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An automatic speech recognition system has to combine acoustic and linguistic
information. Therefore the search space spans multiple layers. Finite state models
and weighted finite state transducers in particular can efficiently represent this
search space by modeling each layer as a transducer and combining them using
generic weighted finite state transducer algorithms. When recognising a text
prompt being read aloud, the prompt gives a good estimate of what is going to be
said. However human reading naturally produces some deviations from the text,
called miscues. The purpose of this thesis is to create a system which accurately
recognises recordings of reading. A miscue tolerant finite state language model is
implemented and compared against two traditional approaches, an N-gram model
and forced alignment.
The recognition result will ultimately be used to validate the recording as fit for
further automatic processing in a spoken foreign language exam, which Project
DigiTala is designing for the Finnish matriculation examination. The computerisa-
tion of the matriculation examination in Finland makes the use of such automatic
tools possible.
This thesis first introduces the context for the task of recognising and validating
reading. Then it explores three methodologies needed to solve the task: automatic
speech recognition, finite state models, and the modeling of reading. Next it
recounts the implementation of the miscue tolerant finite state language models
and the two baseline methods. After that it describes experiments which show
that the miscue tolerant finite state language models solve the task of this thesis
significantly better than the baseline methods. Finally the thesis concludes with a
discussion of the results and future work.
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Automaattinen puheentunnistusjärjestelmä yhdistää akustista ja kielellistä tietoa,
joten sen hakuavaruus on monitasoinen. Tämän hakuavaruuden voi esittää tehok-
kaasti äärellisillä tilamalleilla. Erityisesti painotetut äärelliset tilamuuttajat voivat
esittää jokaista hakuavaruuden tasoa ja nämä muuttajat voidaan yhdistää yleisillä
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lukupoikkeamiksi, koska ne ovat luonnollinen osa taitavaakin lukemista, eivätkä siis
suoranaisesti lukuvirheitä. Tämän diplomityön tavoite on luoda järjestelmä, joka
tunnistaa lukupuheäänitteitä tarkasti. Tätä varten totetutetaan lukupoikkeamia
sietävä äärellisen tilan kielimalli, jota verrataan kahteen perinteiseen menetelmään,
N-gram malleihin ja pakotettuun kohdistukseen.
Lukupuheen tunnistustulosta käytetään, kun tarkastetaan sopiiko äänite seuraaviin
automaattisiin käsittelyvaiheisiin puhutussa vieraan kielen kokeessa. DigiTala-
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keiden sähköistäminen mahdollistaa tällaisten automaattisten menetelmien käytön.
Kokeet sekä englanninkielisellä simuloidulla aineistolla että ruotsinkielisellä tosi-
maailman aineistolla osoittavat että lukupoikkeamia sietävä äärellisen tilan kieli-
malli ratkaisee diplomityön ongelmanasettelun. Vaikealla tosimaailman aineistolla
saadaan 3.77± 0.47 prosentuaalinen sanavirhemäärä.
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1 Introduction
What is assessed becomes valued. What is valued gets taught. This is the definition of
washback in education. Nowhere is it more apparent than in high-stakes examinations,
where futures are decided. Washback has a dual nature. It is seen as driving students
to disregard material that is not relevant to their success in the test. Yet it is also
seen as a power tool for shaping education; it is the darling of policy makers.[1]

The story of this thesis began eleven years ago in the Ministry of Education and
Culture. For long the consensus had been to shift more focus toward oral skills in
foreign language education. What better way to accomplish this than implement
an oral test as part of the revered matriculation examinations? The twist was
that testing oral proficiency is not straight forward, especially so in the large scale
standardised manner that the matriculation examination requires. There were a
number of problems that had to be solved first. The hard truth is that listening
is slow and human reviewer time is expensive. Simply arranging an oral test was
deemed problematic: simultaneous tests were technologically impossible and testing
students one-by-one would have meant the test could not have been the same for
everyone. [2]

A decade later the matriculation examination is currently being computerised.
Project DigiTala believes computerisation is the key to making oral testing possible
on a large scale. A computerised test can be administered to everyone simultaneously.
Speech processing technologies promise to help in test scoring. A pilot version of
an oral test was created and administered in a few high schools, gathering both
data and user experiences. [3] Adding an oral part to foreign language matriculation
exams was recommended by a task force set up by the Ministry of Education and
Culture[4]. The first language to get the oral part will be Swedish.

Aalto University provides the speech processing technology in Project Digitala.
Just how much automatic speech processing can help in scoring is still a crucial,
unanswered question. It is a vital component in making the oral test feasible. Oral
proficiency is not one thing, and should not be measured on a one dimensional scale.
Thus a plethora of different question types are needed, ranging from reading text
aloud to answering questions orally or communicating with a partner. And thus
a plethora of speech processing tools are needed. It is important to research the
possible speech processing tools thoroughly to enable a diverse spoken test. Otherwise
the negative side of washback may incentivise students to study for the quirks of
automatic speech processing instead of better oral communication.

Automatically analysing articulation and then predicting human reviewer scores
based on that analysis is a particularly hot topic in Project DigiTala. A computer
predicting scores has to be extremely reliable, but it could save a great amount
of reviewer time. As a preprocessing step to articulation analysis, the speech is
transcribed in words and the speech sounds are segmented into small units. The
preprocessing step needs to work well, or the following analysis is done on false
premises.

The task of reading aloud may be the lowest hanging fruit for automatic tran-
scribing and segmentation. The content of read speech can be controlled very well.
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Therefore it is a good place to start. The topic of this thesis is to implement the
preprocessing for reading tasks. The preprocessing is done by automatic speech
recognition, turning speech into text by computer.

In technical terms this thesis aims to implement the following task: given a text
and a recording of someone reading it, transcribe what is actually said and segment
the recording into small sound units. The text to be read is referred to as a prompt
and the corresponding recording of speech is called an utterance. Transcribing the
text automatically is called recognising the read prompt.

In the future automatic recognition and segmentation are also used to validate
the utterance: to make sure the recording is fit for the articulation analysis system.
It does not matter if the recording is rejected as fault of the reader or as fault of the
recognition system, because in both cases the automatic articulation analysis should
not be used. Instead the recording can be flagged for human review or the student
might even be reprompted on the spot, if the recognition and validation system is
fast enough.

To recognise and validate the prompt, it is necessary to model reading. A model
that predicts the next words in an utterance well makes recognition more accurate.
To this end finite state models turn out to work well. They can efficiently represent
the word sequences that humans produce when reading and they integrate well with
automatic speech recognition. The work in creating these finite state models is also
the basis for an article and an accompanying demonstration system which will appear
in the 2017 Interspeech conference[5].

10start
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Figure 1: A preview of a finite state model for reading.

Figure 1 gives a glimpse of what finite state models for recognition and validation
of read prompts look like. They are introduced in sectionsec:finitestatemodels. This
thesis builds from a theoretical background towards creating models of reading and
then comparing them against conventional techniques in experiments with in-domain
data. First automatic speech recognition is introduced. This thesis is concerned with
three things in particular: where does the model of reading fit in an automatic speech
recognition system, how do a speech recogniser’s different subsystems affect the goal
of this thesis, and how are existing speech recognition systems used to accomplish
the task. Then finite state models are presented both on their own, so as to provide
a basis for creating the reading models, and as used in speech recognition, to show
how the models are integrated. Next the seemingly ordinary act of reading is studied
in a systematic way to provide the last piece of the puzzle of modeling reading and
complete the theoretical background.

In the practical part of the thesis, conventional techniques are first proposed as a
baseline and then my implementation of finite state models of reading is described
in more detail. Then the conducted experiments and their results are recounted.
Finally the thesis concludes with a discussion of the results, some ideas for future



work and some reflection. Now, before delving into the theoretical background, the
DigiTala pilot test is briefly introduced.

1.1 Pilot test
The DigiTala pilot test served two purposes. Firstly it prototyped a computerised
spoken test. The feedback was positive. The diverse and engaging tasks in the pilot
were liked by the students too. The reading aloud tasks had short tongue-twisters
and longer multi-sentence prompts. The other tasks were answering questions in
speech, a simulated voice-call, giving directions based on a map, describing a picture
aloud and even a pair-wise discussion about summer job opportunities. Figure 2
shows the test from the test taker’s perspective. The test was administered with
a browser based interface. The responses were saved into a server machine in the
classroom.

Figure 2: A test taker’s view of the DigiTala pilot test. The test taker is reading
a tongue-twisting short prompt. The picture is a screen capture from the DigiTala
project introduction video, https: // www. youtube. com/ watch? v= p3_ UTsjBYJY

Gathering these responses for further use was the second purpose. This way some
data could be bootstrapped to begin experimenting with various speech processing
tools. This data is also used as the test data in this thesis.

https://www.youtube.com/watch?v=p3_UTsjBYJY
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2 Automatic speech recognition
The first form of language was speech. The written form is secondary[6]. To speak is
something an infant picks up, to write is something a child practices. Speech comes
naturally without thinking and we can talk while driving, talk while cooking and
sometimes we talk while sleeping.

We are also great at listening to speech. We understand what is being said and
simultaneously notice the tone the speaker is using. We can detect sarcasm. We can
focus on one speaker in a room full of interesting conversations[7].

All of our language abilities are quite effortless. Yet our communication is imprecise
and full of ambiguity. We do not always notice this; instead we automatically draw
from a wealth of context and real-world knowledge and find a suitable interpretation,
which is almost always the correct one.[8]

Computers do not have that intuition, they are lifeless and are best understood
without thinking in terms of human abilities, i.e. without anthropomorphism. We
may use active words to describe computers: they compute seemingly instantaneously,
follow orders to the letter and remember everything exactly. Yet computers are
passive. So if we want a computer to understand speech, what we actually have to do
is to construct an exact sequence of processor instructions that reads the audio signal
and computes from it a desirable representation, usually text, of that spoken phrase.
This gets us half way, this is a good start. Then we must consider actually deciphering
the intent behind the text, and construct yet more exact processor instructions for
that task. Language is a cooperative game between speaker and listener [9] and the
computer is not even trying.

Automatic speech recognition is the art of programming, or teaching, a computer
to turn speech into its text representation. It is the art of getting to the half way
point. The word teaching is appropriate, because the modern approaches are based
on machine learning [10]. The reverse task of turning text into speech by machine is
called speech synthesis. The task of comprehending the meaning of the text is called
natural language understanding.

2.1 A very brief history
Turning speech into text has been an active research topic since the 1950s and remains
one today. Commercial applications were feasible in the 1990s, but they were all
designed for some particular task, such as answering inquiries about airline flights.
Limiting the domain of the system allowed crucial constraints on the complexity.[10]
With smart phones, voice operated personal assistant systems were introduced into
the everyday. In 2015, Baidu research published a preprint in arXiv claiming to
surpass human transcription ability in many read speech tasks [11]. A year later in
2016, in the same forum, Microsoft research published results that they had surpassed
a human benchmark in English conversational speech recognition [12].

Conversational speech is widely considered the most difficult to predict. However,
cutting edge results may set performance expectations too high. All in all it is
difficult to say what the current state of the art is, because it depends on the
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application. Moreover, it depends on the language: the state of the art results quoted
for Finnish in a task similar to the conversational English result of the last paragraph
are somewhat worse [13]. Historically, automatic speech recognition research has
been spearheaded in English tasks, perhaps due to its status as the research lingua
franca[14]. Counter-intuitively, this has also allowed relatively small language areas
to cultivate fruitful research, by focusing on the particulars of their language. This
is evidenced for example in Finnish with the development of Morfessor[15].

Speech synthesis could be considered a solved problem, but only in the sense
arbitrary text can be synthesised intelligibly. Already in 2002 researchers were
looking for "perfect synthesis for all of the people all of the time", which includes
not only sounding natural, but being able to use an appropriate style and type of
voice.[16] Natural language understanding is a broad field, with some successes for
example in [17, 18], but much progress to be made.

2.2 What is machine learning?
In conventional programming, the programmers take a task, input step-by-step
instructions in code, and the computer accomplishes the desired operation by following
these instructions faithfully. Machine learning, in contrast, is the art of programming
the computer so it learns to perform the operation without the salient detailed
instructions. Typically this is done because we simply do not have a step-by-step
algorithm.[19] Humans are able to listen to speech and decode its message, but we
do not know how exactly we do it. We do not experience decoding the sounds, it
happens subconsciously and automatically.

The lack of clear algorithm is often compensated for by abundance of data. We
program a more or less generic learning method, typically utilising pattern recognition
and statistical methods. Then we feed this method a set of inputs, or observations,
and expect it to extrapolate a model which can perform our task.

By more generic learning method we mean that there are frameworks which
theoretically allow us to approximate any input-to-output relation we want [20],
which in practice have been successfully used for many very difficult problems. By
less generic we mean that we often want to include all the knowledge we do have
about the specific task we are trying to accomplish. The more specific and restricted
we can make our task, the better we can usually accomplish it.

2.2.1 It is all about data

In the context of automatic speech recognition, even the earliest systems were based
on matching spoken digits (0 to 9) to templates estimated from data [10]. More
modern systems are built from very large datasets, or corpora (the singular is corpus),
with possibly over a thousand hours of recorded speech and gigabytes of text. The
text datasets can be simply large texts collections. The audio datasets are also large
collections of recorded speech, but they need an accurate accompanying transcription.
There is a truism in machine learning:

There is no data like more data.
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While not all data is equally valuable[21], it is almost always possible to take advantage
of more data.

The dataset that is used for learning is called a training set. The type of data in
the training set will give an inherent bias. If, for example, the training is constructed
from 1970’s rock music lyrics, the data gives quite a peculiar view of English overall,
although it does match its own domain well. An essential problem in machine learning
is that the models become too specific to the training set and do not describe any
other observations well. This is called overfitting. To counter this, a part of the
training set is held out from the model learning. Model performance is evaluated
on this validation set (also called a development set) to check for overfitting. Often
we have some choices to make about the learning methods, such as which kind of
statistical distribution to use; evaluation on the validation set is also used to look
for the best choices. Since the validation set is used to make these kinds of choices,
it will also impart some bias to the model. Therefore, when we wish to estimate
the true performance of the final model, it has to be done on a completely separate
dataset, a test set, to get a meaningful estimate. [19]

There are an infinite number of possible expressions of language, so gathering
statistics about all of them is impossible. This problem is not just theoretical; there
are so many different expressions of language that people actually use that it is very
difficult to gather a training set with sufficient representation. This is called the
data sparsity problem [22]. In other words, most machine learning models have some
number of parameters, e.g. the mean and variance in one dimension of the training
data, and to estimate a large number of parameters a large number of training
instances are needed.

2.2.2 Cross validation

The technique of training a model on one dataset and then testing its performance
on another is called cross validation. Typically just one dataset is collected, from
which a portion is held out as the test set right at the start. The rest of the data is
used as a training and validation set. In the end, the final model is tested on the test
set. The test set should be large enough to give statistically meaningful estimates.

