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Data centers are continuously expanding, so does the energy consumed to power their 

infrastructure. Server is the major component of data center’s computer rooms, which 

runs the most intensive computational workloads and stores the data. Server is 

responsible for more than a quarter of the total energy consumption of data center. This 

thesis is focused on analyzing and predicting the energy consumption of the server. 

Three major components are considered in our study; the processor, the access memory 

and the network interface controller. We collect data from these components and 

analyze them using linear regression Lasso model with non-negative coefficients. A 

power model is proposed for predicting energy consumption at the system-level. The 

model takes as input CPU cycles and data Translation Lookaside Buffer loads, and 

predicts the energy consumption of the server with 5.33% median error regardless of 

its workload. 

Keywords: data center, energy consumption, system-level power modeling, linear 

regression 
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Chapter 1 

Introduction 

The evolution of cloud computing which provides on-demand provisioning of elastic 

resources with pay-as-you-go model has transformed the Information and 

Communication Technology (ICT) industry. Over the last few years, large enterprises and 

government organizations have migrated their data and mission-critical workloads into 

the cloud. As we are moving towards the fifth generation of cellular communication 

systems (5G), Mobile Network Operators (MNO) need to address the increasing demand 

for more bandwidth and critical latency applications. Thus, they leverage the capabilities 

of cloud computing and run their network elements into distributed cloud resources. 

 

 

Fig. 1  Growth of hyperscale data centers by 2020 [1]. 

 

The adoption of cloud computing by many industries has resulted in the establishment 

of humongous data centers around the world containing thousands of servers and network 

equipment. Data centers are large-scale physical infrastructures that provide computing 

resources, network and storage facilities. Cloud computing is expanding across different 

industries and along with it the footprint of data center facilities which host the 

infrastructure and run the services is growing. Since 2015 there has been 259 hyperscale 



2 

 

data centers around the globe, and by 2020 this number will grow to 485 as shown in Fig. 

1. These type of data centers will roughly accommodate 50% of the servers installed in 

all the distributed data centers worldwide [5]. 

Data centers are promoted as a key enabler for the fast-growing Information 

Technology (IT) industry, resulted a global market size of 152 billion US dollars by 2016 

[2]. Due to the big amount of equipment and heavy processing workloads, they consume 

huge amount of electricity resulting in high operational costs and carbon dioxide (CO2) 

emissions to the environment. In 2010, the electricity usage from data centers was 

estimated between 1.1% and 1.5% of the total worldwide usage, while in the US the 

respective ratio was higher. Data centers in US consumed 1.7% to 2.2% of the whole US 

electrical usage [3]. Fig. 2 shows that over the past few years, data center’s energy 

consumption increases exponentially. 

 

Global Footprint (TWhr)

US Footprint (TWhr)

 

Fig. 2  Projection of data centers’ electricity usage [4]. 

1.1. Objective of the thesis 

As discussed in the previous section, the number of data centers increases and so does 

their respective electricity usage. There has been increased interest from data center’s 

vendors and operators as well as from the academia, to understand how the energy is 

consumed among different parts of the data center’s infrastructure. A wide body of the 
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research is focused on modeling and prediction of energy consumption. The majority of 

studies [2] is focused on the energy consumption of the computing subsystems such as 

servers, network plane and storage, while there are also studies on the energy usage from 

mechanical and electronic subsystems such as computer room air conditioning (CRAC) 

units. 

This work is focused on the energy consumption of the server, which belongs to the 

data center’s IT infrastructure. Understanding how the energy is consumed among the 

components of the server is essential to define an energy prediction model. This thesis 

presents a system-level power model of the server, which includes the power consumption 

of the processor, the random-access memory (RAM), and the network interface controller 

(NIC). 

The model is based on Lasso linear regression [67] with non-negative coefficients. 

The selected variables reflect the power consumption activity of each hardware 

component. The model is independent of the usage of the server. The test cases are created 

in a way to explore all the possible workloads of each hardware component. The data 

collection includes the regression variables as well as the power consumption associated 

with each measurement. We used regular approach for dividing our data set into training, 

testing and validation sets. The model which is derived after fitting the data with the 

training set, is tested for its prediction accuracy against the testing set. The validation set 

which is a random sample of the data collection, is used afterwards to evaluate our 

predictions against data which is unknown to our prediction model. 

This study, demonstrates the feasibility of deriving a system level power model that 

can be applied for predicting the energy consumption of the server without using any 

available tool or utility. We show the advantage of using L1 regularization for reducing 

the number of coefficients in regression-based power modeling. We also provide a power 

model that is independent of power usage scenarios and which can be used for run time 

power estimation with reasonable accuracy. 

1.2. Structure of the thesis 

The thesis is structured into five main chapters starting with the introduction of the 

topic. The rest of the work is organized as follows: 
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Chapter 2 gives an introduction on data centers energy consumption, and briefly 

presents the architecture of data center. It explains the importance of energy consumption 

modeling and prediction, and describes how they are used to increase the energy 

efficiency in different areas of data center such as computing resources, network plane, 

virtualization layer and associated business cases. Finally, it presents power modeling and 

prediction approaches in processor, server and data center levels. 

Chapter 3 presents the regression based power model that we use to construct the 

equation which predicts the energy consumption of the server. It describes the regression 

variables that are used during the model fitting and explains the methodology followed 

for deriving the model. 

Chapter 4 describes how the experiment is set up. It presents the characteristics of the 

server which is used for data collection, and the tools that we developed and used to collect 

the data. The test cases which are created to cover all possible workloads are also 

presented in this section. Then it explains the steps which are done for fitting the model 

and presents the final power model. Finally, it explains the model evaluations, and 

illustrates the results for the accuracy of the model in different server’s workloads. 

Chapter 5 summarizes the work briefing the purpose of constructing the energy model 

for the server. It states few observations about the regression variables that are used and 

the results that we got. Finally, it and proposes alternative directions that could result in 

more accurate predictions and would test the adaptability of the model in different types 

of servers. 
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Chapter 2 

Background and Related Work 

2.1. Data center energy consumption 

Data centers typically are powered by electricity. However, following the strategy for 

decreasing carbon emissions and complying with sustainable operational models, modern 

data centers use alternative energy sources such as geothermal, wind and solar power. The 

electric power flows from external power grids into internal infrastructure facilities, 

Information Technology (IT) equipment and other support systems. The energy flows to 

the internal IT facilities through Uninterrupted Power Supplies (UPS) to maintain a 

consistent power distribution even during possible power failures. 

