
Tensor Decomposition in
Multiple Kernel Learning

Linh Nguyen

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 30.07.2017

Thesis supervisor:

Prof. Juho Rousu

Thesis advisors:

D.Sc. Sandor Szedmak

M.Sc. Anna Cichonska

aalto university
school of science

abstract of the
master’s thesis

Author: Linh Nguyen

Title: Tensor Decomposition in
Multiple Kernel Learning

Date: 30.07.2017 Language: English Number of pages: 0+65

Department of Computer Science

Professorship:

Supervisor: Prof. Juho Rousu

Advisors: D.Sc. Sandor Szedmak, M.Sc. Anna Cichonska

Modern data processing and analytic tasks often deal with high dimensional
matrices or tensors; for example: environmental sensors monitor (time, location,
temperature, light) data. For large scale tensors, efficient data representation plays
a major role in reducing computational time and finding patterns.
The thesis firstly studies about fundamental matrix, tensor decomposition algo-
rithms and applications, in connection with Tensor Train decomposition algorithm.
The second objective is applying the tensor perspective in Multiple Kernel Learning
problems, where the stacking of kernels can be seen as a tensor. Decomposition this
kind of tensor leads to an efficient factorization approach in finding the best linear
combination of kernels through the similarity alignment. Interestingly, thanks to
the symmetry of the kernel matrix, a novel decomposition algorithm for multiple
kernels is derived for reducing the computational complexity.
In term of applications, this new approach allows the manipulation of large scale
multiple kernels problems. For example, with P kernels and n samples, it reduces
the memory complexity of O(P 2n2) to O(P 2r2 + 2rn) where r < n is the number
of low-rank components. This compression is also valuable in pair-wise multiple
kernel learning problem which models the relation among pairs of objects and its
complexity is in the double scale.
This study proposes AlignF_TT, a kernel alignment algorithm which is based on the
novel decomposition algorithm for the tensor of kernels. Regarding the predictive
performance, the proposed algorithm can gain an improvement in 18 artificially
constructed datasets and achieve comparable performance in 13 real-world datasets
in comparison with other multiple kernel learning algorithms. It also reveals that
the small number of low-rank components is sufficient for approximating the tensor
of kernels.

Keywords: Tensor decomposition, kernel learning, multiple kernel learning, mul-
tiple kernel approximation

iii

Preface
Six months ago, I started to do this thesis which firstly is matrix completion on
drugs-targets interaction datasets or recommendation systems in general. The manip-
ulation on matrices gives me more insight into the linear algebra world. Gradually,
my attention transforms into exploring basic linear algebra operators and multidi-
mensional matrices or tensors. Fortunately, I finally found an application of tensor
decomposition on the kernel learning framework. This thesis is the report of this
long process. I cannot express the joyfulness when understanding a new definition,
deriving equations, and finding a new interested book.

I would like to thank my supervisor Professor Juho Rousu for his kindness and
guidance for doing a proper scientific research. Without his funding and support, I
can not finish my master study in 2 years. Dr Sandor Szedmak is my instructor and
math teacher who inspired me to explore the tensor relations in machine learning.
His lessons in math and science are the guidance for my further works and study.
I really appreciate his time for carefully answering my questions. I want to thank
Anna Cichonska for her experience in drug-interaction data and methodology. My
proposed algorithm is inspired from her publication about the tensor kernel alignment
algorithm. I want to appreciate Huibin Shen for providing datasets, the experiment
section could not be done without his support. Finally, I want to thank all members
in the KEPACO research group for your discussion and feedbacks related to my
research.

Hope that I can return to do the academic research soon.

Otaniemi, 30.07.2017

Linh Nguyen

iv

Contents
Abstract ii

Preface iii

Contents iv

1 Introduction 1
1.1 Notation . 2

2 Tensor decomposition 3
2.1 Singular value decomposition . 3

2.1.1 Singular value decomposition 3
2.1.2 Matrix factorization interpretation 4

2.2 Tensors definition . 5
2.2.1 SVD revisited . 17

2.3 CP decomposition . 17
2.3.1 Tensor rank . 18
2.3.2 The algorithm . 19

2.4 Tucker decomposition . 21
2.4.1 The n-rank and multilinear rank 21
2.4.2 The Higher Order SVD (HOSVD) 21
2.4.3 Tucker decomposition algorithm 22

2.5 Tensor train decomposition . 24
2.5.1 Analysis and definition . 24
2.5.2 Algorithm . 26

3 Multiple Kernel Learning 28
3.1 Kernel learning . 28

3.1.1 Pairwise kernel learning . 30
3.2 Multiple Kernel Learning . 31

3.2.1 MKL algorithms . 31
3.2.2 Overall comparison . 34
3.2.3 AlignF algorithm . 34

4 Tensor method for Multiple Kernel Learning 36
4.1 Factorized AlignF algorithm . 36
4.2 The optimal decomposition for the tensor of kernels 38

5 Experiments 42
5.1 Data and experiment setup . 42

5.1.1 Artificially constructed datasets 42
5.1.2 Real datasets . 44
5.1.3 Experiments setup . 45

5.2 Results . 47

v

5.2.1 Artificial constructed datasets 47
5.2.2 Real-world datasets . 52

6 Discussion 59

7 Acknowledgement 60

References 61

A Appendix 65
A.1 The accuracy vs low-rank number . 65

vi

List of Figures
1 Algorithms to be considered in this thesis 1
2 Singular Vector Decomposition components 4
3 Matrix factorization interpretation for an element 5
4 An order-3 tensor . 6
5 An order-3 tensor with specific values 6
6 A mode-1 fiber A(:, j, k), a mode-2 fiber A(i, :, k), and a mode-3 fiber

A(i, j, :) . 7
7 A 3-order tensor fiber: A(:, 1, 1) . 7
8 A slice of the order-3 tensor: A(:, :, 2) 8
9 Rank-one third-order tensor . 8
10 The mode-1 unfolding example . 9
11 The mode-2 unfolding example . 9
12 The mode-3 unfolding example . 10
13 Tensor A of indices . 10
14 The CP decomposition for an order-3 tensor 18
15 The Tucker decomposition components for an order-3 tensor 21
16 Tensor train decomposition and reconstruction for a specific element

in a matrix . 25
17 The Tensor train decomposition and its reconstruction for a specific

element in an order-3 tensor (cubic) 25
18 Tensor train decomposition components for an order-4 tensor 26
19 Components of the Support Vector Machine algorithm in two dimen-

sional samples. 28
20 The comparison between kernel learning and pair-wise kernel learning 30
21 The framework of Factorization AlignF 37
22 The Tensor Train algorithm decomposition steps for an order 3 tensor

which is created by stacking kernels 39
23 The graphical model of the generation process for a sample 42
24 Toy datasets in different scales . 43
25 Linear kernels in different scale datasets 44
26 Toy-data-1 :Accuracy change in different datasets 47
27 Toy-data-1 :The macro-F1 change in different datasets 48
28 Toy-data-1 :The micro-F1 change in different datasets 49
29 Toy-data-2 :Accuracy change in different datasets 49
30 Toy-data-2 :The macro-F1 change in different datasets 50
31 Toy-data-2 :The micro-F1 change in different datasets 51
32 AlignF_TT performance in different low-rank numbers in Yeast data 54
33 AlignF_TT performance in different low-rank numbers in Emotions

data . 54
34 AlignF_TT performance in different low-rank numbers in iaprtc12 data 55
35 AlignF_TT performance in different low-rank numbers in psortPos data 55
36 AlignF_TT running time in different low-rank numbers in Emotions

data . 56

vii

37 AlignF_TT running time in different low-rank numbers in Enron data 57
38 AlignF_TT running time in different low-rank numbers in psortPos

data . 57
39 AlignF_TT running time in different low-rank numbers in psortNeg

data . 58
A1 AlignF_TT performance in different low-rank numbers in Enron data 65
A2 AlignF_TT performance in different low-rank numbers in Fingerprint

data . 66
A3 AlignF_TT performance in different low-rank numbers in Protein data 66
A4 AlignF_TT performance in different low-rank numbers in corel5k data 67
A5 AlignF_TT performance in different low-rank numbers in espgame data 67
A6 AlignF_TT performance in different low-rank numbers in iaprtc12 data 68
A7 AlignF_TT performance in different low-rank numbers in mirflickr data 68
A8 AlignF_TT performance in different low-rank numbers in pascal07 data 69
A9 AlignF_TT performance in different low-rank numbers in psortPos data 69
A10 AlignF_TT performance in different low-rank numbers in psortNeg data 70
A11 AlignF_TT performance in different low-rank numbers in plant data 70

1

1 Introduction
This thesis covers two major topics: the Tensor decomposition and its application in
Multiple Kernel Learning. Related algorithms are described in the Figure 1.

Similarity based
 algorithms

Multiple Kernel
Learning

Singular Value
Decomposition

Structured-risk
based algorithms

Centered kernel
alignment (AlignF)

CP
decomposition

Tucker
decomposition

Tensor Train (TT)
decomposition

Optimal Tensor Train
decomposition for
multiple kernels

AlignF_TT
(Factorized AlignF)

Figure 1: Algorithms to be considered in this thesis

This thesis first gives an overview of fundamental decomposition methods for
matrices and tensors. In decomposing a matrix, Singular Value Decomposition (SVD)
[1] algorithm represents a matrix as the weighted sum of rank-1 matrices or the
multiplication of factor matrices. For a higher dimensional matrix or a tensor, decom-
position algorithms are also derived from the SVD. The CANDECOMP/PARAFAC
(CP) decomposition [2] takes the perspective of the weighted sum of rank-1 tensors
while the Tucker decomposition [3] and Tensor Train decomposition [4] use SVD as
the workhorse algorithm. Regarding the application, tensor decomposition methods
also are employed in many fields: from linear algebra to machine learning, data
mining, computer vision [5]. In Section 2, the primary objective is to derive solutions
for these algorithms and relations, and for the potential applications.

Secondly, this study focuses on Multiple kernels learning [6], which has been
studied mostly independently from tensor decomposition methods in the literature.
The Multiple Kernel Learning (MKL) is a branch of the kernel learning method [7],
where a set of kernels is available. The purpose of MKL is combining data from
different sources and automatically selecting optimal kernels to improve the learning
performance. Typically, these algorithms treat each kernel separately to find an
optimal combination of them. To apply the tensor decomposition into these MKL

2

algorithms; this study focuses on two major MKL approaches based on the structured
risk objectives [8] and kernel alignment algorithms [9]. Then Section 3 introduces
the kernel learning framework, MKL algorithms and its development.

The fourth section describes two main findings of this study. One important
finding is a novel algorithm for decomposing a tensor of kernels. Another interesting
finding is a new centered kernel alignment algorithm which is based on the novel
decomposition for the tensor of kernels. Then, Section 5 reports datasets and
algorithm configurations to evaluate the performance of the proposed kernel alignment
algorithm. Two sets of experiments are conducted on artificially constructed and
real-world data sets. The first one manipulates in 18 artificially constructed datasets
to evaluate the performance of kernel alignment algorithms under different data
generation settings. The second experiment in 13 real-world datasets is conducted
to compare the performance of algorithms in various kind of data including texts,
images, and bioinformatics datasets.

1.1 Notation
• A vector containing all ones or zeros is denoted as 1 or 0, respectively.

• x denotes a column vector and thus xT describes it in the row format.

• With (x, y, . . . , z) is the stacking of vectors to create a matrix in column order.
The row stacking order as (xT ; yT ; . . . ; zT) by using the semicolon.

• A full matrix is denoted in the mathbold type fonts: A.

• A general matrix A ∈ Rn×m is a stack of m vector as (x, y, . . . , z) where each
x ∈ Rn.

• For a matrix A, Aij or A(i, j) is the element at row ith and column jth.

• The colon notation presents the row or column of a matrix. For example:
A(k, :) = [Ak1, Ak2, . . . , Akm] is kth row of a matrix.

• Σ is the diagonal matrix.

• σ is the singular value.

• Tensors are denoted in calligraphic fonts : A.

3

2 Tensor decomposition

2.1 Singular value decomposition
Finding the subspace that captures important properties of a dataset or the data-
embedding configurations in a metric space is the crucial task in pattern recognition
and machine learning [10]. By projecting data into this subspace and analysing the
resulted data, many data-mining tasks can be solved; for example: dimensionality
reduction, component interpretation, removing noise, and visualisation. To find
this subspace, many well-known algorithms use Singular value decomposition (SVD)
method [11] as the workhorse algorithm. For example, Principle Component Analysis
aims to find the set of directions that explains most data variance and its solution
corresponds to the SVD algorithm. Due to the importance of SVD in machine
learning and data mining, this section describes its essential formulas and properties,
along with some discussions relating to the tensor decomposition algorithms.

2.1.1 Singular value decomposition

Formally, the singular value decomposition of a matrix A ∈ Rn×m returns real
matrices U,V and a diagonal matrix with non-negative elements Σ which are
satisfied:

A = UΣVT (1)
where

• U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices and contain the left and
right singular vectors of A as their columns, respectively.

• Σ ∈ Rn×m is the diagonal matrix that contains singular values σi in decreasing
order.

According to [11], the SVD can explicitly show the rank and the null space of a
matrix. For the low-rank r ≤ min{m,n}, there are r vectors in the set of U =
{u1, u2, . . . , ur} spans the column space of A and the rest (m − r) vectors from
U0 = {ur+1, ur+2, . . . , um} is the left null space of A. The reason is when r > 0 then
UT

0 A = 0 and a column in matrix A is the weighted linear combination from the
vector in set U, then this set spans the column space of A. The same definition for
the right singular matrix V.

SVD can equivalently written as:

A =
r∑
i=1

σiuiv
T
i (2)

where each outer product uivTi returns a rank-one matrix, so A is the weighted com-
bination of rank-1 matrices. Pairs of eigenvectors associated with higher eigenvalues
contains more information to reconstruct the original matrix.

In dimension reduction, the data of n samples and m features is stored in a matrix
A. By using the SVD decomposition, we can efficiently approximate A by lower

4

A =






· · · · · ·

u1 urur+1 um

col(A) null(A)

σ1

. . .

σr

0
. . .

0













vT1

vTr

vTr+1

vTn

row(A)

null(A)

Figure 2: Singular Vector Decomposition components

dimensional matrices with a high reconstruction accuracy. This property is proof in
the Eckhart-Young theorem [12] which states that the SVD provides the best least
square approximation for a matrix. In this case, the left singular matrix U ∈ Rn×k is
the solution and new feature values for each sample is the coordinate of this sample
in the subspace that contains the largest amount of data variance. Particularly, if
k = 2, the dataset of n points can be visualized in a 2 dimensional plan. This is due
to U contains eigenvectors of the covariance matrix AAT of the data in A.

AAT = (UΣVT)(VΣUT) = UΣ2UT

2.1.2 Matrix factorization interpretation

The matrix factorization (MF) is the problem of approximating a matrix by the
product of two matrices. The task is to find these matrices and typically they have a
lower dimension than original data dimension.

A ≈W×H (3)

where A ∈ Rn×m and W ∈ Rn×k, H ∈ Rk×m and k ≤ min(m,n). For each ith
column A(:, i) in matrix A, we have:

A(:, i) ≈ WH(:, i) (4)

or each column of the original data is reconstructed by weighted combination of W
matrix with a corresponding column in H matrix.

In the other hand, W can be seen as the feature matrix and H is the coefficient
matrix. A column A(:, i) is the combination of new feature matrix W with weights
from corresponding column in the coefficient matrix H. In detail, the set of columns
in W = {w1, w2, . . . , wk}, then the data column reconstruction as follow:

A(:, i) ≈
k∑
j=1

W (:, j)×H(j, i)

5

For a specific data element Aij, it is the weighted combination of row ith of W
and column jth of H.