This means that a part of the collected data is not used for building the model.
In case the dataset is already small to begin with, this can be problematic. One
solution is to use k-fold cross validation, where the dataset is divided into k folds
and the training and testing procedure is repeated k times. Each fold serves as the
test set in one train-test-iteration and the rest of the folds make up the training set.
The results are gathered from each iteration’s test set. Effectively, the whole dataset
functions as both the training set and the test set, but in a way that does not train
and test on the same samples simultaneously. A typical choice of k is 10.[23] The
downside of k-fold cross validation is the increased computational cost.
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2.3 System overview
This section presents the structure of a typical automatic speech recognition system.
This is also the structure of the system used in this thesis. In machine learning
terms, automatic speech recognition can be considered a classification task, where
we attempt classify incoming audio segments into words.

The automatic speech recognition system has two major sources of knowledge:
an acoustic model and a language model. The acoustic model represents the sounds
of speech. The language model defines how words form phrases. Connecting these
two models is the lexicon. It defines how the speech sounds form words. Different
languages have different sounds, different ways of mapping the sounds to words and
different ways of connecting words to form phrases.

With the acoustic model, we can take an unknown audio signal and search for
sounds that resemble the sounds of our chosen language. With the lexicon, we can
take a sequence of these resemblances and find words that could be constructed from
them. With the language model we can take a possible sequence of words and say
how well it conforms to the ways the language usually forms word sequences.

Feature
extraction

Acoustic
model

Decoder

Lexicon

Language
model

<hypothesis output>

Figure 3: A typical automatic speech recognition system structure in decoding.

Having a separate the acoustic model and language model is not the only possible
choice, but it has many benefits. It allows for them to be constructed separately,
which has quite fruitfully allowed researchers to focus on smaller, better defined
portions of the whole automatic speech recognition task and improve it incrementally.
It allows us to represent the innate heterogeneity of automatic speech recognition.
[24] It allows for taking one model and using it in many different contexts. For
example we can take a good acoustic model and use it with multiple language models.
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2.3.1 Formulating the decoding task

To offer a high level view of what questions the acoustic and the language models
answer, the mathematical formula of speech recognition is presented here. Taking in
the audio, combining information from the acoustic model, the language model and
the lexicon, and then finding the best matching sequence of words is the task of the
decoder.

Figure 3 shows a schematic of a typical automatic speech recognition system in
decoding. Mathematically the search problem of the decoder can be defined as the
problem of finding the most probable sequence of words ŵ given a set of observations
X,

ŵ = arg max
w
{P (w|X)}. (1)

We wish to express this probability of word sequences given observations P (w|X) in
terms of the acoustic and language models. The problem is transformed with the
Bayes’ theorem:

P (a|b) = P (b|a)P (a)
P (b) . (2)

Given the arg max in equation 1 we may discard the denominator. Thus we get the
equivalent task:

ŵ = arg max
w
{P (X|w)P (w)}. (3)

Here, P (X|w) is the likelihood of seeing observation sequenceX given a hypothesised
word sequence w, which is what an acoustic model directly computes. P (w) is the
probability of word sequence w, which is exactly what the language model gives us.
In practice this product is calculated in the logarithm domain, with a language model
scale α, which allows for controlling how much weight, or trust, we place on each
model. [25] Then equation 3 looks like this:

ŵ = arg max
w
{logP (X|w) + α logP (w)}. (4)

2.4 Acoustic modeling
A speech signal has information in the way the signal changes through time and in
how the slices of time look in the frequency domain, as shown in the time-frequency
plot, or spectrogram, in figure 4. The acoustic model represents both the frequency
domain features and the passage of time.

The output classes into which the acoustic model classifies the incoming feature
vector sequences could be chosen arbitrarily. Each word could have a separate class.
However each new word would need a lot of training instances of just that word
and large vocabularies would need a huge number of classes, which is not desirable.
Instead smaller output units based on phones are used in practice. Just as the written
language is built from letters, phones form the alphabet of speech: they are the
smallest distinct unit of speech. A language has a finite set of phones from which all
words may be built and thus the vocabulary size does not affect the number acoustic
output classes. English can be divided into about 45 phones[26], though the divisions
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Figure 4: A spectrogram of the phrase Is this the real life? The /z/ and /f/
sounds can be found visually: they are tall dark columns from wide bandwidth noise
and don’t have undulations from a harmonic structure.

are somewhat arbitrary. The phones are often denoted by slashes, e.g. /dh/, /ih/,
and /z/ for the pronunciation of this.

Although it is said that phones are the smallest distinct unit, the realisation
of a particular phone varies greatly depending on the neighbouring phones being
pronounced. To take this into account, the actual output unit classically used in
acoustic modelling has been the triphone, i.e. a phone with two neighbour phones
as context, e.g. dh-ih+z for the middle triphone in the word this. Furthermore
the classes which the acoustic model uses internally are even finer grained: they are
nodes of a graph that represents the passage of time.

Acoustic modeling begins with the audio. The first step is to extract some
salient measurements, or feature vectors, from the signal. This step is called feature
extraction. After briefly describing feature extraction, the acoustic model is built in
two phases. First the graph that represents time is introduced and then the feature
space is explored.
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• Unique speech organs controlled by a unique brain

• Mood and emotions

• Situational effects (such as talking differently in loud environments due to
the Lombard effect[27])

• The acoustic environment

• The recording equipment and how they are used

Table 1: Factors which make speech signals varied

2.4.1 Feature extraction

What makes acoustic modeling difficult is that speech essentially never sounds the
same. Reasons for this are listed in table 1. It means that a speech signal carries
with it a lot of information that is not essential for recognition. Before the audio
signal is fed to the acoustic model, it is preprocessed to remove as much redundant
information as possible and to emphasize characteristics which are important for
classification. The end result is a sequence of feature vectors, which correspond
to short (typically some 30ms), overlapping segments of the audio. For a long
time, mel-frequency cepstral coefficients (MFCC) have been the standard feature
type. Table 2 shows the steps in extracting MFCC features. The resulting MFCC
feature vectors lie in a continuous feature space.

To better capture the temporal characteristics in speech, the difference of consec-
utive vectors is classically appended to the vectors; and then the difference of the
difference (delta and delta-delta features)[26]. The features can also be transformed
to make the acoustic model match them better[29, 30].

2.4.2 The time axis

The passage of time in a digital application is inherently a matter of taking discrete
steps. It can be encoded as moving through paths between nodes in a graph: each
transition takes one time step and at each time step we are at a given node. In
automatic speech recognition a very specific graph, a Markov chain, is typically used
as an approximation. It is a stochastic graph where the probability of moving to a
given node depends only on the current node. This means the graph has the Markov
property. Figure 5 depicts a Markov chain which models the process of pronouncing
is. The first time steps steps will consist of producing the /ih/ sound, taking the
self-loop transition back to the /ih/ node. At some point the speaker will move onto
the /z/ sound, and eventually stop that too.
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• First, the audio is converted from a discrete sampled form into the magni-
tude spectrum by short-time fourier transform. Unique sample values do
not give any information; the information is in their relationships, which
are naturally represented in the frequency domain. The temporal resolution
is usually such that each feature vector covers 30ms, but the time from the
previous vector, ie. the frame shift is only 10ms. The intuition is to capture
an approximately stationary slice in time: the fundamental frequency of
an adult male is typically around 100Hz, leading to a 10ms period. At a
16kHz sampling rate, a 30ms frame gives 480 point vector to start with.

• The spectral representation is filtered by a mel-scaled filter bank, which
reduces the number of features and approximates human hearing. As speech
has evolved dependent on hearing, it is intuitive to assume that human
hearing should capture the essential in speech.

• The mel-spectral representation is then converted to the cepstral domain by
taking a logarithm and a discrete cosine transformation. The cepstrum is a
sort of spectrum of a spectrum. Some higher order cepstral coefficients can
be discarded; they represent finer details in the frequency domain. Thus
a very compact vector representation of for example just 13 dimensions is
reached.

Table 2: Steps in extrating mel-frequency cepstrum coefficient features[28].

/ih/ /z/

0.6

0.4

0.7

0.3

Figure 5: A Markov chain for pronouncing the word is. The transitions into
and out of the chain are used to combine many different chains. The transition
probabilities in the graphic are simply illustrative.

Upon entry, each node produces a new feature vector, which is the only thing we
see in reality. From this point of view, we can state the decoding task as: finding the
sequence of transitions which the speaker took, that ended up producing the sequence
of feature vectors that we got. Since the actual sequence is not seen, the model is
called a hidden Markov model. Figure 6 depicts a hidden Markov model of is. The
hidden Markov model is generative: each state has a probability distribution over
the feature space and is thought to generate, or emit, the feature vectors randomly
according to this distribution. The core of the acoustic model is estimating this
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probability distribution.

/ih/ /z/

x4x3x2x1 x5 x6 x7

0.6

0.4

0.7

0.3

Figure 6: A hidden Markov model of pronouncing the word is. The underlying
Markov chain is the same as in figure 5, but we only see the feature vectors x1...7.
Note that in these visual examples we are assuming a left-to-right topology, which is
also a typical constraint. In other words, this means the states are forced to be in
strictly chronological order. Note also that the amount of feature vectors is too low;
this is just for illustration purposes.

As previously stated, the typical class of an acoustic model is the triphone. Each
class is represented by a hidden Markov model that has some three to five states.
This gives us the final representation of the pronunciation of is, shown in figure 7

sil sil-ih+z
#1

sil-ih+z
#2

sil-ih+z
#3

ih-z+dh
#1

ih-z+dh
#2

ih-z+dh
#3

z-dh+íh
#1

x4x3x2x1 x5 x6 x7

0.28

0.72

0.15

0.85

0.14

0.86

0.31

0.69

0.23

0.87

0.11

0.89

Figure 7: A triphone tristate hidden Markov model of pronouncing the word is.
The first triphone of a word depends on the previous word and the last depends on
the next word. Here we are assuming the utterance beginning (from silence) with is
and continuing with this.
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2.4.3 Feature space representation

The slices of time are represented by the feature vectors. The acoustic model internally
classifies feature vectors into the states of the hidden Markov models of each triphone.
Each feature vector is a collection of continuous variables, and so each state of each
hidden Markov model has a multi-dimensional probability distribution which gives,
for a particular feature vector, the probability of having been emitted by that state.
Each multi-dimensional probability distribution is described by a set of parameters.

All of this gives a very large number of parameters, which requires a large number
of training instances. In practice, most triphones are rare or never used and conversely
a minority of all possible triphones take up a large majority of all heard instances of
the language and consequently the training data.[26, 31] We encounter the problem
of data sparsity, as described in section 2.2.1. A number of methods exist to more
accurately model the rare or unseen triphones. A classic approach is to tie the
parameters of a phone in similar contexts together, such as the middle state in both
dh-ih+z and f-ih-sh, basically reducing the number of classes overall [26]. Another
more recent idea has been to create a subspace of the features and construct each
state’s distribution as a lower dimensional vector in this space [32].

The question still remains of how to represent the probability distribution. There
are two main paradigms: Gaussian mixture models and deep neural networks. Gaus-
sian mixture models are an older method that still has some use cases, while deep
neural networks have become the standard for recognition if enough training data is
available, because they achieve better accuracy.

2.4.4 Gaussian mixture models

A single multivariate Gaussian distribution N (µ,Σ) is a generalisation of the famil-
iar Gaussian distribution into many multiple dimensions. The familiar univariate
Gaussian probability density function is:

φ(x|µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2 .

This generalises to multiple dimensions quite simply. The biggest difference is that
the variance σ2 of the univariate distribution becomes covariance matrix Σ:

φ(x|µ,Σ) = 1√
|2πΣ|

e− 1
2 (x−µ)TΣ−1(x−µ),

where |2πΣ| signifies a determinant. Although MFCC features are not fully decor-
related, their covariances should be quite small. In order to reduce the amount
of parameters to be estimated, the covariance matrix is often constrained to be
diagonal, i.e. the covariances are zeroed and only the variances in each dimension
remain. Figure 8 shows a multivariate Gaussian distribution with zero covariances.
The projections of the distribution to the component dimensions show two familiar
univariate Gaussian distributions.
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Figure 8: A single multivariate Gaussian distribution. This is more specifically a
distribution of just two variables, a bivariate distribution, since graphical representa-
tions in higher dimensions would be unhelpful. The feature space in automatic speech
recognition is in reality much higher dimensional.

A Gaussian mixture model is built by linearly combining multiple multivariate
Gaussian distributions. This gives a very flexible distribution of the form:

φ(x|cK ,µK ,ΣK) =
K∑
i=1

ciN (µi,Σi).

Here, cK are the mixture component coefficients, which must sum to unity. Figure 9
shows a mixture of multivariate Gaussians. The projections of the distribution to the
component dimensions now show more complex forms than with a single multivariate
Gaussian.
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Figure 9: A mixture of multivariate Gaussian distributions.

The training procedure for hidden Markov models with Gaussian mixture model
distributions is unified, and simultaneously estimates transition probabilities, which
Gaussian mixture component a state belongs to, the mean vector and the diagonal
(co)variance matrix for each Gaussian mixture component, and mixture component
coefficients. While the training equations are not in the scope of this thesis, it should
be noted how this type of training produces a model that in decoding aligns the
hypothesis well temporally.
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2.4.5 Deep neural networks in acoustic modeling

Hidden
layer

Input
layer Output

layer

Figure 10: A generic artificial neural network structure. The circle shapes are
called neurons.

Artificial neural networks are a large family of machine learning methods. The
family is very diverse, but figure 10 shows a general structure that conveys the basic
computational idea. The network is organised in layers. Each layer has some amount
of neurons. The each feature vector component becomes the value of one neuron in
the input layer. After the input layer come a certain amount of hidden layers, called
so because they are not visible at the input or the output. Each neuron forwards
its output value to each neuron in the next layer. Figure 11 shows the structure
of a basic neuron. It has a weight for each input from the previous layer. The
inputs from the previous layer are weighted, then summed together with a bias term.
This sum is then ran through an activation function, which is typically nonlinear.
The value of the activation function is the neuron’s output value. The nonlinearity
gives the artificial network the ability to represent nonlinear input-output relations.
This type of neuron is called the perceptron. The networks are typically trained by
backpropagation of errors from the output to the input, which is beyond the scope of
this thesis, but means that the artificial neural network can learn to minimise any
function which we can differentiate for the weights of the network. This function is
then called the objective function. Different types of neural networks are constructed
with different arrangements of layers, different types of neurons and different objective
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functions.

Σ
∗w2

∗w3

∗w1

∗w4

b

Figure 11: A basic neuron type called a perceptron. The learned parameters of a
neuron are the weights for each input and the bias. Typically the nonlinearity in the
activation unit does not learn its parameters.

The first neural network acoustic models did not perform much better than the
Gaussian mixture models of their time. In the 21st century, methods have been found
and computing capacity has increased enough to make it possible to teach neural
networks of very many layers and many neurons per layer. These very large neural
networks are called deep neural networks and the teaching of these deep networks is
called deep learning. Though artificial neural networks have long achieved competitive
results, the traditional non-deep models do not outperform other methods[33]. Deep
learning has however allowed incredible leaps in the state-of-the-art in many different
artificial intelligence tasks[34]. This has happened for acoustic modeling too[35].
The many layers of a deep neural network learn to represent features of gradually
increasing complexity. Remarkably the network learns these representations from the
data; they do not need to be hard coded by experts. This makes the deep learning
methods very flexible.