The architecture of a data center is complex since it does not only consist of the 

hardware elements but also the software that runs in the IT infrastructure. Therefore, we 

can categorize its elements into two layers which are hardware and software, as shown in 

Fig. 3. The hardware consists of many components. The major ones are cooling systems, 

power distribution units, lighting equipment, servers and networking equipment. The 

software layer can be further divided into two subcategories, the Operating 

System/Virtualization layer and the applications. The first mainly refer to the host OS that 

is installed in the servers and the cloud deployment running on top of it. The second refers 

to the different type of applications running in the servers which vary depending on the 

industry and business cases. 

Understanding how the energy is shared among the elements of such a complex 

system as well as predicting energy consumption, requires a system optimization cycle as 

presented by M. Dayarathna et al. in [6]. Whether we want to model the consumption of 

the whole data center or we are particularly interested in the IT infrastructure, the general 

approach can be narrowed down to the following process. Initially, we need to measure 

the energy consumption of each component that is considered and identify where the most 

energy is consumed. For that we select the features that will construct the power model. 

Different techniques can be used for feature selection, such as regression analysis and 
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machine learning. The accuracy of the power model needs to be validated. Finally, the 

model can be used to predict the system’s energy consumption, and find out means to 

focus on improving the energy efficiency of the data center. 
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Fig. 3  A view in the context of energy consumption modeling and prediction in data centers. The 

components of a data center can be categorized into two main layers: software and hardware. 

 

There has been a lot of research on energy consumption prediction for data centers 

Information Technology infrastructure. Initiatives and efforts to reduce the cost associated 

with the power distribution and cooling of the equipment are expanding, hence the power 

management has become an essential issue in enterprise environments. Server takes the 

highest chunk of the energy consumption in the racks [6]. Consequently, there is need of 
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understanding how the energy is consumed and what are the main components of the 

server which impacts the energy consumption the most. Several studies [57][59] evaluate 

the system level power consumption and propose models which predict the energy 

considering various server components. Other studies [43][50][54][55] focus on 

processor’s power consumption. The processor is the component inside the server which 

consumes the most energy. 

Hardware Performance Counters are proposed in many works [43][50][55] to 

estimate power consumption of any processor with the use of data analytics or statistical 

techniques. They provide significant information about the performance of the processor. 

The event counter mechanisms have different implementation which varies depending on 

the processor family, and so does the number of the available software and hardware 

events. Also, there are limitations on how many events can be measured simultaneously. 

For example, the IBM Power 3-II has 238 available performance counters, while only 8 

of them can be measured simultaneously [7]. In the Intel Pentium II processor, only 2 

events out of 77 can be measured concurrently [7]. 

2.2. Towards a green data center 

There are many best practices and guidelines for achieving energy efficiency in the 

data centers. Nevertheless, the over-provisioning of IT resources leads to underutilized IT 

equipment and energy inefficiency. It is accepted that low utilization of servers, inefficient 

network plane management, limited virtualization adoption, and lack of business models 

[8] are the most significant factors that impact negative the energy usage cause by IT 

loads. In this context, we present solutions which try to tackle these challenges and make 

data centers greener. 

2.2.1. Server Plane 

Google stated that a typical cluster of servers is utilized on average 10% to 50% [9]. 

Dynamic power management (DPM) has been proposed to address the energy inefficiency 

cause by underutilized servers. Dynamic voltage and frequency scaling (DVFS) is one 

technique for DPM which uses low voltage supply and low frequency. When there is not 

intensive work load in the server, neither is need to operate a processor at maximum 
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performance [10]- [12] we can apply DFVS to save energy. Another approach is server 

consolidation. We consolidate jobs to a limited number of highly utilized servers, and 

switch the rest into low power or OFF states [13]- [17]. Job scheduling is also used to 

improve workload management focusing on energy conservation to achieve higher server 

utilization [18]- [20]. 

2.2.2. Network Plane 

These studies [21]- [23] estimate that network infrastructure consumes 20% to 30% 

of the total energy consumption in a data center. Network links are highly underutilized, 

operating between 5% and 25% [24], and they remain idle for approximately 70% of the 

time [25]. K. Bilal et al. [26], explain that the conventional three-layer tree topology 

consumes significant amount of energy, partially because enterprise level devices 

consume a lot of electricity. Alternative data center topologies, such as Fat-Tree [20], 

Jellyfish [28] and VL2 [29], are proposed to tackle the energy inefficiency of the 

conventional topologies. 

Virtualization techniques is another approach for better network resource utilization. 

Software defined networking (SDN) solutions provide dynamic resource allocation [30], 

and network resource scalability by adjusting the active network components of the data 

center [31]. Network load and energy consumption proportionality is another factor that 

impacts the energy consumption in the data center networks. Network devices remain 

underutilized; however, they consume significant amount of energy. D. Abts et al. [32], 

present methods that adjust the power consumption and the performance of the network 

based on the amount of traffic. C. Gunarante et al. [33], show that Adaptive Link Rate 

(ALR) in Ethernet links can maintain a lower data rate for more than 80% of the time, 

saving significant energy and only adding a very small inflation to the delay. The 

conventional tree topology or the strictly adoption of bisection topologies such as VL2, 

Fat-Tree and Jellyfish, are not separate solutions towards an energy efficient network 

plane. Data centers run different type of applications and services. 

A holistic design and common approach for a specific topology does not benefit 

neither the quality of services nor the operation of the data center. There is need for 

application-specific solutions that suit the dynamics of the modern data centers and allow 



9 

 

flexibility in energy utilization management, improving the efficiency [34]. SDN and 

virtualization techniques are undoubtedly game changers when reshaping and optimizing 

the network infrastructure. These technologies allow us to adjust the operation of the 

network plane based on the network load which yields remarkable amount of energy 

consumption. Disruptive evolution of data analytics and machine learning can provide 

meaningful information to the data center operators. They can predict the traffic and adjust 

the behavior of the network elements according to the demand, without compromising the 

quality of service (QoS). 