Aij ≈ W (i, :)×H(:, j) or Aij ≈ W [i]×H[j]

where W [i] = W (i, :) ∈ R1×k and H[j] = H(:, j) ∈ Rk×1, or having the same number
of dimension or low-rank factors.

≈
×

Aij

W [i]

H[j]

Figure 3: Matrix factorization interpretation for an element

By this kind of representation, each original data element is reconstructed by the
production of two vectors in the low-rank space. Then, with (n+m) indices for rows
and columns, each index need a vector ∈ Rk to store its coefficients, the memory
complexity is O(k(m+ n)).

In data mining applications, we can analyse properties of new data features
through matrix W and the relations among original data features by using H [13].
For example, in text mining, the non-negative matrix factorization algorithms [14] are
well developed for analyzing text data. The data is a document-term matrix where
rows are documents and columns are the information of terms in each document.
By finding a factorized representation, the matrix is decomposed into document-
feature and feature-term matrices, in which a feature stands for the lower dimensional
approximation or data contents. Typically, the document-feature information is used
for clustering documents or topic modeling.

Interestingly, the matrix factorization form can be achieved by using SVD. The
SVD decomposition of matrix A = UΣVT , then the MF solution is:

W = Uk and H = ΣkVT
k (5)

where Uk,Σk,Vk is the reduction of original matrix to contain only first largest k
eigenvalues and eigenvectors.

2.2 Tensors definition
Tensor is the multidimensional array of numerical values. Formally, an order-d tensor
is a d-dimensional array. For example, a scalar is an order-0 tensor, a vector and
a matrix are an order-1 and order-2 tensor, respectively. Additionally, the tensor
formulation is a compact way to represent a multidimensional dataset. For example,
a collection of documents that contains authors, terms, and publish dates can be seen
as a order-3 tensor. A colour image with 3 channels: R, G, B, can be seen as a tensor
of [height × weight × colour]. Due to the tensor is the generalisation of the matrix,

6

the tensor decomposition is a generalisation of the low-rank decomposition for a
matrix. This section will discuss the definition of tensor operators and decomposition
algorithms which focus on CP decomposition (CANDECOMP/PARAFAC), Tucker
decomposition [15], and Tensor Train decomposition [4].

Tensor notation The order of a tensor is in modes; for example, mode-1 of a
matrix is its rows and columns are in mode-2. A general d-order real tensor is
A ∈ Rn1×n2×···×nd and an element is A(i1, i2, . . . , id) where the index range for mode
kth is ik ∈ [1 : nk]. The colon notation “:” is used to indicate all elements in a mode
or a specific index subset.

For example, the cube in Figure 4, a 3 dimensional array A ∈ Rn1×n2××n3 is
depicted as a cubic. Figure 5 shows the order-3 tensor: A ∈ R3×4×2 in which mode-1
size is 3 and 4, 2 is for mode-2, mode-3, respectively.

1
:
n
1

1 : n2

A

1
: n

3

Figure 4: An order-3 tensor

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

A ∈ R3×4×2

Figure 5: An order-3 tensor with specific values

Tensor parts: fiber and slice Parts of array or subarrays are made by fixing a
subset of array indices. In a matrix or a mode-2 tensor, these parts are rows and
columns and denoted as A(:, i) and A(j, :) for column i-th and row j-th, respectively.
In a tensor, due to it has multi-dimensional indices, many possible indexing ways for
using colon notation are available. This paragraph describe two special subarrays in
tensors which are fiber and slice.

A fiber is a vector that is obtained by fixing all indices but one. For example,
fibers are depicted in an order-3 tensor in Figure 6, 7.

A slice is a vector that is obtained by fixing all indices but two. For example, in
Figure 8, a matrix is obtained when choosing all elements of two dimension and an
index is fixed in the third dimension.

7

Figure 6: A mode-1 fiber A(:, j, k), a mode-2 fiber A(i, :, k), and a mode-3 fiber
A(i, j, :)

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

A ∈ R3×4×2

Figure 7: A 3-order tensor fiber: A(:, 1, 1)

Rank-one and diagonal tensor Analogically to the rank-one matrix, the d-order
rank-one tensor is formed by the outer product [11] of d vectors. ForA ∈ Rn1×n2×···×nd :

A = a(1) ◦ a(2) ◦ · · · ◦ a(d)

where a(k) is the k-th vector. Thus, an element A(i1, i2, . . . , id) is the product of
corresponding elements in d vectors:

A(i1, i2, . . . , id) = a(1)(i1)a(2)(i2) . . . a(d)(id)

For example, Figure 9 visualizes the third-order rank-one tensor for A = a ◦ b ◦ c.
A diagonal tensor A ∈ Rn1×n2×···×nd that an element A(i1, i2, . . . , id) is 1 if and

only if i1 = i2 = · · · = id.

Tensor norm The norm of a tensor A ∈ Rn1×n2×···×nd is the square root of the
sum of squares of all elements:

||A||F =
√√√√ n1∑

i1

n2∑
i2

· · ·
nd∑
id

A(i1, i2, . . . , id)2

Matricization: mode-k unfolding In tensor computations, the typical step is
tensor unfoldings or flattening which rearranges a tensor to a simpler form: a matrix,
to utilize it well-foundation computations and discover patterns in the matrix from.
According to [11], there are three main reasons to do that:

• Tensor operations can be reformulated as matrix operators through multiple
unfolding steps.

8

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

A ∈ R3×4×2

Figure 8: A slice of the order-3 tensor: A(:, :, 2)

A =
a

c

b

Figure 9: Rank-one third-order tensor

• An iterative tensor optimisation framework contains one or more unfolding
steps.

• Hidden patterns of a tensor sometimes can be discovered through unfolding it
into matrix forms.

There are several possible ways to assemble a tensor to a matrix. For example, we
can rearrange a tensor A ∈ R3×4×2 in Figure 5 to a [12×2] matrix or a [4×6] matrix.
In this section, we discuss an important family of tensor unfolding which is the
mode-k unfolding. A(k) denotes the mode-k unfolding of the tensor A ∈ Rn1×n2×···×nd .
Formally, the size of A(k) is nk-by-(N/nk) where N = n1 × n2 × · · · × nd and it is
the stacking of mode-k fibers in the column order. A tensor element (i1, i2, . . . , id)
maps to the matrix element (ik, j) by:

j = 1 +
nd∑

l=1; l 6=k
(il − 1)Jl where Jl =

nl∏
l=1; l 6=k

nl (6)

= 1 + (i1 − 1)n1 + (i2 − 1)n1n2 + · · ·+ (id − 1)(n1n2 . . . nd)
Intuitively, this indexing system is analogous to the matrix indexing system by adding
columns in other modes for flattening purpose. On the other hand, this step fixes
one index system for a mode and stacking mode by mode for others. For the mode-k
unfolding, the index in the k position is preserved and all others are folded into one
index. For example, the mode-1 matricization for a tensor in Figure 5 is visualized
in Figure 10. Following that, its mode-2 and mode-3 unfolding is in Figure 11, 12.

In detail, Figure 13 shows the unfolding example is in the indices format. Then,
the mode-1 unfolding is:

A(1) =

a111 a121 a131 a141 a112 a122 a132 a142
a211 a221 a231 a241 a212 a222 a232 a242
a311 a321 a331 a341 a312 a322 a332 a342



9

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

A ∈ R3×4×2

1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24
A(1) =

Figure 10: The mode-1 unfolding example

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24
A(2) =

Figure 11: The mode-2 unfolding example

A(2) =


a111 a211 a311 a112 a212 a312
a121 a221 a321 a122 a222 a322
a131 a231 a331 a132 a232 a332
a141 a241 a341 a142 a242 a342


A(3) =

[
a111 a211 a311 a121 a221 a321 a131 a231 a331 . . .
a112 a212 a312 a122 a222 a322 a132 a232 a332 . . .

]

Tensor product: mode-k product This section considers the tensor-matrix
multiplication via the mode-k of a tensor. In general, the multiplication of two
tensors can be derived as between matrices; this operator is called tensor contraction
which is clearly described in Chapter 12.4.9 of [11]. The mode-k or modal product
is the special case and important family of the tensor contraction. This product
operator needs a tensor, a matrix, and a specific mode. Formally, given a tensor
A ∈ Rn1×n2×···×nd and a matrix M ∈ Rmk×nk , the mode-k product is the matrix
multiplication of the mode-k unfolding A(k) and M, and returns a tensor Y :

Y(k) = M×A(k) (7)

or according to [15], the shorted form of this equation is Y = A ×(k) M. The
configuration of these terms are the tensor A ∈ Rn1×n2×...nk−1×nk×nk+1×···×nd , the
matrix M ∈ Rmk×nk , the tensor Y ∈ Rn1×n2×...nk−1×mk×nk+1×···×nd . In the element-
wise description, an element in Y is the inner product of two fibers: M(αk, :) and

10

1 5 9 2 6 10 3 7 11 4 8 12

13 17 21 14 18 22 15 19 23 16 20 24
A(3) =

Figure 12: The mode-3 unfolding example

a112 a122 a132 a142
a212 a222 a232 a242
a312 a322 a332 a342

a111 a121 a131 a141
a211 a221 a231 a241
a311 a321 a331 a341

A ∈ R3×4×2

Figure 13: Tensor A of indices

A(i1, . . . , ik−1, :, ik+1, . . . , id) for the mode-k product on the kth dimension.

Y(i1, . . . , ik−1, αk, ik+1, . . . , id) =
nk∑
j=1

M(αk, j)A(i1, . . . , ik−1, j, ik+1, . . . , id) (8)

with αk ∈ [1 : mk]
For example, if A ∈ R3×4×2 is in Figure 13 and M ∈ R2×4, then Y(2) = M×A(2):

Y(2) =
[
a111 a211 a311 a112 a212 a312
a121 a221 a321 a122 a222 a322

]

=
[
m11 m12 m13 m14
m21 m22 m23 m24

]
×


a111 a211 a311 a112 a212 a312
a121 a221 a321 a122 a222 a322
a131 a231 a331 a132 a232 a332
a141 a241 a341 a142 a242 a342


Intuitively, this multiplication replaces the content of the dimension k of A by

weighted combination of this mode information with a matrix M. For the sequences
of multiplications, when assuming component dimensions matches, the final result is
independent the order [15].

A×k M×h N = A×h N×k M (h 6= k) (9)

where N ∈ Rzh×nh . Similarly, when M is a vector or M ∈ R1×nk , the mode-k product
between a tensor and a vector returns a d − 1 dimensional tensor. It is easy to
show that, the returned matrix Y ∈ Rn1×n2×...nk−1×1×nk+1×···×nd and the equivalent
representation is Y ∈ Rn1×n2×...nk−1×nk+1×···×nd .

Vec operator for a matrix The vector form is the common representation of a
matrix and a tensor with some proper rearrangements. This vector representation or
vec operator allows to write matrices and tensors in the same form and thus faster
the equation reduction step.

11

The operator vec for a matrix is the reshaping of a matrix X ∈ Rm×n to a vector
of Rnm×1, by stacking columns of X .

vec(X) =


X(:, 1)
X(:, 2)
. . .

X(:, n)



In detail, for a matrix X =
[
a11 a12 a13
a21 a22 a23

]
then vec(X) =



a11
a21
a12
a22
a13
a23


Vec operator for a tensor is a generalisation of the matrix vectorization. This
operator stacks columns from the last dimensional index as follow, for a d-dimensional
tensor A ∈ Rn1×n2×···×nd :

vec(A) =


vec(A(1))
vec(A(2))

. . .
vec(A(nd))


where A(k) is the (d− 1)-dimensional tensor ∈ Rn1×n2×···×nd−1 , in which:

A(k)(i1, i2, . . . , id−1) = A(i1, i2, . . . , id−1, k)

Note that, A(k) is different with A(k) which is the mode-k matrix. A(k) is the copy
of original tensor when the last index id is fixed for a specific value k. For a d
dimensional tensor, this definition is recursive from A(k) of A, to (A(k′))(k) of A(k)

until fixing d− 1 indexes to get a scalar, then go back to stack columns of higher
order tensor columns. For example, the vec of an order-3 tensor A2×3×2:

a112 a122 a132
a212 a222 a232

a111 a121 a131
a211 a221 a231

12

is given by

vec(A) =
[
vec(A(1))
vec(A(2))

]
=
[
vec(A(:, :, 1))
vec(A(:, :, 2)

]
=



a111
a211
a121
a221
a131
a231
a112
a212
a122
a222
a132
a232


Outer product The outer product ◦ is the product between two coordinate vectors.
Formally, for vectors u ∈ Rm, v ∈ Rn then A = uvT = u ◦ v is a rank-1 matrix
∈ Rm×n. For u = [u1, u2, u3]T and v = [v1, v2]T :

A = uvT =

u1
u2
u3

 [v1 v2
]

=

u1v1 u1v2
u2v1 u2v2
u3v1 u3v2

 =

v1

u1
u2
u3

 , v2

u1
u2
u3


 (10)

The outer product of more than 2 vectors returns a tensor. For example, the outer
product of 3 vectors returns an rank-1 order-3 tensor, in which:

A = u ◦ v ◦ w and A(i, j, k) = u(i)v(j)w(k) (11)

where u ∈ Rm, v ∈ Rn, w ∈ Rk and A ∈ Rm×n×k. For example, if u = [u1, u2]T ,
v = [v1, v2]T , and w = [w1, w2]T , the u ◦ v ◦ w is:

u1v1w2 u1v2w2

u2v1w2 u2v2w2

u1v1w1 u1v2w1

u2v1w1 u2v2w1

Kronecker product In the case of scalar-matrix multiplication and doing this for
many scalars in order to obtain a new block matrix, we need to use the Kronecker
operator. Formally, for matrices B ∈ Rm1×n1 and C ∈ Rm2×n2 , the Kronecker product
D = B ⊗C ∈ Rm1n1×m2n2 is a block matrix, in which a block at (i, j) is a matrix.
Thus, D is the m1-by-n1 block matrix whose (i, j) block is matrix b(i, j)C of the size
m2-by-n2. For example, if B ∈ R3×2 and C ∈ R2×2 then:

D = B⊗C =

b11 b12
b21 b22
b31 b32

 [c11 c12
c21 c22

]
=

 b11C b12C
b21C b22C
b31C b32C

 =

13



b11c11 b11c12
b11c21 b11c22

b12c11 b12c12
b12c21 b12c22

b21c11 b21c12
b21c21 b21c22

b22c11 b22c12
b22c21 b22c22

b31c11 b31c12
b31c21 b31c22

b32c11 b32c12
b32c21 b32c22


(12)

The power of Kronecker product comes from its structure properties, fast practical
algorithms, and connection between tensor and matrix computation [16]. Firstly,
the vector form of matrices and tensors operators can be rewritten thanks to the
Kronecker product. For matrices, Equation (10) is equivalent with:

A = u◦ v =

u1v1 u1v2
u2v1 u2v2
u3v1 u3v2

 =

v1

u1
u2
u3

 , v2

u1
u2
u3


⇒ vec(A) =



v1u1
v1u2
v1u3
v2u1
v2u2
v2u3


=
[
v1
v2

]
⊗

u1
u2
u3



then
vec(u ◦ v) = v ⊗ u

When the outer product returns a tensor, we do the same procedure for the example
of Equation (11). For u = [u1, u2]T , v = [v1, v2]T , and w = [w1, w2]T :

A = u ◦ v ◦ w =
[
u1
u2

]
◦
[
v1
v2

]
◦
[
w1
w2

]
⇒ vec(A) =



u1v1w1
u2v1w1
u1v2w1
u2v2w1
u1v1w2
u2v1w2
u1v2w2
u2v2w2


=

[
w1
w2

]
⊗


u1v1
u2v1
u1v2
u2v2

 =
[
w1
w2

]
⊗
[
v1
v2

]
⊗
[
u1
u2

]

then
vec(u ◦ v ◦ w) = w ⊗ v ⊗ u

As a tensor is a multi-dimension array, each mode-k matrix also can be described by
the Kronecker product. By using the above example, A(1) is:

A(1) =
[
u1v1w1 u1v2w1 u1v1w2 u1v2w2
u2v1w1 u2v2w1 u2v1w2 u2v2w2

]
=
[
u1
u2

]
⊗
[
v1w1 v2w1 v1w2 v2w2

]

14

=
[
u1
u2

]
⊗


v1w1
v2w1
v1w2
v2w2


T

=
[
u1
u2

]
⊗
([
w1
w2

]
⊗
[
v1
v2

])T

then
A(1) = u⊗ (w ⊗ v)T

These rules describe the Kronecker representation among tensors and matrices:

A = u(1) ◦ u(2) ◦ . . . u(d) ∈ Rn1×n2×···×nd

then
vec(A) = u(d) ⊗ u(d−1) · · · ⊗ u(2) ⊗ u(1) (13)

A(k) = u(k) ⊗
(
u(d) ⊗ . . . u(k+1) ⊗ u(k−1) · · · ⊗ u(2) ⊗ u(1)

)T
(14)

A sequence of matrix-matrix multiplications can be represented in the Kronecker
product with vec operator. For matrices: Y ∈ Rm2×m1 , C ∈ Rm2×n2 , X ∈ Rn2×n1 ,
and B ∈ Rm1×n1

Y = CXBT ⇔ vec(Y) = (B⊗C)vec(X) (15)

A very clear example for Equation (15) is in Chapter 1.3.5 of [11]. From the
Equation (12), we can see that the structure property of resulted matrix from B⊗C
is dependent on the structure of B. Then if B has a band structure (diagonal,
tridiagonal, lower/upper triangular) then the B⊗C retains the same structure as
B.