There are two main branches of neural network acoustic models. The first is
simply having the neural network predict the likelihoods of hidden Markov model
states given an acoustic feature vector, P (state|x). This is then transformed into the
emission probability P (x|state) simply via equation 2. Another architecture, called
connectionist temporal classification, has also had some notable successes[36, 11].
This method learns to output character sequences directly by using a specific objective
function. An important part of the idea is that since in pure recognition tasks the
time-alignment is not needed, it is a waste to learn to create it. An objective function
called lattice free maximum mutual information is a sort of fusion of connectionist
temporal classification and traditional hidden Markov model deep neural networks.
It is typically used in conjunction with a reduced output frame rate.[37] Though



18

this method gives good transcription accuracy, the temporal resolution may suffer
from the reduced output frame rate and the connectionist temporal classification
-like objective function.

2.5 Language modeling
The language model represents the patterns and structure found in the chosen
language. This is not the formally defined grammar of the language, but knowledge
about sequences of words, i.e. knowledge about the ways in which words are used to
form phrases.

In equation 3 the language model gives the probability P (w). The word sequences
for which this probability is zero cannot be recognised; they are ruled out by the
language model. This way the language model can be used to drastically reduce
the search space of the recogniser. In the general case the zero probability is an
underestimate and needs to be avoided[38].

The language model can provide good guesses when the acoustic model alone
cannot. For example, the language model can be used to disambiguate similar
sounding words, even homophones, words with the same pronunciation but different
meaning or spelling. Consider the sentence "Come here and describe the songs
you hear." The words here and hear sound exactly the same, yet there is intuitively
very little ambiguity about which one is meant each time.

2.5.1 N-gram models

The traditional way to construct language models for automatic speech recognition
is by the approximation that the probability of a given word only depends on the
N -long history of words. These word N -length word sequences are called N-grams.
A three word history, meaning the word itself and two previous words, is called a
trigram. Similarly, a two word sequence is called a bigram and single words can be
called unigrams. The probability of a word sequence P (w) can be deconstructed into
a sequence, a chain of multiplications using the chain rule1:

P (w) = P (w1)P (w2|w1)P (w3|w2, w1)...P (wN |wN−1, ..., w1).

In this equation the conditional probability P (wN |wN−1, ..., w1) is called the N-gram
probability. It is the probability of a word appearing next, given the N − 1 previous
words. [26]

The N-gram probabilities can be estimated from a text corpus simply counting
their frequencies, with

P (wN |wN−1, ..., w1) = f(w1, ..., wN)
f(w1, ...wN−1) ,

where f(w) is the frequency of the word sequence w. Let’s use the lyrics to Bohemian
Rhapsody as a toy example. The word sequence Galileo Figaro appears once,

1P (a, b) = P (a|b)P (b)
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and the word Galileo appears five times altogether. We can then declare that the
bigram probability P (Figaro|Galileo) = 1

5 for a bigram model trained on that text.
This basic idea has some very attractive qualities. It is easy to use and to

understand. In some languages it captures local dependencies well. There is a major
problem in this approach. For a vocabulary of size V , there are V N N-grams. This
number becomes so large so quickly that most possible N-grams don’t appear even
once in the training data. Even a small 1000 word vocabulary has 1 000 000 000
possible trigrams. It would obviously be an underestimate to say that all the unseen
word sequences are impossible. This is the archetypical example of the data sparsity
problem mentioned in section 2.2.1. It is mitigated by smoothing.

2.5.2 N-gram smoothing

N-gram models are built from discrete event counts, counts of each word sequence.
Therefore the probability distribution which maximises the likelihood of seeing the
data that we have, the maximum likelihood estimate, would be a spiky distribution
with zero probability for any unseen sequences.[39] It is intuitive in the sense that,
if the data is all the knowledge we have, for all we know the other sequences are
forbidden and will never be seen. But in the case of language the data is not really all
we know; we know that all sequences should have some small probability. It is easy to
produce ungrammatical sentences. We can redistribute some of the probability mass
from the spikes in our maximum likelihood distribution to all the unseen sequences.
This redistribution is called smoothing, and just the removal of probability mass is
called discounting.

There are many smoothing methods, as Goodman and Chen present in [40] and
[38], and whom we summarise here. A very simple one would be to add one to all
N-gram counts, thus pretending all sequences are seen at least once. This indeed
leaves no impossible sequences. Effectively, it takes probability mass from the seen
sequences and gives it to the unseen sequences. But it makes all unseen sequences
equally likely. For example, it would make fantastic life and fantastic vitae
just as probable (if both are unseen), even though vitae is a much rarer word. The
rarity would be well accounted for by the unigram probability. In fact for good
performance we need to combine information from many models, which often means
N-gram models of different lengths, but can also mean other knowledge sources.
These basic steps in building better N-gram models are then:

1. Discount the original counts of sequences to
(a) account for the excessive spikiness
(b) have some probability mass for further operations

2. Combine with some lower order models.
3. Take care of zero probability sequences. This typically happens as part of

step 1a or step 2 or both.

The Kneser-Ney smoothing method is presented here, and used later in experiments.
The Kneser-Ney scheme does not simply consult, or backoff to, the (N-1)-gram in

case of missing N-gram; it takes into account that some words complete many N-grams
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naturally whilst some words are only used in very specific contexts. The word life
will be found preceded by a wide range of adjectives. In a human-resources domain
corpus the word vitae may appear quite often, giving a high unigram probability,
but only in the context of curriculum vitae, which is already well matched by the
bigram model. The backoff probability should be low. This idea is introduced on
top of absolute discounting, where a discounting constant δ is subtracted from the
N-gram count, giving:

P (wN |wN−1...0) =


max(f(w1,...,wN )−δ,0)

f(w1,...wN−1) , if f(w1, ..., wN) > 1
α NumContexts(wN )∑V

v=1 NumContexts(v)
, otherwise , (5)

where v is a word in the whole vocabulary V and α is a normalising variable which is
determined by the constraint that the whole probability distribution sums to unity.

Manning and Schütze find that the Kneser-Ney backoff model (and particularly
a modified variant introduced by Goodman and Chen) performs well in most sit-
uations.Although the Kneser-Ney variants are still an adequate baseline, recently
recurrent neural network language models have outperformed all others given enough
training data [41, 42].

2.6 Decoding and aligning
With the acoustic and language model likelihoods ready to be plugged into the speech
recognition equation 3, it is time to find out how this equation is actually computed.
Computation with the acoustic model takes approximately the same amount of time
for each incoming feature vector and is quite fast. The word sequence search space
size is defined by the language model. In typical modern applications which require
large vocabulary continuous speech recognition, the large amount of different words
we want to search for and the variety of sequences we can build from them make the
search space large to begin with and infinitely large for arbitrarily long utterances.
To make decoding computable in reasonable time, i.e. tractable, not all possible
paths are explored. The decoder implements a search algorithm like beam search,
where only the most promising paths are kept and the rest are pruned away at the
end of processing each feature vector.

Figure 12 represents the search space of the decoder. On the horizontal axis is
time. One feature vector is in each time step. Each dot in the grid is a possible
choice of acoustic class for that time step. Exactly one class is ultimately chosen
for each time step. Each dot has an feature space acoustic likelihood computed
from that time step’s feature vector with that class’ acoustic model. Each path in
the grid accumulates Markov model transition weights and language model weights.
The Markov model weights are added at each time step corresponding on which
class-to-class transition is taken. The language model weights are only added at the
beginning of each new word. The starting point of each new word could be at the
start of any phone. However traditional tristate hidden Markov model structures
take at least three time steps to traverse through, so each phone takes at least three
time steps.
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Figure 12: The search space of a decoder. The dotted line represents a path
hypothesis for this is, the dashed line for is this. The naive implementation has
to try all paths and word boundary positions. The labels ti denote the time steps, and
for simplicity this figure uses context independent phones.

The search space of the decoder is not trivial to represent. A compact repre-
sentation is valuable for memory and computation time considerations. Since the
search prunes unlikely paths away, a compact representation can also give a better
recognition accuracy; less paths need to be pruned, so the correct transcript can be
found even if it looked unlikely in the beginning. It turns out the finite state models
introduced in section 3 can create such a compact representation.

A task closely related to decoding is alignment. In alignment the word sequence,
and thereby the phone sequence, and thereby the acoustic class sequence, are already
known. This is the case when training an acoustic model, when the training transcripts
are available. The exact path through the grid of figure 12 is still not trivial to find.
In fact at the granularity of individual time steps, the borders of each phone and
word are not exactly defined. The task of alignment is to compute the most likely
path through the grid. The acoustic model likelihoods define this path.

2.7 System quality metrics
In automatic speech recognition, performance is a many faceted question. If it is
separated from any particular task, the system takes an audio signal and should
produce the transcription, and we’d want to measure how close the system’s prediction
is to the correct answer. However any real task the system is used for will have its
own goals; the speech recognition system should actually be designed to best serve
the task.

We wish to measure the performance of an engineering system for two reasons: to
know how good it is and to compare different systems. In speech recognition it can
be difficult to give a precise threshold for performance, after which the system is good
enough to have an overall benefit. Sometimes speech recognition systems can simply
be compared to other ways of achieving the same end. As an input method, speech
recognition can simply be compared in speed against typing, and in fact modern
system can be considerably faster[43]. This measure conveniently takes into account
that the speech recognition system makes some errors, which the user has to correct
by hand, and because of the switch of medium, the corrections are probably more
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costly than typing errors.

2.7.1 Recognition performance

A one dimensional, universal score is helpful. It allows comparing different systems
on the same metric and it allows for more intuitive understanding of the system’s
performance. In speech recognition, the metric is Levenshtein distance[44]. It is a
measure of the distance from one string to another. When used as a performance
metric it is measured from a hypothesis string to a reference string. It is typically
measured with words as units. In that case, the percentage Levenshtein Distance

Number of words in target
∗ 100%

gives the word error rate. Agglutinative languages, such as Finnish, build words from
small units and thus end up with a huge vocabulary of words very close in their
pronunciation. In their case, a one character recognition error is hard to avoid but
may not hinder understanding very much. Therefore the word error rate may be too
punitive and instead letters are used as the unit of distance calculation, giving the
letter error rate.

The metric counts three different types of errors:

• substitutions of a unit with another,
• insertions of extra units,

and
• deletions of units (i.e. missing units).

The distance is an integer quantity of errors, so that the error count is minimized.
This minimisation is needed since a substitution can be interchanged with an insertion
and a deletion. The shortest path of correct units, substitutions, insertions, and
deletions from a test string to the target string is the Levenshtein alignment of the
two strings.

The word error rate is presented as a percentage, but it can exceed 100%, since
the amount of insertions is unbounded. Thus it cannot be directly interpreted as
the probability of getting a word wrong. Moreover, a speech recognition system’s
errors are not randomly distributed among the words of the reference, but instead
they often co-occur and form patterns.

2.7.2 Significance testing for word error rates

Every measurement has some level of uncertainty associated with it. Traditionally
in statistics some form of significance testing is performed to estimate whether a
finding is trustworthy. It is particularly important if the amount of data is small,
when the law of large numbers does not apply. Unfortunately word error rate is not
well suited to typical methods. The approach in speech recognition has been the use
of standardised training and test sets. Algorithms can be compared on these and the
data sets have a plethora of results published on them so adequate benchmarks are
available.

In many cases, some form of statistical significance testing would still be desirable.
Bisani and Ney (of Kneser-Ney backoff fame) have introduced a method for estimating
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confidence intervals for word error rates on a test set[45]. The method is based on
bootstrapping in which essentially many smaller subsets are sampled with replacement
(i.e. the same sample may be picked multiple times) from the initial test set. This
way a multitude of word error rate estimates are produced, which yield an average
word error rate and, crucially, its confidence intervals.

A measurement of the word error rate of an automatic speech recognition system
on a particular test set may tell a lot about the speech recognition system, but it
may also tell a lot about the test set. The test set may just happen to be very well
designed for that algorithm. It seems the best algorithms stand the test of multiple
standardised test sets.

2.7.3 Optimising for different types of errors

Given a classifier that has a particular level of performance over the whole test set,
we may also be interested in the type of errors that it makes. Particularly this is of
interest in case the classifier makes a diagnosis of some phenomenon happening or not.
A medical example is typical: detection of a disease. The rate of correctly detecting
a disease would be called the true positive rate and the amount of false alarms per
the amount of healthy people would be the false positive rate. A basic trade-off
usually exists between these two quantities simply through setting the threshold for
detection. The lower the threshold is set, the more diseases are detected, but also
more false alarms happen.

This trade-off is often visualised as a receiver operating characteristic curve, which
plots the true positive rate as a function of the false positive rate. Figure 13 gives
an example of such a plot. Typically a point is searched for where either a given
detection rate is satisfied or an adequately low false positive rate occurs.

Figure 13: An example of a receiver operating characteristic curve.
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2.7.4 Processing time

It is important to note that processing time is a significant resource in any automatic
speech recognition system. Basically any allowed increase in processing time affords
using a larger model and a more thorough search in the hypothesis space. Many
applications have the constraint that they must respond to user speech input in
a reasonable time and optimising for recognition speed is one aspect in system
performance. In other applications, it simply becomes unfeasible to process large
amounts of data if the system is too slow.

The measure usually reported for a speech recognition system is the real-time
factor. It is the ratio of processing time to the utterance length, i.e. a speech
recognition system that computes the output in 0.3 seconds for an utterance of 3
seconds has a real-time factor of 0.1.

2.8 Use of speech recognition in this thesis
In conclusion it can be said a speech recognition system is very heterogeneous. The
path from an audio signal to a transcription begins with feature extraction. Then
acoustic model likelihoods are computed for each feature vector. The decoder then
searches the lexicon and the language model for the most likely word sequence. All
this has to be done fast. The training of the acoustic and language models though
might have taken days, because the training sets need to be large.

The bulk of the work in this thesis is just language modeling, but for experiments
all the other parts are needed too. A Swedish acoustic model and lexicon was provided
by Peter Smit, and a standard recipe was used to train an English model. Acoustic
models are characterised by the data used for training, so they are briefly described
here. Lastly, we look at the speech recognition toolkit used in this thesis, Kaldi.

2.8.1 Wall Street Journal

The Wall Street Journal corpus is one of the standardised datasets that are used to
compare speech recognition models. It has approximately 73 hours of speech data
for training from 245 speakers. The speech data is clean and the speech is read from
randomly selected snippets of the Wall Street Journal. The English has a general
American English accent. [46]. Wall Street Journal’s domain is business news from a
North American perspective.