2.2.3. Virtualization Plane 

One of the benefits of virtualization is that we can share the available physical 

resources among virtual machines (VMs). Dynamic resource allocation is a technique 

which allow us to utilize and assign dynamically free computing resources among VMs, 

saving at the same time considerable amount of energy. Virtualization is an efficient way 

to provide server consolidation and power off the server that operate in idle mode. In 

many cases, an idle server consumes 70% of the power consumed by a server running at 

the full CPU load [35]. 

2.2.4. Business Model Plane 

Lack of proper business models, pricing policies and conflicting priorities, are 

additional reason for creating energy inefficiency. Customers are not charged in 

proportion to their resource utilization. The lack of monetary agreements between data 

center owners and customers increases the interest towards an environmental chargeback 

model that charges tenants based on their energy consumption [36]. Microsoft has 

implemented such chargeback models where customers are charged according with their 

power usage [37].  

An alternative approach that can help businesses to adopt energy practices is the 

collection of metrics related to energy consumption. There are various metrics which 

allow us to measure infrastructure energy efficiency. The Green Grid consortium has 

proposed Power Usage Effectiveness (PUE). It defines the ratio of energy that is 
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consumed for cooling and power distribution of the IT infrastructure, to the energy used 

for computing. PUE closer to 1.0 means nearly all the energy is consumed for computing. 

Often PUE does not consider all the elements of the IT infrastructure, hence it adequately 

reflects efficiency [38]. There has been effort to redefine the metrics that measure the 

energy efficiency in a better context such as power to performance effectiveness (PPE), 

data center productivity (DCeP), and data center infrastructure efficiency (DCiE) [38], 

[39]. 

Architecture of cloud infrastructure and multitenant virtualized environments of data 

centers increase the complexity of the chargeback models. Resources are shared and 

therefore chargeback models that incorporate flexible pricing models must be developed. 

There are initiatives to integrate such models with cloud infrastructure and data analytics. 

One example is Cloud Cruiser for Amazon Web Services [40]. 

2.3. Processor level power modeling 

Processor is one of the largest power consumers of a server [41]. It has been shown 

that the server power consumption can be described by a linear relationship between the 

power consumption and CPU utilization [42]. There are many comprehensive power 

models that rely on specific details of the processor architecture and achieve high accuracy 

in terms of processor power consumption model. This section, describes different studies 

on modeling and predicting power consumption using performance counters and 

associated events, in processor level. These models, applied during thread scheduling and 

Dynamic Voltage/ Frequency Scaling (DVFS) configuration. 

Rodriges et al. [43] estimate power consumption in real time by exploring 

microarchitecture-independent performance counters. They use two different CPU cores, 

one suitable for low power applications and another for high performance applications. 

Their study considers a small set of events and associated counters that have strong impact 

to the power consumption. These variables are available in both types of cores and are 

obtained from [44]. Super ESCalar Simulator (SESC) [45] is used for simulating the 

architectural performance, and Wattch [46] for monitoring the actual value of power 

consumption. 8 benchmarks are selected from SPEC [47], MiBench [48], and mediabench 

suites [49], to test the variables for both types of cores. The correlation between each 

variable and power consumption is computed by using the Pearson’s correlation formula. 
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Their results show a high correlation among Fetched instructions, L1 hits, IPC, Dispatch 

Stalls and retired memory instructions, indicating a power estimation across multiple 

types of architecture with an average prediction error of 5%. 

Singh et al. [50] propose Performance Monitoring Counters (PMC) for power 

consumption estimation using analytic models. They use perfmon utility to collect the 

counters from an AMD Phenom processor. Based on their correlation to the power 

consumption, four counters, L2-chache-miss, retired-uops, retired-mmx-and-fp-

instructions, and dispatch-stalls, are selected for the experiment. Using piece-wise linear 

model based on least square estimator, they derive a prediction model which maps 

observed event rates to CPU core power consumption. Their model is evaluated using 

NAS [51], SPEC-OMP [52], and SPEC 2006 [53] benchmark suites, and shows an 

average median error of 5.8%, 3.9% and 7.2% respectively. The model performs run-time, 

power-aware thread scheduling, to suspend and resume processes based on the power 

consumption. 

Joseph and Martonosi [54] present the Castle project which leverages information 

from hardware to estimate the actual runtime power consumption in different processor 

units. In some processors, performance counters do not capture events associated with the 

power consumption. This work analyzes resource utilization of processor’s units by 

defining a list of heuristic approximations such as number of instruction window physical 

register accesses, Load/Store Queue (LSQ) physical register access, window selection, 

and number of wakeup logic accesses. An Alpha 21264 microprocessor is resembled 

using Wattch power simulation, and a combination of performance counters and heuristic 

approximations for Wattch-Alpha model is used to approximate some utilization factors. 

Wattch’s basic power model is assumed for the experiments and is analyzed with SPEC95 

Int and FP benchmarks. The results show that their heuristic approach estimates the 

utilization rates within 5% error. 

Contreras and Martonosi [55] employ performance counters to estimate the power 

consumption of CPU and memory of an Intel PXA255 processor. Their linear model uses 

power weights that map processor and memory power consumption. The model is tested 

with a set of benchmarks including SPEC2000, Java CDC and Java CLDC programming 

environments, and gives predictions with an average error of 4%. The model can be 

applied in a number of settings related to the DVFS configuration environment. 
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2.4. Server level power modeling 

Server is the main component of the data centers IT infrastructure. It runs most of the 

computational workloads and store all the data. Due to its heavy use, it consumes large 

amount of the energy, as shown in Fig. 4, and is the most power proportional equipment 

available in a data center. This section, presents few studies which analyze and model the 

energy consumption on server level. In the context of our approach, the following studies 

leverage the data associated with performance counters, to construct power models which 

are utilized for predicting and optimizing the energy consumption of the server. 

 

3%

11%

10%

26%

50%

Lighting

Power Conversion

Network Hardware

Server & Storage

Cooling

 

Fig. 4  Distribution of energy consumption in different components of a data center [56]. 

