
Collecting and visualizing business
metrics in cloud-based applications

Juhana Suhonen

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 30.6.2017

Thesis supervisor:

Assoc. Prof. Keijo Heljanko

Thesis advisor:

M.Sc. (Tech.) Heikki Moilanen

aalto university
school of science

abstract of the
master’s thesis

Author: Juhana Suhonen

Title: Collecting and visualizing business metrics in cloud-based applications

Date: 30.6.2017 Language: English Number of pages: 7+65

Computer Science and Engineering

Professorship: Computer Science

Supervisor: Assoc. Prof. Keijo Heljanko

Advisor: M.Sc. (Tech.) Heikki Moilanen

Monitoring cloud computing resources is a straightforward and common task for
any cloud application developer. The problem with current monitoring solutions is
that they only focus on infrastructure resources. Many companies on the other
hand would need data about the business side of their applications. This thesis
extends the current monitoring solutions to capture business metrics from within
applications. The metrics are then visualized to quickly allow for better analysis
of the data.
The tool is composed of three main components. The metrics are captured with a
Node.js library that is imported in the monitored application. The library sends
the captured data to InfluxDB timeseries database. The data is visualized with
Grafana which implements tables, graphs, and gauges. The provided command-line
tool creates a file that can be imported in Grafana to create a new dashboard with
graphs in it.
The requirements for the tool were created through the needs of software developers
and clients of web- and mobile-developer Codemate. An architectural design was
made based on the requirements and then implemented on the AWS cloud platform
on top of Kubernetes. The implementation was evaluated by testing it in a real
production server.
The tool is functional and it works as intended. The results from the evaluation
prove that the tool created in this thesis can help companies gain better information
about their products. Future work includes adding the metrics capture for other
languages such as Go and Ruby as well as integrating the tool to Codemate’s new
development environment. Further research can be done especially in improving
performance of the solution in large systems.

Keywords: business metrics, monitoring, distributed system, grafana, kubernetes

aalto-yliopisto
perustieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Juhana Suhonen

Työn nimi: Bisnesmetriikan kerääminen ja visualisointi pilvipohjaisessa
kehitysympäristössä

Päivämäärä: 30.6.2017 Kieli: Englanti Sivumäärä: 7+65

Tietotekniikka

Professuuri: Tietotekniikka
Työn valvoja: Prof. Keijo Heljanko

Työn ohjaaja: DI Heikki Moilanen

Pilviresurssien monitorointi on selkeä ja yleinen tehtävä jokaiselle pilvipalvelun
kehittäjälle. Monitorointisovellukset keskittyvät vain infrastruktuuriresursseihin,
vaikka monet nykyajan yritykset tarvitsisivat tarkempaa tietoa sovellusten bisnes-
puolesta. Tämä diplomityö laajentaa nykyisiä monitorointisovelluksia kattamaan
bisnesmetriikan keräämisen applikaatioiden sisältä sekä visualisoi datan paremman
analyysin mahdollistamiseksi.
Diplomityössä kehitetty työkalu koostuu kolmesta osasta. Metriikat kerätään so-
velluksista Node.js-kirjaston avulla, joka lisätään sovelluksen koodiin. Kirjasto
lähettää dataa InfluxDB-tietokantaan, josta se visualisoidaan Grafanalla interaktii-
visten kuvaajien sekä taulukoiden avulla. Grafanaan voidaan lisäksi luoda työpöytiä
diplomityötä varten luodulla ohjelmalla.
Bisnesmetriikan keräämiseen ja visualisointiin luotu työkalu määriteltiin ohjelmis-
tokehittäjä Codematen ohjelmistoinsinöörien sekä asiakkaiden tarpeiden mukaan.
Määrittelyä käytettiin työkalun arkkitehtuurin luomiseen, joka ohjasi käytännön
toteutusta. Työkalu rakennettiin Amazonin AWS-palveluun Kuberneteksen päälle.
Toteutetun työkalun toimivuus testattiin lopuksi asiakasympäristössä tuotantopal-
velimella.
Työkalun todettiin toimivan tarkoituksenmukaisesti. Testauksesta saadut tulokset
osoittavat, että työkalu voi auttaa yrityksiä saamaan parempaa informaatiota
ohjelmistotuotteistaan sekä niiden käytöstä. Työkalun kehitystä voidaan jatkaa
laajentamalla sen toimintaa Go- ja Ruby-kielille sekä integroimalla se tiiviimmin
Codematen uuteen kehitysympäristöön. Lisätutkimus erityisesti suorituskyvyn
parantamiseen laajoissa järjestelmissä on tarpeen.

Avainsanat: bisnesmetriikka, monitorointi, hajautettu järjestelmä, grafana,
kubernetes

iv

Preface
Writing this thesis has been a flowing process ever since I got first hints at the
topic from Codemate in late January. With my interest going towards full-stack
development, it has been rewarding to work on a project that offers aspects of both
front- and back-end. Working on a multi-disciplinary topic has also been a great way
to get to know several architects and software engineers at Codemate.

The thesis has progressed steadily even with other projects requiring most of my
attention at times. A big thanks for this goes to the Codemate team, the relaxed
work environment and Rocket League providing valuable relaxation during writing
sprints. On the writing part, my instructor Heikki has helped improve my writing
and this thesis tremendously. Without his guidance this thesis would not be as fluent
as it is now. My professor Keijo Heljanko has also been very supportive even with
the limited time he has been able to provide to my thesis.

For the implementation part, Tuomas Mäkinen has helped me a lot with the
issues I have faced, and he has also given great guidance. To allow me to test the
implementation in real production and for the always friendly help and attitude, I
want to thank Petteri and Juho. Finally, for all the mental, physical and textual
support, I want to thank Bembu, Henry, Petri, Joel, Laura and the many others who
have helped me with the thesis and my studies.

This thesis has been written with the Dvorak key-layout. Trying to write the
thesis with Dvorak at 15 words per minute was slow and straining at first, but I
got faster every week. Learning it in daily 10-minute doses has also been fun and
challenging, keeping my mind fresh when writing. Now, when finishing this thesis in
the end of June, my writing speed has increased to 40 wpm. It is still slower than I
am with QWERTY (50wpm), but it is much easier to code with Dvorak. Starting
to learn Dvorak slowly has been a great decision, and I encourage others to do so
as well. Over time, this will no doubt increase the typing speed and ergonomics
tremendously compared to the normal layout.

Otaniemi, June 30th, 2017

Juhana Suhonen

v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research problem and thesis scope 2

2 Literature review 4
2.1 Definitions of cloud computing . 4
2.2 Business metrics . 6
2.3 Distributed development . 7
2.4 Monitoring in cloud applications . 7
2.5 Measuring business processes . 9
2.6 Visualizing metrics . 10
2.7 Databases . 11
2.8 Current monitoring solutions . 12
2.9 Measurement frameworks . 15
2.10 The analytics stack . 17

3 Requirements 19
3.1 Introduction . 19
3.2 Target environment . 21
3.3 User requirements . 22

3.3.1 General user requirements . 22
3.3.2 Gathering metrics . 23
3.3.3 Storing and visualizing metrics 24

3.4 System requirements . 24

4 Design 27
4.1 Introduction . 27
4.2 Logical view . 28
4.3 Process view . 29

4.3.1 Capturing metrics . 29
4.3.2 Storing the metrics . 30
4.3.3 Visualizing the metrics . 31

4.4 Development view . 31
4.5 Physical view . 32

vi

5 Implementation 33
5.1 Implementation method . 33
5.2 Metrics capturing . 33
5.3 Storing the metrics . 34
5.4 Visualizing the metrics . 35
5.5 Generating the visualization dashboard 37
5.6 Moving to Cloud . 37

6 Evaluation 40
6.1 The tool . 40
6.2 Scalability and fault-tolerance . 40
6.3 Requirements verification . 41

6.3.1 User requirements . 41
6.3.2 System requirements . 42

6.4 Actual usage . 46
6.5 Research questions . 47

7 Conclusion 49
7.1 Summary . 49
7.2 Future work . 50
7.3 Further research . 51

References 52

A Database Schema: Counter 57

B Database Schema: Meter 57

C Database Schema: Histogram 58

D Database Schema: Timer 59

E Grafana installation 60
E.1 Login . 60
E.2 Add datasource . 61
E.3 Import dashboard . 62

F Grafana in production 63
F.1 Logins today and yesterday . 63
F.2 Table with latest login . 63
F.3 Graph with min & max & mean values 64
F.4 Login dashboard . 64

G Database installation script on AWS 65

H Grafana installation script on AWS 65

vii

Abbreviations
ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
AWS Amazon Web Services
BA Business Analytics
BI Business Intelligence
BPEL Business Processing Expression Language
BPM Business Process Management
EBS Amazan Elastic Block Store
EC2 Amazon Elastic Compute Cloud
ELB Amazon Elastic Load Balancer
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IoT Internet of Things
JSON JavaScript Object Notation
KPI Key Performance Indicator
MF Measurement Framework
MFW Monitoring Framework
MVP Minimum Viable Product
NIST U.S. National Institute of Standards and Technology
PaaS Platform as a Service
PPI Process Performance Indicator
REST Representational State Transfer
SaaS Software as a Service
SBA Service-Based Architecture
SC Service Component
SDE Software Development Environment
SI Service Infrastructure
SLA Service Level Agreement
SOA Service-Oriented Architecture
SQL Structured Query Language
SRS Software Requirements Specification
VM Virtual Machine

1 Introduction

1.1 Motivation
Cloud computing has become very popular in recent years. It provides scalable
computing resources over the Internet to perform large-scale and complex computing.
[45, 31] The main advantages of cloud computing compared to traditional approaches
include virtualized resources, parallel computing and reduced costs [31].

The cloud computing paradigm can be divided into three main categories as
shown in Figure 1: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) [41]. SaaS services are applications hosted by
vendors and include for example Google Drive and Dropbox [33]. PaaS offers more
customization, allowing the users to develop products of their own on top of the
platform. Examples of PaaS include Google App Engine and Microsoft Azure. [24]
IaaS refers to a combination of hosting, hardware provisioning and basic services
needed to run a cloud, including services like Amazon and IBM Smart Cloud [37, 24].

Figure 1: Cloud Computing Model [41]

Manvi and Shyam [37] identify IaaS as one of the most significant and fastest
growing fields in cloud computing. The IaaS platforms allow for efficient usage of
hardware resources, such as processing and storage units, while minimizing the costs
by distributing those computing resources to several users [24]. IaaS also allows
the developer to control the whole stack of their application from infrastructure to

2

software. It can simplify development significantly thanks to the distributed nature
of IaaS which allows the developers to develop for a single platform. [37].

There are also several problems with IaaS, such as inefficient resource manage-
ment [37, 54] and the lack of universal tools that support IaaS [11]. According to
Komi-Sirviö and Tihinen [35], projects are most often undermined by poor software
development environments and tools. In their study, tool-related issues were the most
commonly experienced problem area, with it being an issue in 81% of the studied
cases.

Some more specific tools have been created to help in distributed development [11,
29, 32]. Most of them target the development process, management or communication.
Tools that help with the development activity itself are few, mostly including some
programming environments and online repositories [29].

Monitoring the resource usage of cloud applications has been the focus of many
researchers [8, 13, 18, 25]. However, little effort has been put into allowing the users
of the cloud to choose what to monitor: "there is a clear lack of monitoring software
which can be easily installed and integrated in a cloud computing infrastructure"
[18, p. 68]. Furthermore, most current monitoring solutions have been designed for
simple systems or focus on monitoring the physical hardware rather than application
or business metrics chosen by the user.

1.2 Research problem and thesis scope
To tackle the problems with creating individual development environments, web and
mobile developer Codemate has started to build an environment of their own. It will
include several tools for creating and managing the cloud resources for development
projects. The cloud production environment is meant to simplify development and
keep track of all the different projects underway. The aim of Codemate’s environment
is to allow the creation, management and monitoring of all the different projects that
are being developed in the company.

The new development environment should allow both infrastructure and appli-
cation metrics to be monitored. Currently, monitoring infrastructure resources is a
common and straightforward task that every developer running applications in the
cloud must do. It is focused completely on the devops (development and IT opera-
tions) and does not provide any real value to the application, business or end-users.
In order to operate a business effectively however, data about the application itself
and its users are needed as well. This field has gained much less attention.

This thesis aims to design and develop a cloud-based environment for gathering
business metrics from applications running in the cloud. The system should capture,
store and visualize metrics chosen by the developers easily and effectively, and scale
to applications of different sizes. The environment should give the developers simple
tools for capturing the business metrics directly from their applications. It should
capture metrics such as the amount of sales of an online store or the number of users
logging in to the system at any given time.