A standard recipe included with the Kaldi toolkit was used to train Gaussian
mixture model-hidden Markov models for this thesis. In detail, it is speaker adaptively
trained on feature vector windows, which are compressed through linear discriminant
analysis and a maximum likelihood linear transformation. The word error rate on the
test set is 10.88% using an N-gram language model provided with the corpus. There
are in fact two test sets in the Wall Street Journal corpus standard set division, in
this thesis the Eval93 -set is used throughout.
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2.8.2 Swedish data

Three corpora of Swedish data are used. The first is from the pilot test data collection
efforts in project DigiTala: approximately 800 Finnish high school students around
the country, each recording about 10 minutes of speech. This is in-domain data. It
will be referred to as the DigiTala corpus. The second corpus is the Talko corpus2. It
consists of 40 hours of fluent Swedish in a comprehensive variety of dialects spoken
in Finland. The third corpus is the Swedish Språkbanken corpus3. It has over 400
hours of read Swedish speech, but the dialects are from Sweden.

A deep neural network acoustic model was trained from the combination of
these three corpora. In detail, it is a time-delay neural network trained using the
lattice-free maximum mutual information objective function. The word error rate
measured on read texts from 20 speakers in the DigiTala corpus, using a 400 000
word N-gram language model from the Språkbanken corpus, is on average 39.30%.
This large value is explained by the large variance of the results. Figure 14 shows
a boxplot of the word error rates for individual speakers. Some outliers have word
error rates exceeding 100%. Without outliers, the average word error rate drops to
29.38%. However this high word error rates may not reflect the true performance of
the model because the test data was not well annotated when performing the tests;
it is reported here only referentially.

Figure 14: A boxplot of the word error rates with the Swedish deep neural network
acoustic model. Some individual speakers have huge error rates, so they should be
excluded as outliers.

2http://www.sls.fi/en/talko_en
3http://www.nb.no/Tilbud/Forske/Spraakbanken

http://www.sls.fi/en/talko_en
http://www.nb.no/Tilbud/Forske/Spraakbanken


26

In the process of training the deep neural network, a Gaussian mixture model was
also created. The deep neural network has better accuracy, and should be used for
the actual decoding. However its performance in temporal alignment may be worse,
as discussed in section 2.4.5. Therefore the temporal segmentation outputs from the
preprocessing system implemented in this thesis should be computed by realigning
the transcript produced by the deep neural network model with the Gaussian mixture
model.

2.8.3 Kaldi

The Kaldi toolkit is a modern open source speech recognition toolkit aimed at speech
recognition research [47]. It provides the main building blocks for automatic speech
recognition systems and a wide variety of algorithms and recipes. There are many
other toolkits that provide similar functionality, like HTK, Sphinx, and even Aalto
university’s AaltoASR. Kaldi is chosen for this thesis because it has a modern,
extensible design and great performance. Kaldi also has first-class support for finite
state transducers, which turn out to be useful for implementing language models for
recognising read speech, and which we will introduce in the next section.
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3 Finite state models
Computer science is the study of computation. There are many ways of formally
representing computation, each with different purposes. Some purposes are mostly
theoretical, answering a question like: "What can be computed?". In that case
the constraints of finite memory and processing time may not be of interest and a
researcher may use a model like the Turing machine.[48] Our purposes are practical,
but it turns out we still benefit from using a formalism which fits our problems.
The finite state machine model can represent the hidden Markov models of context
dependent triphones, the lexicon and many types of language models, including
N-gram models. Furthermore it can represent the cascaded combination of these
models as used by the decoder and it can do this in an efficient manner.[49]

Turing machines are not physically implementable, finite state machines are.
However it may be unhelpful to think about finite state machines as tangible boxes
turned on with a big red power switch. You don’t feed the inputs in on a conveyor
belt and wait to see what comes out the other end. Instead, the finite state machine
framework allows us to design in our minds such a conveyor-belt-machine and then
get the mathematical representation of that machine. If the question is: "What can
be computed?", part of the answer is at least, "the output of a finite state machine".

In this section we will first look at the parts which make up the different types of
finite state machines. Then we will look at the operations that can be performed
on and with them. All the while we will be building a toy example part by part
alongside. At the end of the section we will show how finite state machines represent
the different components of the decoding cascade in automatic speech recognition.

3.1 Finite state machines
Finite state machines have, as the name suggests, a finite set of internal states. They
represent different static configurations or positions. One of these states must be the
initial state, the state at which machine starts, and a possibly empty subset of them
are final states, states where the machine may stop. In mathematical notation the
set of states is denoted with S, the initial state s0 and the set of final states F .

The example we are building is a puzzle game where the player is in a strange
mansion and the objective is to get out. The reader may be familiar with text-only
puzzle computer games; the finite state machine we are building represents the
game’s state for the internal code. Each state is a location in the puzzle and figure 15
shows the layout.
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Figure 15: The mansion layout. The exit is a final state, which are drawn with
double borders.

A finite state machine also has a set of input symbols, noted with Σ. At each
step a finite state machine reads one input symbol. The next state of the machine is
decided entirely on the current state and the read input. The finite state machine
has a set of transitions E, which connect two states qi, qk ∈ S via an input label
x ∈ Σ, i.e. E ⊆ S × Σ× S. In the puzzle game, the inputs are actions the player
can take, such as go west. The player chooses an action, inputs it to the finite state
machine and the finite state machine computes the next state. Figure 16 shows the
mansion the with actions the player can take in each room and where each action
takes the player. The puzzle can now be solved.

The
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start

The
library

The
balcony

The
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The exit

go west

go east go east

go west

examine
"Ulysses"

examine
"Cloud Atlas"

examine
"Atlas Shrugged"

go south

Figure 16: The mansion with actions available in each room. The transitions are
represented as arcs between the different states.The twist in this puzzle is that the
player must examine right book in the library to be taken into the secret passage.

At each state in the puzzle only some actions can be taken. The player cannot try
to examine "Cloud Atlas" in the balcony, since the books are stored in the library. It
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is typical that transitions are only defined for a subset of all state-via-input-symbol-
to-state combinations and other combinations will not be accepted. An input symbol
sequence that uses undefined transitions is rejected. Similarly, sequences ending
in non-final states are rejected. In many cases this property of accepting certain
sequences and rejecting others is the reason to construct the machine. This type of
finite state machine is called a finite state acceptor, and it accepts a regular language
of the input symbols[48].

3.2 Finite state transducers
The output of a finite state acceptor is just an acceptance verdict. To build more
complicated output, a finite state machine can write an output symbol at each
transition. In this case the machine is called a finite state transducer, since it
converts, or transduces, the input sequence into an output sequence.

In addition to the finite state machine components the finite state transducer
has a set of output symbols Ω, which may be completely different than the input
set. In the puzzle example the game lacks narrative. To fix that we will add some
interesting text to each transition to be displayed to the player on each action. They
will take some page space, so we add text identifiers: each will correspond to one
output text. Figure 17 shows the puzzle model with output labels added. Table 5
lists the actual output texts for the reader’s entertainment.

The
entrance

start

The
library

The
balcony

The
secret
passage

The exit

go west:text1

go east:text2 go east:text3

go west:text2

examine
"Ulysses":text6

examine
"Cloud Atlas":text4

examine
"Atlas Shrugged":text5

go south:text7

Figure 17: The mansion with output labels. This finite state model now transduces
a sequence of player actions into a sequence of text identifiers.

There are still two properties of finite state transducers that we will introduce:
empty labels and weights. Then we will look at some powerful, generic operations on
the transducers. The finite state models shown so far have been useful for representing
things in an abstract, yet code-implementable way. However, weighted finite state
transducers derive most of their power from some generic mathematical operations
which allow them to be combined and made as compact as possible.
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3.2.1 ε - empty label

So far all transitions have consumed an input symbol and output another symbol.
Epsilon, ε, is a special label which does not consume or output a symbol.

When placed on the output side, it allows consuming more than one input symbol
per one output symbol. This is a typical situation: different domains may have
different occurrence intervals. One symbol of one domain may consist of many
symbols of another domain, for example words and letters. In the puzzle example,
we will get word sequences as input from a command line interface, or maybe even a
speech recognition system. We will have to build the input symbols from the word
tokens. This is an archetypal task for a finite state transducer and figure 18 shows
the transducer that solves the task. Epsilons are used on the outputs to map from
many single word input symbols to multi-word output symbols. This transducer
has some flaws, so we will come back and improve it when introducing some of the
operations on transducers.
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go:go-east

south:ε

cloud:examine-cloud-atlas
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go:go-south

atlas:examine-atlas-shrugged

examine:ε

east:ε

atlas:ε

go:go-west

shrugged:ε

west:ε

Figure 18: Word token to puzzle input transducer. The epsilons on the output side
allow consuming multiple input symbols per output symbol. Notice that now the states
themselves do not have a name. It could be said the states correspond to positions in
utterances, such as having just said the word examine. Now that we are working with
more traditional transducers, we switch to circle shapes. This is the typical notation
for finite state transducers in speech and language technologies.

An ε input label is a more complicated matter. In many applications, each
transition is thought to correspond to one time step or similar unit[48]. The empty
input label represents an instant traversal; it should take zero steps. Like output
side ε labels, it can be used to transduce between domains of different occurrence
intervals, such as from words to letters.
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3.2.2 Weighted models

Transitions in finite state models can be augmented with a weight. The weights
encode the cost, duration, probability or other similar measure of that transition.
That quantity is accumulated from all the transitions on an input sequence takes
to calculate the total weight of the transduction. Additionally, the final states have
a weight, which is added to the weight of an accepted transduction.[49] The final
weights form a set ρ. In the puzzle example, we can add weights to the wrong action
choices. This way, a score can be computed for each played game.

The useful generic properties and operations on finite state transducers have
weighted versions. These versions require that the weights form a semiring. A
semiring is like a limited algebra, which does not require all the properties we
might be used to in basic arithmetic over real numbers. It is defined with two binary
operations over a value set K: an addition operation ⊕ and a multiplication operation
⊗. The addition operation is associative, commutative and has identity 0̄. The
identity value preserves the value of the other operand: a⊕ 0̄ = a. The multiplication
operation is associative, distributes with respect to ⊕ and has an identity value 1̄.
The multiplication operation also has as annihilator the identity of addition, 0̄. Any
operation with its annihilator has the annihilator as result: a⊗ 0̄ = 0̄. [50] The big
difference over the usual ring algebra is that a semiring does not require that each
value has an additive inverse, i.e. a value which yields 0̄ in addition. For example,
arithmetic with natural numbers N is a semiring, but not a ring, since values in N
have no negative counter parts to sum to zero. Table 3 lists the semirings we will
use in automatic speech recognition.

Semiring K ⊕ ⊗ 0̄ 1̄
Probability {x ∈ R+|0 ≤ x ≤ 1} + · 0 1

Inverse log probability R+ ∪ {∞} ⊕log + ∞ 0
Tropical R+ ∪ {∞} min + ∞ 0

Table 3: Semirings used in automatic speech recognition. a⊕log b = −log(e−a + e−b)

Now that all the properties of weighted finite state transducers have been presented,
a final version of the puzzle game example is constructed. It has a meaningful
interpretation of all the different properties. Table 4 has the puzzle in a text format,
so that the reader is reminded of the many aspects which make up a weighted finite
state transducer.

3.3 Operations with weighted finite state transducers
In this section we will introduce algorithms which operate on weighted finite state
transducers. Most algorithms take just one transducer and return a transducer
that fulfils the same relations between sequences with the same total weight as the
original, but has changed in some beneficial way, like being smaller in size. Other
algorithms take two transducers and compare or construct something from them.
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Figure 19: The Kleene plus closure of the word the input transducer. It can now
transduce multiple commands in sequence.

The algorithms presented here are the primary reason why expressing a task in this
unified framework is beneficial.

We will look in detail at three algorithms most important for our work: composition,
determinisation, and minimisation. Other algorithms are described more briefly.

3.3.1 Basic transducer manipulation

Weighted finite state transducers can be combined in series with concatenation and in
parallel with union and repeated zero or more times with the Kleene star operation.
The Kleene plus operation allows the transducer to repeat once or more.

The word input transducer of figure 18 can only transduce one sequence at a time.
The first improvement is to allow it to transduce many commands in sequence. This
is done with the Kleene plus operation, and figure 19 shows the result. Essentially, it
adds an ε:ε transition from the end of each phrase back to the start.

Inversion creates a reverse transducer which transduces from the accepting states
toward the initial state. Projection can be used to obtain an acceptor by keeping
either the input or the output labels. Often this is used to read a result after some
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transducer manipulation by projecting and then reading the sequence of labels.

3.3.2 Composition

As will be demonstrated in section 3.4, particularly in automatic speech recognition
the power of finite state transducers comes from creating processing chains with
other finite state models. Like an electrical transducer, a finite state transducer can
act as a link and feed another model by having its output symbols serve as the input
symbols of the second. When combined in this way, the two models form a new
transducer which transduces from the input symbols of the first transducer to the
output symbols of the second transducer. This operation is called composition.

This algorithm can be used to create complex relations from simple transducers[49].
For example a Levenshtein distance measuring (see section 2.7.1) transducer can be
created with composition4. The transducers from figures 19 and 17 are now composed
to transduce straight from text input into output text identifiers. Figure 20 shows
the result. It’s easy to see now that the Kleene plus closure of the original word input
transducer was necessary for this composition to give a non-null result, because The
exit is not reachable with a single command.
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Figure 20: The result of composing the transducer of figure 19 on the left with the
transducer from figure 17. The state are again given arbitrary number identifiers
because of the implementation of the algorithm. Note that some of the states can be
traced back to those mansion rooms: 0 is The entrance, 6 is The library. Some
correspond to states where the transducer awaits input.

The weighted version of composition requires some care regarding ε labels [49].
The total weight through a path in the composed transducer should equal the
accumulation of weights on corresponding paths in the two original transducers.

3.3.3 Determinisation

A deterministic transducer has at each state at most one transition leaving with
any input label and no ε input labels. The deterministic transducer has at most
one successful path for any given sequence of inputs, which means it uses the least

4This example is from, and is elaborated at: http://www.openfst.org/twiki/bin/view/FST/
FstExamples

http://www.openfst.org/twiki/bin/view/FST/FstExamples
http://www.openfst.org/twiki/bin/view/FST/FstExamples
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amount of steps of all transducers to process an input sequence. Only one path needs
to be followed.

The weighted determinisation algorithm takes a non-deterministic transducer
and returns a new deterministic transducer which transduces any input sequence
to the same output as the original transducer with the same weight. However, the
algorithm has an exponential complexity in the worst case and does halt for all
inputs.[49] One example are ambiguous transducers, where a given input might be
transduced to different output sequences or weight or weights. In some determinisation
implementations the epsilon input labels are not removed, and are instead treated
like a normal input label.

The composed word input to text identifier output transducer from figure 20 is
now determinised. After determinisation the go west/east/south paths share a
common transition which consumes go. Figure 21. The number of states is reduced
from 20 to 14 and there are no ε input labels remaining. Particularly the ε : ε
transitions, which do not transduce anything, added by the Kleene plus closure are
simply removed.
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Figure 21: The result of determinising the transducer from figure 20. Some states
are merged to delete all but transition with a given input label. Some states inherit
the transitions from the states to which they had ε : ε transitions.

3.3.4 Minimisation

A minimal transducer is one that uses the smallest possible amount of states to
describe its input-output relationship. This is obviously beneficial in terms of
memory consumption. The minimisation algorithm takes a deterministic transducer
and returns a minimal deterministic transducer which transduces equally to the
original.

