New Cryptosuite Negotiated

	5.2 Timeouts
	5.3 Failure Recovery
	5.4 Handling Multiple Sessions
	5.5 Roaming

	6 Additional Features
	6.1 IEEE 802.1X Wired Access
	6.2 OOB Channel with NFC
	6.3 Web User-Interface to Configure the RADIUS Clients

	7 Discussion
	7.1 Thesis Contributions
	7.2 Open Questions
	7.3 Standards and Implementation Status

	8 Conclusion