The result of this thesis will be part of the new cloud production environment for
Codemate. The main focus will be in describing how the metrics can be gathered,

3

stored and visualized, and then implementing a tool to do that. Dhingra et al. [26]
state that existing frameworks have not looked at cloud monitoring from the point of
view of cloud customers where monitoring is based on customer needs. This thesis
addresses this lack of research through the following research questions:

1. What kinds of metrics should the environment support?

2. How can the current resource monitoring systems be extended to monitor
business metrics?

3. What are the requirements and design of the tool based on the needs of the
developers and end-users?

4. Does the tool provide a good way to gather and analyze business metrics?

The thesis will start with a literature review on current distributed development
and monitoring solutions in Chapter 2. It will also discuss business process measure-
ments and how to visualize them. Chapter 3 presents the requirements and Chapter 4
the design and architecture for the cloud-based metrics environment. Chapter 5
explains how the tool was created and how it works. Chapter 6 provides a reflection
in order to evaluate if the implemented methods were effective. It also presents the
results of testing the tool in a real production environment. Finally, the work will be
summarized and future improvements discussed in Chapter 7.

4

2 Literature review

2.1 Definitions of cloud computing
To understand the basis for this thesis, a closer look must be taken into various
different fields that come together in cloud application monitoring and gathering
business metrics. Beginning with the definitions for cloud computing and business
metrics, we move on to distributed development, monitoring and the current solutions
on the market and in research.

Vaquero et al. [30, p. 51] have defined cloud computing as follows: "Clouds are
a large pool of easily usable and accessible virtualized resources (such as hardware,
development platforms and/or services). These resources can be dynamically recon-
figured to adjust to a variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by a pay-per-use model in
which guarantees are offered by the Infrastructure Provider by means of customized
Service Level Agreements (SLAs)." The definition is in line with the U.S. Department
of Commerce’s National Institute of Standards and Technology’s (NIST) definition
for cloud computing [39].

Figure 2 shows the general cloud computing stack. At the bottom lies the
network infrastructure through which individual pieces of computing infrastructure
communicate with each other. Atop the infrastructure is the platform which works
as the middle-ware between the infrastructure and individual applications. The
platform can contain virtualized resources or operating systems, among other things.
The applications support and enable the business processes that are run in the cloud.

Figure 2: Cloud Computing Stack [41]

5

Cloud computing has emerged as a big field in the last ten years since Google
introduced their cloud computing platform [55]. Da Silva et al. [24] explain that
the concept of cloud computing has gained attention recently mainly because of the
industry’s initiative: Large IT infrastructure companies had a considerable amount
of their hardware idle waiting for consumption peaks. Thus, they attempted to
optimize and even profit from their computing infrastructure, which lead to the
creation of related concepts and proprietary technology for cloud computing. The
first academic papers dealing explicitly with cloud computing started to appear
around 2008-2009 [24, 30].

There are several architectures and guiding principles within cloud computing.
Two main ones are Service-Based Architectures (SBA) and Service-Oriented Architec-
tures (SOA). SBAs are composed of a number of loosely coupled services available on
the network which provide the desired functionalities. SOA on the other hand utilizes
independent component services with standard interfaces as the basic construct. In
essence, SBA is composed of smaller individual services than SOA, allowing for a
more granular control over individual pieces of the application. [46]

Figure 3: Service-based architecture [27]

Figures 3 and 4 show examples of SBA and SOA as described by Neal Ford
[27]. In both SBA and SOA, services are autonomous and platform independent
computational entities that can be used in heterogeneous environments. A SBA can
be viewed by its three functional layers as Business Process Management (BPM)
Layer, Service Composition (SC) Layer and Service Infrastructure (SI) Layer. [46]
While in the past monitoring has mostly concentrated on the Service Infrastructure
layer, this thesis aims to broaden monitoring all the way to the BPM layer.

6

Figure 4: Service oriented architecture [27]

2.2 Business metrics
Business metrics are meant to give data on which to act in the decision-making
process for a business. Business metrics are quantifiable measurements that track
and assess the status of a specific business process. Every area of a business has
specific performance metrics that should be monitored. [5]

According to software engineering theories [43, p. 434], "a measure provides a
quantitative indication of the extent, amount, dimensions, capacity, or size of some
attribute of a product or a process", and "measurement is the act of determining
the measures". Furthermore, an attribute states what we want to measure while the
metrics define how we measure something [40].

A base measure is the measure obtained executing a certain measurement method
over a single process instance, such as counting the number of visitors on a website.
An aggregated measure uses a set of process instances to calculate values for the Key
Performance Indicator (KPI). The aggregation is usually performed by selecting all
the instances in a given interval of time, but also by selecting all the instances for a
specific attribute and afterwards applying a certain aggregation function like max,
min, average or sum on this set of measures to obtain one single value. [21]

While business metrics are used to give an overall view of the business, KPIs
can be used to provide more detailed analysis of the critical areas for performance.
Further, Process Performance Indicators (PPI) are quantifiable metrics that can
evaluate the efficiency and effectiveness of business processes. PPIs can be measured
directly from the generated data within the process flow and are aimed at the process
controlling and continuous optimization. [21]

Within the scope of this thesis, we are specifically interested in data gained from
the applications run in the cloud. The data should help businesses better track their
performance, so it must adhere to the formats required by KPIs and PPIs. When

7

developing these applications, the developers must not only think about the business
side of the application, but also the technical side. With relation to business metrics,
data capturing and distributed development are important topics.

2.3 Distributed development
The continuous increase in the volume and detail of data has produced an over-
whelming flow of data in both structured and unstructured format. The data is
typically captured or created by organizations like Google and Facebook, and consists
of content such as that created in the social media, by devices part of the Inter-
net of Things (IoT), and multimedia. Data creation is occurring at a record rate.
A major challenge for researchers and practitioners is that this growth rate exceeds
their ability to design appropriate cloud computing platforms for data analysis and
update-intensive workloads. [31] The increased amount of data also requires the
developers and managers to communicate more with each other and the parties using
the data.

Difficulties in communication and collaboration can come from the nature of
distributed development which often spans over multiple teams and sites [22]. To mit-
igate such problems, there are different types of software development environments
(SDE) available [16]. They come in different types, ranging from SDEs for individual
developers to multi-site SDEs that can support the whole project [35]. In the past,
software development tools and environments only focused on the task of coding [11].
Since then, more focus has been put into collaboration and communication.

A major part of a development project is the development environment. Every
cloud development project traditionally needs an isolated environment in the cloud
in order to develop and test their service. Setting up these individual production
environments for each project can be problematic. Their configuration takes time,
and there is no simple way of keeping track of the utilization of resources or cost of all
the projects combined. [41] Ideally, the developers would have a unified development
environment through which setting up individual projects is easy.

Creating a uniform software development environment is a challenging task. The
readiness to change development tools is also low, indicating that people want to
use the tools they are familiar with. [35] This might be one reason, why only few
large-scale cloud providers have managed to establish themselves on the market.
These providers offer monitoring tools of their own, blocking third-party tools from
their infrastructure. The tools are not very good however, mostly focusing on the
needs of the service provider instead of their clients.

2.4 Monitoring in cloud applications
Monitoring is a technique for software information collection, behavior diagnosis,
defect detection and status recovery [13]. Since the early 1960s, software monitoring
has been successfully used in many areas including debugging and testing, correctness
checking, performance evaluation and enhancement, and security and dependability
analysis and control [13, 56].

8

Monitoring can take place at various stages in the software life cycle. One common
monitoring discipline is runtime software monitoring. It is "the act of collecting some
information about a system during its operation" [34, p. 155]. It has been used for
profiling, performance analysis, software optimization and fault-detection, diagnosis
and recovery [25, 56]. Monitoring is most often related to the infrastructure resources,
but also applications themselves can be monitored.

Figure 5: Monitoring in the 7 layers of
cloud computing

According to the Cloud Security Al-
liance [10, 52, 53], cloud can be divided
into seven layers as shown in Figure 5: Facil-
ity, Network, Hardware, Operating System,
Middleware, Application and User. Mon-
itoring in these layers can be categorized
as high- and low-level monitoring [7]. Low-
level monitoring concentrates on the hard-
ware and operating system, containing the
first four layers. High-level monitoring col-
lects information at the middleware, appli-
cation and user layers.

In the context of cloud monitoring, these
layers can be seen as where monitoring
can be done. The first three layers deal
with hardware while the last two provide
data from within the individual applica-
tions. High-level monitoring information
is generally of more interest for the end-
user. [7]

Cloud computing resource monitoring is
beneficial to the end-users because it helps
them analyze their resource requirements.
It also ensures that they get the requested
amount of resources they are paying for.

Cloud resource monitoring enables the end-users to know when to request more
resources, when to release any underutilized resources, and how much resources to
reserve for any specific task. [26]

Many monitoring tools in use currently have not been designed for cloud usage.
As such, traditional monitoring solutions have several flaws. First, they do not fit
in the life-cycle of virtual resources. Second, they are usually based on monitoring
agents installed inside the physical machines to gather metrics. Finally, many current
monitoring solutions are only suitable for small-scale deployments due to their poor
scalability. [18]

The lack of information and control is one of the main challenges associated with
cloud computing monitoring. Especially the customization of the monitoring metrics
that the cloud customers have over the rented cloud resources needs improving. [18]
At the time of writing, none of the existing frameworks have looked thoroughly at
Cloud Monitoring from the point of view of cloud customers, where monitoring is

9

based on customer needs [26]. Due to lack of universal tools, it is especially difficult
to monitor application data, and there are no clear guidelines for it, forcing every
company to develop methods of their own.

2.5 Measuring business processes
To get the best results for the tool implemented in this thesis, it is important
to understand how business processes can and should be measured. According
to Seufert [48, p. 31], the main purpose of an analytics system is "to provide
insight on product performance to product teams". Effective software measurement
and meaningful data interpretation depend on recognizing the essential duality of
all measurement processes. Measurement involves the definition of two models:
the empirical, real-world context in which the measurement is to take place and
a numerical model incorporating well-defined measurement-based aspects of the
empirical model. [42]

The overall measurement process is shown in Figure 6. Once the goals of
the measurement have been understood and defined, an empirical model can be
created. Measuring according to the model leads to the numerical model which
gives the numerical results after the necessary statistical functions have been applied.
Interpreting the numerical results leads to the empirical results, which can be used
to further refine the model. [42]

Figure 6: Measurement process [42]

In Service Oriented Architecture (SOA) approaches, business processes are usually
accomplished by service-based applications [21]. Because of that, processes are
represented in terms of technical service composition and their measurement is
realized through KPI- monitoring of web-service compositions. Cardoso [21] identifies
several different metrics that can be measured:

• Time measure measures the duration of time between two time instants.

• Linear measure takes into account the first occurrence of a given time instant
condition and the last occurrence of another time instant condition.

10

• Cyclic measure takes into account pairs of time instant conditions that are
located in a loop. They compute the KPI- measure by aggregating the time
values of all the iterations.

• Count measure is a simple counter measuring the number of times something
happens.

• Condition measure measures the fulfillment of certain condition in running or
finished process instance.

• Data measure measures the value of a certain part of a data object.

Business Analytics (BA) brings all the different measurements together. Shmuelli
et al. [49, p. 3] identify Business Analytics as "the practice and art of bringing
quantitative data to bear on decision making." For example, Washington Post can
track its readers by time of day, location, and user subscription information. Various
methods exist for data analysis in BA. [49]

To make use of business analytics, it is important to have the right data available.
Currently in many businesses, data is not being gathered or analyzed in an efficient
manner. According to Mendonca and Basili [40], it is not uncommon to find software
organizations that are either collecting redundant data, collecting data that nobody
uses or collecting data that might be useful to people who do not even know it exists
inside their organization.

Cardoso [21] mentions that there is a considerable gap on modeling performance
indicators and integrating them into modern enterprise modeling frameworks. There-
fore, the automated support for KPI- measurement is seriously impaired as well
as the measurement of goal achievement. He also points out that the problem of
capturing KPI- related metrics in accordance with strategic concerns is an issue
commonly neglected in the current languages and frameworks. [21]

Business analytics have evolved to Business Intelligence (BI) in order to understand
what has happened and is happening. Business Intelligence puts emphasis on
understanding the captured data. BI uses charts, tables and dashboards to visualize,
examine and explore data. Generic and static reports that were used before have been
replaced with more user-friendly and effective tools and practices such as interactive
dashboards. [49]

2.6 Visualizing metrics
Visualization is the graphical representation of data or concepts and it is the most
valuable sense for providing information from computers to humans. This is mostly
because humans acquire more information through vision than through all the other
senses combined. [47] The human brain is much better able to locate and isolate
selected events and activities when presented in graphical form in both real-time and
post-mortem analysis modes [17].

Card et al. [20] identify six major methods in which visualization can amplify
cognition by perception:

11

• Increasing memory and processing resources by allowing storage of massive
amounts of information in a quickly accessible form.

• Reducing searching by grouping information together.

• Enhancing recognition of patterns by enhancing patterns.

• Perceptual inference by making some problems obvious.

• Perceptual monitoring by allowing monitoring of a large number of potential
events.

• Manipulable medium by allowing exploration of a space of parameters unlike
static diagrams.

The main purpose of data visualization is to view analytical results presented
visually through different graphs for decision making [31]. For example, according
to Seufert [48], the ability for a product team to group users by specific behaviors
or demographic characteristics, or to limit a view of data by date, is an absolute
necessity. One of the best ways to visualize and display data is by using dashboards
which not only display the data but also allow the users to interact with it.