As part of the weighted minimisation algorithm, the weights are redistributed
along the paths so that weight is accumulated as close to the initial states as
possible. The total weight for any path stays the same. This is both necessary
for the minimisation algorithm and beneficial in any approach that uses a pruned
search (like described in section 2.3.1), as unpromising paths are detected as early as
possible.[49] The operation is called weight pushing.
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A final, minimised version of the determinised word input to text identifier output
transducer is shown in figure 22. This example did not use weights, so no weight
pushing is needed. The number of states is further reduced from 14 to 12.
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Figure 22: The result of minimising the transducer from figure 21. Essentially,
the states 11 and 12 in figure 21 are merged into state 3, which corresponds to The
library in the original puzzle layout.

3.4 Speech recognition decoding graphs
The decoder of an automatic speech recognition system matches acoustic observation
sequences to word sequences. Figure 12 presented the search space of the decoder as
a grid of acoustic classes and time steps.

The decoder searches for paths through acoustic classes which form words. The
language model defines the search space: which words should be searched. The
lexicon defines the sequences of phones that form a word. The corresponding sequence
of context dependent phones can be derived from a sequence of context independent
phones. The hidden Markov models of each context dependent phone give the
corresponding sequence of acoustic classes and the probabilities of moving from one
acoustic class to the next.

Each part in this four layer structure can be represented by a weighted finite
state transducer. The language model is represented by transducer G, for grammar.
The lexicon is represented by transducer L, for lexicon. The hidden Markov models
will be represented by transducer H, for hidden Markov model. And solving the
phonetic context dependencies is transducer C, for context dependency. Together
they form a structure of H ◦ C ◦ L ◦G, where ◦ is the composition operation. [49]

In other words, weighted finite state transducers can be used to create a graph
of the whole search space of a decoder. The operations described in section 3.3
allow us to make the graph, and thus the search space, very compact. Next we
will briefly show how each layer is created, focusing on the grammar and lexicon
transducers. Then we describe how the layers are composed and how the resulting
graph is optimised.
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3.4.1 Creating the transducer layers

The lexicon is a transducer from phones to words. If a word has multiple pro-
nunciations, the probability of each pronunciation may be given as a weight. The
lexicon is not determinisable in the general case, for example homophones cannot be
determinised. This problem is obvious in figure 23. It can be made determinisable by
adding special disambiguation symbols at the ends of words. The last epsilon input
label is turned in to #1, or #2...k for k different homophonous words.
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Figure 23: A lexicon transducer. It maps phone sequences to words. The word the
has two pronunciations. The words hear and here are homophones.

A traditional language model would be a weighted finite state acceptor, as it
simply assigns weights to word sequences, but for practical reasons we represent it
as an identity transducer which maps words to themselves. This way we get the
actual words as output, and not just their weight. Each state in an N-gram language
model transducer represents some history of words. The transitions leaving that
state have as weight the conditional probability of seeing the input label word after
the history associated with that state. This is of course the N-gram probability from
section 2.5.1. There are also backoff states for each history: the transition to this
state is an ε : ε transition and represents the decision to use a lower level model.
The transition weight is the probability mass reserved by discounting. The backoff
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state has transitions of the labels and the weights of the model being backed off to.
In fact, if the model being backed off to is a lower level N-gram, then the backoff
transition simply leads to a state of shorter history. Figure 24 shows an example of
an N-gram language model transducer. Following the arcs in the image we find that:
• There is no path from state 3, i.e. the history of this, with the label the. The

sequence this the indeed seems unlikely. It can still be decoded by following
the backoff arc.
• There is a direct path for is this: 2 3, but also a path through the backoff

state: 2 1 3. This non-determinism is problematic, especially since the paths
give different weights. It’s a consequence of using the unigram zero word history
state as the global backoff state. This too can be solved by replacing the epsilon
label on the backoff arc with a disambiguation symbol (we will notate it as #0).
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Figure 24: A simple bigram language model transducer. It maps words to words,
the weights (in the probability semiring) give the language model probabilities. State
0 has the special history of sentence beginning. State 1 is the backoff state. The
language model has three words: is, this, and the.

It seems clear that a phone sequence can be transduced from corresponding context
dependent phones. Surely the sequence sil-ih+z ih-z+dh dh-ih+z ih-z+sil gives
ih z dh ih z. The structure of the context dependency is slightly more complicated
than initially seems, because the context phones from the future are not known in
advance. The deterministic versions of the C transducer take this into account.

The Markov model structure of figure 5 already looks quite like the transducers of
this section, and indeed the transitions are simply augmented with input and output
labels to get a weighted finite state transducer. The output label on the transition
into a hidden Markov model should be the context dependent phone. As the graph
we are constructing will represent the decoder search space, the input labels will
just be identifier symbols for the probability distributions of the acoustic model.
These are then used by the decoder to follow search paths through different acoustic
classes. However, in many implementations the hidden Markov model structure is
implemented by the decoder[49] and other special arrangements are possible[37].



38

3.4.2 Optimising the search graph

The composition of H ◦ C ◦ L ◦ G is usually started with L ◦ G, then C ◦ (L ◦ G)
is constructed and finally the hidden Markov model structure is added with H ◦
(C ◦ (L ◦G)). This structure lends itself to optimisation and correct handling of the
disambiguation symbols introduced with G and L.

It should not be a huge twist for the reader that the graph is optimised primarily
with the determinisation and minimisation algorithms. They can be applied at many
points during the composition. One example could be min(det(H ◦ (C ◦min(det(L ◦
G))))), where min() is the minimisation and det() the determinisation operation.
However, there are many different graph creation recipes. There is some interplay
between decoder implementation and graph creation. Some finite state transducer
libraries perform much faster when the transitions in the actual data structure are
sorted by some criterion, such as alphabetically for input labels. Generally, optimised
finite state transducer search graphs give very fast decoding performance while
retaining a size of the same order of magnitude as the language model[49].

Static graphs give a speed boost in decoding, since a lot of computation is done
beforehand in the graph creation process. However, this may not work together well
with dynamic models, such as a language model which is augmented by the results
of an online database search. For these applications, the search graph may use parts
that are loaded as needed, or lazily. Of course the drawback is that these parts
cannot be optimised globally. [50]
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Tpuzzle
• S, the set of states

– The entrance
– The balcony
– The library
– The secret

passage
– The exit

• s0, the initial state
– The entrance

• F , the set of final
states
– The exit

• Σ, the set of input sym-
bols
– go west
– go east
– go south
– examine
"Ulysses"

– examine "Cloud
Atlas"

– examine "Atlas
Shrugged"

• Ω, the set of output
symbols
– text1
– text2
– text3
– text4
– text5
– text6
– text7

• E, the set of transitions
– The entrance to The balcony,

go west:text1/1.0
– The balcony to The entrance,

go east:text2/0.0
– The entrance to The library,

go east:text3/0.0
– The library to The entrance,

go west:text2/1.0
– The library to The library,

examine "Cloud Atlas":text4/1.0
– The library to The library,

examine "Atlas Shrugged":text5/1.0
– The library to The secret passage,

examine "Ulysses":text6/0.0
– The secret passage to The exit,

go south:text7/0.0
• ρ, the set of final weights

– The exit/0.0

Table 4: The final version of the puzzle weighted finite state transducer. It defines a
septuple Tpuzzle = (S, s0, F,Σ,Ω, E, ρ). The text identifiers of Ω refer to flavor texts
which are provided for the reader’s entertainment in table 5.
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text1 You open the small balcony door and step outside. The night air is surpris-
ingly warm and humid. You can hear someone in the distance. You peek
down at the railing but the fall is too high.

text2 You return to the entrance. The marble floor announces your every step
with a sharp clack. The bare and dimly lit room makes you shudder.

text3 You enter the quiet library. There is an intimidating shelf of high-brow
literature and an inviting recliner with just the right light for reading.

text4 You grasp Cloud Atlas and skim the back cover. The concept seems a little
too clever but you’ve heard good things.

text5 You hold Atlas Shrugged in your hands like a mirror. You imagine a
reflection: an older, colder you with an unhealthy sense of entitlement.

text6 You begin to grab Ulysses and suddenly the world around you starts
carouseling. The bookshelf revolves and you are taken into a hidden
passageway. You take the book with you, swearing to finally find the time
to actually read it.

text7 At the end of the passage you find a plain door which takes you outside.
You have solved the puzzle.

Table 5: The texts shown to the player in the puzzle example game. Each text
corresponds to a text identifier.
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4 Modeling reading aloud
At first glance the task of recognising read speech seems not a decoding problem,
but a problem of aligning the words of the text temporally. However oral reading
is not simply one exact process of pronouncing each successive word after another.
Even experienced readers deviate from the text from time to time. For example they
may repeat a word. This alone makes a simple alignment ill-founded.

In fact the reading process has been studied in psycholinguistics, the study of
relationships between linguistic behaviour and psychological phenomena, both from
the view point of acquisition and use. As the subjects in this thesis are high school
students, it is reasonable to assume they have acquired a mature level of reading
ability, and the interest is in what psycholinguistics can tell us about the use of the
reading ability. Kenneth S. Goodman developed a method for dissecting the reading
process called miscue analysis. Goodman says5:

"A miscue is defined as an observed response that does not match what
the person listening to the reading expects to hear."

The term miscue is used to avoid a value judgment implied by a term like error.
Deviations from the text may not be harmful or destructive. Self-correction is a
natural part of reading. An efficient reader’s goal is not word-for-word accuracy
per se, but correct conveyal of the meaning. In contrast, a struggling reader may
resort to treating the text as "grammatical nonsense", which may retain a decent
level of letter-wise accuracy, but involve a loss of meaning. The deviations from the
expected arise from a complex, multifaceted process, where only one part is scanning
and decoding the letters into phonetic forms. Semantic, phonological, graphic and
syntactic information are all used by the reader. [51] I believe this suggests two
things. Firstly inferring a qualitative analysis of the reader’s process is a hard
problem. Secondly it is not fair to expect the reader to provide a word-for-word
rendition of the text and especially the reader should not automatically be punished
for it. The deviation from the text may in hindsight be a positive indication of the
reader’s ability, yet this hindsight will be impossible if automatic speech recognition
cannot capture the deviation.

Fortunately the engineering task is to accurately predict the actual outcome of
reading rather than make accurate inferences of how the outcome came to be. Thus
what works counts, and we may test some conventional speech recognition methods.
Either the methods solve the task well and may be used or they provide a valuable
adequate baseline. As stated in the beginning of this section, the task is close to
alignment, so forced alignment might be a good starting point. N-gram models are a
classic language model and they can decode word sequences which diverge from the
prompt. First these two ideas are described in the next subsections. Then section 5
is dedicated to exploring the idea of task-based grammars with explicit paths for
miscues.

5Unfortunately I could not find the original source, but the quote is attributed to Goodman
here: http://www.ucs.louisiana.edu/~jsd6498/damico/miscue.html

http://www.ucs.louisiana.edu/~jsd6498/damico/miscue.html
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As a side note, Goodman also lists and categorises miscues comprehensively into
the Goodman taxonomy of miscues in [52]. It could provide ideas of what to look
for, but detecting miscues is not trivial, and the list cannot simply be written as an
algorithm. Thus miscue types should be look at on a case-by-case basis.

4.1 Forced alignment
Forced alignment of the prompt text on to the utterance forces the words to appear
in the text order. The forced alignment procedure may fail, producing no output.
The prompt is expressed as a sequence of acoustic classes and the feature vectors
are searched for the most likely points where the acoustic classes transitioned to the
next one.

A danger in forced alignment is that it strives to always produce some kind of
alignment. This may result in alignments that are nonsensical. A miscue may throw
the forced alignment procedure off course, as for example a missing word in utterance
means the text is aligned into silence or on top of some other word. Though silence
typically may be handled well, since it is explicitly modeled as an acoustic class, the
phone classes are somewhat confusable. It is difficult to automatically detect these
cases and a human test is expensive.

In the Kaldi toolkit, forced alignment simply uses finite state acceptors which
only accept the prompt word sequence. Figure 25 shows an example of such an
acceptor.

1start 2 3 4 5 6

is this the real life

Figure 25: A finite state acceptor for the phrase Is this the real life?. It is
simply a chain from one word to another.

4.2 Biased N-gram models
Included in the Kaldi toolkit are a set of cleanup scripts for corpora that have not
been manually reviewed or expert transcribed. They are similar to the procedures
documented in [53], but the original scripts in that work are not open source6. It
is thus difficult to credit the work correctly. As part of the cleanup procedure the
audio is divided into small segments and an N-gram language model is created from
the text to which the audio is assumed to correspond.

As stated in section 2.5.1, N-gram models are normally trained on a large text
corpus. To benefit from the strong prior knowledge on the utterance, an N-gram
can be trained on just the prompt text. Of course this way almost all word histories
are seen just once, and thus only the word that followed in the text is given any

6As reported by Kaldi author Daniel Povey here: https://groups.google.com/forum/#!
topic/kaldi-help/K9ANiNCNV1M

https://groups.google.com/forum/#!topic/kaldi-help/K9ANiNCNV1M
https://groups.google.com/forum/#!topic/kaldi-help/K9ANiNCNV1M
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probability mass. The application of N-gram smoothing distributes some of this
mass to other words in the prompt. Thus the N-gram remains biased towards the
original prompt but allows other orderings, repetitions and omissions. The scripts
implement Kneser-Ney smoothing.

These biased N-gram models have some parameters to consider. The amount of
discounting used gives a convenient control of the level of bias. The effect of the
length of history, i.e. the N-degree, is difficult to reason about. A longer history
perhaps works well when a reader is right on track and reading word-for-word. A
too long history might make the model too biased. The scripts also allow adding a
list of words with predefined probabilities, after which the model is normalised. This
is used later to add miscue possibilities like spoken noise.

4.3 Reading tutors
Most previous work on developing automatic speech recognition for reading aloud
has been done for the purpose of tutoring children learning to read. I believe these
automatic reading tutors and the recognition of non-native language reading by high
school students have very similar considerations technically.

The children may pronounce as native speakers, but recognising children’s speech
is more challenging than adult speech, because their fundamental frequency is higher
and there is less children’s speech training data available. The high school students
match the adult speech corpora physiologically, but their non-native accent produces
an acoustic mismatch. Neither target group thus matches the adult speech corpora
perfectly and well matching acoustic data is hard to find. Even though the children
struggle with the actual visual scanning of letters and the high school students struggle
with understanding the language, it is logical to think the long and uncommon words
are the most difficult for both groups. Furthermore both groups struggle with
connecting the written form to the pronunciation, even if for different reasons.

In particular, the work done since 1993 in Carnegie Mellon University’s still
ongoing Project LISTEN7 has looked automatic reading tutoring very thoroughly.
When refining the finite state language models described in section 5, I found a paper
describing the technical design and reasoning behind Project LISTEN’s language
models. I discovered that my design was very close to theirs, which somewhat
validated the approach I had taken and provided a wealth of knowledge. Section 5.1
refers back to the technical lessons learned from Project LISTEN, but first the basic
idea is outlined.