 

Bircher and John [57] use Hardware Performance Counters for online measurement 

of complete system power consumption. They develop power models for microprocessor, 

access memory, I/O, disk, chipset and Graphics Process Unit (GPU), for two different 

systems, a quad-socket Intel server and an AMD dual-core with GPU desktop. The two 

systems are tuned with a set of scientific, commercial and productivity workloads, and 

selected performance counters events are collected with the Linux perfctr [58] device 
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driver. The correlation analysis between the counters and the power consumption is 

performed using linear and polynomial regression modeling. 

Their study shows that events related to the microprocessor have significant 

correlation to power consumption in the subsystems including memory, I/O, hard drive 

disk (HDD), chipset and microprocessor, and they can accurately estimate the total system 

power consumption. Instead of creating a prediction model for the whole server, they use 

HPCs associated to the processor, to estimate the energy of other subsystems. Moreover, 

in comparison with our study, they also consider GPU which is not included in our model, 

because the server we study is not intended for graphical usage neither video or image 

processing. 

Economou et al. [59] propose Mantis, a non-intrusive model for real-time server’s 

power estimation. Mantis uses low-overhead OS utilization metrics and performance 

counters to predict power. It requires a one-time, offline calibration phase to extract basic 

AC power consumption characteristics and relate them to the system performance metrics. 

Benchmark is done by individually stressing the major components of the blade system, 

CPU, access memory, hard disk and network, to derive the basic correlation between their 

utilization and power consumption. A linear model is used to fit the data relating 

performance counters to AC power variation. The model is developed for blade and 

Itanium server and is evaluated using SPECcpu2000 integer and floating-point 

benchmarks, SPECjbb2000, SPECweb2005, the streams benchmark, and matrix 

manipulation, covering multiple computing domains. The prediction error for Mantis is 

measured within 10% for most workloads. 

While our experiment uses UNIX utilities and custom scripts to stress the components 

of server in different workloads, Mantis’ benchmark runs Generic Application 

eMUlaTion (GAMUT) [60] to emulate various levels of CPU, memory, network traffic 

and hard disk. We measure the activity levels of the CPU and RAM using HPCs for fine 

granularity. Instead, they use Operating System (OS) performance metrics and 

specifically CPU utilization as variable for measuring the activity of the CPU, while HPCs 

are used for measuring the impact of RAM. 

A.Lewis et al. [72] use linear regression to create a power prediction model which 

dynamically correlates system bus traffic with processor’s task activities, RAM metrics, 

and motherboard power measurements. The accuracy of the model is on average 96%. 
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The model demonstrates the energy relationship between the workload and the 

thermodynamics of the server. The regression variables includes the values of the energy 

consumed by processor, RAM, electromechanical subsystems, motherboard, and HDD. 

Analysis of variance (ANOVA) [73] is used to calculate the best fit to the data. The 

validation of the energy model is done using SPEC CPU2006 benchmark suite. 

Both Lewis model and our study use HPCs for collecting processor and RAM specific 

metrics. Nevertheless, there are few major differences. They utilize data that impact the 

thermodynamics of the server, e.g. ambient temperature, and other electromechanical 

equipment such as cooling fans and optical drives. However, our study takes into account 

the incoming and outgoing network packets to consider the impact of network traffic. 

Their model uses 12 regression variables for prediction with a median error of 4%, 

whereas we use only 2 variables to estimate power consumption with median error of 

5.33%. This is a significant difference when applying mechanisms for real time power 

estimation. 

2.5. Data center level power modeling 

The power models described in section 2.3 and 2.4 are focused on modeling the 

energy consumption of processor and server. Beside these individual components, several 

studies have proposed power models which analyze and estimate the energy consumption 

in data center level. When constructing higher level power models for data centers, it is 

essential to understand how the energy is consumed by large groups of servers and what 

is the role of data center network to the energy consumption. 

There are three different types of power models for a group of servers. These are 

queuing theory based power models, power efficiency metrics based power models, and 

others. Also, more parameters need consideration compared to power models for a single 

server. Time delay and sometimes penalties associated with the setup cost i.e. booting the 

server on, are just few examples. Gandhi et al. [61] and Lent [62] propose power 

consumption models based on queueing theory, which schedule the processes among the 

servers depending on their power state. There are power models developed based on the 

data center’s performance metrics. Qureshi et al. [63] present an energy model for a group 

of servers, combining the PUE of the whole data center with the linear power model of a 

single server presented by Fan et al. [64]. 
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When modeling energy consumption caused by the data center network, there are 

multiple components of the network to consider, such as the network equipment and the 

topology of the network. In higher level abstraction, the energy cost of network links has 

significant impact to the power consumption. For example, Heller et al. [65] present a 

model for the total network by accumulating the power consumption of an individual link 

and the cost of an active network switch. Other studies present power models for the 

network devices. An extensive model by F. Jalali et al. [66] describes the total energy 

consumption of a switch as an addition of input and output energy to and from the switch, 

the supply and control energies, and the instantaneous throughput. 

2.6. Summary 

Sections 2.3, 2.4, 2.5 presented approaches for power modeling in three different 

levels. First, we presented power models that predict the consumption of processor; the 

component of the server that impacts the energy the most. Power models in processor 

level, were applied during threading scheduling and DVFS to optimize the utilization and 

reduce the energy consumption. Next, we discussed about system level power models that 

include other essential components of the server, such as RAM, hard disk, NIC and GPU. 

Related studies have shown that we can derive power models which predict the energy 

consumption of the server in real time with reasonable accuracy, less than 10% regardless 

of the server’s workload [59]. Studies that described power models associated with data 

center’s power consumption were presented at the final section. In such cases, modeling 

is done for optimizing the energy efficiency of groups of servers, or is focused on data 

center network, where alternative network topologies and efficient routing mechanisms 

are proposed for efficient network plane. 
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Chapter 3 

Regression-based Power Modeling 

This chapter presents our approach to define a power model which predicts the energy 

consumption of the server. The methodology to identify suitable variables which reflect 

the power characteristics of the server is described in detail. We finally explain what are 

the statistical factors that are used to evaluate the efficiency of the prediction model. 