Shmuelli et al. [49, p. 4] explain that "effective dashboards are those that tie
directly into company data, and give managers a tool to quickly see what might not
readily be apparent in a large complex database". They identify one example as a
tool for industrial operations managers that displays customer orders by showing
customer name, type of product, size of order, and length of time to produce [49].

Several tools for visualizing metrics have been created. Savola and Heinonen [47]
identify two tools that deal with software metrics: Prefuse and Streamsight. Prefuse
is a toolkit for interactive information visualization, and Streamsight is a visualization
tool for large-scale streaming applications. The former is however already outdated
and the latter works only with streams.

The tools identified by Offen and Jeffrey [42] fail to address key aspects of software
measurement, especially those concerning empirical models and reuse. According
to them, automated context capture, data collection, and analysis, along with
historical data, can greatly enhance the effectiveness of predictive estimation models.
Furthermore, the organizations lacked support for data storage and analysis in all
their case studies [42].

To address the problem of collecting redundant data, Mendonca and Basili [40]
propose the solution to focus on two key issues: to better understand and structure
the ongoing measurement and to better explore the data that the organization has
already collected. A key aspect in this is the usage of a database that is designed for
the specific task.

2.7 Databases
Databases are used to efficiently store and organize data. There are several different
types of databases built for different use cases. Two main categories of databases are

12

the Structured Query Language (SQL) and NoSQL databases. SQL- databases are
traditional databases which use relations and require strict rules for how and what
type of data can be stored. NoSQL- databases on the other hand are much more
relaxed in their requirements for the structure of data, and can even accept different
types of data in the same tables. NoSQL- databases were designed for large Internet
services such as Facebook and Twitter, and can handle massive amounts of data and
requests. [23, p. 10-11]

The databases are often categorized by the activity they are used for. An opera-
tional database, or a transactional database, mostly supports the day-to-day operations
of businesses. An analytical database focuses on storing historical data and business
metrics that are used for tactical or strategic decision making. [23, p. 9] Analytical
databases have become more important recently, being the core technological element
in the field of business intelligence [23, Chapter 13].

Databases can be separated by the type of data they store. Most databases
operate on key-value basis where each key in the database table has a distinct, single
value. Some databases can store more arbitrary data such as documents, time-series
data or even objects. This thesis is interested in the time-series databases which
organize their data based on the timestamp attached to the stored value.

Databases have very different performances depending on the data they store, how
it is organized in the database, and what they have been developed to do. For example,
one database can be very fast at reading data but very slow at writing it, or vice
versa. Zareian et al. [57] suggest that the data storage for a measurement framework
should handle fast ingestion rate, low latency reads and rich data model. For the
measurement work that they implemented, they selected a NoSQL- solution because
they are "generally highly scalable, can relax ACID (Atomicity, Consistency, Isolation,
Durability) in favor of performance and support a notion of free schema" [57, p. 60].

As the amount of data increases, the database may no longer be able to effectively
store it all in real time. In such a situation, a queuing service such as BigQueue
proposed by Zareian et al. [57] may come to question. Their experiments show that
the BigQueue can improve database write speeds by up to 300 times. Such a solution
might provide important performance enhancements for large systems also within
the scope of this thesis, depending on the monitoring solution that is implemented.

2.8 Current monitoring solutions
Several different types of monitors have been created over the years. This chapter will
first explain several ways to create monitors. It will then display different monitoring
solutions that have been developed, showcasing the problems each has had.

According to Delgado et al. [25], there are several approaches for implementing
monitors. The key differences in them come from monitoring points, placement,
platform and implementation. Monitoring points explain at which point of code
execution monitoring is initiated; manually in the code, or automatically by tools
that detect points of instrumentation. Placement refers to where the monitoring
code actually executes; inline between code execution, or offline in another thread or
even on another machine. [25]

13

Platform differentiates between software and hardware; a software monitor uses
code to observe and analyze the values of monitored variables whereas a hardware
monitor might be a microprocessor that is attached to the physical system. Imple-
mentation details how the monitor is executed; in a single process, in a separate
thread, or on a completely different processor. [25]

Delgado et al. [25] identify three different source program types where the moni-
toring tool is applied to. General purpose means that the monitoring system does
not know anything about the target program. Domain-specific type includes some
information about the target system, such as where it is used. Category-specific type
indicates that the monitor is targeting a specific kind of program, such as one made
for real-time or distributed systems. [25]

Monitoring typically disturbs the observed system to some extent, which is
commonly referred to as the probe effect [34]. The dynamic behavior of software
or hardware is recorded by a collection of sensors. They are placed in the user’s
program or run as separate processes. Each sensor is a section of code which sends
information concerning an event or state within the program to the monitor. [50]

To collect the metrics, different types of probes can be identified and used for
different systems. For example, Wang et al. [56] define four types of probes:

• Instrumented probes with analysis: probes embedded in a system that process
raw data before outputting it.

• Instrumented probes without analysis: probes embedded in a system that
provide the raw data as captured.

• Intercepting probes with analysis: external probes that process raw data before
outputting it.

• Intercepting probes without analysis: external probes that provide the raw
data as captured.

Instrumentation is the most widely used monitoring mechanism, where the moni-
toring code is embedded inside the target code [56]. Traditionally, the instrumentation
code is inserted manually by the programmers, which allows the code to be inserted
freely into any location of the monitored code. Another reason for using instru-
mentation is that it does not need support from the platform. The disadvantage of
embedding monitoring code inside application code is that the probe code may make
the service more difficult to maintain. [56]

There are several open-source and commercial products available for monitoring.
Many of the products only concentrate on monitoring the infrastructure in very
specific systems such as Amazon Web Services (AWS). Some popular products
currently in use are VMDriver which gathers information by using the hypervisor,
Nagios which was created for traditional IT- infrastructures, and Cloudwatch and
OpenNebula Monitoring System which were designed for cloud computing, but are
very limited [18]. Ganglia [38] is a scalable distributed monitoring system for high
performance computing systems such as clusters and grids. It is highly efficient in
large systems, but only concentrates on monitoring infrastructure resources.

14

Monasca [28] is an open-source, multi-tenant, highly scalable, performant and
fault-tolerant monitoring-as-a-service solution that integrates with OpenStack. It
uses a representational state transfer (REST) application programming interface
(API) for high-speed metrics processing and querying and has a streaming alarm and
notification engines. Monasca concentrates on monitoring infrastructure metrics. It
is based on a pluggable design, where different components such as the database or
visualization tool can easily be swapped. [28]

Bai et al. [13] have proposed an agent-based architecture for monitoring web
services, called Active Service Broker Architecture. In their model, an external
process is responsible for the monitoring. It extends the more traditional service
registry to provide management and quality control capabilities. The architecture
also enables the collaboration between distributed monitoring agents at the service
provider’s sites and the centralized monitoring management at the service- broker
site. It still has some issues regarding inadequate instrumentation of the sensors,
and monitoring functions will be difficult to extend. [13]

Apostol et al. [12] have created a plugin for the Chrome web browser. It tracks
what the user does on a website, and sends that data to an external database. It is
capable of tracking general metrics like the loading times and external links. The
back-end is implemented with php and a MySQL- database. The researchers propose
the application to be extended to include more information about what the user
is doing on the site, such as which pages he visits. They also propose switching to
technology which allows for greater extensibility.

MOST4FIRE by Al-Hazmi et al. [9] provides a flexible monitoring system for
federated cloud services (cloud services distributed over several providers). It can
monitor several layers from infrastructure to services, but is rather cumbersome in
use. Al-Hazmi et al. [8] have also created a monitoring service for the BonFIRE
project. The service uses agents implemented in VMs to monitor the infrastructure.

Barbon et al. [14] describe a novel solution for monitoring distributed business
processes in BPEL (Business Processing Expression Language) in a Java environment.
They have separated the monitoring engine from the execution engine, which are
running in parallel on the same application server. The monitors intercept the
input/output messages that are received or sent by the processes. They are able
to specify boolean, statistic and time-related properties to be monitored. Barbon
et al. [14] also have instance monitors which can for example count the number of
iterations that are executed in a given session, such as the number of times a user
does certain actions. They can even issue alerts based on what is happening in the
application [14].

All of the presented solutions are more or less individual solutions that work in
very specific situations. None of them cater to what is needed in this thesis. Systems
more suitable for the goals of this thesis are those with a complete measurement
solution that adapts to the needs of the users.

15

2.9 Measurement frameworks
Mendonca and Basili [40, p. 484-485] define a good Measurement Framework (MF)
as sound, complete, lean, and consistent: "An MF is sound when its metrics and
measurement models are valid in the environment where they are used. An MF is
complete when it measures everything that its users need to achieve their goals. An
MF is lean when it measures what is needed and nothing else. An MF is consistent
when its metrics are consistent with the user goals."

Offen and Jeffery [42] argue that a generic model-driven toolset framework is
a good starting point for a measurement framework due to companies needing to
minimize the cost and effort associated with software measurement. They continue
that the framework should be robust, automatic, self-explanatory and easy to use.
Furthermore, tedious and work-intensive measurement-related work practices like
data collection should not overburden developers. [42]

Offen and Jeffery [42] also recognize that companies should not rely on a fixed set
of ready-to-use tools because the amount of different measurement goals and types
of measurable software and processes is so large. To solve this issue, they propose a
framework called Squatter, which lets new tools to be added and new data sources
or data repositories to be defined. [42]

Figure 7: MFW high-level architecture. [34]

For a more general use, Kanstrén et al. [34] have proposed a five-layer architecture
for monitoring a distributed system, as seen in Figure 7. The first layer of the
monitoring framework (MFW), Presentation layer, shows the user the final metrics
data. Layer 2, Control and Data Processing, is used to control the data collection
and process the received data. In layer 3, Data Collection, the data is collected
from one or more measurement probes. Layer 4, Base Measures, describes each

16

individual measurement probe which do the actual metrics gathering. Finally Layer 5,
Communication, ties all the other layers together into one coherent system.

Becker et al. [15] describe a system, shown in Figure 8, for collecting and analyzing
data for decision making in businesses. It is non-intrusive, allowing fully automatic
capture of all data, and it supports a distributed development environment. The
system is constructed of four layers: data capturing, data cleaning, data storing and
data visualization. [15]

Figure 8: Data warehousing architecture. [15]

17

2.10 The analytics stack
Seufert [48] presents an analytics stack as a complete solution for collecting metrics,
shown in Figure 9. It can be broken down into three component pieces: the back-end,
the events library, and the front-end.

Figure 9: Illustration of the analytics stack. [48, p. 32]

The back-end is a storage mechanism that collects data. It can be implemented
in any number of ways using any number of technologies. Traditionally back-ends
have been built on relational databases such as MySQL or PostgreSQL, but the shift
towards Big Data is favoring NoSQL- databases. [48]

The events library is meant to record and transmit data to the back-end. Seufert [48]
suggests that it take the form of a discrete list of events and important data points
that are meant to be tracked. Events libraries could be integrated into software
clients, but as Big Data is becoming more important, events libraries are being
replaced with logs that keep track of literally everything that happens in a product.
However, Seufert still sees that events libraries will remain relevant in the future as
well. [48]

The front-end is any software that retrieves and processes data stored in the back-
end. Seufert [48] recognizes that the front-ends are usually provided by Third-party
solutions, mentioning products such as Tableau, QuickView, and Greenplum which
allow product teams to connect to data sets and almost instantly use them to build
graphs and charts, segment data, and spot patterns. [48]

Some analytics stacks rely on ad-hoc querying and analysis in lieu of a front-
end; an analyst will query data directly from the database and manipulate it using
a statistical interface or desktop spreadsheet software. In other cases, a bespoke
front-end is developed from scratch to fit the specific needs of product teams. [48]

18

Finally, Seufert [48, p. 32] acknowledges that there can be a big difference to the
functioning of the components based on how they are developed and maintained:
"distributing each component across three functional teams within an organization
might disrupt the extent to which each piece communicates with the others". He
also recommends to keep the analytics stack at the hands of a single entity in order
to mitigate the problems arising from poor communication. [48]

19

3 Requirements

3.1 Introduction
This chapter will define the requirements for the metrics gathering tool. The re-
quirements will dictate what the tool will do and how exactly it should work. The
requirements will later be evaluated to check that the implementation fulfills all of
them.

A requirement is a basis for any software. Sommerville [51] identifies a requirement
as a statement that can range from a high-level abstract statement to a detailed
mathematical function. Requirements can have various levels of classification. The
IEEE standard for Systems and software engineering - requirements engineering [6]
identifies a well-formed requirement as a statement that:

• can be verified,

• has to be met or possessed by a system to solve a stakeholder problem or to
achieve a stakeholder objective,

• is qualified by measurable conditions and bounded by constraints, and

• defines the performance of the system when used by a specific stakeholder or
the corresponding capability of the system, but not a capability of the user,
operator, or other stakeholder.

A More detailed view of the requirements can be formed with a Software Re-
quirements Specification (SRS). For a good SRS, the standard [6] recommends each
requirement to posses nine characteristics. The measurement should be:

• Necessary - the requirement is applicable, essential and cannot be replaced by
other requirements if removed.

• Implementation free - the requirement states what is required, not how it should
be met, being implementation-independent.