From [16], some notable properties of the Kronecker product is:

(B⊗C)T = BT ⊗CT

(B⊗C)(D⊗ F) = (BD)⊗ (CF) (16)
(B⊗C)⊗D = B⊗ (C⊗D)

(B⊗C)† = B† ⊗C†

Hadamard product The Hadamard product definition is quite straight-forward,
it is the elementwise product for matrices of similar size. Formally, the Hadamard
product between two matrices B,C ∈ Rm×n is:

A = B ∗C and A ∈ Rm×n

A(i, j) = B(i, j)C(i, j)

Shortly, an element of A is the multiplication of 2 corresponding elements from B
and C in terms of row and column index.

15

Khatri-Rao product is the special case of Kronecker product when two matrices
contain the same number of columns. Formally, the Khatri-Rao product between
two matrices B ∈ Rm1×n and C ∈ Rm2×n is:

A = B�C and A ∈ Rm1m2×n

This product is the columwise product where matched column are multiplied by the
Kronecker product. For example, the separation of matrices B,C into columns are:

B = [b1 | b2 | . . . | bn] and C = [c1 | c2 | . . . | cn]

where n columns are available and each bi ∈ Rm1×1 and ci ∈ Rm2×1. We can represent
the Khatri-Rao product to get A as follow:

A = [b1 ⊗ c1 | b2 ⊗ c2 | . . . | bn ⊗ cn]

where ai = bi ⊗ ci return a column vector of size m1-by-m2 and the number columns
of A remains n.

According to [15], the properties of Khatri-Rao product:

A�B�C = (A�B)�C = A� (B�C)
(A�B)T (A�B) = ATA ∗BTB (17)

(A�B)† = ((ATA) ∗ (BTB))†(A�B)T

Multilinear product is the product among one tensor and many matrices where
giving a tensor A ∈ Rn1×n2×···×nd , a tensor S ∈ Rr1×r2×···×rd , and d matrices Mk ∈
Rnd×rd . Then, the multilinear product among tensor S and multiple matrices M
creates a tensor A:

A = S ×1 M1 ×2 M2 · · · ×d Md (18)

A(i1, i2, . . . , id) =
r1∑
j1

r2∑
j2

· · ·
rd∑
jd

S(j1, j2, . . . , jd)M1(i1, j1)M2(i2, j2) . . .Md(id, jd)

or equivalent with

vec(A) = (Md ⊗Md−1 ⊗ · · · ⊗M1)vec(S) (19)

regarding to the mode-k matrix of A

A(k) = Mk · S(k) · (Md ⊗Md−1 ⊗ . . .Mk+1 ⊗Mk−1 · · · ⊗M1)T (20)

In order to make these definitions clear, we will cover an example for order-2 tensor
and make the generalisation:

In the matrices case, the multilinear product according to these matrices: A ∈
Rn1×n2 , S ∈ Rr1×r2 , M1 ∈ Rn1×r1 , and M2 ∈ Rn2×r2 . Then

A = S×1 M1 ×2 M2 = M1SMT
2

16

For example, with S,M1,M2 ∈ R2×2, then A ∈ R2×2, in which:

M1 =
[
a11 a12
a21 a22

]
; S =

[
s11 s12
s21 s22

]
; M2 =

[
b11 b12
b21 b22

]
; MT

2 =
[
b11 b21
b12 b22

]

then

[
A(1, 1) A(1, 2)
A(2, 1) A(2, 2)

]
=


(a11s11 + a12s21)b11 (a11s11 + a12s21)b21

+(a11s12 + a12s22)b12 +(a11s12 + a12s22)b22

(a21s11 + a22s21)b11 (a21s11 + a22s21)b21
+(a21s12 + a22s22)b12 +(a21s12 + a22s22)b22

 =

[
a11s11b11 + a12s21b11 + a11s12b12 + a12s22b12 a11s11b21 + a12s21b21 + a11s12b22 + a12s22b22
a21s11b11 + a22s21b11 + a21s12b12 + a22s22b12 a21s11b21 + a22s21b21 + a21s12b22 + a22s22b22

]
then

vec(A) =


a11b11 + a12b11 + a11b12 + a12b12
a21b11 + a22b11 + a21b12 + a22b12
a11b21 + a12b21 + a11b22 + a12b22
a21b21 + a22b21 + a21b22 + a22b22

×

s11
s21
s12
s22

 =
([
b11 b12
b21 b22

]
⊗
[
a11 a12
a21 a22

])
×


s11
s21
s12
s22


= (M2 ⊗M1) vec(S)

From these equations we can infer these facts:

A(i, j) =
∑
r1

∑
r2

S(r1, r2)M1(i, r1)M2(j, r2)

then

A =
∑
r1

∑
r2

S(r1, r2) (M1(:, r1) ◦M2(:, r2))

=
∑
r1

∑
r2

S(r1, r2) (M2(:, r2)⊗M1(:, r1))

or vec(A) = (M2 ⊗M1) vec(S) as in above example. From this point of view, we
can make the generalisation to higher order tensor to get the equivalence between
Equation (18) and (19).

For the mode-k matrix of a multilinear product, we utilize the property of mode-k
product that:

A = S ×1 M1 ×2 M2 · · · ×d Md

= S ×k Mk ×1 M1 · · · ×k−1 Mk−1 ×k+1 Mk+1 · · · ×d Md

then
A(k) = Mk · S(k) · (Md ⊗Md−1 ⊗ . . .Mk+1 ⊗Mk−1 · · · ⊗M1)T (21)

17

2.2.1 SVD revisited

A Singular Value Decomposition for a matrix is equivalent to a multilinear product of
matrices in above example. The correspondence is evident by substituting U = M1,
Σ = S, V = M2, and S is diagonal. Then, there are 2 ways of expression for SVD
from multilinear product perspective: A = UΣVT :

A(i, j) =
∑
r1

∑
r2

Σ(r1, r2)U(i, r1)V (j, r2)

and

A =
∑
r1

∑
r2

Σ(r1, r2) (U(:, r1) ◦ V (:, r2))

=
∑
r

λr (U(:, r) ◦ V (:, r))

as S is a diagonal matrix and λr = Σ(r, r).
The first direction describes the actual result from multilinear product and the

latter can be seen as the weighted sum of rank-1 matrices. These results are matched
with our pre-knowledge about SVD and its derivations.

Then an order-2 tensor has 2 ways of description in order to reconstruct it from
other matrices. In order to generalize these properties for higher order tensor, main
ideas are still relied on these observation of SVD representation.

There are two principal algorithms to decompose a tensor: CP(CANDECOMP/PARAFAC)
and Tucker. The CP decomposition produces a weighted sum of rank-1 tensors and
the Tucker decomposition is the multilinear product for high order tensors. In the
following sections, we will discuss these decomposition algorithms in detail along
with a new way of decomposing a tensor: Tensor-Train algorithm.

2.3 CP decomposition
The CP decomposition is introduced as many names from different publications:
CANDECOMP [17], PARAFAC [18], and CP in [2]. Formally, given a tensor:
A ∈ Rn1×n2×···×nd , it finds a tensor approximation X̂ that:

min
X̂

||A − X̂ ||F

where
X̂ =

r∑
i=1

λi a
(1)
i ◦ a

(2)
i · · · ◦ a

(k)
i · · · ◦ a

(d)
i (22)

X̂ is the nearest approximation of the tensor A in terms of weighted sum of rank-1
tensors. The vector component a(k)

r ∈ Rnk×1 stands for the contribution of dimension
kth in the rank rth. This equivalent formula is derived from the property of the
multilinear product:

X̂ =
r∑
i=1

λi M(1)(:, i) ◦M(2)(:, i) · · · ◦M(d)(:, i)

18

where M(k) ∈ Rnk×r. Intuitively, each mode kth is compressed into a matrix nk-by-r
instead of nk-by-(n1×n2 · · · ×nk−1×nk+1 . . . nd) from the tensor unfolding property.
For example, in an order-3 tensor, the nearest approximation from CP decomposition
is showed in the Figure 14. in which:

X̂ =
a1

λ1

c1

b1 +

λ2

a2

c2

b2 + . . .

Figure 14: The CP decomposition for an order-3 tensor

X̂ =
r∑
i=1

λi ai ◦ bi ◦ ci (23)

where A ∈ Rn1×n2×n3 and ai ∈ Rn1×1, bi ∈ Rn2×1, ci ∈ Rn3×1

2.3.1 Tensor rank

Firstly, we recall the matrix rank that is the number of dimension of the vector space
which spans its columns. However, the tensor rank definition is quite different and
not a generalisation of the matrix rank.

The rank of a tensor A is denoted as rank(A) and it is the smallest number of
required rank-one tensors to exactly reconstruct A as in Equation (22). For example,
a tensor A ∈ Rn1×n2×···×nd is called as a rank-R tensor if:

A =
R∑
i=1

λi a
(1)
i ◦ a

(2)
i · · · ◦ a

(k)
i · · · ◦ a

(d)
i (24)

Following the elaborated article [15] and book [11], we will discuss some complication
of tensor rank.

• Determining the rank of a tensor is a NP-hard problem.

• There is more than one rank that is available for a tensor. For example from
[15], for a [2× 2× 2] tensor, authors determine that 79% of the space is filled
by rank-2 and the rest 21% for rank-3.

• The maximum rank is the largest rank can be obtained for a tensor. It is not
straight forward as max{n1, n2, . . . , nd}.

• The typical rank is any rank-r that fit the Equation (24) or any rank that
occurs with positive probability.

• A typical rank for an order-3 tensor are already calculated. For example: a
tensor 2× 2× 2 has a typical rank is {2, 3} and this number is {3, 4}, {5, 6}
for tensors of size [3× 3× 3], [5× 3× 3].

19

• For a general order-3 tensor: A ∈ Rn1×n2×n3 , the upper bound for its rank is
rank(A) ≤ min(n1n2, n2n3, n1n3).

2.3.2 The algorithm

In this section, we focus on the CP decomposition algorithm based on Alternating
Least Square procedure which is proposed in [17], [18]. In order to make the algorithm
to be understandable, we firstly find the solution for an order-3 tensor and derive
the final algorithm for a general order-d tensor.

Given a tensor: A ∈ Rn1×n2×n3 , the objective is finding an approximation of
tensor X̂ that:

min
X̂

||A − X̂ ||F (25)

X̂ =
r∑
i=1

λi M(1)(:, i) ◦M(2)(:, i) ◦M(3)(:, i)

where M (k) ∈ Rnk×r. This objective function is represented by unfolding its into
mode-k matrices:

||A − X̂ ||F = ||A(1) − X̂(1)||F = ||A(2) − X̂(2)||F = ||A(3) − X̂(3)||F

These objective functions are solved iteratively. Firstly, in the mode-k unfolding, we
need to find the corresponding CP approximation of this mode in the matrix form.
As the CP decomposition objective function (25) is in the multilinear product form
where the diagonal tensor S including λ, we can rewrite that:

X̂(1) =
r∑
i=1

λi M(1)(:, i) ·
(
M(3)(:, i)⊗M(2)(:, i)

)T
= M(1) · diag(λ) ·

(
M(3) � M(2)

)T

where diag(λ) =

 λ1 . . .
.
. . . λd

 is the diagonal matrix contains all mixing coefficients.

The term of (M(3)(:, i)⊗M(2)(:, i)) is the Kronecker product of vectors in M(3) and
M(2) in the same column index. Thus, it is the column-wise Kronecker product or
equivalent with the Khatri-Rao product between two matrices of the same number
of columns.

Equivalently, we obtain the derivation for X̂(2) and X̂(3):

X̂(2) = M(2) · diag(λ) ·
(
M(3) � M(1)

)T
X̂(3) = M(3) · diag(λ) ·

(
M(2) � M(1)

)T
There are three equivalent objective functions to the Equation (25) and we need to

20

find {diag(λ),M(1),M(2),M(3)} so that these quantities to be minimized:

||A(1) −M(1) · diag(λ) ·
(
M(3) � M(2)

)T
||F

||A(2) −M(2) · diag(λ) ·
(
M(3) � M(1)

)T
||F

||A(3) −M(3) · diag(λ) ·
(
M(2) � M(1)

)T
||F

The Alternating Least Square (ALS) strategy is used by fixing all variables except one
and solve the corresponding objective function. For example, when fixing M(3),M(2),
we need to find the minimize of this function:

||A(1) − M̃(1) ·
(
M(3) � M(2)

)T
||F

where M̃(1) = M(1) · diag(λ). Then the least squares solution is:

M̃(1) = A(1)

[(
M(3) � M(2)

)T]†
As the above equation need the inversion of a big matrix ∈ Rn3n2×r, nevertheless we
can calculate this quantity without doing this inversion thanks to the properties of
Khatri-Rao product:

M̃(1) = A(1)
(
M(3) � M(2)

) (
(M(3))TM(3) ∗ (M(2))TM(2)

)†
(26)

After getting the solution for M̃(1), we can get the solution for λj and M(1) after this
normalization:

λj = ||M̃(1)(:, j)||2 (27)
M(1)(:, j) = ||M̃(1)(:, j)||/λj

Finally, we can make a generalisation algorithm for a d-order tensor based on
Equations (26) and (27).
Algorithm 1: The CP decomposition algorithm based on Alternating Least
Square procedure
Data: A d-order tensor A ∈ Rn1×n2×···×nd

Input: The intended rank r
Output: diag(λ), M(1),M(2), . . . ,M(d)

Initialize M(k) ∈ Rnk×r randomly ;
while !stop-condition do

for k = [1, 2, . . . , d] do
/* least squares solution (26) */
V = M(d)TM(d) ∗ . . .M(k+1)TM(k+1) ∗M(d)TM(d) · · · ∗M(1)TM(1);
M̃(k) = A(k)

(
M(d) � . . .M(k+1) �M(k−1) · · · �M(1)

)
V †;

/* update the solution as Equation (27) */
for j = [1, 2, . . . , r] do

Update λj ;
Update M(k)(:, j) ;

21

2.4 Tucker decomposition
The Tucker decomposition is invented by Tucker [19], [3] and also has many names,
the most related under the name Higher Order SVD (HOSVD) [20]. The multilinear
product description is still the central matter. While the CP decomposition is based
on the diagonal tensor S, the Tucker decomposition uses a full one. Formally, given
a tensor A ∈ Rn1×n2×···×nd , a tensor S ∈ Rr1×r2×···×rd , and d matrices in which
Mk ∈ Rnd×rd . The Tucker decomposition objective function is finding a nearest
tensor X̂ which is in the form of multilinear product:

min
X̂

||A − X̂ ||F (28)

X̂ = S ×1 M1 ×2 M2 · · · ×d Md

For example, for an order-3 tensor A ∈ Rn1×n2×n3 , the decomposition components
are illustrated in Figure 15.