5 Miscue tolerant finite state language models
The task is to decode an utterance, and the utterance is a reading of a prompt text,
so reading miscues will lead to deviations from the text. One idea is to explicitly
represent the search space as the prompt text with deviating paths for the miscues.

7http://www.cs.cmu.edu/~./listen/

http://www.cs.cmu.edu/~./listen/
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As shown in section 3 weighted finite state transducers can efficiently represent the
search space for decoding.

The acceptor in figure 25 is the starting point for creating this miscue tolerating
finite state language model. Each state corresponds to a point in the prompt text. If
reading was a linear process of scanning letters and then reciting the corresponding
phones, the states would be the places where the reader is looking at that instant: the
space separating the incoming transition’s word from the outgoing one. Other paths
are added, representing miscues. For example a word may be repeated, perhaps
more confidently as it has now been properly understood. Figure ?? shows the
acceptor augmented with repetition transitions for each word. The transitions now
have weights: the miscues are assumed less frequent than expected words, so this is
reflected in the probabilities of each path. Table 6 lists the miscues implemented in
this thesis.

A caveat with the approach of having one state per position in the text is that
after a jump in the text, the reader is assumed to continue from that position forward.
In reality more complicated self-corrections are possible, such as where the reader
notices they misread one word from a few words ago and only repronounce that one.
These paths are possible in the miscue tolerant finite state models of this thesis,
but they incur a double penalty in the weight. Thus they will only be found if the
acoustics strongly suggest it.

1start 2 3 4 5 6/0.9

is/1.0

is/0.1

this/0.9

this/0.1

the/0.9

the/0.1

real/0.9

real/0.1

life/0.9

life/0.1

Figure 26: A weighted finite state acceptor which has transitions representing the
repetition of each word.

As stated in section 4.3, I cannot claim that this is an original idea, even if I
thought of it independently. Project LISTEN has already been using it for many
years. Fortunately that simply means they have already tested on a wide scale what
works and what does not. The next section describes the miscues that they found
useful to implement in the finite state models.

5.1 Lessons from Project LISTEN
Jack Mostow describes the technical aspects of Project LISTEN’s speech recognition
in [54], which this section is based on. Commendably, he also mentions the solutions
they tried but which turned out not to help; many times an improvement in one
particular are came with a cost of decreased overall accuracy. In summary, he writes:

"Rely on realism. The better we model children’s oral reading, the
better we can track it. What if any models boost tracking accuracy
dramatically?"
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Repetition: saying the just read word again.

Skipping: omitting one word.

Jumping forward: omitting multiple words.

Jumping backward: restarting from an earlier point than the latest word in the
prompt.

Premature end: stopping reading altogether before reaching the end of the
prompt.

Spoken noise: a model of speech-like sound which catch additions of words
not in the prompt and help tolerate miscellaneous noises.

Truncation: a word pronounced only partially from the start. This
requires augmenting the lexicon. New pronunciations tagged
with a truncation prefix are added for each word for all
phonetic lengths from n − 2 to 2 phones, where n is the
word’s length in phones.

Table 6: Miscues in the miscue tolerant finite state language models of this thesis.
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Table 6 lists the miscues that are used in this thesis. All but the spoken noise
model are also in Project LISTEN’s models. In the Kaldi recipes, a spoken noise
acoustic model is often trained if the training transcripts have special markings for it.
It seems Project LISTEN also had a separate path for restarting the whole prompt.
It is not implemented separately in this thesis because it is included in jumping
backward. The truncation miscue was the only lexical modification that did not
ultimately hurt overall accuracy by hallucinating more miscues in Project LISTEN.

An important point raised by Mostow is that it may be enough to detect any
miscue: for many purposes correctly identifying each miscue is not as important
as being able to notice a deviation from the original text. Many miscues, like
truncation, can serve a dual purpose of both representing a particular type of real-
world phenomenon and a general purpose distractor. This way, fewer miscue models
may suffice, providing better accuracy and less hallucinations. Mostow mentions
trying more complicated state arrangements, which could solve the double penalty
caveat of described in the last section. However the more involved models mainly
served to make decoding much slower.

Project LISTEN also uses its own alignment algorithm, called MultiMatch. It
is not implemented here, but Mostow reports it would serve reading better than
the standard Levenshtein alignment.Another key finding that is out of scope of this
thesis is that the durations of silence between words is a good gauge of reading
fluency. Better tracking through better language models probably improves this
gauge. Extracting the inter-word latency measure could provide valuable information
at virtually no added computational cost.

5.2 Keeping the models deterministic
Some care is needed in order to keep the resulting finite state acceptors deterministic,
or at least determinisable in a reasonable amount of time. As mentioned in sec-
tion 3.3.3, the determinisation algorithm has an exponential worst case complexity,
and does not halt for all inputs. In fact this insight came from initial tests where the
compilation of some search graphs took many minutes or crashed. If the compilation
succeeded, the graph was orders of magnitude larger in memory consumption than
normal.

The jumps forwards and backwards were implemented by ε : ε transitions. It
seemed at first glance that disambiguation symbols would fix the problem, as they
work well in the classic lexicon and N-gram determinisation cases. However, the
combination of the different miscue paths allow infinite loops.

The strategy to counter this is to consume an input label at each outgoing
transition. Instead of an ε : ε transition going to the state where the next word to
read is is, there is a transition with an is input label going to the state of having
just read is. This takes care of infinite loops that do not consume labels.
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5.2.1 Homophones

Particular care has been taken in dealing with homophones. This includes having the
same word multiple times in a prompt text, i.e. here a word is considered homophonic
with itself. Homophones are not rare since some words like the are very common and
since discussing a subject often involves repeatedly using the subject’s name. More
homophones are added by the truncation miscues, as they add shorter pronunciations
which are thus more likely to overlap.

If the words are different, the lexicon building automatically adds disambiguation
symbols. This solves determinisation, but it does not solve the ambiguity: either word
could be transcribed as the result. It is possible that the weights on the transitions
solve the ambiguity, but due to symmetries, some truly ambiguous cases can also
arise. If the words are the same, it is the determinisation algorithm’s worst case
complexity. Furthermore it is also a truly ambiguous case.

Fortunately simply by taking a definitive stance on which of the competing
homophones should be used in each case, the ambiguity is solved, determinisation
is guaranteed and fast and only one path needs to be searched. Coupled with the
design choice that each transition should consume an input label, our finite state
transducers actually stay deterministic from the start.

A map from each word to a list of its homophones is compiled when creating
the lexicon. Algorithm 1 shows how the miscues are added: essentially each time
the transition adding method is called, it first checks of transitions with homophone
input labels already exist. Thus miscue path adding functions can be written without
thinking about other miscue adding functions, instead their calling order determines
which competing paths are chosen. The redundancy of the homophone map makes
the algorithm efficient; there is an entry copy for each word of a set of homophones.

Algorithm 1: Homophone checking before adding an arc
1 States(Map: state id → list of transitions)
2 Homophones(Map: word token → Set of word tokens) /* Maps a word to a

set of its homophones. */
3

4 Method AddTransition(from: state id, to: state id, input: word token, weight:
float):

5 foreach transition ∈ States[from] do
6 if input ∈ Homophones[transition.label] then
7 Return /* Conflict found, do not add Arc */
8 end
9 end

10 AddArc(from, to, input, weight) /* No conflict, add Arc */
11 end
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5.3 Weights
The weight on each transition defines the prior probability of taking that transition.
Each miscue type has its own weight representing the frequency of that miscue.
The weights should ideally be estimated on a separate, large, in-domain corpus
by counting the frequencies of each miscue. Furthermore the miscue frequencies
are probably quite speaker dependant. This requires a lot of data since there are
quite many parameters to estimate. In practice the weights only need to reflect the
fact that correct words are much more likely than miscues. Therefore I have made
educated guesses for each weight to serve as agreeable default values.

The calculation of the weight for the jumps backward and forward has a jump
length dependent factor. The probability of the miscue is lower the longer the jump.
The intuition is that the reader focuses their attention on a few nearby words.

There is an additional parameter, which controls the bias of the model. It is used
to boost the probability of the correct words. Having just one parameter to adjust
requires less data. Furthermore it is also convenient for controlling the trade-off
between detecting miscues and not hallucinating miscues.

5.4 Output labels
In case the miscues should be explicitly labeled, a tag can be added to the output.
In that case, a finite state transducer is used instead of an acceptor. Figure 27 shows
an example. There are epsilon input label, but they are only used to output multiple
labels per consumed input, forming a chain.

1

0start

3

2

5/1

4

7

6

9

8
ε:this/1

the:the/0.9

life:[SKIP]/0.1

life:life/0.9

the:[SKIP]/0.1

real:[SKIP]/0.1

real:real/0.9

this:[SKIP]/0.1
ε:real/1

is:is/0.9

ε:life/1

this:this/0.9

ε:the/1

Figure 27: A finite state transducer language model which tags the skipping miscue.
Notice how the last word cannot be skipped. This is because there is no input label to
consume after the last word. The premature end miscue after the second last word
serves the same purpose of not saying the last word.

Remarkably, this miscue tagging transducer can also be used afterwards to obtain
the same tagging. This is because the transducers made with the above recipes are
deterministic by nature: they transduce a sequence of words to one unique output
sequence. The transcript from automatic speech recognition is turned into a finite
state transducer with the identical input and output labels. An example is shown in
figure 28. This transducer is then composed on the left with the miscue tolerant finite
state language model, producing a transducer with just one transition per state. This
is projected and the result is read off the resulting acceptor, as shown in figure 29.
This way the output from the biased N-gram language models of section 4.2 can be
interpreted as miscue detection.
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10start 32 4
is:is life:lifethis:this real:real

Figure 28: A transducer representing a transcript from a speech recognition system.
The speaker was reading Is this the real life? but skipped the.

10start 32 5/14
is/0.9 life/0.9real/1this/0.9 [SKIP]/0.1

Figure 29: An acceptor after composing the transducers from figure 28 and 27 and
projecting on the output labels. The result is the accepted sequence.

5.5 Implementation code
The creation of miscue tolerant finite state language models is handled by scripts
written in the Python programming language8. Additionally, some Bash shell scripts
handle connecting logic. The language models are technically speech recognition
toolkit agnostic, but only integration with the Kaldi toolkit is facilitated by the
connecting logic.

The scripts output a text file specifying a weighted finite state transducer in the
OpenFst format[55]. The Kaldi toolkit links against the OpenFst libraries.

The scripts are open source with a permissive licence. They are released in a
Github repository9. The Github repository also contains some scripts for calculating
miscue fetching accuracies which are used in experiments to balance false positives
and miscue detection.

8Python version 2.7, https://www.python.org/
9https://github.com/Gastron/miscue-tolerant-lm-fst

https://www.python.org/
https://github.com/Gastron/miscue-tolerant-lm-fst


50

6 Experiments
This section narrates the empirical part of the thesis. The first experiments were
carried out on the Wall Street Journal corpus with the goal of rapidly validating
ideas. A well thought out recipe for acoustic model training is available in the Kaldi
repository, as well as the facilities for obtaining a suitable lexicon. The speech is quite
clean, so any progress in language modeling should not get masked by poor acoustic
model performance. There are few miscues in the Wall Street Journal corpus, so
they were simulated by splicing the recordings and manipulating the transcripts.

When the tests on simulated data ultimately showed that the miscue tolerant
finite state language models worked in theory, it was time to test them in practice.
The DigiTala data set had in-domain data with real miscues. The only thing missing
was reference transcripts for the recordings of reading. To test miscue detection, both
the original prompt text and the actual utterance transcripts are needed. Labeling
had to be done manually. Once the dataset was labeled, the miscue tolerant finite
state language models were tested against forced alignment and biased N-gram
language models.

First the Wall Street Journal corpus experiments are recounted from dataset
construction to results. Then the in-domain experiments are described, starting from
manually labeling the miscues and ending with the main empirical results of this
thesis.

6.1 Wall Street Journal experiments
Work on the Wall Street Journal corpus began with running the Kaldi acoustic model
training script interactively. It served as both an introduction to the Kaldi toolkit
and its conventions and of course to provide a decent acoustic model. The acoustic
model was used to temporally align the transcripts to the recordings at the word
level. With these temporal alignments, some miscues could be simulated.

First the miscue simulation procedures are described. Next the choices for the
free parameters of the language model are briefly explained. The word error rates
are then reported on the Wall Street Journal test set with simulated miscues.

6.1.1 Simulating miscues

Some miscues lend themselves well to being simulated from existing recordings. In
the terms of table 6 repetition and jumping backward are achieved by looping the
recording: playing up to a certain point, then restarting from an earlier point and
playing till the end. Skipping, jumping forward and ending prematurely are achieved
by cutting the recording: playing up to some point and then continuing from a later
point. Sudden cuts and loops may sound unnatural to a human ear. As long as care
was taken to swiftly fade the recording out and in at the boundaries to avoid loud
pops, the acoustic model did not break down.

Essentially a miscue involving jumping between points in the text has a natural
counterpart in the audio domain. With the temporal alignments, these jumping
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miscues can easily be simulated both in the audio and the text domains in a coordi-
nated manner. The original text serves as the prompt, while the transcript with the
simulated miscues is the reference. The original text is fed into the language model
creation scripts, with the hope that the resulting language model can decode the
simulated miscues as notated in the reference.

The truncation miscue can also be simulated with a loop at the phone level,
though phone level splicing may require more care as single phones are very short
temporally. I had simply not implemented the truncation miscue in the finite state
language models, so there was no reason to provide a test for it.

The spoken noise miscue was implemented in the finite state models at an early
stage, since the Kaldi acoustic models readily enabled it, but it is more difficult to
simulate. Speech synthesis can be used to generate extraneous speech with matching
voices, but it would have been much too complicated for the sake of preliminary
testing. Instead just the transcripts were modified so that a randomly chosen word
was simply deleted, and the audio was kept intact. This time the modified transcript
served as the prompt text. The language model then would not be expecting the
deleted word. As long as the word appeared only once in the original text, it could
not be decoded directly. Instead it would be speech like noise in the audio, just as
needed.

Three separate test datasets were created, one where cuts were made in the
recordings at randomly chosen word boundaries, one where loops were introduced
so that randomly chosen passages were said twice, and one where randomly chosen
words were deleted from the transcripts. The same was done for the development set.
For each experiment the language model was created with all miscue paths. This
way, each miscue’s effect on the whole model could be tested separately.

6.1.2 Parameter optimisation

A few iterations on the development set of the Wall Street Journal corpus showed
that a substantial boost factor for the correct word, as described in section 5.3, gives
the lowest word error rates. This reflects the fact that the corpus is quite clean and
the acoustic model can distinguish the words quite well.

The boost parameter was not increased limitlessly. Doing so could have given
even lower word error rates, but the goal of these experiments was not to minimise
the word error rates. The goal was to validate an idea. An extremely high boost
factor would be a special case, but the default parameters should also give adequate
results. Thus a boost factor of 1000 was chosen as a reasonable compromise.