3.1. Lasso model with non-negative coefficients: 

A fine-grained approach is used, to derive the model of the energy consumption. We 

select 30 variables which reveal the power characteristics of the server. Regression-based 

analysis is followed to estimate the relationship among these variables. Specifically, linear 

regression based on Lasso method [67] with nonnegative coefficients, is used to create a 

power model which takes three hardware components into account; these are the 

processor, the RAM and the Network Interface Controller (NIC). The coefficients show 

contribution to the power consumption; hence they are limited to get only positive values. 

The Lasso is a linear model which performs L1 regularization, thus effectively 

reduces the number of estimators. It alters the model fitting process to select a subset of 

the coefficients for use in the final model. The Lasso estimate (1) minimizes least square 

penalty with α‖w‖1 added. The parameter α or alpha in its full form, is a constant which 

controls the degree of sparsity in the estimated coefficients, and ||w||1 is the L1-norm of 

the parameter vector [67]. Showing strong sparse effects, the Lasso model is suitable for 

our work where we need to keep only the coefficients which have the most significant 

contribution to the power consumption. 

 

𝑚𝑖𝑛
𝑤

1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
‖𝑋𝑤 − 𝑦‖2

2 + 𝛼‖𝑤‖1          (1) 
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The methodology we follow to derive the power model is based on the following five 

steps: 

• Define the set of regression variables which reflect the activity levels of the 

hardware. 

• Design the energy benchmark, which stresses the regression variables and 

explores their behavior for different CPU, memory, and network load. 

• Run the energy benchmark and collect the regression variables. 

• Create the linear model using Lasso to estimate sparse coefficients. 

• Validate the power model against the testing data set, and multiple validation sets 

which cover our benchmark’s scenarios. 

 

The power model for the server is presented based on the linear model (2), 

 

𝑓(𝑦𝑖) = 𝑏0 + ∑ 𝑏𝑗
𝑝
𝑗=1 𝑔𝑗(𝑥𝑖,𝑗)         (2) 

 

where 𝑔𝑗(𝑥𝑖,𝑗) is a preprocessing function of the original values of the features, 𝑏0 is the 

intercept which is equal to the target variable when all the features are set to zero, and 𝑏𝑗 

is the coefficient value of each feature. The preprocessing function of the features are 

presented in the Table . The values of the intercept and the coefficients are calculated 

during the model fitting. 

The quality of the prediction model is measured using the Mean Squared Error 

(MSE) which is a metric corresponding to the expected value of the squared loss [68]. 

MSE is calculated as the average of the sum of the squared deviations of the predicted 

variable, 𝑀𝑆𝐸(𝑦𝑖 , 𝑓(𝑦𝑖)) (3). 

 

𝑆(𝑏0, … , 𝑏𝑗) = ∑  (𝑦𝑖 − 𝑓(𝑦𝑖))
2𝑛

𝑖=1        (3) 

 

where n is the number of samples, 𝑦𝑖 is the true value, and 𝑓(𝑦𝑖) is the corresponding 

predicted value. 
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3.2. Regression variables 

We select 30 regression variables which reflect the power characteristics of the 

processor, the access memory, and the Network Interface Controller of the server. There 

are two variables related to the network traffic representing the total number of packets 

received and transmitted on the network interface. The rest 28 variables are relevant to 

the CPU processing and the memory access. We call them Hardware Performance 

Counters (HPCs). These counters represent a fine-grained model of analyzing the CPU 

and the memory utilization, and they are widely used for measuring power consumption 

in real time. Table 1 presents the regression variables and their preprocessing functions. 

 

Table 1  Description of regression variables and their preprocessing functions. 

Hardware 

Resources 

Regression Variable 

 𝒙𝒊,𝒋 

Preprocessing Function 𝒈𝒋(𝒙𝒊,𝒋) Description 

Processor 28 HPC event rates: 

 

𝑥𝑖,𝑗 (𝑗𝜖[1. .28]) 

= {

𝑐𝑖,1

𝑑
, 𝑓𝑜𝑟 𝑐𝑝𝑢 − 𝑐𝑦𝑐𝑙𝑒𝑠

𝑐𝑖,𝑗

𝑐𝑖,1
 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝐻𝑃𝐶𝑠

    (4) 

 

Where 𝑐𝑖,1 is the increment in 

cpu-cycles, and 

𝑐𝑖,𝑗(𝑖𝜖[2. . 𝑛], 𝑗𝜖[2. .28]) is the 

increment for the other HPCs 

during the same monitoring 

period d. 

Normalization function: 

 

𝑔𝑗(𝑥𝑖,𝑗) = 
𝑥𝑖,𝑗−𝑚𝑒𝑎𝑛(𝑥𝑖,𝑗)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥𝑖,𝑗)
    (5) 

 

The mean and the standard deviation 

of each variable, are calculated from 

the data set used for model fitting. 

HPCs available on Intel 

Xeon CPUs E5-2680 

v3: 

 

CPU cycles, branch-

instructions, branch-

misses, bus-cycles, 

cache-misses, cache-

references, instructions, 

ref-cycles, L1-dcache-

load-misses, L1-dcache-

loads, L1-dcache-stores, 

L1-icache-load-misses, 

LLC-load-misses, LLC-

loads, LLC-store-

misses, LLC-stores, 

branch-load-misses, 

branch-loads, dTLB-

load-misses, dTLB-

loads, dTLB-store-

misses, dTLB-stores, 

iTLB-load-misses, 
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iTLB-loads, node-load-

misses, node-loads, 

node-store-misses, 

node-stores. 

NIC Incoming packets (Bytes/s)  

𝑥𝑖,29 =  
𝑐𝑖,29

𝑑𝑖

 

Outgoing packets (Bytes/s)  

𝑥𝑖,30 =  
𝑐𝑖,30

𝑑𝑖

 

 

𝑔𝑗(𝑥𝑖,𝑗) =  𝑥𝑖,𝑗 

ifHCInOctets, 

ifHCOutOctets 

 

As presented in these works [55], [57], measuring power consumption at high 

frequencies is impractical. Dynamic Voltage and Frequency Scaling (DVFS) can reduce 

the power consumption. In this case power simulators are time consuming and they do 

not reveal accurate information for real time power consumption monitoring, hence they 

are prone to errors [50], [69]. Nevertheless, HPCs reveal considerable amount of 

information about power consumption [43]. They monitor events associated to the CPU, 

memory, I/O and network by counting specific events such as CPU cycles, instructions, 

cache misses, Translation Lookaside Buffer misses, bytes in/out, and so on. Therefore, 

the importance of measuring and analyzing HPCs is essential when working with power 

management models for energy consumption estimation and optimization [70]. 