X̂ =

S

M2

M3M1

Figure 15: The Tucker decomposition components for an order-3 tensor

Due to the tensor S not being diagonal, we need to take care about the rank of
each mode: {r1, r2, . . . , rd}. We need to define the specific value for ri or find an
efficient value for it. The HOSVD is based on the SVD definition and ranks for each
mode-k matrix while the Tucker decomposition can achieve a higher compression by
user-defined ranks.

2.4.1 The n-rank and multilinear rank

In order to distinguish the HOSVD and Tucker decomposition, we need to define
notation for ranks of tensor modes. There are two common definitions:

• In [15], the n-rank for a tensor or rankn(A) is the rank of the matrix based on
mode-n unfolding: A(n). It is the column rank of matrix A(n).

• In [11], the multilinear rank or rank∗(A) contains all n-rank of all modes.

rank∗(A) = {rank1(A), rank2(A), . . . , rankd(A)}

2.4.2 The Higher Order SVD (HOSVD)

We can find an exact solution for Equation (28) when rk = rankk(A) for all modes.
The solution is given by using the SVD decomposition and providing specific ranks

22

for each mode. Given a tensor A, the SVD decomposition for each mode is:

A(k) = UkΣkVT
k

Recall that A(k) is the matrix of nk-by-(n1n2 . . . nk−1nk+1 . . . nd), thus the rank
rankk(A) ≤ min(nk, n1n2 . . . nk−1nk+1 . . . nd) and Uk expands the column space of
A(k). According to [20], its HOSVD is given by:

A = S ×1 U1 ×2 U2 · · · ×d Ud (29)
S = A×1 UT

1 ×2 UT
2 · · · ×d UT

d

where UT
k = U†k as the matrix Uk is columns orthogonal. Noted that the tensor S is

called core tensor.
Algorithm 2: The HOSVD decomposition algorithm
Data: A d-order tensor A ∈ Rn1×n2×···×nd

Input:
Output: S, M(1),M(2), . . . ,M(d)

Initialize M(k) ∈ Rnk×r randomly ;
for k = [1, 2, . . . , d] do

/* SVD decomposition for each mode */
A(k) = UkΣkVT

k ;
M(k) = Uk;

/* update the core tensor */
S = A×1 UT

1 ×2 UT
2 · · · ×d UT

d ;
Intuitively, the algorithm independently decomposes the tensor in each mode to

capture the mode-variance. Then the core tensor stores the interaction information
among separated modes to reconstruct the tensor.

2.4.3 Tucker decomposition algorithm

In the case of rk < rankk(A) in at least one mode or if one is aiming to achieve lower
rk, the HOSVD algorithm can be applied by taking less columns for the left singular
matrix Uk. However, this truncated HOSVD does not give the optimal solution for
the Tucker approximation objective function (28).

In order to derive a solution, firstly we analyse the Tucker optimization problem
in an order-3 tensor and make a generalisation latter. From vectorization properties
of the multilinear product, the equivalent objective function of (28) is

||A − X̂ ||F = ||vec(A)−
(
M(3) ⊗M(2) ⊗M(1)

)
vec(S)||2

As
(
M(3) ⊗M(2) ⊗M(1)

)
is column orthogonal so the solution for core tensor is:

vec(S) =
(
M(3) ⊗M(2) ⊗M(1)

)T
vec(A)

We get the new objective function by putting it back to the objective function:

min
M

||vec(A)−MMTvec(A)||2

23

where M =
(
M(3) ⊗M(2) ⊗M(1)

)
. Moreover, we can shorten it more by:

||vec(A)−MMTvec(A)||2
= ||vec(A)||2 − 2〈vec(A),MMTvec(A)〉+ ||MMTvec(A)||2
= ||vec(A)||2 − 2vec(A)TMMTvec(A) + ||MTvec(A)||2
= ||vec(A)||2 − ||MTvec(A)||2

where the last terms are equivalent as MTM = I as M is column orthogonal. As
the term ||vec(A)||2 is a constant then the final objective function is to maximize
that quantity:

||
(
M(3)T ⊗M(2)T ⊗M(1)T

)
vec(A)||2 =


||M(1)T · A(1) · (M(3) ⊗M(2))||F
||M(2)T · A(2) · (M(3) ⊗M(1))||F
||M(3)T · A(3) · (M(2) ⊗M(1))||F

At this point, we can apply the Alternating Least Squares to solve objective functions
in modes. In each mode, it leads to another optimization problem that given a matrix
A find the best projection Q:

min
Q

||QTA||F s.t QTQ = I

For example, in solving minM(1) ||M(1)T · A(1) · (M(3) ⊗M(2))||F , the A matrix is
corresponding to

(
A(1) · (M(3) ⊗M(2))

)
and Q is the matrix M(1).

Fortunately, this problem solution comes from the decomposition of A = USVT

as
||QTA||F = ||QTUSVT ||F = ||QTUS||F =

r∑
i=1

λi||QTU(:, i)||2

Then the solution for this nonnegative maximization problem is the top r̂ eigen-vectors
of the left singular matrix U. Then the final algorithm follows:
Algorithm 3: The ALS Tucker decomposition algorithm
Data: A d-order tensor A ∈ Rn1×n2×···×nd

Input: Input ranks {r1, r2, . . . , rd}
Output: S, M(1),M(2), . . . ,M(d)

Initialize M(k) ∈ Rnk×r randomly or from truncated HOSVD;
for k = [1, 2, . . . , d] do
Vk = A(k) · (M(d) ⊗ . . .M(k+1) ⊗M(k−1) · · · ⊗M(1)) ;
/* SVD decomposition */
Vk = UkΣkVT

k ;
M(k) = Uk(:, 1 : rk);

/* update the core tensor */
S = A×1 UT

1 ×2 UT
2 · · · ×d UT

d ;

24

2.5 Tensor train decomposition
2.5.1 Analysis and definition

We already discuss about two fundamental tensor decomposition algorithms: CP
and Tucker decomposition. However, these algorithms are not optimal in terms
of efficiency and stability. In the ideal case, if we have a d-order tensor and each
dimension contains n elements, then we need nd numbers to store it. In the CP
decomposition, the approximation from R rank-1 tensors needs Rdn parameters
and it is a quite small number in comparison with nd parameters. However, it is a
NP-hard problem in determining R and the CP algorithm is an ill-posedness problem
[21]. On the other hand, the Tucker decomposition is optimal but it suffers a high
complexity of O(Rd + dnR) parameters and thus remaining in the bottle neck of the
dimensionality curse.

Recently, the Tensor Train decomposition [4] has emerged as an efficient decom-
position algorithm that is stable and low complexity. It is a special case of the tensor
network [22] where a higher order tensor is approximated by many low-order tensors
and contraction operators (reshape and multilinear products). This network includes
nodes as low-order tensors and edges operates the contraction. Formally, given a
tensor A ∈ Rn1×n2×···×nd where each dimension kth the indexing is ik ∈ [1, 2, . . . , nk],
the Tensor Train decomposition of A is the multiplication of low-rank matrices Gi in
specific indicies for a specific element A(i1, i2, . . . , id):

A(i1, i2, . . . , id) = G1[i1]G2[i2] . . .Gd[id] (30)

where Gk is a 3-order tensor of rk−1 × nk × rk and Gk[ik] is a matrix of rk−1 × rk
with rk is the low-rank. In addition, the boundary conditions that r0 = rd = 1 in
order to get A(i1, i2, . . . , id) is a scalar. On the other hand, the TT can be seen as a
tensor factorization method, when a tensor can be described by the multiplication of
factors, each factor is a low-order tensor according to one index in a dimension.

TT decomposition for a matrix Firstly, a matrix is also an order-2 tensor, so
the TT decomposition is equivalent to the matrix factorization. In Figure 16, a 4-by-4
matrix A is decomposed into 2 smaller matrices G1,G2 (order-2 tensors). In each Gk,
there are 4 vectors according to 4 indices that make the low-rank approximation
for each specific dimension index of A. To reconstruct an element A(3, 2), the 3rd
component of G1 and the 2nd component of G2 are taken to do the multiplication.
Noted that, in this case of an order-2 tensor then both Gk are satisfy the boundary
conditions that r0 = r3 = 1 then G1 is r0 × n1 × r1 or 1× n1 × r1 and the same for
G2 of r1 × n2 × 1

TT decomposition for an order-3 tensor Similarly, for an order-3 tensor we
need to add an additional tensor G2 in decomposition components which stands for the
second dimension. Figure 17 shows the TT decomposition for a tensor A ∈ R4×2×3:

• G1 ∈ R1×4×r1

25

decomposition

Figure 16: Tensor train decomposition and reconstruction for a specific element in a
matrix

• G2 ∈ Rr1×2×r2

• G3 ∈ Rr2×3×1

decomposition

Figure 17: The Tensor train decomposition and its reconstruction for a specific
element in an order-3 tensor (cubic)

If r1 = 4 and r2 = 2, then we have an exact TT decomposition for A and thus it
is an approximation when r1 < 4 and r2 < 2. In this case, each G2[i2] is a matrix
of r1 × r2 for a specific index i2 in the second dimension. Intuitively, this matrix
captures interactions of all indices in the first and third dimension that go through a
specific index in 2nd dimension. Finally, in order to reconstruct an element from a
tensor, we take the multiplication of corresponding low-order tensor elements based
on its indices.

TT decomposition for a order-4 tensor For a tensor that its order is higher than
3, the visualization comes to the train style. For an order-4 tensor A ∈ Rn1×n2×n3×n4 ,

26

the TT decomposition train in Figure 18 is:

• G1 ∈ R1×n1×r1

• G2 ∈ Rr1×n2×r2

• G3 ∈ Rr2×n3×r3

• G4 ∈ Rr3×n4×1

G1
k1 G2

k2 G3
k3 G4

Figure 18: Tensor train decomposition components for an order-4 tensor

For each element of index (i1, i2, i3, i4), the TT reconstruction is:

A(i1, i2, i3, i4) =
r1∑

k1=1

r2∑
k2=1

r3∑
k3=1
G1(i1, k1)G2(k1, i2, k2)G3(k2, i3, k3)G4(k3, i4)

= G1[i1]︸ ︷︷ ︸
1×r1

G2[i2]︸ ︷︷ ︸
r1×r2

G3[i3]︸ ︷︷ ︸
r2×r3

G4[i4]︸ ︷︷ ︸
r3×1

2.5.2 Algorithm

At this point we can confirm that the storage complexity of the Tensor Train
decomposition is lower than the Tucker decomposition algorithm. The TT complexity
is O(dR2n) for storing a tensor of nd elements. By using the SVD decomposition as
a workhorse, the TT inherits its reliability and stability, which is the advantage over

27

the CP decomposition.
Algorithm 4: The Tensor train decomposition algorithm
Data: A d-order tensor A ∈ Rn1×n2×···×nd

Input:
Output: G1,G2, . . .Gd
/* mode-1 unfolding of the tensor */
M1 = A(1) ;
/* SVD decomposition */
U1 Σ1VT

1︸ ︷︷ ︸
S1

= svd(M1) where Σ1 ∈ Rr1×r1 and r1 is the rank of M1 ;

/* Get G1 */
G1 = U1 ;
for k = [2, 3 . . . , d− 1] do

Mk = reshape(Sk−1, [rk−1nk, nk+1nk+2 · · ·nd]);
/* SVD decomposition */
Mk = Uk ΣkVT

k︸ ︷︷ ︸
Sk

where Σ1 ∈ Rrk×rk and rk = rank(Mk) ;

/* Get Gk */
Gk = reshape(Uk, [rk−1, nk, rk]) ;

/* Get Gd */
Gd = Sd−1 ;
For example, this algorithm steps in Figure 18 are:
1. For the (1)st dimension:

• M1 = reshape(A, [n1, n2n3n4])
• Do SVD: M1 = U1S1 and get G1 = U1

2. For the (2)nd dimension:

• M2 = reshape(S1, [r1n2, n3n4])
• Do SVD: M2 = U2S2 and get G2 = reshape(U2, [r1, n2, r2])

3. For the (3)rd dimension:

• M3 = reshape(S2, [r2n3, n4])
• Do SVD: M3 = U3S3 and get G3 = reshape(U3, [r2, n3, r3])

4. For the (4)th dimension:

• Get G4 = S3

The Tensor Train algorithm iteratively decomposes each dimension in the linear
order. In each step, the unfolding mode-k of the tensor is inputted to the SVD
decomposition and the left singular matrix is always taken to the result. The right
singular and diagonal matrix are multiplied and reshaped to create an input matrix
for the next SVD step.

28

3 Multiple Kernel Learning
Multiple kernel learning (MKL) refers to a family of algorithms that learn an optimal
combination of kernels. This section reviews the definition kernel learning and
multiple kernel learning algorithms in the supervised learning framework. In term
of storing kernels, the stacking of them can be consider as a tensor; for example: if
there are k kernels of size n-by-n, we get an order-3 tensor n-by-n-by-k. From the
perspective of tensor learning, decomposition a tensor into smaller parts is always
beneficial. This section also introduces preliminary algorithms where the tensor
learning can apply into the Multiple kernel learning framework.

3.1 Kernel learning
In supervised learning, the Support Vector Machine [23], [7] is a discriminative
algorithm which is proposed to solve binary classification problems. Given a set of
N samples which are generated as independent and identically distributed random
instances, we get a training set {xi, yi}Ni=1. Each instance ith includes a D dimensional
feature vector xi ∈ RD and class label yi ∈ {+1,−1}. The SVM task is to find an
optimal linear discriminant hyperplane that maximizes the margin or getting the
largest separation between two classes.

y

x

〈w
· φ
(x
)〉+

b
=
0

〈w
· φ
(x
)〉+

b
=
1

〈w
· φ
(x
)〉+

b
=
−1

2‖w‖

b‖w‖

w

Figure 19: Components of the Support Vector Machine algorithm in two dimensional
samples.

Typically, the SVM manipulates on the feature space which is induced through
a mapping function θ : RD → RS. Then the linear discriminant function for an
instance is:

f(xi) = 〈w, θ(xi)〉+ b

29

where w is weight coefficients or stands for the slope of f in feature space, b is the
bias term, and 〈, 〉 is the inner product between two vectors.

Figure 19 illustrates components of SVM algorithms in a two dimensional data.
There are two classes of samples: the black samples and the white ones. The margin
is the distance between two lines where f(xi) = ±1 and this distance is 2

|||w|| . The
margin maximizing is corresponding to minimize this |||w||2 quantity.

The criteria for binary classification task is f(xi) ≥ 1 if the sample i belongs
to the positive class +1 and otherwise. On the other hand, it is equivalent with
f(xi)yi ≥ 1 where xi and yi belongs to a sample. Then the optimal classifier can be
obtained through solving this quadratic optimization problem:

min
w,b

1
2 ||w||

2
2 + C

N∑
i=1

εi w.r.t w ∈ RS, b ∈ R (31)

s.t yi(〈w, θ(xi)〉+ b) ≥ 1− εi , εi ≥ 0 ,∀i ∈ {1, 2, . . . , N}

where εi are slack variables for each sample and C is the nonnegative trade-off
parameter between the model generalisation and the classification correctness.