• Unambiguous - the requirement can only be interpreted in one way, and it is
stated clearly and easy to understand.

• Consistent - the requirement does not conflict with other requirements.

• Complete - the requirement is measurable and it sufficiently describes the
capability and characteristics of the system.

• Singular - the requirement statement only defines one requirement.

• Traceable - the source and lower-tier requirements specification of the require-
ment can be identified such that the requirement traces to both its source and
implementation.

20

• Verifiable - the requirement has the means to prove that the system satisfies
the specified requirement, for example through measurements.

Requirements can be collected together in sets. This can help to avoid require-
ments changes and growth that could impact the cost, schedule or quality of the
system. To prove that the individual requirements can function well together and
provide feasible solutions for the system, a set of requirements must possess the
following characteristics [6]:

• Complete - the set of requirements contains everything needed for the definition
of the system being specified.

• Consistent - the set of requirements does not contain conflicting or duplicate
requirements.

• Affordable - the complete set of requirements can be satisfied by a solution that
is obtainable or feasible within the given constraint such as cost or schedule.

• Bounded - the set of requirements remains focused and does not move beyond
what is needed to satisfy user needs.

Requirements can be divided into two types: user requirements and system
requirements. User requirements are written for the users in natural language and
diagrams to demonstrate the operational constraints of the system. User requirements
define how the user interacts with the system and what the user should see as a
response. System requirements define more thoroughly what should be implemented
and concentrate on the system itself. It is often a structured document detailing
each part of the system, its functions, services and operational constraints. [51]

System requirements are further detailed by functional and non-functional re-
quirements. Functional requirements are specific, system-related statements that
define the services that should be found in the system. These dictate how the system
should handle different inputs and situations and what its response is. The definition
and implementation of functional requirements is often based on non-functional
requirements. [51]

Non-functional requirements are broader descriptions of how the system should
be implemented and operate. These include for example system constraints such as
reliability and response time or process requirements such as a specific development
language or target system. It is often more critical to reach the non-functional system
requirements; if they are not met, the system might be useless. [51]

Non-functional requirements can be classified in three categories. Product require-
ments specify how the system must behave, for example with regards to execution
speed or reliability. Organizational requirements are devised from organizational
policies and procedures such as the used process standards or the implementation
requirements. External requirements arise from factors outside the organization,
such as legislation or system interoperability. [51]

Sommerville [51] lists several metrics for specifying non-functional requirements,
shown in Table 1. These metrics can be used to assess the non-functional requirements

21

and the success of their implementation in the final system. For example, the system
can be checked for speed by measuring how many transactions per second it is able
to process.

Table 1: Examples of metrics for specifying non-functional requirements. Adopted
from [51]

Property Measure
Speed Processed transactions/second
Size Mbytes

Ease of use Training time, no. of help frames
Reliability Mean time to failure, availability
Robustness Time to restart after failure
Portability Number of target systems

3.2 Target environment
To understand where and how the tool for gathering business metrics will be used,
it is important to know what the target environment is like. The tool that is built
in this thesis will be part of Codemate’s new development environment. It has two
main goals: To give the developers a simple and unified environment to work in, and
to provide Codemate with easier ways to manage infrastructure usage and costs.

The environment allows developers to start new projects and request computing
resources for them with minimal setup. Managers will be able to see detailed
information about resource usage by different projects, which allows them to allocate
the costs correctly between different projects. The applications that can be developed
in the environment can be any web or mobile (back-end) services that use one or
more of the Amazon Web Services (AWS). The applications are not strictly bound
to AWS, however, as they can be built in a way that allows them to be moved to
other cloud services.

Figure 10 shows the basic architecture of the environment. The environment
is built on top of AWS and Kubernetes. The applications running at the top are
separated from each other. Development will be done with Go-, JavaScript- and
Ruby- languages. In addition to the basic architecture, the service uses several smaller
components for functionalities, such as resource monitoring, which is implemented
with InfluxDB time-series database 1 and Grafana 2 for visualization.

AWS 3 is a cloud platform built by Amazon. It is based on infrastructure resources
which are shared dynamically between several users. Developers can access these
resources and build their applications to take advantage of the elasticity, scalability
and affordable cost structure of AWS. It offers a host of tools for the developers

1https://www.influxdata.com
2https://grafana.com
3https://aws.amazon.com/

22

Figure 10: Architecture of the development environment.

which allow them to control the infrastructure of their services in a very detailed
way. The usage of AWS is charged based on the duration, amount and size of the
services used.

Kubernetes 4 is a container orchestration system designed to be used in cloud
platforms. Separate applications can be organized in self-sustaining containers, such
as Docker 5, and then given to Kubernetes to automatically run the applications.
The benefit of Kubernetes comes from its ability to run several instances of individual
containers, providing easy-to-use distribution and scalability. Kubernetes also brings
better resource utilization and deployment density as well as better updatability of
the services through rolling updates of the replica-set.

3.3 User requirements
3.3.1 General user requirements

The requirements for the system have been formed through discussions with the
architects and software engineers at Codemate. The tool for gathering metrics will
connect to the architecture presented in Figure 10 and it should provide the following
three main functions:

• Capture business metrics from the applications;

• Store the metrics; and

• Visualize the metrics.
4https://kubernetes.io/
5https://www.docker.com/

23

The user requirements for the tool are defined through the two main user groups:
application developers and system and product managers. Application developers
will implement the gathering of the metrics in their applications including sending
data to the database. The developers will also create the initial dashboards for the
visualization tool. The system and product managers deal with the application from
which business metrics are captured. They will use the visualization tool to analyze
the data from their application and possibly manually create dashboards.

The installation of the system is handled by the developers and should be straight-
forward. Once the necessary measurements and points of insertion have been defined,
the tool should require minimal setup to start to capture metrics; mainly only con-
necting the tool to the target application. To create the visualization dashboard(s),
the developers should be able to automatically generate a functioning dashboard
from simple definitions that take no more than few minutes to write.

When a measurement is captured by the application, the measurement should
be sent to the database with the associated timestamp and identification. When
data needs to be visualized, the product managers should be able to open their web
browser, login to the service and see data about their system. The data should
be fetched from the database and shown in graphs, tables and by means of other
visualizations, organized by time.

The system should be easily modifiable. It should be possible to add additional
types of measurements to it later if needed. Also the components of the system
should be replaceable without having to modify the rest of the system. An example
of this would be changing the visualization tool, which should not affect the database
or metrics libraries. Finally, the system should be able to handle several applications
while keeping the users and data separated.

3.3.2 Gathering metrics

To gather metrics from target applications, a subcomponent should be created. The
metrics gathering should be separated from the individual applications while being
easily accessible to them. Gathering the metrics should be simple for the developers
both in terms of installation and maintenance.

The metrics will be gathered inside the individual applications. Because it is not
known beforehand which metrics each application needs, this thesis aims to provide
a robust and adaptive system for collecting several types of metrics. The different
types of metrics that should be supported are:

• Counters - counts single values;

• Meters - tracks the occurrence of events with moving averages; and

• Histograms - samples dataset for distribution with mean and standard deviation.

To collect the metrics at runtime, a code library for creating and capturing the
metrics should be chosen. The library should give developers easy access to methods
with which they can collect and store metrics. The library is responsible for creating
individual metrics and sending data to the database. Because the developers at

24

Codemate often use Ruby-, JavaScript- and Go- languages, the tool should support
at least one of those.

3.3.3 Storing and visualizing metrics

The metrics will be stored in a database. The stored data must be timestamped,
meaning that each stored value has a timestamp attached to it. The data must
be query-able by time and the name of the metrics. This leads to the requirement
that the database be a timeseries-database, because they are optimized to handle
precisely the type of data used in this thesis.

The database should be able to handle data from several different applications.
The data must be provided to the visualization tool. To minimize the bottlenecks
in the system, and good scalability and availability, the database should run on
Kubernetes with replication.

There are a few databases that would be suitable. The most prominent ones
are InfluxDB, Graphite 6 and Prometheus 7. They all store timestamped data and
allow it to be queried. The differences come from the schema-less design of InfluxDB
which allows it to also store strings on top of numerical values. Prometheus on the
other hand includes the visualization tool by default. Graphite is the oldest of the
three, offering the least functionalities.

With regards to the target environment, the database will be InfluxDB. It
offers the best selection of functionalities, and is suited well to the current project.
Codemate is already using InfluxDB on other parts of their development environment,
so choosing InfluxDB also helps keep the tool in line with the other parts of the
environment.

The metrics will be visualized using a data visualization tool. The tool should
be able to read data from one or more databases and provide simple and clear
representations of the desired metrics. The visualization should be understandable
and usable also for the users of the final service.

There are few choices for the visualization tool, mainly Grafana and Prometheus.
Prometheus offers a slightly better set of visualization tools, but requires its own
database to be used. To ensure that the tool can be easily modifiable in the future,
Grafana is better suited here. Codemate’s development environment is already using
Grafana and the developers and customers are familiar with it, so Grafana is the
best option for the visualization tool also in this thesis.

3.4 System requirements
System requirements detail the user requirements given above. They provide clear
and measurable requirements that can easily be verified. This section lists several
requirements which the system must satisfy. First, functional requirements state
what the system must be able to do. Non-functional requirements then detail how
the system must perform and provide the necessary functions.

6https://graphiteapp.org/
7https://prometheus.io

25

Functional requirements

1. The tool must capture user-chosen metrics from the target environment.

2. The tool must capture at least the following types of metrics:

(a) Counter;
(b) Meter; and
(c) Histogram.

3. The capturing of metrics must be simple and easy to use.

(a) Adding the needed code to the project should not require more than a
few lines of code or five minutes of time.

(b) Adding a new measurement should not require more than a few lines of
code.

4. The captured metrics must be sent to a database.

(a) Sending measurements to the database should happen automatically at
certain intervals.

5. The visualization must support at least the following graphical elements:

(a) Graphs;
(b) Tables;
(c) Gauges; and
(d) Individual measurements.

6. The dashboards must be generated from definitions.

(a) The definition should include the layout as well as the queries from the
database.

(b) The generated dashboard must easily be installed to the visualization tool.

Non-functional requirements

7. The capturing of metrics must not affect the main system.

(a) Initializing the capturing should not add a noticeable delay to the start
of the application.

(b) Capturing a metric should not noticeably slow the operation of the appli-
cation.

(c) Sending the metrics to the database should not have any noticeable effect
to the usage of the application.

8. The metrics capture must be usable on Ruby, JavaScript or Go-lang.

26

9. If an external code library is used, it should be actively maintained.

(a) The library should have received the latest updates no longer than three
months earlier than the date of selection of the library.

(b) The maintainers of the library should indicate that they will continue to
maintain the library by showing activity in the issue reports in the past
three months.

10. The database must be Influxdb.

11. The visualization must be done using Grafana.

27

4 Design

4.1 Introduction
The design and architecture of the metrics gathering tool will be based on the previous
research outlined in Chapter 2 and on the requirements presented in Chapter 3. In
order to clearly present the architecture, the 4+1 View Model by Kruchten [36] will
be used. The 4+1 View Model describes software architecture with five different
views as shown in Figure 11.

Figure 11: The 4+1 View Model. [36]

Logical view describes the system from the point of view of the end-user. It maps
the desired functionality into components that provide that functionality. The logical
view is the "big picture" of the system and addresses the functional requirements of
the system.

Process view helps the designers of the system. It is meant to explain the
system interaction and how individual subsystems can communicate with each other.
The process view addresses some of the non-functional requirements and how the
individual processes of the system can be built, taking into account replication,
distribution and availability.

Development view is meant to give guidelines to the developers of the system.
It is mainly concerned with the act of development considering things such as ease
of development, software management and constraints imposed by the programming
language. The development view shows how the individual modules of the system
are organized and what dependencies they have.

Physical view is directed at the system engineers and administrators. It deals
with the physical properties of the system such as the devices on which the system

28

should run, mapping the properties identified in the other views onto physical
computing nodes. It deals with most of the non-functional requirements such as
system reliability, performance and scalability.

Finally, Scenarios describe how the other views come together to form one
coherent system. The scenarios view is described as "+1" because it is redundant
with the other ones. In the scope of this thesis, the User requirements devised in
Section 3.3 essentially serve the same function. As such, the scenarios will not be
discussed further.

The following sections will go over the design of the tool for gathering business
metrics. The design follows the 4+1 View Model, starting from the logical, user-
centric view and moving towards the physical view.

4.2 Logical view
To meet the user requirements for the system and provide all the desired main
functionalities - capturing, storing and visualizing business metrics - the tool will have
a modular structure presented in Figure 12. The main components form individual
parts of the service that communicate with each other via general interfaces. The
dashboard generation is a separate component which connects to the visualization
component.

Figure 12: Architecture of the developed system.

The architecture follows the SBA- principle and the design builds on the existing
literature presented in Chapter 2. It implements the proposal of different layers within
the MFW by Kanstrén et al. [34] (Figure 7). This abstraction is further detailed
with help of the data warehousing architecture (Figure 8) by Becker et al. [15]. By
imagining the database as the back-end and the visualization tool as the front-end

29

of the application, the analytics stack by Seufert [48] presented in Chapter 2.10 can
be used to guide the design of the user experience for the end-users.