Power consumption is the rate of energy consumed over a time period, whereas 

regression variables have different values. HPCs are raw numbers and the variables 

associated with the network transmission are measured in bytes. In the first phase, we 

preprocess all the predictor variables to convert them into rates comparable to the power 

consumption. The design for preprocessing the regression variables is based on [71]. 

Specifically, CPU cycles are divided by 10 seconds, which is the sampling rate of the 

events, therefore we get the CPU cycles per second. The rest of the HPCs are divided by 

the number of CPU cycles of each sample. This way, we have the rate of each HPC per 

CPU cycle. For the network metrics, we divide received and transmitted packets by 10 

seconds to get the data rate in bytes per second (4). In the second phase, we normalize the 

data using (5). We first calculate the mean value and the standard deviation for every 

predictor variable. Then we get the preprocessed values of the variables and we normalize 

them by subtracting their means and dividing by their respective standard deviation. 
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Chapter 4  

Experimentation 

4.1. Data collection 

For our experiment, we use Nokia Airframe server D51BP-1U. It is equipped with 

Intel processor, which has two Xeon CPUs E5-2680 v3 at 2.50 GHz. Each CPU has 12 

physical cores and hyperthreading enabled. The Network Interface Controller of the 

server is Intel 82599ES, 10-Gigabit SFI/SFP + Network Connection. The RAM is DDR4, 

with size of 128 GB and bandwidth 2133 MHz. The server runs CentOS Linux version 7, 

and the kernel version is 3.10.0-514.2.2.el7.x86_64. 

In our benchmark, we have a bash script which collects the HPCs, the network traffic, 

and the power consumption of the server every 10 seconds. Each run of the script 

represents an event. We run the script for 91 combinations of CPU, memory and network 

load. For each combination, we repeat the measurement 30 times and collect 30 events. 

In total, we collect 2730 events. For each event, we collected simultaneously the energy 

consumption of the server. 

There are few reasons for repeating the experiment 30 times for every load 

combination. The duration of 10 seconds that we log each event is defined by the sleep 

UNIX utility [74], so one reason is that sleeping time slightly fluctuates few milliseconds 

in every run. Moreover, due to the increased functionalities such as multi-core systems, 

multi-CPU systems, multi-level caches, non-uniform memory, multi-threading, 

pipelining and out-of-order execution [75], modern processors have non-linear CPU 

utilization. Hence, despite the user-level CPU utilization is maintained in the same level 

throughout all 30 repetitions, the overall CPU utilization is affected by operating system 

processes that run constantly and they have variation due to the non-linear CPU behavior. 

We use perf UNIX utility [76] to collect the HPCs from the processor. The counters 

that are collected are listed below: branch-instructions, branch-misses, bus-cycles, cache-

misses, cache-references, CPU cycles, instructions, ref-cycles, L1-dcache-load-misses, 
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L1-dcache-loads, L1-dcache-stores, L1-icache-load-misses, LLC-load-misses, LLC-

loads, LLC-store-misses, LLC-stores, branch-load-misses, branch-loads, dTLB-load-

misses, dTLB-loads, dTLB-store-misses, dTLB-stores, iTLB-load-misses, iTLB-loads, 

node-load-misses, node-loads, node-store-misses, node-stores. 

Network metrics related to the total number of packets received and transmitted at 

the network interface are collected through snmpwalk application [77]. We run snmpwalk 

to our server to request ifHCInOctets and ifHCOutOctets counters from the leaf switch 

that is connected to the server’s Network Interface Controller. The ifHCInOctets shows 

the total number of bytes received on the interface, and the ifHCOutOctets shows the total 

number of bytes transmitted out of the interface. The values of these counters are 

measured since the initialization of the network management system. 

We execute a C program, to create load to the access memory. The program allocates 

large blocks of memory and fills them with 1. To impose load to the CPU, we run stress 

tool [78] in the server, which spawns workers spinning on the sqrt(). A single worker 

imposes 100% load in a CPU thread. In our case, we have in total 24 physical cores with 

hyperthreading, hence 48 threads in total. Spawning one worker, we fully utilize one 

thread. Finally, iperf tool [79] is used to generate bulk connection between our server and 

another one which belongs in the same network. The protocol that we use is TCP. 

The energy consumption of the server is collected with ipmitool [80] directly from 

the power supply units (PSU). The server has two PSUs, so we calculated the total power 

consumption by accumulating the energy output from both. 

4.2. Test cases 

We create 9 test cases based on different memory loads, from 0 to 100%. For each 

memory load, we run 8 CPU loads from 0 to 100%. The test cases are designed in such a 

way to cover scenarios for all the range of memory and CPU load of the server. The size 

of the access memory is 128 GB. Therefore, we have one test case when memory is not 

stressed. In this case, the only memory overhead is approximately 1.4 GB, and is produced 

by the system processes of the operating system. Then we have 7 more test cases, running 

our C program which stresses the memory up to maximum with intervals of 16 GB. 
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For each memory case, we have CPU load increasing from nearly 0% when the server 

is in idle state, up to 100% when running the stress tool and creating maximum CPU load. 

The intervals of the CPU load increase every 12.5%. Essentially, every time we increase 

the CPU load by 12.5%, we spawn 6 additional workers. 

 

Table 2  Description of the workloads used in our energy benchmark. 

Category Description Test Case Id 

CPU CPU load from 0% to 100% Keep the RAM idle, while stressing 

the CPU in 9 workloads from idle to 

maximum load. 