In the dual space, this objective function can be derived in the form the Lagrangian
dual function:

max
αi

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj 〈θ(xi), θ(xj)〉︸ ︷︷ ︸
κ(xi,xj)

w.r.t α ∈ RN
+

s.t
N∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C ∀i ∈ {1, 2, . . . , N}

where α is the dual vector of size N according to the number of constraints. We
define κ ∈ RD×RD → R is the kernel function that specifies the dot product between
pairs of samples. After solving the optimal α vector in dual space, we get the primal
solution for w = ∑N

i=1 αiyiθ(xi), and the linear discriminant function is equivalent
with:

f(x) =
N∑
i=1

αiyiκ(xi, x) + b

The above derivation shows that weight vector can be described by the linear
combination of training points. Whenever this property is satisfied, the kernel
can be exploited and leads to many other kernel-based algorithms, for example,
Kernel Ridge Regression, Kernel PCA, Kernel CCA [10], [24]. These kernel-based
algorithms work by the data embedding into the Hilbert space through the kernel
function κ, so the linear relations in this embedded space are explored. This way
offers several advantages, for instance, the implicitly calculation inner products
between points is faster and easier than explicit projecting and do the inner product
later. Moreover, changing the kernel function κ enables these algorithms perform a
non-linear classification/ regression through implicitly mapping input features into ae
higher-dimension space. Beyond that, this way allows these algorithms not only work

30

on numerical vectors, but also on strings, graphs, images by incorporates domain
knowledge, whenever a kernel follows the Mercer’s condition [23]. In the other hand,
kernel-based algorithms are well-founded under the statistical learning theory and
solved as a convex optimization or eigenproblems [10]. These properties make kernel
methods is a fundamental algorithm family in pattern analysis and its applications
are diverse in many fields from computer vision, natural language processing to
bioinformatics.

Finally, learning about kernels is an important topic that can enable us to
reduce computation complexity, improve performance, and find new applications of
kernel-based algorithms. In following chapters, we will consider the kernel matrix
Kij = κ(xi, xj) or called as Gram matrix. This kind of matrix contains all pairwise
distance between data points in the embedding space, so it is symmetric and positive
semidefinite.

3.1.1 Pairwise kernel learning

In [25], a pairwise kernel learning method is firstly introduced to predict the protein-
protein interaction. Generally, it is also considered as learning the relation between
pairs of objects; for example: link prediction between 2 users in the social network
[26] or connectivity prediction on edges between two nodes in a graph. Formally,
given two objects dataset D1, D2, it numeric features is in vectors xD1 ∈ Rd1 and
xD2 ∈ Rd2 , where d1, d2 are the number of features for each object. Then the training
data is in the form of (x(i)

D1 , x
(j)
D2 , yij) in which yij is the target label according to the

ith and jth sample in each object dataset.

A sample view The kernel view

Figure 20: The comparison between kernel learning and pair-wise kernel learning

Given n1, n2 samples in dataset D1, D2 respectively, the main task is to build
the kernel matrix of size n1n2-by-n1n2 that describe that similarity among pairs
of objects. In using Support Vector Machine algorithm, the kernel matrix is the

31

crucial point in getting a successful learning process. While building a kernel for two
objects are well developed over years, the pairwise kernel is more limited in the way
to create and store it. As in Figure 20, a point in the pairwise kernel is the numeric
measurement about similarity between two pairs {x(i)

D1 , x
(j)
D2} and {x

(t)
D1 , x

(k)
D2}, thus it

requires a quadratic scale to store it. In [25] [27], authors proposed a combination
rule to calculate the pairwise kernel from each object kernel KD1 and KD2 :

K
(
{x(i)

D1 , x
(j)
D2}, {x

(t)
D1 , x

(k)
D2}

)
= KD1(x(i)

D1 , x
(t)
D1)KD2(x(j)

D2 , x
(k)
D2)

This is equivalent to the Kronecker product between two object kernels: K =
KD1 ⊗KD2 . Then, the Kronecker product kernel is considered as a general-purpose
way to create a kernel for the pairwise kernel learning.

3.2 Multiple Kernel Learning
In designing machine learning applications, a critical step is finding a good feature
representation in order to get higher algorithm performance. In kernel-based algo-
rithms, it is according to learn an optimal way to combine kernels when many kernels
are available. There are many kind of kernels which successfully used in literatures
and practices. For example: linear kernel, polynomial kernel, and Gaussian kernel
are typically used for numerical data. In other applications, there are also many
particular kernels such as in bioinformatics [28]. Moreover, a kernel again includes
hyper-parameters such as σ in the Gaussian kernel, changing its value also produces
new kernels.

A typical solution is selecting the set of good kernels by doing cross-validation or
relied on the prior knowledge of users. The past decade has seen the emerging of
an automatic framework in learning from kernels, which is called Multiple Kernel
Learning (MKL) [6] which finds the best combination of kernels rather than picking
the best one. Intuitively, this approach may eliminate the biases if only using one
kernel and incorporate data information from multiple sources through different
kernels.

In a Multiple Kernel Learning problem, where P kernels are exist, the task is
seeking an optimal combination function fη : RP → R that:

Kη(xi, xj) = fη({K(xmi , xmj)Pm=1})

where the combined kernel Kη for a specific pair of samples is expressed as a trans-
formation fη for its pairwise distance through P kernels.

3.2.1 MKL algorithms

Several algorithms has been proposed to find a good combination function fη, a very
comprehensive study in [6]. In this study, instead of summarize algorithmic steps to
solve a MKL problem, we focus to highlight the formulation aspect and the evolution
of algorithms over time.

32

MKL without additional optimization steps Some preliminary works use the
simple fixed rules to combine kernels. In order to keep the Kη is positive semidefinite,
they take the summation and multiplication of kernels:

Kη(xi, xj) =
P∑

m=1
K(xmi , xmj)

Kη(xi, xj) =
P∏

m=1
K(xmi , xmj)

Many heuristic approaches also proposed to get a reasonable combination. Almost
of them are represented in the form of linear combination of kernels or fη is linear:

Kη(xi, xj) =
P∑

m=1
ηmK(xmi , xmj) (32)

where the kernel weights ηm are defined by some heuristic rules. The work in [29]
utilizes the conditional class probabilities on data labels to define values for ηm. The
predictive performance (prediction accuracy and Pearson correlation) of each kernel
is also used as a measurement for ηm [30], [31].

Parameter MKL: Linear combination The linear combination of kernels in
Equation (32) is the dominant way among MKL algorithms. It requires another
computational step to find kernel weights ηm that optimize the target functions.
These target functions can be divided into two groups: similarity-based and structural
risk functions. The learning weights is an important criteria which involves to the
development of linear MKL algorithms. Many MKL methods share a target function
but different conditions on ηm. Typically, these conditions are arbitrary: {ηm ∈ R},
non-negative: {ηm ∈ R+}, convex: {ηm ∈ R+ and ∑P

m=1 ηm = 1}, and unit ball
{||η||2 = 1} weights. To avoid the abuse of notation, we will discuss the main
algorithm formulation with a short reference to the condition of weights.

The similarity-based functions are established on the notion of kernel alignment
[32] to measure the similarity/correlation between two kernels:

A(K1,K2) = 〈K1,K2〉F√
〈K1,K1〉F 〈K2,K2〉F

(33)

or it is the cosine angle between two kernels K1 and K2. In classification problems,
similarity-based MKL algorithms criteria is maximizing the alignment between
combined kernel Kη and the target kernel Ky.

arg max
η

A(Kη,Ky)

where Ky = yyT in binary classification problems and in general

Ky(xi, xj) =
{

1 if yi = yj

−1 if yi 6= yj
(34)

33

Intuitively, the target kernel reflects the similarity between samples through its
labels, then similar samples should have higher pairwise distance and vice-versa. The
learning kernel weights by alignment measurement utilizes this guidance to gain a
better kernel combination. Some prominent similarity-based MKL articles can be
grouped by the weight condition as follow:

• Arbitrary kernel weights: [33] formulates a learning problem as a semidefinite
programming problem.

• Nonnegative kernel weights: [34] casts the maximize alignment to an equivalent
quadratic programming problem.

• Kernel weights on a simplex algorithms are described in [35] and [36].

• Kernel weights on an unit ball is proposed along with centered-kernel alignment
[9], [37]. In [9], the analytical solution is derived and it becomes an quadratic
programming problem [37] when these weights are non-negative.

The structural risk-based MKL algorithms follow the structural risk minimiza-
tion framework where SVM applied. Regardless the conditions on η, these algorithms
generally try to maximize the SVM dual function with an additional parameter for
linear kernel combination as in Equation (32).

maximize J(η) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjKη(xi, xj) w.r.t α ∈ RN
+

s.t Kη � 0,
N∑
i=1

αiyi = 0, and 0 ≤ αi ≤ C ∀i ∈ {1, 2, . . . , N}

In [33], authors cast this objective as a SDP problem by adding an upper bound
for Tr(Kη). Along with encoding the prior knowledge about kernels, [38] derives a
corresponding SOCP problem and propose an alternative QP problem. Typically,
there are some extension as regularizer terms to get desire form of η. These constraints
almost are l1-norm regularization and some works on l2-norm in [39], group lasso
[40], and l1-block lasso [8].

Parameter MKL: Nonlinear combination is another approach that develops
the nonlinearity into MKL. In [41], authors propose a general optimization framework
in learning general kernel combinations. For example, in gender identification task, the
proposed framework performance is significantly better than the linear combination
of kernels. In this data, their method learns the optimal weights η in the product of
Gaussian kernels:

Kη(xi, xj) =
P∏

m=1
exp(−ηm(xmi − xmj)2)

thus the combined kernel is the production of multiple scaling in kernel features.

34

A polynomial kernel combination is introduced in [42], the combined function is:

Kη =
∑

m1+m2+···+mP =d
ηm1

1 ηm2
2 . . . ηmP

P Km1
1 Km2

2 . . .KmP
P

where d is the bound of total orders. This method shows a significant improvement
on some UCI datasets where the linear combination can not consistently improve
the performance.

3.2.2 Overall comparison

In [6], authors do a performance testing for MKL algorithms on 10 experiments.
There are no algorithm that is always better than others in terms of accuracy. In
the other hand, we can observe some perspective from experiments results of [6].

• In linear combination kernels, non-linear MKL algorithms is seem promising
when it give a significant improvements in some cases.

• In combining Gaussian kernels, the linear combination is better than others
type of combination.

• The centered-kernel alignment with conic weights algorithm [37] always gains
some accuracy improvement. Interestingly, different from other MKL algo-
rithms, this approach is presented with the theoretical guarantee.

• The untrained, unweighted combination of kernels is not trivial in term of
predictive performance, other trained MKL algorithms still can not beat this
approach in all experiments.

3.2.3 AlignF algorithm

Due to the effectiveness of centered-kernel alignment algorithms, we focus on learning
and making extension in this direction. Particularly, the main objective is the AlignF
algorithm [37] which finds the maximizing centered kernel alignment.

Centered kernel alignment is developed from the uncentered kernel alignment
which is introduced [32]. In [37], authors figure out that the centered or normalized
kernels is the critical component to improve the performance. The centered kernel
definition for a kernel matrix K ∈ Rn×n is:

KC = CKC ; C =
[
I− 11T

n

]

where the sum of rows (columns) of KC is zeros. Then the alignment task becomes

arg max
η

A(KC
η ,KC

y) =
〈KC

η ,Ky〉F
||KC

η ||F

s.t ||η||2 = 1, η ≥ 0

35

as 〈KC
η ,KC

y 〉F = 〈KC
η ,Ky〉F and ||KC

y ||F is a constant so we can omit it. In detail,
we need to solve this optimization problem:

max
η

〈∑P
m=1 ηmKC

m,Ky〉F
||KC

η ||F
= max

η

∑P
m=1 ηm〈KC

m,Ky〉F√
(∑P

i=1
∑P
j=1 ηiηj〈KC

i ,KC
j 〉F)

s.t ||η||2 = 1, η ≥ 0

AlignF via Quadratic programming In [37], this problem can be solved by
calling a quadratic programming solver that:

min
η≥0

−cTη + 1
2η

TQη

where c is a vector of size P and Q is a symmetric matrix of P -by-P such that:

c(i) = 〈KC
i ,Ky〉F

Q(i, j) = 〈KC
i ,KC

j 〉F

then the solution is η∗/||η∗||.

Complexity analysis In solving the AlignF problem, the heaviest step is getting
information for matrix Q. It requires P (P − 1)/2 times to evaluate the correlation
between P kernels and takes n2 loops to calculate the Forbenious product between
two kernels. Then, the complexity for getting Q is O(P 2n2). Similarly, for vector c,
the complexity is O(Pn2).

The main computational burden is getting Q and it costs much more computa-
tional resources when more kernels or more samples are available. For example, in
the case of pairwise learning, we need to learn the model for two objects rather than
a single one. Follow that, the training kernel is the Kronecker product of kernels from
two objects. When multiple kernels appear, we need to select the best combination
between all possible of pairwise kernels. Specifically, if there are 1000 samples, 10
kernels for each object, then the complexity of getting matrix Q for AlignF requires
(1016) arithmetic operations, which is a considerable huge number for a small dataset.

36

4 Tensor method for Multiple Kernel Learning
In another perspective, when putting P kernels K ∈ Rn×n together we get an order-3
tensor of K ∈ Rn×n×P . The main topic of this section is how to utilize well-founded
tensor computation operators and properties in improving Multiple Kernel Learning
algorithms in terms of performance and computational complexity.

4.1 Factorized AlignF algorithm
For a large dataset, more samples and multiple view information lead to a huge
tensor of kernels K ∈ Rn×n×P . It is more critical to find a way to reduce the
complexity of AlignF algorithm in large multiple view datasets. By the tensor
learning approach, Tensor Train algorithm can factorize K into low-rank matrices,
to lessen the computational burden that is required by the AlignF algorithm.

Overall framework The framework steps are described in Figure 21, it needs
one more Tensor Train decomposition step in the learning procedure. The tensor
K ∈ Rn×n×P of kernels is firstly reshaped into K ∈ Rn×P×n. The Tensor Train
algorithm decomposes this tensor K into there components:

• G1 ∈ R1×n×r1

• G2 ∈ Rr1×P×r2

• G3 ∈ Rr2×n×1

The G1 and G3 are matrices and the G2 is a tensor which stacks P matrices of size
r1-by-r2. Intuitively, G1 and G3 structure are not dependent on the order of original
kernels, so they are shared parts. The tensor G2 contains P low-rank matrices
corresponding to P kernels, so they are compressed parts for kernels. Nevertheless,
the tensor K is symmetry, then it is more sensible when its compressed parts are also
square. Then, we assign the number of low-rank components are equal for the first
and second dimensions. This leads to r1 = r2 = r and the corresponding components
after the Tensor Train decomposition are:

• G1 ∈ Rn×r

• G2 ∈ Rr×P×r

• G3 ∈ Rr×n

According to (30), the approximation for an element in the tensor K is:

K(i1, i2, i3) ≈ G1[i1]G2[i2]G3[i3] (35)

where the quantity of G1[i1] and G3[i3] are vectors of size 1-by-r and r-by-1, respec-
tively. Similarly, the G2[i2] is a matrix of the size r-by-r , where i2 ∈ [1, 2, . . . , P].