As is the case in the presented literature, the chosen architecture clearly separates
the whole system into subsystems. This requires them to communicate with each
other by means of general interfaces or APIs. Each subsystem functions on its own
without requiring the other subsystems, except to provide system-wide functions. The
subsystems only communicate with each other when necessary, and the visualization
and data capturing subsystems communicate only through the database.

The dashboard generation for the visualization tool will be a separate component
which receives its input from the developer. It functions on its own without requiring
any other systems. The output of the dashboard generator is a json-file which can
be manually exported to the visualization tool.

Figure 13: Final architecture of the developed system.

Figure 13 shows the final architecture of the Codemate’s system. The whole system
is run in AWS on top of Kubernetes. Applications, database and the visualization
tool have their own Kubernetes namespaces which separate their instances. The
application sends data to the database, and the visualization tool uses that data.

4.3 Process view
4.3.1 Capturing metrics

As discussed in Chapter 2, there are two main ways to capture metrics from an
application: interception and instrumentation. Because interception monitors the
process from the outside, it is not suitable for capturing business metrics, which
are generally generated inside the application itself. Therefore the metrics will be

30

captured instrumentally with probes implemented directly into the application code.
To minimize the intrusion to the target application, a separate code-library will be
used. The library should be chosen such that it does not affect the performance of
the target application.

When the code execution reaches the point where a metric should be captured,
the code will store the metric in the local memory of the server. The stored data will
include the metric as well as meta-data such as information about the metric. The
captured data will periodically be sent over the network to the database. Ideally, the
database is located as close to the target application as possible, in order to minimize
the network latency and keep the network secure. The communication protocol will
depend on the database, which the library must support.

4.3.2 Storing the metrics

As per the requirements discussed in Chapter 3, the metrics will be stored in the
InfluxDB database. It is an open-source time-series database that is "meant to be
used as a backing store for any use case involving large amounts of timestamped
data", including application metrics and real-time analytics. It is highly available
with a REST interface. [3] Through the RESTful API it can easily be used by
both the library capturing the metrics and the visualization tool that presents the
measurements.

The general schema for storing the metrics in the database is shown in Listing 1.
The "name" parameter stores the name of the measurement. The "columns" array
holds the name of the different fields that contain the measured values. Time and
one field are mandatory for all measurements. Additional fields and tags are optional.
Tags can be used for indexing the measurements for faster queries. "values" is a list
of the actual values, as dictated by "columns".
{

"name": " measurement .name",
" columns ": [

"time",
field,
[fields,]
[tags,]

],
"values": [],

}

Listing 1: "General schema for the database"

Appendices A - D show the actual schemas for Counters, Meters, Histograms and
Timers. They follow the general schema definition, adding more fields as required.
The "count" in Counter holds a simple value of the counter. The Meter also stores
one-minute, five-minute and fifteen-minute moving averages as well as the mean-rate
of the "count" value. Histogram tracks several measurements derived from the count.
Finally, Timer is a combination of the Meter and Histogram.

31

To ensure good scalability, availability and ease of deployment, the database will
be run on Kubernetes. It is "an open-source system for automating deployment,
scaling, and management of containerized applications" [4]. Containers are self-
contained and isolated runnable packages. They guarantee that a software always
runs in the same way regardless of where it is deployed. One of the world’s leading
container platforms is Docker, and it will also be used in the tool created in this
thesis. [1]

The database will run continuously, waiting for requests through its RESTful
API. When it receives data from the application, it will store that data in its
databases. When data is requested by the visualization tool, the database will serve
the requested data to authorized users. Each application will have a datatable of
their own, which is only accessible to authorized users of that application.

4.3.3 Visualizing the metrics

Because Codemate is already using Grafana, and it is a functional requirement, the
metrics are visualized with it as well. Grafana is an open-source visualization tool
that supports several different databases and provides many different visualization
tools. It allows the creation, exploring and sharing of dashboards that show data
queried from one or more of the supported databases. [2]

The main visualization tools supported by Grafana are:

• Graph - a 2D graph with time at x-axis;

• Table - a table with time as the first column;

• Heatmap - a map of values with colors;

• List - a list of Dashboards, alerts or plugins; and

• Single stat - a single value or a gauge with alert thresholds.

Grafana provides a web-service through which the users can use the visualization
tool. The users can connect to the interface with their browser at a specified web
address and login with their credentials. Each user is only given access to data
that they are allowed to view. Grafana has a user-management system with which
different users and applications can be separated.

4.4 Development view
The system will be implemented by a single developer, the author. The development
process does not therefore need any distinct formalities. The project is divided in
two different repositories: one for the main project containing the scripts for starting
the main service, and one for the JavaScript library. The components will be built
in a lean fashion.

Because the main back-end languages in use at Codemate are Ruby, JavaScript
and Go, one of these will be chosen for the implementation language for the scripts

32

and the dashboard generation. The author has decided to use JavaScript with Node.js
because he is most familiar with it, and this tool can be tested on a project that is
using JavaScript.

4.5 Physical view
As mentioned in Chapter 4.3, the data storing and visualization components will
be using Kubernetes as their backbone. Kubernetes on the other hand will be run
on AWS to keep the system coherent with the rest of Codemate’s development
environments.

AWS includes a wide variety of services to accommodate a host of user needs.
The tool implemented in this thesis only needs a few of them. The Kubernetes
clusters will be run on Amazon Elastic Compute Cloud (EC2) instances. For the
initial implementation, data from the user applications into the database will be
routed through Elastic Load Balancer (ELB) for proper load balancing. In addition,
EC2 Security groups will be activated to only allow traffic from known hosts such as
the applications and the individual components of the system.

33

5 Implementation

5.1 Implementation method
The data capturing tool designed in Chapter 4 is developed in two stages. The first
Stage implements a minimum viable product (MVP) that works in a local environment.
The second Stage extends the implementation to a full-blown web-based application.

Each development stage includes the development of the whole system and its
four subsystems. The main technological difference between Stages 1 and 2 is that
Stage 1 uses Minikube for simulating a cloud environment in a local development
environment (Macbook Pro- laptop), while Stage 2 makes use of the AWS services.

Minikube 8 is a tool which allows for running Kubernetes locally on a single node.
Essentially, it replicates a cloud environment such that applications running on it
think that they are in the cloud. Minikube runs in a virtual machine which for this
thesis is Virtual Box 9.

As the main components in each stage are the same, they will be presented
within Stage 1 in Sections 5.2 - 5.5. Section 5.6 will present the Stage 2 and how the
components have been adapted for it.

5.2 Metrics capturing
The metrics are captured using a popular metrics library for Node.js, metrics by
Mike Ihbe 10. It is based on the widely popular metrics library for Java by Coda
Hale. The metrics- library allows the capture of several types of metrics such as
counters, histograms and timers.

To send the captured data to the database and extend the metrics- library’s
functionality, the tool will use another library by Brandon Hamilton, called node-
metrics-influxdb 11. The library already imports the metrics- library, so only one
library needs to be added to the tool. Hamilton’s library also implements gauge,
which is missing from Ihbe’s metrics- library. The library however has some flaws
when it comes to multi-threading and connecting to the database, so the author has
created a fork (new version) of the library.

The main addition in the forked library is the replacing of custom-made HTTP
(Hypertext Transfer Protocol)-connection functions with the official library for con-
necting to the InfluxDB. Also some bug fixes and small functionality changes have
been made which better support the needs of this tool. After the changes, the forked
library was published as a new npm- package called metrics-influx which is public
and available for everyone to use.

The forked library works by first defining a new measurement to capture. It is
then registered for monitoring. Once the program is running, the code will wait
for additions to the measurement. To send the captured data to a database, the

8https://github.com/kubernetes/minikube
9https://www.virtualbox.org/

10https://github.com/mikejihbe/metrics
11https://github.com/brandonhamilton/node-metrics-influxdb

34

database must be connected to the application and an interval defined. Once started,
the code will periodically send all the newly captured metrics to the database via a
RESTful HTTP-call.

Listing 2 shows a minimal example of how the library can be used in the application.
First, the library must be imported to the code. Next, a reporter is created which will
send data to the database every 5 seconds (5000ms). Options for the reporter include
the url for the database as well as username and password, provided in json-form.
Finally, the different metrics are created, and a single value reported to each.
var InfluxMetrics = require (’metrics -influx ’);

var reporter = new InfluxMetrics . Reporter (options);
setInterval (reporter .report.bind(reporter , true), 5000);

var c1 = new InfluxMetrics . Counter ();
reporter . addMetric (’ measurement .count ’, c1);
c1.inc ();

var g = new InfluxMetrics .Gauge ();
reporter . addMetric (’ measurement .gauge ’, g);
g.set(50);

var m = new InfluxMetrics .Meter ();
reporter . addMetric (’ measurement .meter ’, m);
m.mark ();

var h = new InfluxMetrics . Histogram ();
reporter . addMetric (’ measurement .histogram ’, h);
h.update(100);

var t = new InfluxMetrics .Timer ();
reporter . addMetric (’ measurement .timer ’, t);
t.update(200);

Listing 2: Minimal usage example of the library

When a measurement is made, the library is responsible for calculating all the
necessary measures that are stored in the database. This puts some extra burden on
the measuring probe, making it an instrumented probe with analysis. On the other
hand, the database only needs to store the data instead of modifying it, which makes
it more efficient and able to handle requests from several applications. The same
applies for the visualization tool.

5.3 Storing the metrics
The metrics are stored in the InfluxDB database which is run on top of Kubernetes.
In the local environment, the Kubernetes cluster is run on Minikube. By running the

35

database on top of Kubernetes, it is more robust for service breaks and also ready
for scaling.

To install InfluxDB, an installation script was created, shown in Listing 3. The
script downloads an image of the InfluxDB and starts it on Kubernetes in port 8086.
The script then exposes the instance and creates a public IP address for it. The type
of the instance is NodePort, which has no loadbalancing. This is used in the local
environment only, as loadbalancing is not available on Minikube. Once the InfluxDB
can be reached over the internet, the script connects to it via curl and creates an
admin- user and a new database. The database is then operational and ready to
receive data and respond to queries.
kubectl run --image= influxdb influxdb --port=8086 --env="

INFLUXDB_HTTP_AUTH_ENABLED =true"
kubectl expose deployment influxdb --type= NodePort --port

=8086
echo Getting IP address for the container
ipDatabase =$(minikube service influxdb --url)
echo Creating admin user
curl -s -S -i -XPOST $ ipDatabase /query --data- urlencode "

q=CREATE USER admin WITH PASSWORD ’password ’ WITH ALL
PRIVILEGES " >/dev/null

echo Creating database data
curl -s -S -i -XPOST $ ipDatabase /query -u admin: password

--data- urlencode "q=CREATE DATABASE data" >/dev/null

Listing 3: InfluxDB installation script

5.4 Visualizing the metrics
The metrics are visualized using Grafana which is run on Kubernetes. Installing
Grafana first requires the use of an installation script shown in Listing 4, and then
configuring it by creating users and adding the database(s) to it. The dashboards
are created manually or by the generation scripts.
kubectl run --image= grafana / grafana grafana --env="

GF_SECURITY_ADMIN_PASSWORD = password "
kubectl expose deployment grafana --type= NodePort --port=

3000
echo Getting IP address for the container
ipGrafana =$(minikube service grafana --url)
echo IP: $ ipGrafana

Listing 4: Grafana installation script

The installation script first downloads a runnable image of Grafana and then
starts it on Kubernetes with a set password for the admin user. The instance is
then exposed to the localhost as a NodePort in port 3000, again as a substitute to a

36

loadbalancer in the local environment. The script finally fetches the ip-address of
the instance and prints it out to the console.

Appendice E shows images of the Grafana instance. To use the service, the user
must first login to the service. At first, only an admin account exists, but he can
create new users. Once logged in, the admin can continue installation by adding a
new datasource. To add a new datasource with the type InfluxDB, the following
must be specified:

• Name - the name of the datasource;

• Type - the type of the datasource (database);

• Url - the url of the database, including the protocol and port number;

• Access - the type of access for the database: proxy or direct;

• Http Auth - options for configuring the optional http authentication;

• InfluxDB details - the database name, username and password; and

• Default group by time - optional value for grouping fetched values by time.

With the database configured, dashboards can be added to Grafana. There are
three ways to add a dashboard: create it manually, import or paste a json-file with
the dashboard configurations from the computer, or import a dashboard by id from
grafana.com- website. The created dashboards can be modified at any time. The
modifications include for example:

• Title;

• Dimensions (width, height);

• Queries for data;

• Axes (scale, y- and x-axis min and max);

• Legend;

• Draw modes (bars, lines, points);

• Alerts; and

• Time range.

To get actual data, queries must be specified individually for each visualization.
This tool uses InfluxDB, so the queries are made with an SQL-like language. An
example of a query for all the counter values could be:

SELECT "count" FROM "measurement.counter"

37

5.5 Generating the visualization dashboard
To generate the dashboard for Grafana, a Go-program was created along with
template- and Definitions-files. The program takes the definitions for the desired
dashboard and applies them to the template-file, outputting a JavaScript Object
Notation (JSON)-file. The outputted json-file can then be manually imported to
Grafana as a functional Dashboard.

