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Summary
The rise of cloud computing has made it a lot easier for attackers to be able to run code
on the same processors as their target. This has made many attacks more viable. This
thesis discusses a cache timing attack targeting the LibTomMath library. LibTom-
Math is a mathematical library for computations using large integers. The library is
used in some cryptographic libraries such the commercial solution WolfCrypt.

The attack mainly focuses on the modular exponentiation function of LibTom-
Math which is a major part of RSA implementations. The aim of the attack is to
use cache timing in order to extract the long term private key used by the server for
encrypting communications. Recovering the private key, gives the attacker access to
past and future communications secured using this key, which usually has a lifespan
of at least one year. The attack only requires that it shares a processor with the
victim and works even if the attack process and the victim process are running on
diferent Virtual Machines.

The thesis includes a description of the RSA cipher as well as the various opti-
mizations that are used in a lot of cryptographic libraries. Next, it describes how to
use cache timing to exploit some of those optimizations in order to gain information
about the secret exponent based on the memory access patterns of the target code.

Finally, it discusses the limitations of the attack as well as how cloud services
providers, cryptographic library developers as well as processor manufacturers may
be able to mitigate this class of attacks.
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CHAPTER 1
Introduction

1.1 Infrastructure as a Service

Infrastructure as a service (IaaS), is one of the most popular ways small to mid-range
companies handle their computing needs. The main technique that IAAS providers
rely on is virtualization. Virtualization allows sharing physical resources such as pro-
cessing power, memory and storage, among multiple customers and thus optimizing
the use of those resources. IaaS providers ofer cheaper and more easily scalable solu-
tions to companies and they use virtualization to maximize the usage of their physical
machines.

The largest companies in the ield, like Amazon with AWS (Amazon Web Services)
and Google with GCP (Google Cloud Platform) are all ofering either full virtualiza-
tion solutions or similar services such as containers. Those solutions create an illusion
of isolation, where each inhabitant/user of physical resources, is in their own sand-
box unable to access or directly interact with other inhabitants on the same physical
machine.

This is true to some extent, for example, without an exploit to allow you to break
out of the virtualized sandbox, you are unable to directly access shared resources that
are currently allocated to other inhabitants. However, complex usable abstractions
always leak more information than they intend. The main leaks in the abstraction,
that this thesis focuses on is the memory and cache.

The speed at which code can load and execute instructions as well as data from
memory/cache has a very direct relation to the performance. Even if the code and
processor are fast, if it takes a long time to store/load data to and from memory then
the overall execution would be slow. This makes it so there is very little virtualization
on the memory/cache front. Therefore, since memory/cache accesses are direct, the
time it takes to fetch data from memory is afected by the contents of the real memory
(that is shared by all inhabitants). This fact allows one inhabitant to infer memory
utilization patterns by the other inhabitants across the sandbox by timing memory
accesses, even within the sandbox.
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1.3 Issues with cryptographic implementations
Encryption standards are usually deined in mathematical notation. They deal with
the problem of encryption and security in the abstract sense. Mathematical equations
showing the diiculty of solving the decryption problem without the key is usually how
encryption algorithms are shown to work. The problem statement usually assumes
that the encryption process is done on a private black box where no information goes
out unless stated by the algorithm.

The problem arises in the next step of the process which is implementing the
deined algorithm in a real environment, i.e. with an Operating System (OS) with
a certain Instruction Set Architecture (ISA) on an certain processor. The actual
implementation step can expose certain side channels not taken into account by the
design of the algorithm. For example, the time it takes to do certain steps in the
algorithm may depend on some secret information, therefore, being able to time the
algorithm may allow an attacker to gain secret information.

The most promising attacks on modern encryption algorithms are the ones based
on side channels. The reason is, it is usually very hard to reason about the information
leaked by running the algorithm on a certain hardware. The aim of optimizing the
implementation usually goes against leaking as little information as possible.

The main focus point of the thesis is on cache side channel. If an algorithm
implementation accesses certain locations in memory based on secret key for example.
Then by monitoring the cache for those locations you are able to igure out if and
when they are accessed and then be able to infer information about the key or reduce
the key space enough to be able to bruteforce the rest of it within a reasonable
time-frame.

1.4 Encryption in the real world
Encryption is an important facet in the internet as it is today. During the rise of inter-
net commerce and internet banking, encrypting sensitive information such as logins
and credit card details as they traveled over the open internet was very important.
Unfortunately encryption is expensive on the server side with having to perform ex-
pensive mathematical operations every new request being a major drawback to having
full encryption for all traic. So, for most none extremely sensitive traic, basically
any traic other than logins and payment data, was left unencrypted.

With the rise of open hotspots allowing nefarious attackers to more easily orches-
trate Man in the Middle (MitM) Attacks [But10], it is becoming easier for private
data communicated over the internet to be intercepted by malicious entities. This
lead to more proponents advocating for full encryption for websites [BI14] with new
tools available to deploy HTTPS (Hyper Text Transfer Protocol Secure) encryption
more easily [Aas14].