37

As the second dimension of tensor K ∈ Rn×P×n indicates the kernel indicies, the
formula for approximating each kernel is:

K(:, i2, :) ≈ G1[:]G2[i2]G3[:] or K(:, i2, :) ≈ G1G2[i2]G3 (36)

We denote that KL = G1 and KR = G3 are the left and right common matrices in
decomposed parts. There are P matrices in G2 as KM

(i) are specific compressed parts
for each kernel K(i). Then, the equivalent description for Equation (36) is:

K(i) ≈ KLKM
(i)KR (37)

By embedding these components as a kernel approximation into the AlignF formu-

samples

sa
m

p
le

s

kernels

. . . Tensor train
decomposition

. . .

commons parts

compressed parts

Factorized AlignF
algorithm

Figure 21: The framework of Factorization AlignF

lation, we get the new factorized AlignF algorithm.

Factorization into AlignF There are two main formula in calling AlignF opti-
mization framework which are in getting the correlation between target and input
kernels and among input kernels. When replacing AlignF formulas by the approxi-
mation form for each kernel at (37), we get

〈KC
(i),KY 〉F = Tr(CKLKM

(i)KRCKY)
= Tr{(CKL)KM

(i)(KRCKY)} (38)
= Tr{(KRCKY CKL)KM

(i)}

〈KC
(i),KC

(j)〉F = Tr(CK(i)CK(j)) = Tr(CKLKM
(i)KRCKLKM

(j)KR) (39)
= Tr{KRCKLKM

(i)KRCKLKM
(j)}

In these formulas, we can approximate the n-wise multiple kernels learning into
factors for the AlignF algorithm. The first advantage is some parts of these formulas
(blue parts) can be precomputed before hand as they are constant value. Moreover,
most computationally heavy part is less complex, it is a multiplication of r-by-r
matrices instead of n-by-n matrices. When the low-rank assumption is matched in
data kernels, the compression ratio is relatively high, for example: if n = 10r then
the ratio is n2

r2 = 102 = 100 times.

38

Factorization into AlignF for pairwise kernel learning In pairwise kernel
learning, this approximation is a crucial speedup in terms of computational speed
and memory. For example, in drug-target interaction learning problem, if there are
nd kernels Kd of size n1-by-n1 for drugs, nt kernels Kt of size n2-by-n2 for targets.
Then, there are ndnt Kronecker product kernels in the alignment process which will
cost in the quadratic scale to finish the computation. Thanks to the Tensor Train
approximation for kernels in the drug and target side, the Kronecker product between
two kernels are not necessary to be evaluated and stored explicitly. For example, after
decomposition multiple kernels in each drug and target side, we can approximate
the Kronecker product between each pair of kernel:

Kd(i) ⊗Kt(j) ≈ (KL
dKM

d(i)KR
d)⊗ (KL

t KM
t(j)KR

t) (40)
≈ (KL

d ⊗KL
t)︸ ︷︷ ︸

KL
dt

(KM
d(i) ⊗KM

t(j))︸ ︷︷ ︸
KM

dt(i,j)

(KR
d ⊗KR

t)︸ ︷︷ ︸
KR

dt

As the property of the Kronecker product (16), the approximation formula is factorized
into 3 components, the left and right common parts (KL

dt,KR
dt) are built from shared

parts from each side. Interestingly, the middle part KM
dt(i,j) for each pair is the

Kronecker product between middle parts in each side. Moreover, this approximation
can be used in speed up other algorithms which manipulate on pairwise kernels. For
example, in the AlignF algorithm for pairwise kernels, when putting Equation (40)
into (38) and (39), the whole complexity will decrease from the multiplication among
n1n2-by-n1n2 matrices to r1r2-by-r1r2 matrices, where r1 and r2 is the low-rank
number in approximation multiple kernels in the drug and target side.

4.2 The optimal decomposition for the tensor of kernels
In decomposing a tensor of kernels, TT algorithm calls the Singular Vector Decom-
position two times after reshaping the non-decomposed parts. Figure 22 clearly
shows these steps and KL is the common left part after the decomposition. It
contains left singular vectors of the first SVD step which decomposes the horizontal
stacking of kernels. Thus, if a left singular vector in KL is denoted as ~a or a and the
corresponding right singular vector for each kernel K(i) is ~bi or bi, then this step is
equivalent to minimize this objective function:

min
a,bi

P∑
i=1
||K(i) − λabTi ||2F s.t ||a||2 = 1 , ||bi||2 = 1 ∀i ∈ [1, 2, . . . , P] (41)

where λ is the singular value. In one term of this summation, we can get this
equivalent formula:

||K(i) − λabTi ||2F = Tr(KT
(i)K(i))− 2λaTK(i)bi + λ2

Then the objective function is:

min
a,bi

P∑
i=1

(
Tr(KT

(i)K(i))− 2λaTK(i)bi + λ2
)

(42)

39

n-samples

n
-s

a
m

p
le

s

k-kernels

. . . Reshape
. . .n

n n n

SVD

. . .r

n n n

n

r

Reshape

r

n

r

. . .

r

(1) (2) (P)

(1)

(2)

(P)

SVD

r

r

. . .

r

r

n

r

Figure 22: The Tensor Train algorithm decomposition steps for an order 3 tensor
which is created by stacking kernels

The objective function (42) is defined as f = ∑P
i=1

(
Tr(KT

(i)K(i))− 2λaTK(i)bi + λ2
)

and its derivatives:

∂f

∂a
= −2λ

P∑
i=1

(K(i)bi)

∂f

∂bi
= −2λKT

(i)a

Then, to minimize this objective function, the best gradient direction of ~a and ~bi are∑P
i=1(K(i)bi) and KT

(i)a, respectively. By using the power of iteration method, we

40

can find the optimal ~a,~bi by iteratively calculating two quantities:

a =
∑P
i=1(K(i)bi)

||∑P
i=1(K(i)bi)||

bi =
KT

(i)a

||KT
(i)a||

or using this equivalent formula for ~a:

a =

∑P
i=1(K(i)KT

(i))a 1
||KT

(i)a||

||∑P
i=1(K(i)

KT
(i)a

||KT
(i)a||

)||

This indicates that ~a is a singular vector of the matrix ∑P
i=1(K(i)KT

(i)). Then the KL

matrix can be obtained by taking r singular vectors corresponding r largest singular
values of the decomposition of ∑P

i=1(K(i)KT
(i)).

Intuitively, as all kernels are symmetric, we can infer that KM are also sym-
metric and thus KL = (KR)T . We denote the column orthogonal matrix U =
SVD(∑P

i=1(K(i)KT
(i))) and thus KL = U,KR = UT . In the exact decomposition, a

kernel is described as:

K(i) = KLKM
(i)KR or K(i) = UKM

(i)UT

Then we can project back to get the compressed kernel KM
(i):

KM
(i) = UTK(i)U

The final step is checking whether KM
(i) is symmetric under these solutions. KM

(k)(i, j)
denotes the element at row, column index (i, j) from kth compressed middle ker-
nel. The matrix U includes r columns according r orthogonal vectors ui or U =
[u1|u2| . . . ur−1|ur].

KM
(k)(i, j) = uTi K(k)uj

Its transpose is:
(KM

(k)(i, j))T = uTj K(k)ui = KM
(k)(j, i)

41

as a kernel K(k) is symmetric then we get above consequence.
Algorithm 5: The optimal decomposition for a tensor of kernels
Data: A tensor of P kernels K(i) of n samples: K ∈ Rn×P×n

Input: The number of low-rank components: r
Output: KL, {KM

(i)}Pi=1,KR

KA = ∑P
i=1(K(i)KT

(i)) ;
/* SVD decomposition */
[U,S,V] = svd(KA) ;
/* Get KL,KR */
U = U(:, 1 : r) ;
KL = U; KR = UT ;
for i = [1, 2, . . . , P] do

/* Project back */
KM

(i) = UTK(i)U ;

42

5 Experiments
There are two sets of experiments to evaluate the performance of these algorithms:
Factorized AlignF (AlignF_TT), AlignF, and UniMKL which takes the average of
kernels as the baseline. The first experiment runs on datasets which are generated by
a prior assumption on the data distribution. This experiment also aims to analyse
when the similarity alignment algorithms are effective in the multiple kernel learning
framework. The real world datasets are used in the second set of experiments, to
analyse the number of effective low-rank number for the Factorized AlignF algorithm.

5.1 Data and experiment setup
5.1.1 Artificially constructed datasets

The artificially constructed dataset is a complex multimodal or mixture of Gaussian
distribution [43] in which the generation process can be fully controlled. This data
is created by the mixing of clusters; each cluster is independently generated by a
Gaussian distribution and identical labels for samples in a cluster. Thus, it is an ideal
environment to evaluate the advantages and weakness of machine learning methods.

Figure 23 shows factors: σµ, µ, and σ that influence on the generation of a sample
x. Firstly, cluster centers µ are sampled around the origin with a variance σµ by the
Gaussian distribution N (0, σµ). Secondly, samples in each cluster are generated as
x ∼ N (µ, σ). Thus, the parameter σµ controls the allocation of clusters over the data
space. Similarly, the σ handles the diameter of the cloud that samples expanding in
a cluster.

x

µ

σµ

σ

N (µ, σ)

N (0, σµ)

Figure 23: The graphical model of the generation process for a sample

Consequently, changing values of σµ and σ will generate clusters with different
level of overlapping among them. On the other hand, it is corresponding to the
separableness of samples and will affect the performance of learning algorithms. Due
to these reasons, multiple datasets with different level of overlapping are generated

43

by increasing the scale of σµ with an appropriate large value of σ.
Algorithm 6: Multiple artificial generated datasets generation
Input: ndim, nblock, nlabel, mblock: the number of dimension, clusters,

labels in whole data, and samples in each cluster, respectively.
Input: σµ, σ: variance parameters for generating centers and samples.
Input: ndata: the number of datasets
Output: Datasets {D}ndata1
/* Generating cluster centers */
for i = [1, 2, . . . , nblock] do

µi ∼ N (0, σµ) ;
labeli = rand([1, nlabel]) ;

/* Generating multiple datasets */
for d = [1, 2, . . . , ndata] do

Dd = [] ;
scaled = 1.2d ;
for i = [1, 2, . . . , nblock] do

µid = µi × scaled ;
for k = [1, 2, . . . ,mblock] do

x.feature ∼ N (µid, σ) ;
x.label = labeli ;
Dd.append(x) ;

By setting that ndata = 9, ndim = 2, nlabel = 4, nblock = 8,mblock = 100, σµ =
1, σ = 0.6, we can visualize datasets which generated by the Algorithm ??.

3 2 1 0 1 2 3 4 5

4

2

0

2

4

Scale = 1.2

4 3 2 1 0 1 2 3 4 5
6

4

2

0

2

4

6
Scale = 1.44

4 2 0 2 4 6
6

4

2

0

2

4

6
Scale = 1.728

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6
Scale = 2.0736

4 2 0 2 4 6 8
8

6

4

2

0

2

4

6
Scale = 2.48832

6 4 2 0 2 4 6 8
10

8

6

4

2

0

2

4

6

8
Scale = 2.985984

6 4 2 0 2 4 6 8 10
15

10

5

0

5

10
Scale = 3.5831808

6 4 2 0 2 4 6 8 10 12
15

10

5

0

5

10
Scale = 4.29981696

10 5 0 5 10 15
15

10

5

0

5

10

15
Scale = 5.159780352

Figure 24: Toy datasets in different scales

The corresponding linear kernels for each dataset are:

44

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 1.2

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 1.44

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 1.728

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 2.0736

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 2.48832

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 2.985984

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 3.5831808

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 4.29981696

0 100200300400500600700

0

100

200

300

400

500

600

700

Scale = 5.159780352

Figure 25: Linear kernels in different scale datasets

Multiple kernels are generated by computing the RBF kernels in different γ values.
Additionally, one linear kernel xxT is included to the kernel set. There are 11 values
of γ in the set {10−7, 10−6, . . . , 101, 100, 5}.

Finally, there are 18 artificial datasets are generated and evaluated. The set toy-
data-1 contains 8 datasets are created by using the Algorithm 6 with these parameters:
ndata = 9, ndim = 20, nlabel = 4, nblock = 8,mblock = 100, σµ = 1, σ = 2.5.
Similarity, the remaining 8 toy datasets in the set toy-data-2 are generated by using
this setting: ndata = 9, ndim = 20, nlabel = 10, nblock = 40,mblock = 200, σµ =
1, σ = 2.5. The Table 1 summarizes these datasets in terms of size, label and kernels.

5.1.2 Real datasets

There 13 real datasets are evaluated: 3 public datasets, 5 bioinformatics datasets,
and 5 image annotation datasets. Three multilabel datasets Emotions, Yeast, En-
ron are downloaded from the Mulan library (http://mulan.sourceforge.net/
datasets-mlc.html). The Emotions dataset is used for the emotion detection [44]
in music where a piece of song may belong to many classes. It contains 593 songs and
6 clusters of music emotions. The Yeast dataset [45] describes 1500 genes in terms
of its micro-array expression and phylogenetic profile, along with 14 labels for gene
functional classes. The Enron dataset includes about 1700 labeled emails and the
downloaded data already be preprocessed from texts to binary vectors. There are 53
labels in this dataset, for example: company strategy, personal message, newsletters,
joke. For these datasets, multiple kernel matrices are created by the Gaussian kernel
with changing γ in the set of [2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 21, 23].

Five bioinformatics datasets are psortPos, psortNeg, Plant, Protein, and Fin-
gerprint. Three multiclass datasets psortPos, psortNeg, Plant are getting from [46]
where kernels are based on the similarity of sequence motif, phylogenetic trees,
and BLAST E-values. The Protein is also a multiclass dataset which describes

45

Samples Labels Kernels
Toy-data-1-scale=1.1 800 4 11
Toy-data-1-scale=1.4 800 4 11
Toy-data-1-scale=1.7 800 4 11
Toy-data-1-scale=2.0 800 4 11
Toy-data-1-scale=2.4 800 4 11
Toy-data-1-scale=2.9 800 4 11
Toy-data-1-scale=3.5 800 4 11
Toy-data-1-scale=4.2 800 4 11
Toy-data-1-scale=5.1 800 4 11
Toy-data-2-scale=1.1 8000 10 11
Toy-data-2-scale=1.4 8000 10 11
Toy-data-2-scale=1.7 8000 10 11
Toy-data-2-scale=2.0 8000 10 11
Toy-data-2-scale=2.4 8000 10 11
Toy-data-2-scale=2.9 8000 10 11
Toy-data-2-scale=3.5 8000 10 11
Toy-data-2-scale=4.2 8000 10 11
Toy-data-2-scale=5.1 8000 10 11

Table 1: Toy datasets summarization

the functions of transporter proteins and is downloaded from the TCDB database
(http://www.tcdb.org/public/). There are 4 kernels based on BLAST score with
UniPro, taxonomy information, protein family, and BLAST score with TCDB. The
Fingerprint data are taken from [47] which contains 1000 mass spectra and corre-
sponding 101 labels of molecular fingerprints.

Five images datasets Core5k, Espgame, Iaprtc12, Mirflickr, and Pascal are taken
from [47]. Noted that, these are originally come from [48] but this work uses the
smaller version of them [47] which contains a subset of 1000 samples. There are
15 precomputed numerical vector features for each sample in these datasets and
multiple kernels are generated by using the linear kernel. According to [47], some
labels are extremely unbalance, so these data labels are filtered to include labels that
exist more than 2% of positive.

In summary, the Table 2 contains key information about 13 datasets:

5.1.3 Experiments setup

The Support Vector Machine is the learning algorithm that used in all experiments as
datasets are labeled and only using the kernel information. The Scikit-learn library
in Python [49] is used for SVM algorithm implementation, stratified sampling, kernel
centering, grid search parameters, and performance metric evaluation functions.