The definitions-file is a json-file containing all the definitions needed to generate
a dashboard. By modifying only this one file, any type of dashboard can be created.
The definitions-file contains the specific information for that dashboard such as the
dashboard name and time range, the definitions for different data types which are
graphs, tables, gauges and single values, and the definitions for Grafana template
variables.

The template-file is a json-file based on the structure of the file that Grafana
expects for importing a dashboard into it. The file contains general information
about the dashboard such as its name, requirements and time options to show. It
describes all the different rows and panels that exist on the dashboard. Several
Go-template variables are inserted within the template at positions where data from
the definitions file is needed. There are also loops which allow the addition of 0-n of
each panels, as defined in the definitions-file.

The Go-program brings together the template- and definition-files. Once the
program is built, it can be executed from the command line. The program starts by
reading the definitions-file and checking that it contains all the required data. It then
saves the variables into structs and reorganizes them ready for the template. The
variables are then passed to the template-file and a new json-file generated, ready to
be imported to Grafana.

5.6 Moving to Cloud
With the data capturing tool working in a local environment, it was next moved to
the cloud. The main difference to the local version is that Minikube was replaced
with AWS so that Kubernetes is running on actual server nodes instead of virtualized
ones. These server instances are assigned individual IP addresses so that they can
be reached over the internet. Because of this, a security policy needs to be put in
place to control who and from where can access the tool. Finally, to keep the tool
accessible at all times, load balancers are implemented to even the load between
individual server instances.

The specific architecture of the cloud is shown in Figure 14. The basis is formed
by the Amazon Virtual Private Cloud (VPC) which provides an isolated section of
the AWS for this service. It has an IP-address range which allows the creation of
subnets inside the VPC. The service has two subnets: virtual and public. The public
subnet contains the load balancer and the host where external clients can connect
to. The private subnet contains the Kubernetes master and nodes and manages the
automatic scaling of the application. [19]

38

Figure 14: The implemented AWS Architecture. [19]

39

The actual service is provided by Elastic Cloud Compute (EC2) and Elastic Block
Store (EBS). Load balancing is done with Elastic Load Balancer. EBS is a persistent
block-level storage system which works together with EC2. EBS automatically
replicates each volume within the same availability zone (such as Europe-Central:
Frankfurt), offering high availability and durability. [19]

To install the basic infrastructure along with Kubernetes on AWS, a pre-made
installation template by Heptio [19] was used. It allows one to configure the instances
easily after which it takes care of installing them. The configuration used was:

• Availability zone: eu-west-1a;

• Admin ingress location: 0.0.0.0/0;

• Node capacity: 2;

• Intance type: t2.medium;

• Disk Size: 40GB; and

• Intance type (Bastion Host): t2.micro.

From this point on the installation and configuration of the system is similar to
the local environment. Once an ssh-connection to the Kubernetes Master server is
established, services for InfluxDB and Grafana can be started and IP addresses for
them discovered. To establish an ssh-connection to the master node, the command
shown in Listing 5 can be executed in the terminal.
SSH_KEY="[keyName]. pem";
ssh -i $SSH_KEY -A -L8080: localhost :8080

-o ProxyCommand="ssh -i \"${SSH_KEY}\" ubuntu@ [publicIP]
nc %h %p" ubuntu@ [privateIP]

Listing 5: ssh-connection to the server

The installation of InfluxDB and Grafana are done in the same manner as for
the local environment. The only difference is that now the services are exposed as
LoadBalancers instead of Nodeports. To get the IP addresses of the services, a direct
query to Kubernetes must be made and the output grepped, as opposed to receiving
it directly from Minikube. Appendices G and H show the modified installation
scripts.

40

6 Evaluation

6.1 The tool
The tool implemented in this thesis is fully functional and working as intended. This
section will describe how the tool works and how it can be installed and Section 6.2
discusses the scalability and fault-tolerance of the tool. Section 6.3 evaluates the
tool against the requirements formed in Chapter 3. Section 6.4 will show how the
tool was used in a real production environment.

The installation of the system is planned to be straightforward with the scripts
written for this thesis. First, a Kubernetes stack must be started on AWS (or any
other cloud platform). Once Kubernetes is running, InfluxDB and Grafana can be
installed on it with the scripts shown in Appendices G and H. When finished, the
scripts print out the external IP-addresses for the instances which allow users to
connect to them.

With the system installed, the database is waiting for data to be added to it. To
insert data, a Node.js- library was implemented. It can be installed to the target
system with the npm package manager. The library is then imported to the code
following the standard npm package procedure, and configured with only a few
lines of code. The configuration includes the options for connecting to the database.
Listing 2 shows a minimal usage example of the library. Once the library is configured
and the service started, measurements are periodically sent to the database.

To visualize the data, Grafana provides graphs, tables and figures. They can be
configured in a straightforward manner to show any data in the database. Grafana
can be reached with a regular web browser at the address given during the installation.
Users can login to the Grafana service and see and query data available to them.

The data shown in Grafana can be organized into Dashboards, which can be
created manually inside Grafana, or generated automatically with a generation script
that was created alongside this thesis. The dashboard generation script generates
the dashboards from a definitions-file where the developer can specify what data to
show and where to show it on the dashboard. The script was created with Go-lang.
To minimize the effort to build new dashboards, the script is an executable file that,
once run, creates a json-file from a Grafana dashboard template- file. To install the
dashboard to Grafana, the generated json-file only needs to be imported in it.

6.2 Scalability and fault-tolerance
The tool for capturing and visualizing business metrics has been created with scala-
bility and fault-tolerance in mind. It is highly configurable and can be deployed in
several ways and sizes. In essence, the scalability of the tool depends on two main
things: The point at which captured data is processed, and the infrastructure on
which the tool is deployed.

The data that the tool captures is meant to be analyzed through the visualizations
in the visualization component. As such, the data can be processed into the correct
form by all the different components. The metrics library which captures the metrics

41

can analyze and do the calculations on the measures immediately when capturing
the measurements and before sending them to the database. Alternatively, the raw
captured data could be sent to the database, and this data analyzed either by the
database or the visualization tool when the data is queried. The current solution
relies on the metrics capture library to do most of the analysis, and only small parts
of it are left for the database, which it performs for each individual query as needed.

The service could also suffer from sudden increase in load. This could come from
one or more applications which suddenly are generating more data, for example due
to sudden increase in users. There are three key points where the service could break:
the target application, the network between the application and the measurement
database, and the database.

To handle increased load, the application and database instances can be scaled up.
Alternatively, load could be moved from one component to the other; for example by
letting the target application send raw data to the database instead of processing it
first. To reduce network traffic and database requests, the measurements could be
batched into bigger chunks which are sent to the database with a delay, buffering
the measurements inside the application.

The tool can be deployed on almost any infrastructure which supports Kubernetes.
The environment could have a simple server with virtualized nodes, or include several
servers across different data centers. The currently deployed implementation only
works within a single Availability Zone in AWS. This is subject to threats affecting
the Availability Zone as well as the whole data center, such as hardware malfunctions,
power losses or network disruptions. While such large outages and breaks in the
operations of the databases are rare, they can happen. The only way to protect the
service from them is to distribute it across several different Availability Zones and
even data centers, preferably as far away from each other geographically as possible.

For this implementation, the separation could be achieved by running separate
instances in different Availability Zones within the same data center. This would
require the databases to replicate each other periodically. A common load balancer
would also be needed to distribute the load between the different Availability Zones.
To protect the service from outages of whole data centers, different data centers
could be used. This also requires running several separate instances of the tool and
database which need to be consistent. As such, managing the infrastructure would
get more complicated than is presented here.

6.3 Requirements verification
6.3.1 User requirements

To verify that the implemented tool adheres to the specification and requirements
outlined in Chapter 3, this section goes over each of the requirements and checks that
all of them have been correctly taken into account. User requirements are evaluated
in this section, and system requirements in Section 6.3.2.

The tool follows the general user requirements as it implements all three main
functions: capturing, storing and visualizing business metrics. It also provides the

42

dashboard generation for Grafana. Both user groups, the developers and the product
managers, have been taken into account by providing the functionality they need.

All main parts of the system function well together by using the http-interface
and not requiring any additional data modification. This provides simple steps for
capturing measurements from an application through code insertion only, and the
dashboards can easily be generated by modifying only a single file. The visualization
tool aims to be simple to understand and use. Lastly, the components of the system
are easily replaceable because they are separated and use common interfaces. This
satisfies the requirement for easy modifiability.

The tool can gather more types of metrics than specified in the requirements,
including Counters, Gauges, Histograms and Timers. It is robust and can handle
several different use cases and target applications. The tool provides a code library
for Node.js for capturing the metrics.

All the captured data is timestamped and stored in a timeseries-database, In-
fluxDB. Data from several applications can be visualized with Grafana. They are
both run on Kubernetes for fault-tolerance and replication.

6.3.2 System requirements

Table 2 shows all the system requirements presented in Chapter 3 and how they
were fulfilled. The first functional requirement states that the tool must capture
user-chosen metrics from the target environment. This means that the user must
be able to choose what data and from which part of their application is gathered.
This requirement is satisfied through the code library, which allows the capturing of
metrics from any part of target application, letting the developer choose what and
where to capture.

Requirements 2 and 3 deal with what kind of data and how specifically is captured.
The tool can track simple Counters that count the number of something happening,
Meters which also automatically keep track of the moving average for a counter
number, and Histograms which provide statistical data about measurements. To
capture the metrics, the developer only needs to import the metrics library, configure
it with the database details, and then create the individual measurements. These
steps are planned to require minimal effort from the developer through the use of
simple, standardized steps and only a few lines of code. Requirements 2 and 3 are
therefore both met.

The metrics code library provides functions for sending the measurements to the
database either manually when specified by the developer or automatically at desired
intervals. The measurements are then permanently stored in the InfluxDB database,
which satisfies requirement 4. The visualization tool uses the measurements in the
database and visualizes them using graphs, tables, gauges, and other visualization
tools the developer chooses to use. Dashboards used in the visualization tool can
be constructed either manually within the tool or by generating them automatically
using the generation tool provided. Requirements 5 and 6 are therefore met.

Requirement 7 specifies that the capturing and storing of measurements should
not affect the target system. The initialization of the metrics capturing is performed

43

with only few lines of code when the server is started, which has no effect on the
performance as the server is started as fast as before. To capture a metric, a simple
function call is made and the function executed, which has no noticeable delay for
the user, which was tested manually several times. Finally, the measurements can be
sent periodically to the database by executing the code in a parallel thread, which
does not block the main thread. Requirement 7 is therefore satisfied.

Requirements 8-11 deal with specific implementation constraints. The code library
used to capture metrics is made for Node.js and was developed by the author. The
library however is based on a similar library of another user, and uses a third library
for actually capturing the metrics and a fourth to send the metrics to the database.
A Complex library structure such as this is not uncommon in Node.js but it can
create problems with regards to maintainability in the long run. All the libraries are
however more or less actively maintained alleviating the risk of one or more of them
becoming outdated. Each library has had development activity in the last three
months at the time of writing (May 2017). Finally, the database is InfluxDB and
visualization tool is Grafana, which satisfies the last requirements.

44

Table 2: Requirements and how they were satisfied

Requirement Method
1. The tool must capture user-chosen metrics

from the target environment
Possible with the code-library

2. The tool must capture at least Counter,
Meter and Histogram types

The code-library allows the cap-
turing of Counters, Meters, His-
tograms and more

3. The capturing of metrics must be simple
and easy to use

Only a single code-library
needs to be imported

3.(a) Adding the needed code to the project
should not require more than a few lines
of code or five minutes of time

At most 3 lines of code are
needed

3.(b) Adding a new measurement should not re-
quire more than a few lines of code

2 lines of code are required, plus
one per each capture point

4. The captured metrics must be sent to a
database

The metrics are sent to the In-
fluxDB database

4.(a) Sending measurements to the database
should happen automatically at certain in-
tervals

Possible by calling the report-
function periodically

5. The visualization must support Graphs,
Tables, Gauges and individual measure-
ments

Grafana supports all of these,
and more

6. The dashboard must be generated from
definitions

The created Go-program allows
this

6.(a) The definition should include the layout as
well as the queries from the database

Layout, queries, template pa-
rameters and more can be de-
fined

6.(b) The generated dashboard must easily be
installed to the visualization tool

Grafana allows simple upload
of json-files

45

Requirement Method
7. The capturing of metrics must not affect

the main system
The capturing has negligent
performance impact on the
system

7.(a) Initializing the capturing should not add
a noticeable delay to the start of the
application

Starting the application is as
fast as without the monitor-
ing tool

7.(b). Capturing of metrics should not notice-
ably slow the operation of the applica-
tion

The operations remain fast

7.(c). Sending the metrics to the database
should not have any noticeable effect
to the usage of the application

The application remains re-
sponsive

8. The metrics capture must be usable on
Ruby, JavaScript or Go-lang

The code-library supports
JavaScript (Node.js)

9. If an external code library is used, it
should be actively maintained

All the libraries used have
received regular updates

9.(a) The library should have received the lat-
est updates no longer than three months
earlier than the date of selection of the
library

All the libraries have been
updated since February 2017

9.(b) The maintainers of the library should
indicate that they will continue to main-
tain the library by showing activity
in the issue reports in the past three
months

Github issue- pages are ac-
tive for all libraries

10. The database must be InfluxDB The database is InfluxDB
11. The visualization must be done using

Grafana
The visualization is done
with Grafana

46

6.4 Actual usage
The tool for capturing business metrics from cloud applications has been developed
in this thesis to meet the needs of Codemate and its clients. It is therefore necessary
to verify the functioning of the tool in a real production application. To do this,
the tool was attached to the production server of one of Codemate’s clients. The
application contains a back-end server and two front-ends with different functionality:
an iOS/android application for regular users and a web-based tool for management.
The server is run on AWS and is built with Node.js.