1 

RAM RAM: 17.4 GB 

CPU load: 0% - 100% 

Allocate 16 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

2 

RAM RAM: 33.4 GB 

CPU load: 0% - 100% 

Allocate 32 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

3 

RAM RAM: 49.4 GB 

CPU load: 0% - 100% 

Allocate 48 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

4 

RAM RAM: 65.4 GB 

CPU load: 0% - 100% 

Allocate 64 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

5 

RAM RAM: 81.4 GB 

CPU load: 0% - 100% 

Allocate 80 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

6 

RAM RAM: 97.4 GB 

CPU load: 0% - 100% 

Allocate 96 GB of memory, and stress 

CPU in 9 workloads from idle to 

maximum load. 

7 

RAM RAM: 113.4 GB 

CPU load: 0% - 100% 

Allocate 112 GB of memory, and 

stress CPU in 9 workloads from idle 

to maximum load. 

8 

RAM RAM: 126.4 GB 

CPU load: 0% - 100% 

Allocate 125 GB of memory, and 

stress CPU in 9 workloads from idle 

to maximum load. 

9 

Network CPU idle 

RAM idle 

Network: 0 GB/s - 10 GB/s 

Keep the CPU and RAM idle, while 

adding traffic to the server from 0 

GB/s to maximum. 

10 
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We also want to evaluate the impact of the network load when there is no added load 

to the CPU and memory. For this purpose, we have another test case where we set a 

network connection between the Airframe server and another server with similar 

specifications and we generate different levels of network traffic between the servers. 

Both servers have 10-Gigabit NICs, so we simulate 10 traffic scenarios having the 

network link idle initially, and then increasing the traffic to maximum bandwidth. 

4.3. Model fitting 

For the model fitting we use Lasso linear model that estimates sparse coefficients. It 

is inclined to reduce the number of features that contribute to the prediction model. This 

model is effective in cases we need to select only the few features that have the highest 

effect in the response variable. The features in our power model contribute positive to the 

energy consumption, since all of them produce a portion of the total energy. Therefore, 

we run the Lasso model with non-negative coefficients which forces the coefficients to be 

positive. 

We follow a common data analysis approach when splitting the data set. In the first 

step of the implementation, we randomly shuffle the events in the data set, and we discard 

10%, keeping it separately for validation. With the 90% of the initial data set, we form a 

new data set, which we split into 70% training and 30% testing data set. Then, we train 

our model with the training data set. The model tries to learn the effect of each feature to 

the response variable. At this stage, we get the coefficients of the features that contribute 

to the power consumption. 

Next, we use the 30% of the testing set to predict the values of the power 

consumption. Along with the predictions, we calculate the MSE which is an estimator of 

the overall deviations between predicted and expected values. The result for the MSE is 

0.02. Additionally, we calculate the variance of the prediction, which is 0.97. The median 

prediction error is 5.00%. The final power model is presented in the formula (6). 

 

Power (W) = 269.2873 + 67.5317 × 𝑔1(𝑥1) + 40.0112 × 𝑔2(𝑥2)    (6) 
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where 𝑔𝑖(𝑥𝑖) (i ϵ [1,2]) is the preprocessing function as described in Table . Let 𝑐1 

and 𝑐2 be the increment in CPU cycles and dTLB-loads in the monitoring period d, 

respectively. 

 

𝑔1(𝑥1) = 
𝑥1 − 61882864724.64

44874138656.54
 , 𝑥1 =  

𝑐1

𝑑
 

 

𝑔2(𝑥2) = 
𝑥2 − 0.44

0.20
 , 𝑥2 =  

𝑐2

𝑑
 

 

The event rate of CPU cycles refers to the clock cycles, and describes the workload 

of the processor which takes the highest portion of the power consumption. The dTLB-

loads reflect the efficiency of the access memory and it shows how many times the 

translation lookaside buffer is accessed in a CPU cycle. 

4.4. Model evaluation 

We have 2730 events representing our data set. As discussed in section 4.3, 90% of 

the data equivalent to 2457 events, is used for model fitting, and 10% of the data equal to 

273 events, is used for validating the model. The validation data set, which is a random 

sample of the whole data set, is not used when fitting and testing the prediction model. 

We run the prediction against the validation set and calculate again the MSE and the 

variance which are 0.02 and 0.97 respectively. The median error of the validation data set 

is 5.33%, slightly increased by 0.33% as compared to the median error which is calculated 

after testing the prediction model against the testing set. Since these two values for median 

prediction error are very close, we confirm the accuracy of our prediction model. 

Furthermore, we analyze the accuracy of our model for all the different workloads to 

understand its performance in every individual case. These workloads consist of 91 

combinations of CPU, memory and network load. We classify the workloads per test case, 

and calculate their corresponding prediction errors to understand the prediction accuracy 

for different workloads. The actual value of power consumption is also presented for every 

workload.
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Fig. 5  Percentage of prediction error when RAM is 

idle, and CPU is stressed from 0% to 100%. 

 

Fig. 7  Percentage of prediction error when 16 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 9  Percentage of prediction error when 32 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 6  Power consumption when RAM is idle, and 

CPU is stressed from 0% to 100%.

 

Fig. 8  Power consumption when 16 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 

 

Fig. 10  Power consumption when 32 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 
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Fig. 11  Percentage of prediction error when 48 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 13  Percentage of prediction error when 64 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 15  Percentage of prediction error when 80 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 12  Power consumption when 48 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 

 

Fig. 14  Power consumption when 64 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 

 

Fig. 16  Power consumption when 80 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 
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Fig. 17  Percentage of prediction error when 96 GB 

of RAM are allocated, and CPU is stressed from 0% 

to 100%. 

 

Fig. 19  Percentage of prediction error when 112 

GB of RAM are allocated, and CPU is stressed 

from 0% to 100%. 

 

Fig. 21  Percentage of prediction error when 125 

GB of RAM are allocated, and CPU is stressed 

from 0% to 100%. 

 

Fig. 18  Power consumption when 96 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 

 

Fig. 20  Power consumption when 112 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 

 

Fig. 22  Power consumption when 125 GB of RAM 

are allocated, and CPU is stressed from 0% to 

100%. 
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Fig. 23  Percentage of prediction error for different 

network traffic, when CPU is stressed from 0% to 

100%. 

 

 

Fig. 24  Power consumption for different network 

traffic, when CPU is stressed from 0% to 100%. 