In a dataset, the 5-fold nested cross validation is done to get the average perfor-
mance for Multiple Kernel Learning algorithms: AlignF, Factorized AlignF, UniMKL.
In a fold, the training kernels is created and centered before inputting it into MKL

46

Samples Labels Kernels
Emotions 593 6 9
Yeast 1500 13 9
Enron 1702 24 9
Fingerprint 1000 101 12
Protein 1060 30 4
Corel5k 1000 37 15
Espgame 1000 52 15
Iaprtc12 1000 67 15
Miflickr 1000 15 15
Pascal07 1000 6 15
psortPos 541 1 69
psortNeg 1444 1 69
Plant 940 1 69

Table 2: Real world datasets summarization

algorithms. Each MKL algorithm takes a list of centered training kernels and the
normalized target kernel which is built from samples labels. After calling MKL
algorithms, they return the linear combination weights for kernels. Follow that, the
final training kernel is taken as the weighted sum of training kernels. In training
the SVM model, the C parameter is optimized by splitting the training data to 5
parts and evaluated the predictive performance in 1 part with the learned model in
4 parts. The search range of C is in the set of {10−4, 10−3, . . . , 104, 105} to pick the
best C value in terms of predictive performance.

In the testing phase, the testing kernel are also centered according to the combined
training kernel. In calling the SVM solver, we use the C-Support Vector Classification
(SVC) of the Scikit-learn library. In multiclass classification problems, two schemes
are one-vs-one and one-vs-all SVM. In 13 real world datasets, the label are created
as a matrix as there are more than one label for a sample in some datasets. In the
label matrix, each row stands for a sample and a column is the binary indicator
for all samples that whether it belongs to a specific label or not. Then, each SVM
calling for each label is a binary classification problem or one-vs-all in the multiclass
classification problems. In toy datasets, we use the default one-vs-one SVM and
performance metric functions of the Scikit-learn library for multiclass classification
[50].

In these experiments, the target kernel is built one time for all labels rather
than one target kernel for a label. For example, the label vectors yi = [a, b, c] and
yj = [a, c] then K(yi, yj) = 2/3 as the common label set [a, c] is 2 items over 3 labels
in total. For single label datasets, the target kernel follows the rule in (34).

In term of AlignF_TT algorithm, there is one tuning parameter which is the
low-rank r of the SVD decomposition. In this work, r is set to be n

10 as the default
value whenever it is not clearly stated the value, where n is the number of data
sample.

47

Evaluation measurements The average of Accuracy, Micro F1, and Marco F1
over 5-fold are used to compare the predictive performance of algorithms.

5.2 Results
5.2.1 Artificial constructed datasets

In the set toy-data-1 There are 8 datasets which are generated in an identical
process with increasing the distance among cluster centers. Figure 26, 27, 28 show
how the algorithms performance change in different samples distribution. Each tick
in the x-axis is according to a dataset and a tick label is the scale number in the
generating process. When increasing the scale, data clusters are less clutter and over-
lapping as clearly showed in Figure 24. Additionally, Table 3, 4, 5 shows evaluation
measurements of MKL algorithms on different artificial constructed datasets.

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 63.125 73.875 83.875 92.375 96.625 98. 99.75 99.875 99.875
AlignF_TT 62.75 74.125 83.875 92.625 96.5 98. 99.75 99.875 100.
UniMKL 62.875 75.25 83.125 91.125 94.75 98. 99.75 99.875 99.875

Table 3: Toy-data-1 : Accuracy change in different datasets

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

60

65

70

75

80

85

90

95

100

P
e
rc

e
n
ta

g
e

Accuracy :average 5 folds cross validation : 800 samples, 4 labels

AlignF
AlignF_TT

UniMKL

Figure 26: Toy-data-1 :Accuracy change in different datasets

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 62.35 73.01 83.82 92.06 96.51 97.92 99.79 99.9 99.9
AlignF_TT 61.7 73.29 83.73 92.22 96.41 97.92 99.79 99.9 100.
UniMKL 62.17 74.23 82.64 91.22 95.07 97.99 99.79 99.9 99.9

Table 4: Toy-data-1 :The macro-F1 change in different datasets

48

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

60

65

70

75

80

85

90

95

100

P
e
rc

e
n
ta

g
e

F1-macro :average 5 folds cross validation : 800 samples, 4 labels

AlignF
AlignF_TT

UniMKL

Figure 27: Toy-data-1 :The macro-F1 change in different datasets

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 63.12 73.88 83.87 92.38 96.62 98. 99.75 99.88 99.88
AlignF_TT 62.75 74.12 83.88 92.62 96.5 98. 99.75 99.88 100.
UniMKL 62.87 75.25 83.12 91.13 94.75 98. 99.75 99.88 99.88

Table 5: Toy-data-1 :The micro-F1 change in different datasets

At the scale are 1.2, 1.44, the heavy overlapping among clusters are observed at
Figure 24 and 25, the alignment algorithms (AlignF, AlignF_TT) do not outperform
the simple UniMKL strategy. The performance of AlignF, AlignF_TT are better
when the scale increasing or data clusters are less clutter. For example, the accuracy
improvement are 0.1%, 1.5% 1.9% when the scale = 1.73, 2.07, 2.49, respectively.
When the clusters are well separable at the scale = 2.99, 3.58, 4.3, 5.16, the
performance of 3 algorithms are higher than 95% and almost the same. Interestingly,
when the scale is 5.16, only the proposed AlignF_TT algorithm is getting 100% in
terms of accuracy, micro-F1, and macro-F1.

In the set toy-data-2 There 8 datasets includes more labels (10 vs 4), clusters
(40 vs 8), and samples (8000 vs 800) than datasets in the set of toy-data-1. In these
datasets, the level of overlapping among clusters is higher than datasets in toy-data-1
as more samples and clusters. Similarly, the accuracy, macro-F1, micro-F1 are shown
in Table 6, 7, 8 and Figure 29, 30, 31 .

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 19.34 25.04 35.06 42.37 50.76 56.4 58.46 60.69 62.44
AlignF_TT 18.18 23.27 35.09 42.37 51.14 57.04 59.16 60.8 62.44
UniMKL 19.66 24.4 32.66 39.29 47.4 53.55 56.54 57.37 57.71

Table 6: Toy-data-2 : Accuracy change in different datasets

49

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

60

65

70

75

80

85

90

95

100

P
e
rc

e
n
ta

g
e

F1-micro :average 5 folds cross validation : 800 samples, 4 labels

AlignF
AlignF_TT

UniMKL

Figure 28: Toy-data-1 :The micro-F1 change in different datasets

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

10

20

30

40

50

60

70

P
e
rc

e
n
ta

g
e

Accuracy :average 5 folds cross validation : 8000 samples, 10 labels

AlignF
AlignF_TT

UniMKL

Figure 29: Toy-data-2 :Accuracy change in different datasets

As in the set toy-data-1, there are no considerable performance improvement when
datasets are generated in the small scale, at 1.2, 1.44. However, the performance
of the AlignF_TT relatively decreases in these cases, around 1% lower than other
algorithms. Similarly, increasing the scale shows the effectiveness of kernel alignment
algorithms. In terms of accuracy, the performance improvement varies from 3% to
around 5%.

These results indicates that the kernel alignment algorithms are useful when
data are form by clusters and enough separable among them. The study [47] shows
that the kernel alignment algorithms is equivalent to the non-negative least square
between the vectorization of kernels. As the target kernel is also well-formed to
clusters, a possible explanation for this might be that the alignments are more likely

50

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 21.31 27.18 37.34 43.97 51.84 56.98 58.54 61.13 63.97
AlignF_TT 19.75 25.62 37.35 44.14 52.41 57.78 59.45 61.17 63.97
UniMKL 21.51 26.43 34.83 40.65 48.38 53.68 55.83 56.83 57.61

Table 7: Toy-data-2 :The macro-F1 change in different datasets

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

10

20

30

40

50

60

70
P
e
rc

e
n
ta

g
e

F1-macro :average 5 folds cross validation : 8000 samples, 10 labels

AlignF
AlignF_TT

UniMKL

Figure 30: Toy-data-2 :The macro-F1 change in different datasets

to be effective when other kernels reflect the cluster information.

51

Scale= 1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
AlignF 19.34 25.04 35.06 42.37 50.76 56.4 58.46 60.69 62.44
AlignF_TT 18.18 23.27 35.09 42.37 51.14 57.04 59.16 60.8 62.44
UniMKL 19.66 24.4 32.66 39.29 47.4 53.55 56.54 57.37 57.71

Table 8: Toy-data-2 :The micro-F1 change in different datasets

1.2 1.44 1.73 2.07 2.49 2.99 3.58 4.3 5.16
Increasing distance between cluster centers

10

20

30

40

50

60

70

P
e
rc

e
n
ta

g
e

F1-micro :average 5 folds cross validation : 8000 samples, 10 labels

AlignF
AlignF_TT

UniMKL

Figure 31: Toy-data-2 :The micro-F1 change in different datasets

52

5.2.2 Real-world datasets

Fixing the low-rank number for the AlignF_TT algorithm The predictive
performance of algorithms are reported in the form of average number and variance
over 5 folds.

AlignF AlignF_TT UniMKL
Emotions 81.86±0.09 81.64±0.08 81.95±0.08
Yeast 79.75±0.06 79.77±0.05 79.55±0.05
Enron 91.3±0.0 91.3±0.0 91.22±0.01
Fingerprint 86.18±0.04 85.51±0.04 85.94±0.03
Protein 83.95±0.07 83.87±0.08 83.6±0.07
corel5k 96.09±0.03 96.0±0.03 96.05±0.03
espgame 94.78±0.02 94.7±0.02 94.71±0.02
iaprtc12 94.53±0.02 94.57±0.02 94.41±0.02
mirflickr 97.16±0.02 97.14±0.02 97.11±0.02
pascal07 97.53±0.03 97.49±0.04 97.52±0.04
psortPos 94.83±0.1 94.38±0.19 91.52±0.17
psortNeg 96.67±0.08 96.17±0.08 94.73±0.11
plant 96.28±0.07 95.48±0.06 87.5±0.09

Table 9: The accuracy of algorithms over 13 datasets

AlignF AlignF_TT UniMKL
Emotions 67.97±0.2 67.92±0.23 68.02±0.23
Yeast 46.36±0.12 46.48±0.09 45.12±0.14
Enron 32.52±0.11 32.21±0.08 30.39±0.2
Fingerprint 86.1±0.06 85.52±0.05 85.79±0.02
Protein 37.33±0.19 36.57±0.27 35.49±0.24
corel5k 49.68±0.5 48.66±0.44 52.65±0.53
espgame 9.1±0.14 8.47±0.15 9.5±0.07
iaprtc12 10.73±0.17 11.76±0.15 10.48±0.06
mirflickr 5.38±0.39 5.98±0.33 5.03±0.34
pascal07 28.3±0.49 27.31±0.36 29.44±0.6
psortPos 89.17±0.24 87.92±0.44 83.16±0.38
psortNeg 91.26±0.21 89.94±0.21 86.51±0.25
plant 91.55±0.14 89.94±0.11 71.78±0.21

Table 10: The Macro-F1 of algorithms over 13 datasets

In bioinfomatics datasets: psortPos, psortNeg, plant, the performance of kernel
alignment algorithms are higher than the UniMKL. These numbers of the algorithm
AlignF_TT are lower than AlignF and this gap is around 1%. In other datasets, the
predictive performance of algorithms are quite similar and no clear outperformance
is witnessed.

53

AlignF AlignF_TT UniMKL
Emotions 68.33±0.15 68.25±0.13 68.44±0.16
Yeast 65.44±0.1 65.13±0.1 65.06±0.1
Enron 61.11±0.08 61.2±0.07 60.14±0.04
Fingerprint 86.2±0.05 85.61±0.05 85.9±0.02
Protein 58.43±0.14 58.72±0.22 57.3±0.22
corel5k 52.2±0.39 50.31±0.34 53.8±0.27
espgame 16.91±0.32 15.93±0.2 16.89±0.21
iaprtc12 19.97±0.19 20.89±0.24 19.74±0.12
mirflickr 7.03±0.46 7.38±0.42 6.51±0.39
pascal07 33.02±0.54 31.81±0.42 33.74±0.64
psortPos 89.67±0.2 88.76±0.38 83.04±0.34
psortNeg 91.68±0.19 90.44±0.19 86.83±0.27
plant 92.56±0.15 90.96±0.12 75.0±0.17

Table 11: The Micro-F1 of algorithms over 13 datasets

Performance of the AlignF_TT in different low-rank numbers This sec-
tion presents the performance of AlignF_TT algorithm in terms of changing the
low-rank numbers r. The low-rank r is from 1 to half the number of training sample.

Generally, when increasing the low-rank number, the performance of AlignF_TT
algorithm also rises. Figures also show that the effective low-rank number is around
10% of data examples in order to get the comparable performance with the AlignF
algorithm. For example, this observation is clearly recognized in the Yeast dataset
at Figure 32.

The second observation is that the performance increase is not always proportional
to the low-rank increasing. It happens in Emotions, Protein, and espgame datasets.
In the Emotions dataset, all evaluation measurements are generally increasing in
higher low-rank numbers but not in sometimes. For example, Figure 33 shows a gap
of decreasing 0.4% accuracy when the rank increasing from 125 to 130.

In the higher ranks, it is also witnessed some performance improvement in around
1% better AlignF algorithm in the Fingerprint, iaprtc12, mirflickr data. For instance,
Figure 34 presents that the AlignF_TT algorithm procedures a better accuracy and
around 2% improvement in terms of Micro and Macro F1 than other algorithms in
the iaprtc12 dataset.

In psortPos, psortNeg and plant datasets, the AlignF algorithm outperforms than
other algorithms in all criteria. In these datasets, the AlignF_TT returns a better
performance than UniMKL algorithm but lower than the AlignF algorithm. The
AlignF_TT performance gap varies from 0.5% to 1.5% decreasing from the AlignF
algorithm. We can witness this observation in different low-rank numbers in the
psortPos dataset at Figure 35.

The remaining figures for other datasets are presented in the Appendix section.

54

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

Ranks

77.5

78.0

78.5

79.0

79.5

80.0
Accuracy + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

Ranks

57
58
59
60
61
62
63
64
65
66

Micro F1 + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

Ranks

34

36

38

40

42

44

46

48
Macro F1 + std

AlignF
UniMKL

Yeast_samples: 1500_kernels: 9

Figure 32: AlignF_TT performance in different low-rank numbers in Yeast data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

Ranks

80.8

81.0

81.2

81.4

81.6

81.8

82.0

82.2
Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

Ranks

67.4
67.6
67.8
68.0
68.2
68.4
68.6
68.8
69.0
69.2

Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

Ranks

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0
Macro F1 + std

AlignF
UniMKL

Emotions_samples: 593_kernels: 9

Figure 33: AlignF_TT performance in different low-rank numbers in Emotions data

55

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

93.5

94.0

94.5

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

0

5

10

15

20

25
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

0

2

4

6

8

10

12

14
Macro F1 + std

AlignF
UniMKL

iaprtc12_samples: 1000_kernels: 15

Figure 34: AlignF_TT performance in different low-rank numbers in iaprtc12 data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

90.5
91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

81
82
83
84
85
86
87
88
89
90

Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

81
82
83
84
85
86
87
88
89
90

Macro F1 + std

AlignF
UniMKL

psortPos_samples: 541_kernels: 69

Figure 35: AlignF_TT performance in different low-rank numbers in psortPos data

56

Running time in different low-rank numbers The running time are reported
in 4 datasets: Emotions, Enron, psortPos, psortNeg. The reason is Emotions contains
the small number of samples and kernels whereas psortNeg has many of them. The
Enron data stands for the case of many samples and small number of kernels while
psortPos contains a lot of kernels and few samples.