The desired measurements that should be captured from the system are:

• How often do users login?

• How long does it take for the server to send a response when logging in?

These measurements can be extended to form more detailed business measure-
ments (adapted from [44]):

• What is the average monthly growth rate for the service?

• When is the user activity the highest during a day or a week?

• What functions consume the most resources?

The desired data was easily captured with the implementation created in this
thesis. First, a new Stack with Kubernetes was created for the InfluxDB and Grafana.
Then, the code library was added to the code of the target application and pushed to
the production server. Once the server was restarted, it started to send measurements
to the database.

Figure 15 and Appendix F show dashboard items with actual measurements
from the production system for login. The two numbers in Figure F1 show the
total amount of logins in the system for the current day and the day before. It is
implemented as a counter which is reset at midnight. The numbers shown are the
maximum values of the counter for each day.

Figure 15: Graph with one-minute moving weighted average.

47

The login counts as 5-minute sum in Figure 15 shows how many logins have
happened within each 5-minute period. To get a more detailed data of the logins,
the table in Figure F2 shows each login separately. The table shows the exact time
and daily count for each login as well as what the timer’s minimum, maximum and
mean values are.

The login min & max & mean- graphs in Figure F3 show the data from a timer
in the login- function. The timer saves the time it takes for the server to process
the login request, counting the time between the moment it receives a request from
the client and the moment the response is sent. The graph shows the minimum,
maximum and mean for the timer. Figure F4 shows the whole dashboard with all
the graphs laid out together.

With the data at hand, most of the above questions can be answered. Because
the metrics capturing tool does not identify individual users, separate login counts
for each user can not - and are not meant to - be captured. The 5-minute sum of
logins shows that usually several users login within a small time period. This is
expected because the application is meant to be used in groups, but can also be used
individually. There are also long time periods when no users are using the service.

The timer data provides great insight to how quickly the server responds to user
requests. It can be seen, that while the mean time for sending a response is only some
20ms, it has gone as high as 800ms. This means that most users get the response
very fast, but few have had to wait for much longer.

This realization led to further investigation, which revealed that the logins for
mobile users were fast, but the login for the web-tool was causing the slow responses.
Furthermore, the response times got even higher with simultaneous login attempts
from the web-tool by different users. In the end, this lead to finding and fixing a
bug within the web-tool.

It can therefore be stated, that the tool for capturing business metrics functions
well also in actual production. The tool was simple and straightforward to implement
in the environment, and it is able to provide valuable data. The tool is versatile,
allowing for several different types of data to be captured, not limiting the user to
only capture pre-defined data. Also the customer has been happy with the initial
results of the tool, and is eager to continue using it and extend it to cover their whole
application.

6.5 Research questions
This thesis has four main research questions. With the tool implemented and tested
in a production environment, they can be verified. The tests showed that the tool was
well capable of capturing several different types of metrics. This was accomplished
by using Counters, Meters, and Histograms. It can therefore be concluded, that by
using these three general types of metrics, a wide variety of measurements can be
performed. As per the first research question, these are the main types of metrics
that an environment for capturing business metrics should support.

Chapters 3 and 4 of this thesis provide detailed descriptions of the requirement
and the design for the tool. The tool created in this thesis is based on the ideas

48

created for resource monitoring systems. Both resource and business monitoring
systems share similar functions. The main differences come from the type of data
that they capture, the place of capture, and the time frame, as resource monitoring
needs to be real-time where as business analytics often look at data from a longer
historical period. This thesis shows one way of extending the resource monitoring
systems to monitoring business metrics, and the author believes the method described
here is functional and provides a good basis for further research. Therefore, answers
to research questions 2, 3 and 4 have been found.

49

7 Conclusion

7.1 Summary
The aim of this thesis has been to extend current cloud resource monitoring systems
to capture business metrics such as the number of logins done in the system or the
average response times of the server. The motivation to do this comes from web- and
mobile developer Codemate who wants to implement such a solution as part of its
new development environment for cloud applications. A tool for capturing business
metrics was developed to satisfy this need.

The tool for capturing business metrics in cloud applications consists of three
main parts: a database, a visualization tool and a Node.js-library to gather the
metrics from applications built with Node.js. The tool also includes a program
written in Go-lang that provides the visualization tool with automatically created
dashboards that display key metrics defined by the developer.

The database used in this thesis is InfluxDB which is a time-series database. It
focuses on storing measurements which have timestamps attached to them, and to
efficiently query such data. InfluxDB operates through the HTTP-protocol, making
it easy to send and query data. The queries are SQL-like and can be sent as normal
REST-calls together with authentication details. InfluxDB was chosen because it fits
the task well and it is also used by other tools in the Codemate’s new development
environment.

The metrics that are stored in the database are captured by code inserted in
the target application. The code is published as a separate npm- package which
can be included in any Node.js project. The package is based on already existing
metrics packages, but those have been modified to provide better performance and
connection to the database. The package has been designed to be easy to use, and it
only requires a few lines of code to initialize and operate.

The metrics are visualized with Grafana. It is a web-based visualization tool that
can be used by any web-browser. Grafana provides several different visualization
methods such as graphs, tables and gauges with alerts. It has several dynamic
dashboards which can be customized and created by the users. Grafana was chosen
for this thesis because it is one of the leading open-source visualization tools, and it
is also used in other sections of Codemate’s new development environment.

The database and visualization tool are run on EC2 in AWS. To provide fault-
tolerance and easy replication, Kubernetes is used between the EC2 and database
and visualization instances. The code library for capturing the actual measurements
must be inserted directly into the monitored code.

The tool for capturing business metrics in cloud applications was developed as
a software project by a single person, the author. The development started with
forming the requirements for the tool through discussions with Codemate’s software
engineers and architects. The project proceeded to designing the system which was
then implemented. The developed application was finally evaluated both against the
requirements and by attaching it to an actual production server of one of Codemate’s
clients.

50

The main requirements that were identified were that the tool must take into
account both the developers of the applications where the measurements are to
be gathered and the users who want to see the measurements. Different types of
measurements to capture and ways to visualize them were selected, and emphasis
put on the performance of the system.

The design of the tool followed Kruchten’s 4+1 view model [36]. It helped form
the design of the different components starting from the overall view and drilling
down to smaller, individual components. During design several key decisions were
made such as what the database schema will be, how the metrics should be captured
from the target applications and how the different components communicate with
each other.

The implementation of the tool was done in two stages. In the first Stage, the
tool was developed locally by using Minikube. During this Stage all the different
components were created and tested that they worked together in a local environment.
The second Stage consisted of moving the tool to the cloud, into AWS. During this
phase the implementation from phase one was modified to work in an actual cloud
environment, and the connections were again tested.

The evaluation consisted of two parts: evaluating whether the requirements were
met and testing the tool in a production environment. The tool was verified to fulfill
all the requirements set for it. It was then installed on the production server of one
of Codemate’s clients. The tool functioned just as expected, providing valuable data
that has already helped improve the service. Furthermore, the client was pleased
with the system and eager to continue using it.

This thesis has also managed to answer to all four research questions it set out
to explore. It found good types of metrics that a monitoring environment should
support and showed how current resource monitoring systems can be extended to
capture business metrics. The thesis defined the requirements and design for such an
environment, and finally concluded that this method provides a working and good
method for capturing business metrics.

7.2 Future work
The tool created in this thesis is functional and has basic features that allow it to
capture metrics in any application that is built with Node.js. There are still several
improvements that can be made to the tool and how it is used. These can be divided
in two categories: new features to the tool itself, and new integrations so that it is
easier to use in Codemate’s development environment.

The main improvements to the tool itself include new metrics libraries for different
programming languages. Among JavaScript, the most important languages for
Codemate are Go and Ruby. Thanks to the modular structure of the tool, creating
new libraries for different languages is easy as long as they can send http-requests
to add data into the database, which most of the modern languages used in web
development can.

New types of measurements could also be added to the tool. It is not clear at
this time what those might be, but to add them, only the metrics library needs to

51

be modified. New metrics can later easily be added as the need for it arises. It is
expected that the functionality of the tool will grow over the years as it is used in
several production applications.

The tool has two major integration tasks that it needs. Firstly, the tool is currently
a separate entity that is running in an AWS stack of its own. Once the Codemate’s
development environment is ready, the tool created in this thesis will be attached to
it. This will require some configuration of the AWS by setting up new Kubernetes
clusters within the environment, as well as re-installing the tool there.

The second integration step needed is the creation of clear guidelines for identify-
ing, selecting and implementing the metrics and their gathering from applications.
Codemate has several projects running at the same time with different people working
on them. All of them should however use the tool in the same manner, and know
how to request new features for it. The guidelines should make it clear when to use
the tool, what kinds of metrics to gather, and when to gather them.

In conclusion, it is very likely that Codemate will continue to use the tool created
in this thesis. It satisfies the needs they have for capturing business metrics from
cloud applications, it is easy to use and implement in the development environment
and Codemate is committed to further develop the tool.

7.3 Further research
Research into gathering business metrics from cloud applications is slim at best. It
is a topic that companies like Codemate and its clients are interested in. This thesis
has revealed several areas where further research would be appropriate.

This thesis has implemented a method to gather business metrics by injecting
the probe directly into the target application’s code. While this works, in might
cause problems in very large applications. Research into gathering business metrics
by external probes would be helpful in such situations.

The method for implementing the metrics gathering inside the code could also be
developed further. Ideally, it would not need any input from the developer at all. In
order to gather metrics, a simple definition should be given, after which the system
should automatically implement the gathering of those metrics on its own.

52

References
[1] Docker overview. https://www.docker.com/what-docker. Accessed:

28.04.2017.

[2] Grafana overview. https://grafana.com/grafana. Accessed: 03.05.2017.

[3] InfluxDB documentation. https://docs.influxdata.com/influxdb/v1.2/.
Accessed: 28.04.2017.

[4] Kubernetes documentation. https://kubernetes.io/. Accessed: 28.04.2017.

[5] What are business metrics? https://www.klipfolio.com/resources/
articles/what-are-business-metrics. Accessed: 18.05.2017.

[6] Iso/iec/ieee international standard - systems and software engineering – life
cycle processes –requirements engineering. ISO/IEC/IEEE 29148:2011(E),
pages 1–94, 2011.

[7] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio Pescapè. Cloud
monitoring: Definitions, issues and future directions. In 1st IEEE International
Conference on Cloud Networking, CLOUDNET 2012, Paris, France, November
28-30, 2012, pages 63–67, 2012.

[8] Yahya Al-Hazmi, Konrad Campowsky, and Thomas Magedanz. A monitoring
system for federated clouds. In 1st IEEE International Conference on Cloud
Networking, CLOUDNET 2012, Paris, France, November 28-30, 2012, pages
68–74, 2012.

[9] Yahya Al-Hazmi and Thomas Magedanz. A flexible monitoring system for
federated future Internet testbeds. In International Conference on the Network
of the Future, NOF 2012, Paris, France, November 28-30, 2012, pages 1–6, 2012.

[10] Cloud Security Alliance. Security guidance for critical areas of focus in cloud
computing v3.1. Technical report, 2017.

[11] Josef Altmann and Gustav Pomberger. Cooperative software development:
Concepts, model and tools. In TOOLS 1999: 30th International Conference
on Technology of Object-Oriented Languages and Systems, Delivering Quality
Software - The Way Ahead, 1-5 August 1999, Santa Barbara, CA, USA, pages
194–207, 1999.

[12] Gabriel-Cosmin Apostol and Florin Pop. MICE: Monitoring high-level events
in cloud environments. In 11th IEEE International Symposium on Applied
Computational Intelligence and Informatics, SACI 2016, Timisoara, Romania,
May 12-14, 2016, pages 377–380, 2016.

https://www.docker.com/what-docker
https://grafana.com/grafana
https://docs.influxdata.com/influxdb/v1.2/
https://kubernetes.io/
https://www.klipfolio.com/resources/articles/what-are-business-metrics
https://www.klipfolio.com/resources/articles/what-are-business-metrics

53

[13] Xiaoying Bai, Shufang Lee, Wei-Tek Tsai, and Yinong Chen. Collaborative
web services monitoring with active service broker. In Proceedings of the 32nd
Annual IEEE International Computer Software and Applications Conference,
COMPSAC 2008, 28 July - 1 August 2008, Turku, Finland, pages 84–91, 2008.