6.1.3 Results

The word error rates on the three datasets with miscue tolerant language models are
shown in table 7. The word error rate in large vocabulary decoding was 10.88%, as
stated in section 2.8.1. The error rate on each dataset is at least halved compared
to large vocabulary decoding, so the miscue tolerant finite state language model
implementation seems sound.



52

Simulation type WER[%]

Cutting speech 3.22
Looping speech 1.95
Tampering transcript 5.41

Table 7: The word error rates with miscue tolerant language models on the three
simulated datasets. The speech cutting simulation produces forward jumping miscues,
the speech looping simulation produces backward jumping ones, and the transcript
tampering simulation produces spoken noise.

The forced alignment procedure is bound to fail on these simulated datasets,
because each and every utterance has a large discrepancy between the prompt and
the correct transcript. However in a control experiment the biased N-gram model
produced very similar word error rates as the miscue tolerant language model. It
cannot explicitly decode the spoken noise, so the transcript tampering set was not
tested. Clearly testing on actual in-domain data is needed to better compare the
two models.

6.2 DigiTala experiments
The in-domain test data is considerably more difficult than for automatic speech
recognition than the Wall Street Journal corpus. The sources of difficulty can be
attributed coarsely to two categories.

Firstly the technical quality of the recordings is sometimes adverse. The DigiTala
pilot tests were done in normal classrooms with on average ten students taking the
test at once. The students used headset microphones, but other students’ voices
are clearly audible in the recordings. Figure 30 is a photograph from classroom
with the level acoustic isolation that can be reasonably expected at the scale of the
examinations. Furthermore, some in some recordings the speech is not audible at all.

Secondly the language was not fluent. Although the actual matriculation exami-
nations are taken very seriously, in the pilot tests the students were not motivated
to do their best. If anything, we test givers tried to create a relaxed atmosphere.
The students’ skill level was very varied: there were some native Finnish Swedish
speakers, but also some inexpert speakers who had only completed one course of
Swedish in high school.

First the work in labeling the miscues of the dataset is recounted. Then the free
parameter choices are justified. Next some details are exposed about making the
word error rates of the different method comparable. Finally the word error rates for
all the compared models are reported and a trade-off is explored between detecting
miscues and hallucinating them, i.e. decoding correct words or silences as miscues.

6.2.1 Labeling miscues

The constraints of this thesis required that I manually label the test dataset myself.
Transcribing a recording manually is a laborious task. The industry standard for
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Figure 30: A classroom in pilot test configuration. The test was done on laptops
recording through headsets. Though the screens and the seating patterns provide visual
privacy, the acoustic environment has little in terms of isolation.

professionals is quoted as an hour of work for fifteen minutes of audio10. Since that
time was not available, a faster approach was needed.

As stated in section 4, the original prompt gives a very good prior on the actual
utterance. Often the utterance in fact contains no miscues, the original text is a good
transcript as is. A small program was written which plays a recording and displays a
text edit box, in which the original prompt is given as a default answer. This way, a
miscueless reading can be processed in real-time and accepted with a single click.

To further improve the speed, the transcription was not done in a precise ortho-
graphic way. An orthographic transcription might have been more valuable in the
future, but in this thesis it was not needed. Instead complete words were transcribed
as is, but other words were tagged mispronounced, hesitated or truncated. The
mispronounced tag was used for words which I thought where the reader clearly
used the wrong phones. Pronunciations which are specific to some dialect, especially
differences between Swedish spoken in Finland and Sweden, were not marked as
mispronounced. The hesitation tag was used for words where the pronunciation was
exceedingly slow and clearly the word was not familiar to the reader. The truncation
tag was used like the miscue: the cases where the reader starts pronouncing a word,

10In the Wikipedia article: https://en.wikipedia.org/wiki/Transcription_(service), ac-
cessed 17.7.2017

https://en.wikipedia.org/wiki/Transcription_(service)
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but stops midway through. In addition, speech like noises and use of Finnish was
marked with a spoken noise tag and other loud noises were labeled as non-spoken
noise.

These tags were chosen because they seemed very profuse during early corpus
exploration. During the labeling process I felt like the tags adequately represented
all the encountered data. Table 8 lists the dataset in numbers. Although the total
number of miscues may seem low at first glance, the jumps can result in utterances
drastically different from the prompts.

Coverage
Utterances 1023
Total time 3 hours 50 minutes
Speakers 149

Most utterances per speaker 11
Speakers with only one utterance 45

Different prompts 15
Short prompts 10

Long, multi-sentence prompts 5
Utterances from long prompts 142

Total words 20300
Percentage of words from long prompts 67%

Miscues
Correct words 16515

Repetitions 171
Skips 119

Jumps 130
Premature ends 112

Truncations 241
Spoken noises 281

Miscues in total 1054

Table 8: The DigiTala dataset in numbers. The jumps forward and backward in the
text are reported together here. The premature endings are not annotated.

6.2.2 Making the results comparable

A choice had the be made about words tagged as mispronounced or hesitated. Since
they cannot be explicitly decoded with those tags, the tags were in the end simply
removed, giving just normal words. The mispronounced words should be handled
by the automatic articulation analysis and the hesitations could be picked up by
an automatic prosody analysis. Thus both types of words should ideally be passed
on as normal by the preprocessing system. Additionally since the forced alignment
procedure cannot detect truncations, the truncation labels were simply removed
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when calculating the forced alignment word error rates, leaving the words as if they
were pronounced fully.

The forced alignments were not actually computed. Instead it was assumed that
each time, the whole prompt aligned. The reason is that although the computing
the alignments is quite simple, making sure the alignments are sensible is not trivial.
When a reasonably large search space is used, like with the miscue tolerant and
biased N-gram language models, a correct transcription can be assumed not to come
about by chance. However as stated in section 4.1, the forced alignment will most of
the time result in some sort of alignment. The assumption that an alignment can
be forced every time will increase the word error rate in utterances that are just
silence and it will decrease the word error rate when the alignment would have failed
completely. This should be reflected in an increased variance of the word error rate.

In the Kaldi scoring scripts, it typical to remove the spoken noise labels from the
references and the hypotheses. On one hand it is a miscue that is explicitly modeled.
On the other hand it has no practical value after recognition. Having the miscue
explicitly modeled is a way to make the models more robust to unexpected sounds;
it may catch all types of noise. Therefore when calculating the word error rates, the
spoken noise miscue should be removed. However when characterising the miscue
detection rate, the spoken noise miscue is kept in the transcripts.

6.2.3 Parameter choices

The DigiTala dataset was so small that a separate test set could not be afforded.
Instead 10-fold cross validation was used. In each iteration, the training folds were
used to find good values for the free parameters of the miscue tolerant finite state
models and the biased N-gram models. For the miscue tolerant models, the correct
word boosting factor was optimised, and for the biased N-gram models, both the
N-degree and the discounting constant were optimised. In addition, the language
model scale was optimised for both models. The folds were the same for both model
types.

First a list of plausible values were determined for each parameter. The optimal
parameters were found by decoding the training set with models of each combination
of values and finding the model with the best word error rate. Because of this
computationally expensive parameter search method, the value combinations are not
at local word error rate minima. However in practice the models are not sensitive
to the exact values of the parameters and I feel confident these values are in the
optimal order of magnitude.

Table 9 shows the chosen parameter values for each fold. There are no big
differences between the folds. The average values over the ten folds were used when
calculating the miscue detection rate at different hallucination rates, except crucially
the correct-word-boosting factor and the discounting constant were varied. This way
different hallucination rates were achieved. The expectation is that the more biased
the model is toward the prompt word sequence, the less miscues it hallucinates and
also the less miscues it detects. First the word error rates are reported and then
these miscue detection rates are characterised.
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Miscue tolerant Biased N-gram
Fold Correct-boost LM-scale N-degree Discount LM-scale

1 1.0 1.8 3 0.1 1.3
2 1.0 1.8 3 0.1 1.3
3 1.0 1.7 3 0.1 1.3
4 1.0 1.8 3 0.1 1.3
5 1.0 1.8 3 0.1 1.3
6 1.0 1.7 3 0.1 1.3
7 1.0 1.7 4 0.1 1.2
8 1.0 1.9 3 0.1 1.3
9 1.0 1.6 3 0.1 1.3
10 1.0 1.7 3 0.1 1.3

Table 9: The chosen parameter values at each fold. LM-scale is short for the language
model scale.

6.2.4 Measuring word error rates

The word error rates are shown in table 10 for the whole DigiTala dataset, compiled
from the test sets of each cross validation fold. Since the dataset was small, confidence
intervals are computed using Bisani and Ney’s bootstrapping method described in
section 2.7.2. The intervals are at the 95% confidence level. For both biased N-grams
and miscue tolerant finite state language models the interval size relative to the mean
value is approximately 12%. For forced alignment, the interval is approximately 24%.
As expected in section 6.2.2, the variance is higher for forced alignment.

Method WER [%]

Forced alignment 13.90± 3.37
Biased N-gram 4.16± 0.48
Miscue tolerant 3.77± 0.47

Table 10: The word error rates (WER) for the different methods, with 95% confidence
intervals. The confidence intervals of the biased N-gram models and the miscue
tolerant models overlap.

In all the other word error rate values presented here, the spoken noise labels
have been removed from the transcripts, but table 11 shows the word error rates
without the removal. I report this result because intriguingly the biased N-gram
performs better in when measured this way.

The word error rates for each fold are reported in table 12. Each fold by itself is
just a tenth of the data, so the test set size is just 102. With such a small test set,
the Bisani and Ney bootstrapping method gives nonsensical results: impossibly large
and negative word error rates. Thus no confidence intervals are reported.

Table 8 mentions 138 utterances from longer, multi-sentence prompts. These can
be isolated from the test folds and the word error rate can be calculated separately
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Method WER [%]

Forced alignment 14.39± 3.32
Biased N-gram 4.86± 0.55
Miscue tolerant 5.31± 0.61

Table 11: The word error rates (WER) for the different methods without removing
the spoken noise labels, with 95% confidence intervals. The confidence intervals of
the biased N-gram models and the miscue tolerant models overlap again, but here the
biased N-gram model has a better mean value. The forced alignment procedure cannot
detect spoken noise labels, so every instance increases its word error rate.

WER [%]
Fold Miscue tolerant Biased N-gram

1 3.30 4.07
2 3.82 3.91
3 4.69 5.06
4 4.18 4.93
5 3.64 3.92
6 3.87 4.38
7 3.31 3.63
8 2.58 2.81
9 5.65 5.87
10 3.27 3.75

Table 12: The word error rates for each fold. The miscue tolerant method has a
lower word error rate in every fold.

for both the long utterances and the remaining short ones. Table 13 lists the results.

WER [%]
Miscue tolerant Biased N-gram Forced alignment

Long prompts 2.40 2.48 13.83
Short prompts 6.38 7.35 13.96

Table 13: The word error rates for long and short prompts.

While there are large differences between word error rates of long and short
prompts, dividing the recognition results by individual prompts gives an even more
detailed view of the results and secondly of the data, too. Table 14 lists both the
prompts, their total number and the speech recognition results on them.
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WER [%]
Miscue
tolerant

Biased
N-gram

Forced
align-
ment

Prompt 1 2.84 2.70 1.70
Allt fler högskolestudenter pluggar på distans i
Sverige.
total utterances: 88

Prompt 2 19.79 21.61 75.04
Ansökningstiden till juridiska fakulteten går ut
9.4.2015.
total utterances: 91

Prompt 3 3.08 3.85 2.47
Bananer med droger i smugglades i tunnelbanan.
total utterances: 91

Prompt 4 5.32 5.60 6.72
Bilreparatören fick en schock när han öppnade
bagageluckan.
total utterances: 85

Prompt 5 5.12 6.83 5.80
Den moderna mormodern tågluffar med barnbar-
nen.
total utterances: 92

Prompt 6 10.99 13.40 24.53
Dödsrisken 7,3% mindre bland cyklister med sky-
ddshjälm.
total utterances: 90

Prompt 7 6.61 5.79 7.44
Kyligt väder försenade jordgubbsskörden.
total utterances: 84

Prompt 8 5.54 8.53 6.18
Rekordmånga ålänningar gör frivillig värnplikt.
total utterances: 88
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WER [%]
Miscue
tolerant

Biased
N-gram

Forced
align-
ment

Prompt 9 3.51 3.34 2.84
Välfärdsstaten klarar inte av den ökande arbet-
slösheten.
total utterances: 83

Prompt 10 2.45 3.83 5.67
Vi köper begagnade kläder i gott skick.
total utterances: 89

Prompt 11 2.32 2.47 8.64
Hej peter! Jag försökte ringa dig, men din mobil
var avstängd. Var är du? Hoppas att du hör mitt
meddelande snart. Eva ligger på sjukhus! Hon
råkade ut för en bilolycka i morse, men det är ingen
fara med henne.
Eva åkte till jobbet med min bil. I den stora ko-
rsningen på Vasa-gatan kom en buss som körde
för fort och kunde inte stanna vid rödljuset. Som
du kanske vet var det kyligt och jättehalt på mor-
gonen. Eva hann inte stoppa sin bil utan körde
rakt in i bussen. Hon kände sig yr, hon hade ont i
huvudet, ryggen, och ena benet. Därför fördes hon
till sjukhus.
Till all lycka mår Eva ganska bra nu. Läkaren
tror att hon kommer att skrivas ut i övermorgon,
eller kanske på fredag. Ska vi hälsa på henne på
sjukhuset? Hon är i rum nummer 28b på fjärde
våningen. Om du vill så följer jag gärna med. Jag
kan visa rummet för dig, sedan det är svårt att hitta
på sjukhuset. Min bil är okörbar just nu, så det blir
du som får skjutsa mig. Men ring mig när du hör
det här meddelandet.
total utterances: 43
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WER [%]
Miscue
tolerant

Biased
N-gram

Forced
align-
ment

Prompt 12 2.56 2.51 23.72
Det är kul att prova på något nytt som det här
elektriska talprovet på dator. Får jag framföra en
liten dikt för dig?

Tjejer och killar i höstmörkret,
orkar ni ännu läsa?
Ljusen på bordet värmer så skönt.
Se ut och hör hur snögubben ropar på gården:
"Snälla vän köp mig en morot till näsa."
total utterances: 93

Prompt 13 2.47 1.23 1.23
Hej peter! Jag försökte ringa dig, men din mobil
var avstängd. Var är du? Hoppas att du hör mitt
meddelande snart. Eva ligger på sjukhus! Hon
råkade ut för en bilolycka i morse, men det är ingen
fara med henne.
total utterances: 2

Prompt 14 0.00 0.00 2.19
Eva åkte till jobbet med min bil. I den stora ko-
rsningen på Vasa-gatan kom en buss som körde
för fort och kunde inte stanna vid rödljuset. Som
du kanske vet var det kyligt och jättehalt på mor-
gonen. Eva hann inte stoppa sin bil utan körde
rakt in i bussen. Hon kände sig yr, hon hade ont i
huvudet, ryggen, och ena benet. Därför fördes hon
till sjukhus.
total utterances: 2



61

WER [%]
Miscue
tolerant

Biased
N-gram

Forced
align-
ment

Prompt 15 2.37 1.18 0.59
Till all lycka mår Eva ganska bra nu. Läkaren
tror att hon kommer att skrivas ut i övermorgon,
eller kanske på fredag. Ska vi hälsa på henne på
sjukhuset? Hon är i rum nummer 28b på fjärde
våningen. Om du vill så följer jag gärna med. Jag
kan visa rummet för dig, sedan det är svårt att hitta
på sjukhuset. Min bil är okörbar just nu, så det blir
du som får skjutsa mig. Men ring mig när du hör
det här meddelandet.
total utterances: 2

Table 14: Word error rates on the different prompts. The last three prompts only
have two utterances each. This is because for two students Prompt 11 was split into
three parts.