The pre-calculation time includes the time for centering kernels of AlignF. In
AlignF_TT, this number is the duration for decomposing the tensor of kernels and
precomputed common parts of kernel matrices. The calculation time is remaining
time to run steps to get the kernel alignment result. Moreover, the red and blue line
in these figures describe the precalculation time and the total running time of the
AlignF algorithm, respectively.

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

Ranks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
im

e
 (

se
co

n
d
s)

Algorithm average running time in: Emotions_samples: 593_kernels: 9

Precalculation time
Calculation time

Figure 36: AlignF_TT running time in different low-rank numbers in Emotions data

Decomposing the tensor of kernels is one of the most costly steps. In Enron
and psortNeg datasets, many data samples requires longer running time for the
decomposition step. This decomposition time is even longer than the total running
time of AlignF algorithm. For example, in Figure 37, the AlignF requires around
3 seconds to run but the decomposition of the tensor ∈ R[1702×1702×9] needs more
than 4 seconds to finish. On the other hand, Figure 36 shows that the AlignF_TT
algorithm is faster than AlignF in terms of running time when calling it with a small
number of low-rank components. This happens when decomposing a smaller tensor
of kernels which size is R[593×593×6] in the Emotions data.

Similarly, in Emotions and Enron datasets, when the number of kernels is small,
the precalculation step always takes the most of the computation time. In these
datasets, the calculation step also requires more time when the number of low-rank
increasing.

For the AlignF_TT algorithm, when there are many kernels available, increasing

57

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

6
0
0

6
2
5

6
5
0

6
7
5

Ranks

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

se
co

n
d
s)

Algorithm average running time in: Enron_samples: 1702_kernels: 9

Precalculation time
Calculation time

Figure 37: AlignF_TT running time in different low-rank numbers in Enron data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

0

5

10

15

20

25

T
im

e
 (

se
co

n
d
s)

Algorithm average running time in: psortPos_samples: 541_kernels: 69

Precalculation time
Calculation time

Figure 38: AlignF_TT running time in different low-rank numbers in psortPos data

the low-rank number leads to cost much more time to finish the calculation step.
Figure 38, 39 show this observation in the psortPos and psortNeg data. In this case,
the multiplication of low-rank matrices is not effective when the low-rank is relatively
high. Nevertheless, when the low-rank number is less than 10% of training examples,
the calculation step of the AlignF_TT is faster than the one of AlignF algorithm
if the data size is small. This happens in the psortPos Emotions datasets with 541
and 593 samples, respectively (Figure 38, 36).

58

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

Ranks

0

50

100

150

200

250

300

T
im

e
 (

se
co

n
d
s)

Algorithm average running time in: psortNeg_samples: 1444_kernels: 69

Precalculation time
Calculation time

Figure 39: AlignF_TT running time in different low-rank numbers in psortNeg data

59

6 Discussion
This study set out to explore the tensor learning perspective in multiple kernel learning
problems. An optimal decomposition for a tensor of kernels has been proposed after
analysing different tensor decomposition algorithms. This decomposition returns
a common left and right matrices for all kernels and each kernel specific matrix in
the size [r × r] where r is the number of low-rank components. These decomposed
matrices have been used to derive a novel kernel alignment algorithm (AlignF_TT)
which is based on the centre kernel alignment algorithm (AlignF).

Experiments show that the proposed algorithm performance is higher than AlignF
in artificially constructed datasets and comparable in real-world datasets, regarding
to the predictive accuracy. The experiment in artificially constructed datasets also
suggests that the kernel alignment algorithms perform well when data samples are
taken from a multimodal distribution. The second major finding is that the small
number of low-rank components is enough for compressing a tensor of kernels and
leading to the comparable performance in the AlignF_TT algorithm.

A limitation of the proposed algorithm is that its running time is not faster
than the AlignF algorithm in datasets which contain the large samples size. The
explanation is the high cost of calling SVD in the decomposition step. To reduce the
computational complexity of this step, the Randomize Singluar Value Decomposition
algorithm [51] can be used to open the possibility of running AlignF_TT with
massive datasets.

Further works will focus on finding new applications for these proposed algorithms:
the optimal decomposition for multiple kernels and the AlignF_TT algorithm. The
AlignF_TT algorithm is easy to extend to other kernel learning problems; for example:
pairwise kernel learning where the Kronecker product kernel is applied. In this case,
all computational steps can be done without explicitly computing and storing the
Kronecker product of kernels. It would be interesting to do the triple-wise kernel
learning which models the relations among three objects which given by multiple
kernels. For this problem, the use of the Kronecker product kernel is infeasible and
only approximation algorithms can be applied; for example: the proposed algorithms.

60

7 Acknowledgement
This work is supported by the funding from Professor Juho Rousu and the Honours
Programme in Computer Science department, Aalto University.

The calculations presented in this thesis were performed using computer resources
within the Aalto University School of Science “Science-IT” project.

61

References
[1] G. H. Golub and C. Reinsch. Singular value decomposition and least squares

solutions. Numer. Math., 14(5):403–420, April 1970.

[2] Henk AL Kiers. Towards a standardized notation and terminology in multiway
analysis. Journal of chemometrics, 14(3):105–122, 2000.

[3] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[4] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

[5] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evan-
gelos E Papalexakis, and Christos Faloutsos. Tensor decomposition for signal
processing and machine learning. IEEE Transactions on Signal Processing,
65(13):3551–3582, 2017.

[6] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms.
Journal of Machine Learning Research, 12(Jul):2211–2268, 2011.

[7] Nello Cristianini and John Shawe-Taylor. An introduction to support vector
machines and other kernel-based learning methods. Cambridge university press,
2000.

[8] Francis R Bach. Exploring large feature spaces with hierarchical multiple kernel
learning. In Advances in neural information processing systems, pages 105–112,
2009.

[9] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning
kernel algorithms. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 239–246, 2010.

[10] Tijl De Bie, Nello Cristianini, and Roman Rosipal. Eigenproblems in pattern
recognition. In Handbook of Geometric Computing, pages 129–167. Springer,
2005.

[11] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[12] Carl Eckart and Gale Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[13] David Skillicorn. Understanding complex datasets: data mining with matrix
decompositions. CRC press, 2007.

[14] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

62

[15] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[16] Charles F Van Loan. The ubiquitous kronecker product. Journal of computa-
tional and applied mathematics, 123(1):85–100, 2000.

[17] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[18] Richard A Harshman. Foundations of the parafac procedure: Models and
conditions for an" explanatory" multi-modal factor analysis. 1970.

[19] Ledyard R Tucker. Implications of factor analysis of three-way matrices for
measurement of change. Problems in measuring change, 122137, 1963.

[20] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear sin-
gular value decomposition. SIAM journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[21] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the
best low-rank approximation problem. SIAM Journal on Matrix Analysis and
Applications, 30(3):1084–1127, 2008.

[22] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao,
Danilo P Mandic, et al. Tensor networks for dimensionality reduction and
large-scale optimization: Part 1 low-rank tensor decompositions. Foundations
and Trends R© in Machine Learning, 9(4-5):249–429, 2016.

[23] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[24] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[25] Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting
protein–protein interactions. Bioinformatics, 21(suppl_1):i38–i46, 2005.

[26] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link prediction
in relational data. In Advances in neural information processing systems, pages
659–666, 2004.

[27] Willem Waegeman, Tapio Pahikkala, Antti Airola, Tapio Salakoski, Michiel
Stock, and Bernard De Baets. A kernel-based framework for learning graded
relations from data. IEEE Transactions on Fuzzy Systems, 20(6):1090–1101,
2012.

[28] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in
computational biology. MIT press, 2004.

63

[29] Isaac Martín de Diego, Alberto Muñoz, and Javier M Moguerza. Methods for
the combination of kernel matrices within a support vector framework. Machine
learning, 78(1-2):137, 2010.

[30] Hiroaki Tanabe, Tu Bao Ho, Canh Hao Nguyen, and Saori Kawasaki. Simple but
effective methods for combining kernels in computational biology. In Research,
Innovation and Vision for the Future, 2008. RIVF 2008. IEEE International
Conference on, pages 71–78. IEEE, 2008.

[31] Shibin Qiu and Terran Lane. A framework for multiple kernel support vec-
tor regression and its applications to sirna efficacy prediction. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 6(2):190–199, 2009.

[32] N ello Cristianini, Andre Elisseeff, John Shawe-Taylor, and Jaz Kandola. On
kernel-target alignment. Advances in neural information processing systems,
2001.

[33] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and
Michael I Jordan. Learning the kernel matrix with semidefinite programming.
Journal of Machine learning research, 5(Jan):27–72, 2004.

[34] Jaz Kandola, John Shawe-Taylor, and Nello Cristianini. Optimizing kernel
alignment over combinations of kernel. 2002.

[35] Canh Hao Nguyen and Tu Bao Ho. An efficient kernel matrix evaluation
measure. Pattern Recognition, 41(11):3366–3372, 2008.

[36] Junfeng He, Shih-Fu Chang, and Lexing Xie. Fast kernel learning for spatial
pyramid matching. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–7. IEEE, 2008.

[37] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for
learning kernels based on centered alignment. Journal of Machine Learning
Research, 13(Mar):795–828, 2012.

[38] Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance
trade-off. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007.

[39] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L 2 regularization for
learning kernels. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, pages 109–116. AUAI Press, 2009.

[40] Francis R Bach. Consistency of the group lasso and multiple kernel learning.
Journal of Machine Learning Research, 9(Jun):1179–1225, 2008.

[41] Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple
kernel learning. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1065–1072. ACM, 2009.

64

[42] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear
combinations of kernels. In Advances in neural information processing systems,
pages 396–404, 2009.

[43] Geoffrey McLachlan and David Peel. Finite mixture models. John Wiley &
Sons, 2004.

[44] Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioannis P
Vlahavas. Multi-label classification of music into emotions. In ISMIR, volume 8,
pages 325–330, 2008.

[45] André Elisseeff and Jason Weston. A kernel method for multi-labelled classifi-
cation. In Advances in neural information processing systems, pages 681–687,
2002.

[46] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In
Proceedings of the 24th international conference on Machine learning, pages
1191–1198. ACM, 2007.

[47] Huibin Shen, Sandor Szedmak, Céline Brouard, and Juho Rousu. Soft ker-
nel target alignment for two-stage multiple kernel learning. In International
Conference on Discovery Science, pages 427–441. Springer, 2016.

[48] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multimodal semi-
supervised learning for image classification. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 902–909. IEEE, 2010.

[49] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[50] Scikitlearn developers. Support Vector Machines — scikit-learn 0.18.2
documentation. http://scikit-learn.org/stable/modules/svm.html#
multi-class-classification, 2017. [Online; accessed 23-July-2017].

[51] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review, 53(2):217–288, 2011.

65

A Appendix

A.1 The accuracy vs low-rank number

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

6
0
0

6
2
5

6
5
0

6
7
5

Ranks

90.2
90.4
90.6
90.8
91.0
91.2
91.4
91.6

Accuracy + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

6
0
0

6
2
5

6
5
0

6
7
5

Ranks

60.0

60.2

60.4

60.6

60.8

61.0

61.2

61.4
Micro F1 + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

5
7
5

6
0
0

6
2
5

6
5
0

6
7
5

Ranks

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5
Macro F1 + std

AlignF
UniMKL

Enron_samples: 1702_kernels: 9

Figure A1: AlignF_TT performance in different low-rank numbers in Enron data

66

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

80

81

82

83

84

85

86

87
Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

80

81

82

83

84

85

86

87
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

80

81

82

83

84

85

86

87
Macro F1 + std

AlignF
UniMKL

Fingerprint_samples: 1000_kernels: 12

Figure A2: AlignF_TT performance in different low-rank numbers in Fingerprint
data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

Ranks

82.5

83.0

83.5

84.0

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

Ranks

57.0

57.5

58.0

58.5

59.0

59.5
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

Ranks

35.0

35.5

36.0

36.5

37.0

37.5
Macro F1 + std

AlignF
UniMKL

Protein_samples: 1060_kernels: 4

Figure A3: AlignF_TT performance in different low-rank numbers in Protein data

67

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

94.5

95.0

95.5

96.0

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

40

42

44

46

48

50

52

54
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

38
40
42
44
46
48
50
52
54

Macro F1 + std

AlignF
UniMKL

corel5k_samples: 1000_kernels: 15

Figure A4: AlignF_TT performance in different low-rank numbers in corel5k data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

93.8

94.0

94.2

94.4

94.6

94.8

95.0
Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5

Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

7.0

7.5

8.0

8.5

9.0

9.5
Macro F1 + std

AlignF
UniMKL

espgame_samples: 1000_kernels: 15

Figure A5: AlignF_TT performance in different low-rank numbers in espgame data

68

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

93.5

94.0

94.5

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

0

5

10

15

20

25
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

0

2

4

6

8

10

12

14
Macro F1 + std

AlignF
UniMKL

iaprtc12_samples: 1000_kernels: 15

Figure A6: AlignF_TT performance in different low-rank numbers in iaprtc12 data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

96.2

96.4

96.6

96.8

97.0

97.2

97.4
Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

6

7

8

9

10

11

12
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0
Macro F1 + std

AlignF
UniMKL

mirflickr_samples: 1000_kernels: 15

Figure A7: AlignF_TT performance in different low-rank numbers in mirflickr data

69

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

96.5

97.0

97.5

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

22

24

26

28

30

32

34
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

Ranks

18

20

22

24

26

28

30
Macro F1 + std

AlignF
UniMKL

pascal07_samples: 1000_kernels: 15

Figure A8: AlignF_TT performance in different low-rank numbers in pascal07 data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

90.5
91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

81
82
83
84
85
86
87
88
89
90

Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Ranks

81
82
83
84
85
86
87
88
89
90

Macro F1 + std

AlignF
UniMKL

psortPos_samples: 541_kernels: 69

Figure A9: AlignF_TT performance in different low-rank numbers in psortPos data

70

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

Ranks

91

92

93

94

95

96

97
Accuracy + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

Ranks

78

80

82

84

86

88

90

92
Micro F1 + std

1
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

3
7
5

4
0
0

4
2
5

4
5
0

4
7
5

5
0
0

5
2
5

5
5
0

Ranks

78

80

82

84

86

88

90

92
Macro F1 + std

AlignF
UniMKL

psortNeg_samples: 1444_kernels: 69

Figure A10: AlignF_TT performance in different low-rank numbers in psortNeg
data

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

Ranks

82
84
86
88
90
92
94
96
98

Accuracy + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

Ranks

65

70

75

80

85

90

95
Micro F1 + std

1

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

2
2
5

2
5
0

2
7
5

3
0
0

3
2
5

3
5
0

Ranks

60

65

70

75

80

85

90

95
Macro F1 + std

AlignF
UniMKL

plant_samples: 940_kernels: 69

Figure A11: AlignF_TT performance in different low-rank numbers in plant data

	Abstract
	Preface
	Contents
	Introduction
	Notation

	Tensor decomposition
	Singular value decomposition
	Singular value decomposition
	Matrix factorization interpretation

	Tensors definition
	SVD revisited

	CP decomposition
	Tensor rank
	The algorithm

	Tucker decomposition
	The n-rank and multilinear rank
	The Higher Order SVD (HOSVD)
	Tucker decomposition algorithm

	Tensor train decomposition
	Analysis and definition
	Algorithm

	Multiple Kernel Learning
	Kernel learning
	Pairwise kernel learning

	Multiple Kernel Learning
	MKL algorithms
	Overall comparison
	AlignF algorithm

	Tensor method for Multiple Kernel Learning
	Factorized AlignF algorithm
	The optimal decomposition for the tensor of kernels

	Experiments
	Data and experiment setup
	Artificially constructed datasets
	Real datasets
	Experiments setup

	Results
	Artificial constructed datasets
	Real-world datasets

	Discussion
	Acknowledgement
	References
	Appendix
	The accuracy vs low-rank number