 

Figures 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 present the results for the behavior of 

the prediction error for different workloads. Afterwards, we compare them with the 

median prediction error which is 5.33%. We observe that the smallest error is 1.09% when 

CPU load is 87.5%, memory is not stressed and there is no added network traffic, while 

the highest error is 14.76% and is measured when memory is stressed to the maximum 

level, CPU is idle and there is no added network traffic. 

In the test case where network traffic is added, we notice that error is higher than 

5.33% for almost all the network loads, but for the case where traffic is set to 2 Gb/s. 

When CPU is idle, the error is below 5.33% for almost all the memory loads, with an 

exception when memory is fully stressed, the error exceeds the median error and reaches 

its pick value of 14.76%. In the case of CPU load 12.5%, for all the memory loads, the 

error is nearly one and a half to two times higher than the median error, recording values 

between 6.83% and 11.31%. Error slightly higher than the median error is also measured 

in every memory case, when CPU is fully utilized. In this case, the maximum variation 

from the median error is 1.34% for CPU load 100% and 87.5% memory utilization. For 

the rest of different memory and CPU loads, the prediction error is nearly equal or less 

than 5.33% in most of the cases Table . Very good predictions of energy consumption 

with errors between 1.09% and 3.13%, are noticed in the cases of CPU loads 37.5% and 

87.5%, for all the memory loads. 
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Table 3  Median prediction error per test case. 

Test Case  1 2 3 4 5 6 7 8 9 10 

Error (%) 4.85 5.46 4.47 4.96 3.95 4.31 4.60 4.5 6.12 8.53 

 

Figures 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 show the actual power consumption of 

the server for different workloads. Despite the memory utilization, power consumption 

increases until the CPU load reaches 50%. When CPU load is between 50% and 100% 

the consumption level remains almost stable, close to its maximum value. In the last case 

where the impact of network traffic is tested, we notice that power consumption is 

maintained in low level regardless the amount of incoming and outgoing traffic. 

 

 

Fig. 25  Empirical Distribution Function 

 

Fig. 25 presents the Empirical Distribution Function of the cumulated median errors 

for the different combination of CPU, memory, and network load. This is a step function 

that increases by a factor of 1/91 at each of the 91 median errors. The value of this function 
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at any specified data point represents the fraction of the data points of the median error 

that are less than or equal to the specified value. For example, we can see that 50% of 

predictions across all benchmarks have less than 5.33% error. 

4.5. Discussion 

From Fig. 25 we observe that for the majority of workloads the prediction error lies 

below 10%. Specifically, for 96.7% of the workloads we can predict the power 

consumption with an error of less than 9.97%. Three test cases give less accurate 

predictions with median error per test case between 5.46% and 8.53% Table . These are 

the one where we allocated 16 GB of RAM, the other where 126 GB of RAM are 

allocated, and the last one which tests the impact of network traffic to the power 

consumption. The network test case results the highest median prediction error of 8.53%. 

We observe that the features associated with the incoming and the outgoing network 

traffic show negative correlation with the power consumption. From Fig. 26 and Fig. 27, 

it is visible that the intersection points of power consumption and network traffic do not 

follow a linear trendline. Additionally, we calculated the R-squared value for both 

network features. In case of the incoming traffic the R-squared value is 0.1908, and for 

the outgoing traffic is 0.1612. The R-squared values reveal that the data associated with 

the network traffic do not fit a linear regression line, and therefore, we conclude to the 

fact that network variables are not used in our prediction model. 
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Fig. 26  Correlation diagram between power consumption and incoming network traffic. 
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Fig. 27  Correlation diagram between power consumption and outgoing network traffic. 

 

On the other hand, CPU cycles and dTLB-loads have positive correlation with the 

power consumption. Fig. 28 and Fig. 29 show that the intersection points of power 

consumption and CPU cycles as well as dTLB-loads are relatively close to a linear 
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trendline. We calculated the R-squared value for each of these two features. In case of the 

CPU cycles the R-squared value is 0.8003, and for the dTLB-loads is 0.9672. The R-

squared values of the features that construct our prediction model, have a better fit to a 

linear regression line. 

 

0

50

100

150

200

250

300

350

400

450

0 500000000000 1000000000000 1500000000000

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
a

tt
s)

CPU Cycles per 10 seconds
 

Fig. 28  Correlation diagram between power consumption and CPU cycles. 

 

Further analysis on the behavior of data, for the workloads that our prediction model 

is less accurate, is considered as future direction of this work. Alternative models of 

supervised learning such as classification, could give more accurate predictions for 

independent workloads. 
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Fig. 29  Correlation diagram between power consumption and dTLB-loads. 
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Chapter 5 

Conclusions 

5.1. Summary 

We created the power profile of the server. Leveraging machine learning models, we 

followed a fine-grained approach to derive the features that have the highest contribution 

to the power consumption. CPU cycles and dTLB-loads impact the energy consumption 

of the server the most. If we collect these two features from the processor of the server, 

we can estimate its power consumption. The power model can be used for predicting 

energy consumption of the server when these two regression variables are available. The 

advantage of the model is the fact that it predicts power consumption at system-level with 

average accuracy of 94.66% regardless of the server’s workload, and is independent of 

individual server’s components usage. 

The power model is based on analysis of HPCs. An alternative direction, is a 

feasibility study of constructing a prediction model if the only available variables are CPU 

load, memory and Input/Output of the server. There are various questions regarding the 

accuracy of the power model against different types of hardware. We want to scale the 

model to predict the energy consumption of different types of server, e.g. Open Compute 

Project (OCP) type of server. If we can prove that our existing power model estimates the 

power consumption of other servers, it would be possible to compare their energy 

consumption for different workloads, and propose which server consumes less energy in 

different workload scenarios based on its usage. 

Let us assume the following scenario; we have a MNO running network applications 

in a data center, using two different types of server, A and B. We use our power model to 

estimate the energy consumption for each server in various workload scenarios. We learn 

that server A consumes less energy as compared to B when running close to its maximum 

activity level. Knowing that server A is more energy efficient in high workloads, MNO 

can decide to consolidate its applications in more servers of type A and power off servers 

of type B; therefore, it can benefit energy consumption gains. 
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