[14] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time
monitoring of instances and classes of web service compositions. In 2006 IEEE
International Conference on Web Services (ICWS 2006), 18-22 September 2006,
Chicago, Illinois, USA, pages 63–71, 2006.

[15] Karin Becker, Duncan Dubugras A. Ruiz, Virginia S. Cunha, Taisa C. Novello,
and Franco Vieira e Souza. SPDW: A software development process performance
data warehousing environment. In 30th Annual IEEE / NASA Software Engi-
neering Workshop (SEW-30 2006), 25-28 April 2006, Loyola College Graduate
Center, Columbia, MD, USA, pages 107–118, 2006.

[16] Israel Ben-Shaul and Gail E. Kaiser. A configuration process for a distributed
software development environment. In Second International Workshop on
Configurable Distributed Systems, 1994, Proceedings, Pittsburgh, PA , USA,
21-23 March, 1994, pages 123–134, 1994.

[17] Devesh Bhatt, Rakesh Jha, Todd Steeves, Rashmi Bhatt, and David Wills.
SPI: An instrumentation development environment for parallel/distributed
systems. In Proceedings of IPPS ’95, The 9th International Parallel Processing
Symposium, April 25-28, 1995, Santa Barbara, California, USA, pages 494–501,
1995.

[18] Jose M. Alcaraz Calero and Jaime Gutierrez. MonPaaS: An adaptive monitoring
platform as a service for cloud computing infrastructures and services. IEEE
Trans. Services Computing, 8(1):65–78, 2015.

[19] Sharon Campbell, Joe Beda, and Ken Simon. Quick start for Kubernetes by
Heptio on the AWS cloud. Technical report, 2017.

[20] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in
information visualization - using vision to think. Academic Press, 1999.

[21] Evellin Cristine Souza Cardoso. Challenges in performance analysis in enter-
prise architectures. In 17th IEEE International Enterprise Distributed Object
Computing Conference Workshops, EDOC Workshops, Vancouver, BC, Canada,
September 9-13, 2013, pages 327–336, 2013.

[22] Saad Yasser Chadli, Ali Idri, Joaquín Nicolás Ros, José Luis Fernández-Alemán,
Juan M. Carrillo de Gea, and Ambrosio Toval. Software project management
tools in global software development: a systematic mapping study. SpringerPlus,
5(1):2006, 2016.

[23] Carlos Coronel and Steven Morris. Database systems: Design, implementation,
& management. Cengage Learning, 2016.

54

[24] Elias Adriano Nogueira da Silva and Daniel Lucrédio. Software engineering
for the cloud: A research roadmap. In 26th Brazilian Symposium on Software
Engineering, SBES 2012, Natal, Brazil, September 23-28, 2012, pages 71–80,
2012.

[25] Nelly Delgado, Ann Q. Gates, and Steve Roach. A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Trans. Software Eng., 30(12):859–
872, 2004.

[26] Mohit Dhingra, J. Lakshmi, and S. K. Nandy. Resource usage monitoring
in clouds. In 13th ACM/IEEE International Conference on Grid Computing,
GRID 2012, Beijing, China, September 20-23, 2012, pages 184–191, 2012.

[27] Neal Ford. Comparing service-based architectures. ÜberConf, 2016.

[28] Openstack Foundation. Monasca architecture. https://wiki.openstack.org/
wiki/Monasca, 2015. Accessed on 2017-03-15.

[29] George Fylaktopoulos, Georgios Goumas, Michael Skolarikis, Aris Sotiropoulos,
and Ilias Maglogiannis. An overview of platforms for cloud based development.
SpringerPlus, 5(38), 2016.

[30] Luis Miguel Vaquero Gonzalez, Luis Rodero-Merino, Juan Caceres, and Maik A.
Lindner. A break in the clouds: Towards a cloud definition. Computer
Communication Review, 39(1):50–55, 2009.

[31] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and Samee Ullah Khan. The rise of "Big Data" on
cloud computing: Review and open research issues. Inf. Syst., 47:98–115, 2015.

[32] Tobias Hildenbrand, Franz Rothlauf, Michael Geisser, Armin Heinzl, and Thomas
Kude. Approaches to collaborative software development. In Second Inter-
national Conference on Complex, Intelligent and Software Intensive Systems
(CISIS-2008), March 4th-7th, 2008, Technical University of Catalonia, Barcelona,
Spain, pages 523–528, 2008.

[33] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu.
JavaMOP: Efficient parametric runtime monitoring framework. In 34th In-
ternational Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 1427–1430, 2012.

[34] Teemu Kanstrén and Reijo Savola. Definition of core requirements and a refer-
ence architecture for a dependable, secure and adaptive distributed monitoring
framework. In The Third International Conference on Dependability, July 18-25,
2010, Venice, Italy, pages 154–163, 2010.

[35] Seija Komi-Sirviö and Maarit Tihinen. Lessons learned by participants of dis-
tributed software development. Knowledge and Process Management, 12(2):108–
122, 2005.

55

[36] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[37] Sunilkumar S. Manvi and Gopal Krishna Shyam. Resource management for
infrastructure as a service (IaaS) in cloud computing: A survey. J. Network
and Computer Applications, 41:424–440, 2014.

[38] Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia
distributed monitoring system: design, implementation, and experience. Parallel
Computing, 30(5-6):817–840, 2004.

[39] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
2011.

[40] Manoel G. Mendonça and Victor R. Basili. Validation on an approach for
improving existing measurement frameworks. IEEE Trans. Software Eng.,
26(6):484–499, 2000.

[41] Rafael Moreno-Vozmediano, Rubén S. Montero, and Ignacio Martín Llorente.
Key challenges in cloud computing: Enabling the Future Internet of services.
IEEE Internet Computing, 17(4):18–25, 2013.

[42] Raymond J. Offen and D. Ross Jeffery. Establishing software measurement
programs. IEEE Software, 14(2):45–53, 1997.

[43] R. S. Pressman. Software Engineering—A Practitioner’s Approach. Palgrove
Macmillan, 2005.

[44] Galen Reeves, Jie Liu, Suman Nath, and Feng Zhao. Managing massive time
series streams with multiscale compressed trickles. PVLDB, 2(1):97–108, 2009.

[45] John. W. Rittinghouse and James. F. Ransome. Cloud computing: Implemen-
tation, management and security. CRC Press, Florida, 2009.

[46] Sridevi Saralaya and Rio D’Souza. A review of monitoring techniques for
service based applications. In 2013 2nd International Conference on Advanced
Computing, Networking and Security, Mangalore, India, December 15-17, 2013,
pages 96–101, 2013.

[47] Reijo Savola and Petri Heinonen. A visualization and modeling tool for security
metrics and measurements management. In Information Security South Africa
Conference 2011, Hyatt Regency Hotel, Rosebank, Johannesburg, South Africa,
August 15-17, 2011. Proceedings ISSA 2011, 2011.

[48] Eric B. Seufert. Freemium economics: Leveraging analytics and user segmenta-
tion to drive revenue. Elsevier, 2013.

[49] Galit Shmuelli, Nitin R. Patel, and Peter C. Bruce. Data mining for business
analytics: Concepts, techniques, and applications with XLMiner. John Wiley &
Sons, 2016.

56

[50] Richard T. Snodgrass. Monitoring in a software development environment: A
relational approach. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania, USA, April 23-25, 1984, pages 124–131, 1984.

[51] Ian Sommerville. Software Engineering (10th Edition). Pearson, 2015.

[52] Jonathan Spring. Monitoring cloud computing by layer, part 1. IEEE Security
& Privacy, 9(2):66–68, 2011.

[53] Jonathan Spring. Monitoring cloud computing by layer, part 2. IEEE Security
& Privacy, 9(3):52–55, 2011.

[54] Chien-Min Wang, Shyh-Fong Hong, Shun-Te Wang, and Hsi-Min Chen. A dual-
mode exerciser for a collaborative computing environment. In 11th Asia-Pacific
Software Engineering Conference (APSEC 2004), 30 November - 3 December
2004, Busan, Korea, pages 240–248, 2004.

[55] Danping Wang. Influences of cloud computing on e-commerce business and
industry. Journal of Software Engineering and Applications, 6:313–318, 2013.

[56] Qianxiang Wang, Jin Shao, Fang Deng, Yonggang Liu, Min Li, Jun Han, and
Hong Mei. An online monitoring approach for web service requirements. IEEE
Trans. Services Computing, 2(4):338–351, 2009.

[57] Saeed Zareian, Marios Fokaefs, Hamzeh Khazaei, Marin Litoiu, and Xi Zhang. A
big data framework for cloud monitoring. In Proceedings of the 2nd International
Workshop on BIG Data Software Engineering, BIGDSE@ICSE 2016, Austin,
Texas, USA, May 16, 2016, pages 58–64, 2016.

57

A Database Schema: Counter

{
"name": " measurement .name",
" columns ": [

"time",
"count",
[tags,]

],
"values": [],

}

B Database Schema: Meter

{
"name": " measurement .name",
" columns ": [

"time",
"count",
"fifteen -minute",
"five -minute",
"mean -rate",
"one -minute",
[tags,]

],
"values": []

}

58

C Database Schema: Histogram

{
"name": " measurement .name",
" columns ": [

"time",
"75-percentile ",
"95-percentile ",
"99-percentile ",
"999-percentile ",
"count",
"max",
"mean",
"median",
"min",
"std -dev",
"sum",
" variance ",
[tags,]

],
"values": []

}

59

D Database Schema: Timer

{
"name": " measurement .name",
" columns ": [

"time",
"75-percentile ",
"95-percentile ",
"99-percentile ",
"999-percentile ",
"count",
"fifteen -minute",
"five -minute",
"max",
"mean",
"mean -rate",
"median",
"min",
"one -minute",
"std -dev",
"sum",
" variance ",
[tags]

],
"values": []

}

60

E Grafana installation

E.1 Login

Figure E1: The login-screen for Grafana.

61

E.2 Add datasource

Figure E2: The datasource-screen for Grafana.

62

E.3 Import dashboard

Figure E3: The pop-up screen for importing a dashboard into Grafana.

63

F Grafana in production

F.1 Logins today and yesterday

Figure F1: Graph with login amounts for today and yesterday.

F.2 Table with latest login

Figure F2: Table with individual measurement data.

64

F.3 Graph with min & max & mean values

Figure F3: Graph with min & max & mean values.

F.4 Login dashboard

Figure F4: Table with individual measurement data.

65

G Database installation script on AWS

kubectl -- kubeconfig = kubeconfig run --image= influxdb
influxdb --port=8086 --env=" INFLUXDB_HTTP_AUTH_ENABLED
=true"

kubectl -- kubeconfig = kubeconfig expose deployment
influxdb --type= LoadBalancer --port=8086

echo Getting private IP address for the container
ipDatabase
while [$? -ne 0]; do

ipDatabase =$(kubectl -- kubeconfig = kubeconfig describe
pod influxdb | grep IP | sed -E ’s/IP:[[:space:]]+//
’)

done
echo Creating admin user
curl -s -S -i -XPOST $ ipDatabase /query --data- urlencode "

q=CREATE USER admin WITH PASSWORD ’test ’ WITH ALL
PRIVILEGES " >/dev/null

echo Creating database data
curl -s -S -i -XPOST $ ipDatabase /query -u admin:test --

data- urlencode "q=CREATE DATABASE data" >/dev/null
echo Getting public IP address for the container
kubectl -- kubeconfig = kubeconfig describe service influxdb

| grep .elb. amazonaws .com

H Grafana installation script on AWS

kubectl -- kubeconfig = kubeconfig run --image= grafana /
grafana grafana --env=" GF_SECURITY_ADMIN_PASSWORD =test
"

kubectl -- kubeconfig = kubeconfig expose deployment grafana
--type= LoadBalancer --port=3000

echo Getting public IP address for the container
kubectl -- kubeconfig = kubeconfig describe service grafana

| grep .elb. amazonaws .com

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Motivation
	Research problem and thesis scope

	Literature review
	Definitions of cloud computing
	Business metrics
	Distributed development
	Monitoring in cloud applications
	Measuring business processes
	Visualizing metrics
	Databases
	Current monitoring solutions
	Measurement frameworks
	The analytics stack

	Requirements
	Introduction
	Target environment
	User requirements
	General user requirements
	Gathering metrics
	Storing and visualizing metrics

	System requirements

	Design
	Introduction
	Logical view
	Process view
	Capturing metrics
	Storing the metrics
	Visualizing the metrics

	Development view
	Physical view

	Implementation
	Implementation method
	Metrics capturing
	Storing the metrics
	Visualizing the metrics
	Generating the visualization dashboard
	Moving to Cloud

	Evaluation
	The tool
	Scalability and fault-tolerance
	Requirements verification
	User requirements
	System requirements

	Actual usage
	Research questions

	Conclusion
	Summary
	Future work
	Further research

	References
	Database Schema: Counter
	Database Schema: Meter
	Database Schema: Histogram
	Database Schema: Timer
	Grafana installation
	Login
	Add datasource
	Import dashboard

	Grafana in production
	Logins today and yesterday
	Table with latest login
	Graph with min & max & mean values
	Login dashboard

	Database installation script on AWS
	Grafana installation script on AWS