The real-time factor in all of these experiments is below 0.1, much faster than
real-time. This is not surprising considering the compact search space of the language
models, the reduced output rate of the deep neural network acoustic models and the
use of a fast scientific computing cluster.

6.2.5 Measuring miscue detection

To measure the miscue detection rate, each word in the reference and the hypothesis
transcripts were tagged either correct or with a miscue label. The tagging was done
as described in section 5.4. Then the hypotheses were Levenshtein aligned with
the references. Each aligned word pair was compared. This way it was determined
whether the hypothesis was a correct detection of a correct word or a miscue, or if the
hypothesis was a false acceptance of a miscue as a correct word, or if the hypothesis
was a hallucination of a miscue from a correct word.

The trade-off between detecting miscues and not hallucinating miscues can be
drawn as a receiver operating characteristic curve. Correctly detecting miscues is
the true positive rate, which is drawn as a function of the of hallucinating miscues,
the false positive rate. Figure 31 shows this curve for the miscue tolerant finite state
language models and figure 32 shows the curve for the biased N-gram models.

Table 15 lists the amounts of miscues the two miscue detecting methods found
when achieving the results reported in table 11. In Miscue Detection/Miscue
Hallucination rates this is 12.6%/2.0% for the biased N-gram models and 22.2%/3.8%for
the miscue tolerant models.
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Figure 31: The receiver operating characteristic curve for the miscue tolerant finite
state language model on the DigiTala data, from varying the correct word boosting
factor.
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Figure 32: The receiver operating characteristic curve for the biased N-gram models
on the DigiTala data, from varying the discounting constant
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In corpus Miscue tolerant Biased N-gram
Correct words 16515 18198 16176

Repetitions 171 223 182
Skips 119 196 62

Jumps 130 160 234
Premature ends 112 94 84

Truncations 241 227 66
Spoken noises 281 518 213

Miscues in total 1054 1418 841

Table 15: Miscues detected by the two miscue detecting methods. The higher than
corpus amount of correct words by the miscue tolerant models means that the method
hallucinated many words.
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7 Discussion
In this section I first present my interpretation of the DigiTala data experiments and
their results. I look at the word error rates and the miscue detection separately. At
the end of this section I present some ideas for future work.

The Wall Street Journal results are not interpreted further. They gave confidence
to test the models on real world data, but I believe the real value of the Wall Street
Journal experiments lies in the scripts used to simulate miscues. Those scripts could
be used again in the future to test miscue detection in under-resourced languages, to
make sure the acoustic models are good enough to detect at least artificially created
miscues.

7.1 Interpreting the word error rates
Table 10 presents the main empirical finding of this thesis. The biased N-gram
models and the miscue tolerant finite state language models reach low word error
rates. The miscue tolerant models have 9.4% better word error rate than the biased
N-gram models, but this is difference is not statistically significant with the sample
size.

I find five interesting points in the results. Firstly the two miscue detecting
methods shined in longer utterances. Secondly the individual prompts have large
differences between them. Thirdly the miscue tolerant finite state transducer halluci-
nates many spoken noises. Fourthly the overall results for forced alignment suggest
that a miscue detecting method is needed. Finally some details suggest the miscue
tolerant finite state language models represent the utterances better than the biased
N-gram models.

7.1.1 Longer utterances were easier

The longer utterances had almost three times smaller word error rates than the
short utterances with the two miscue detecting methods. On the other hand the
forced alignment word error rates were practically identical between short and long
utterances. This suggests the longer utterances were easier to decode. The longer
prompts had more common, easy words such as prepositions and conjunctions which
are necessary to give the long text some structure. The short prompts on the other
hand had many difficult tongue-twisting words. The focus was on interesting idioms
rather than sensible sentences.

An error in tracking could lead to catastrophic failure in a long utterance and
some errors are inevitable. Thus the results suggest that both miscue detecting
methods could tolerate some errors and get back on track.

Although the longer prompts were a minority in the number of prompts, they
accounted for 67% of the words in data. Thus good performance on them was key to
low word error rates. This may be an important consideration in preparing exams, if
each prompt should be scored individually.
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7.1.2 Large differences between prompts

Some individual prompts had very large word error rates, particularly prompts 2
and 6. These two prompts had numerals, which proved to be extremely challenging
for the students. The date in prompt 2 only had a few correct renditions in all of
the readings. Numerals should have some special, more miscue robust paths in the
language models and the students need some practise.

In a few individual prompts the forced alignment word error rate was lower
than that of either miscue detecting method. This means the miscue detecting
methods could do better. If prompt specific parameter estimation is possible, it could
be very beneficial. However this would require data from those prompts, and the
matriculation examination questions are secret.

It seems that the more difficult the prompt, the worse the recognition result is
as well. This is quite logical, but it is unfortunate for matriculation examinations,
where some difficult prompts may be needed to bring out the differences between
students.

7.1.3 Hallucinated spoken noise

The word error rate of the miscue tolerant models is higher when the spoken noise
labels are kept in the transcripts. Table 15 shows that the miscue tolerant models
detect almost twice as many spoken noise labels as there actually are. Thus the issue
would be solved by a more accurate weight for the spoken noise miscue path.

7.1.4 Miscue detecting methods are needed

The overall word error rate for forced alignment is an order of magnitude larger than
the two miscue detecting methods. This alone proves that miscue detecting methods
are needed. In addition, the forced alignments may be unreliable in their result.
Though the apparent word error rate can sometimes be low, it would be laborious to
check the alignments for errors.

The difficult prompts with numerals had particularly high word error rates for
forced alignment. In their case, with an over 50% word error rate, the further
processing steps might have produced results based on pure luck.

7.1.5 Details in favor of miscue tolerant models

Though the overall word error rates were not statistically significantly different, I
think some details favor the miscue tolerant finite state language models.

• On every cross validation training iteration the miscue tolerant models had a
noticeably higher language model scale than the biased N-gram models. This
suggests the miscue tolerant models provided a more trustworthy predictions
about the training data.
• The miscue tolerant models had better miscue detection. Particularly the

detection of truncations was much better, as evidenced by table 15. The spoken
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noise and truncation miscues were artificially added to the biased N-gram
models and they could not leverage the position in the text for predicting.
• The miscue tolerant models can be fine tuned when more specific information

becomes available. New types of miscues can be added. It is more difficult to
address a specific point in a text, such as a numeral, with the biased N-gram
models, because their states represent word histories instead of positions in the
text.

I think the biased N-gram models could have a large advantage in slightly longer
texts than what is used in this thesis. The Kneser-Ney backoffs become more
meaningful in that case, as word histories get more occurrences. Furthermore the
biased N-grams could quite easily incorporate a background N-gram model trained
on a large text corpus by backing off to it. I don’t see a straight-forward way to do
that with the miscue tolerant finite state language models.

7.2 Interpreting the miscue detection rate
The receiver operating characteristic curves of section 6.2.5 would lead to believe
that the models are actually not very good at detecting miscues. Interpreting this
result in light of the low word error rates is more difficult. I think four factors explain
the data.

• Firstly the parameters that were not adjusted were taken from the 10-fold
cross validation training averages. The cross validation training criterion was
achieving as low a word error rate as possible. This goal is very different from
detecting miscues: a low average error comes from predicting the average case
correctly, while detecting miscues is about catching outliers. Essentially, it all
comes down to the bias-variance trade-off.
• Secondly I believe that the low detection rates are in part due the way miscues
are labeled. Each miscue is a tagged on one word only and other words are
labeled as correct. For example a jump to another part of the text has to be
recognised at the exact position. Decoding the jump at an off-by-one position
incurs the full penalty of missing a miscue, even though the speech tracking
may have been almost as good.
• Thirdly the parameters that were varied in the experiments were not perfectly

suited to trading more hallucinated miscues for better detection. The N-gram
discounting constant alone could not be adjusted far enough to achieve even a
20% miscue detection rate. The boosting factor of the miscue tolerant finite
state language models controlled the trade-off better, but ideally the individual
weights of each miscue path should be optimised.
• Finally there are quite many miscue types. They can each be confused with
each other. This makes detecting the correct miscue more difficult. On the
other hand as mentioned in section 5.1 for good recognition it may be enough
to detect that some miscue happened.

There is room for improvement in miscue detection. Fortunately the miscue
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hallucination rates are quite low, which I feel is important for fairness in a spoken
language testing context.

7.3 Future work
In this section I briefly motivate and describe some tangential ideas and improvement
opportunities. Primarily I think a validator for the recognition results should be
trained and a better parameter estimation procedure for the miscue tolerant finite
state language models should be developed. The validator could also be used when
cleaning a speech audio corpus for training. Secondarily I believe a spoken language
practice tool could be built with the miscue tolerant language models and finally I
see some room for improvement in miscue detection.

7.3.1 Rejecting bad recognition results

Since recognising and segmenting the read speech is only the first step in processing
the utterances, the results of the speech recognition system should be validated. In
normal speech recognition this is very difficult, because there is nothing to compare
the results to. In the task of this thesis the validation has a natural reference: the
prompt.

There are two reasons to reject a recognition result: the recogniser did not work
well or the student’s speech did not match the prompt well. In both cases I expect
the symptoms to be similar. The decoder probably finds little of the prompt and
detects a lot of miscues. Moreover in both cases, the further processing steps would
be done on false premises. Thus the validator should calculate some distance measure
between the recognition result and the prompt and a threshold should be found by
training on both acceptable and unacceptable samples.

Students should not be automatically penalised for miscues, but the prompt text
is still the expected recognition result. One or two miscues should not make the
distance measure grow too large. Levenshtein distance could be a good starting
point, but perhaps some tolerance for jumps in the text should allowed. A long
jump in the text, for example restarting the whole prompt, would result in a large
Levenshtein distance.

7.3.2 Validator for speech corpus cleaning

Validating an utterance based on the text that is supposed to be said in the recording
is not only useful in reading tasks. It is a common problem in acoustic model training
that the training transcripts do not match the audio exactly, and the corpus needs
some cleaning. Using the miscue tolerant finite state language models should also be
researched in this corpus cleaning domain. In fact the biased N-gram models were
initially from Kaldi scripts for this cleaning purpose.
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7.3.3 Better parameter estimation

While boosting parameter of the miscue tolerant finite state language models could
be trained by cross validation, the individual weights of each miscue path used ad hoc
values in this thesis. The 10-fold cross validation was too computationally expensive
to search for optimal values.

Fortunately the individual weights could be estimated from their occurrence
frequencies in a training set. Robust estimation probably requires more data than is
available currently.

7.3.4 Reading practise application

The high school students should be able to practise on a computerised spoken language
interface. Reading for the automatic speech recogniser in a browser application would
be a simple exercise. It lacks the communicative aspects of spoken language, but it
could help learning on some level. It would also teach the student about speaking to
automatic speech recognition and it would hopefully build trust in the automatic
speech processing tools. If the student permits it, their audio data could also be
stored for acoustic model training.

The recogniser could track the student’s speech in real time with miscue tolerant
language models. This could encourage the reader. The inter-word latency score
mentioned in section 5.1 could provide some quantified feedback for the student, and
once the automatic articulation analysis is available it should be integrated into the
system too.

7.3.5 Better miscue detection

Miscue detection should be improved. Better parameter estimation for the miscue
tolerant finite state language models should help. Unfortunately improving the
language model can only go so far toward better miscue detection.

I think improving the acoustic information should be the basis for good miscue
detection. In the end miscues remain the unexpected event, so the recognition system
has to rely on the acoustic information to detect them. In the DigiTala project,
improving the recording conditions could provide substantial improvements in the
acoustic information. More in-domain acoustic training data is also needed. If spoken
tests are also introduced to the high school language courses, the data gathered there
could be used for acoustic model adaptation.
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8 Conclusions
Computerisation opens up the possibility of adding an oral test to foreign language
matriculation exams. The high stakes nature of the matriculation examinations
means whatever is assessed in them, is also valued by the students. Project DigiTala
has created a plausible prototype for the oral test, but research in speech processing
tools is vital for making the massive work load of scoring the tests manageable. That
research will come in small yet significant steps.

The footprint of this thesis is a method for transcribing and segmenting read
prompts. It is to be used as a preprocessing step in automatic articulation analysis,
possibly followed by automatic score prediction. The word error rates on the DigiTala
test data suggest both the biased N-gram models and the miscue tolerant finite state
language models were successful. The miscue tolerant finite state models appear
the best choice for this task: they achieved the lowest word error rate and they are
tailor-made so they are amenable to further development.

Along the way two other discoveries were made. Firstly the miscue tolerant finite
state models are with trivial changes able to tag miscues in transcripts produced by
any method. This is useful for feedback. Secondly miscues can be simulated given
just recordings and a time aligned transcript.

Some errors are inevitable in automatic speech recognition, but how much is
acceptable is hard to answer. It depends on the following processing steps, on the
robustness of the automatic articulation analysis and the stability of the prediction
of scores. An upper limit for an acceptable word error rate could be found by
characterising the effect of a one word error in the predicted score and setting a
maximum score error. However the preprocessing, articulation analysis and score
prediction should be optimised jointly.

Project DigiTala suffers from a chicken-and-egg problem: once the computerised
tests are rolling, they will continuously provide more data for research and develop-
ment, but to get them rolling more data is needed. Once more data is available the
tests in this thesis should be repeated. More data would also enable better tuning of
the parameters of the tested models.

To get to the tangible results, I studied automatic speech recognition, finite
state models and a psycholinguistic model of reading. Throughout automatic speech
recognition, I ran into data sparsity. There is always a model that can benefit
from more data. The real challenge is to do as much as possible with as little
data as possible. Finite state transducers are truly fascinating. They can represent
complicated relationships so compactly, that it is easy to run out of short term
memory trying to reason about them. Peeking inside an unfamiliar field of study
was captivating. The challenge is missing all of the sense of context that comes with
years of experience. Fortunately one thing a university teaches is the ability to read
scientific material. In the end it is just similar curious heads beating against different
walls.

What is assessed becomes what is valued. This statement about washback rings
true in a more general sense. I think the common danger is that what is easy to
assess becomes what is assessed. In this particular thesis the quality of temporal
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alignments is seen as difficult measure. The effect of the temporal segmentation on
the articulation analysis might be surprisingly large and in the future it should be
quantified. As for a wider perspective, in all engineering tasks it is good practice to
quantify progress and set measurable goals to strive for.

Let us make sure the goals are not those that are the easiest to measure, but
those that are the most meaningful.
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