HTTPS/TLS (Transport Layer Security) used in encrypting internet traic re-
lies on both asymmetric (RSA) and symmetric cryptography (AES). RSA and other
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asymmetric cryptography can allow both parties to exchange encrypted information
without having a preshared key. This is important because a new user of a website
does not need to have a key to encrypt the communication. However, asymmetric
ciphers are expensive and thus cannot be used for the entire communication. So at
irst during the TLS handshake, asymmetric ciphers are used to exchange a preshared
key at the start of the session then afterwards symmetric ciphers like AES are then
used to encrypt the rest of the communication.

1.5 Prior work
There have been previous attacks on encryption implementations in the past. Some
targeted the browser implementation of the TLS protocol [Jee13]. Others targeted the
implementation on the server side. This thesis focuses on server side implementations
and how to extract private keys from running servers.

Some previous attacks targeted the hardware directly by measuring (using lab
equipment) emanations such as power consumption [KJJ99; Koc+11], electromag-
netic radiation[QS01] or sound [GST14]. Other attacks focused on software methods
of key extraction not requiring external hardware. Those either timed the crypto-
graphic processes themselves [BT11; BB05] or timed the cache.

Of those that used cache timing, some targeted the L3 cache (see section 4.4 for
cache levels) [Liu+15; Inc+16; IES15a]. This allowed the attacks to be usable across
VMs. The L3 cache is too large to probe enirely with enough frequency thus making
attacks on the L3 cache more complex because they need to reduce the address space
irst. However, attacks targetting the L3 cache are able to work across VMs. There
are some attacks that target the L1 cache [YGH16], which can even bypass some of
the protections that are provided by some libraries to prevent cache timing attacks.

1.6 Threat model
The threat model targeted by this paper is based on shared physical CPU and cache
by both the attacker and the victim. The attacker and victim can be assumed to be in
separate virtual sandboxes. Those can be using virtual machines or through modern
alternatives such as containers. Any virtualization solution is applicable as long as
the physical cache is shared and not emulated. Most IaaS providers share the physical
hardware across customers unless the customer purchases the entire hardware server.

The virtual machine is assumed to be running on memory allocated using huge
pages (see section 4.2). This is not a diicult condition to satisfy because this is the
most popular coniguration for VMs provided by IaaS providers. Using huge pages
improves performance by more eiciently using limited resources.

The attacker and the victim are not assumed to be running on the same core.
However the attacker is assumed to have root permissions within their own sandbox.
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1.7 Our contributions
The main focus of this thesis is to implement a cache timing attack on the LibTom-
Math library. The goal is to show that even with the isolation provided by virtualiza-
tion, cache leakages can still reveal security critical conidential data. LibTomMath
provides functions that work with huge numbers, the type used in some cryptographic
algorithms including RSA. LibTomMath is used by a few cryptographic libraries like
WolfSSL which is a commercial cryptographic library.

The target of the attack is the modular exponentiation implementation provided
by LibTomMath. Modular exponentiation is a major part of the cipher RSA. RSA
is used most commonly in SSL/TLS and thus RSA encryptions are expected to be
performed repeatedly on websites that are secured via SSL/TLS. The attack monitors
the cache during the encryptions and uses the timing data in order to extract the
secret key used.

Chapter 2 describes the RSA cipher in more detail, chapter 3 discusses how oper-
ations on the large integers used in RSA are implemented and optimized. Chapter
4 describes the memory and cache architecture, then chapter 5 describes how to im-
plement a generic cache timing attack. Finally chapters 6, 7 discuss the attack on
LibTomMath and its applicability on other libraries and platforms as well as some
mitigation techniques.
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CHAPTER 2
RSA

RSA is a popular asymmetric key cipher that allows two parties to communicate
securely without requiring a preshared key [RSA78]. RSA plays a major role during
the handshake of TLS sessions before agreeing on a shared key for the rest of the
session. As an asymmetric cipher, RSA has a private key held by one of the parties
and a public key that is distributed to other parties.

2.1 Using asymmetric cryptography
Asymmetric ciphers including RSA have two keys, a private and a public key. Given
a plaintext message M , encrypting M using the public key (K) gives a ciphertext.

C = EK(M) (2.1)

To get the plaintext message back from the ciphertext C the data is decrypted
using the private key (K−1).

M = DK−1(EK(M)) (2.2)

The main premise of asymmetric cryptography is that releasing the public key
K does not compromise the security of the encryption and there is no easy way to
compute function D′ using the public key K such that:

M = D′

K(C) (2.3)

2.2 Basics of RSA
RSA is based on modular exponentiation. In RSA the public key consists of two
integers < N, e >. N is the modulus and e is the public exponent. To create the
public key component N two large random prime numbers P and Q are generated,
then N = PQ. The exponent e does not have many restrictions for the cipher to be
secure. It just has to fulill the following requirement:

gcd(e, (P − 1)(Q− 1)) = 1 (2.4)
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It is usually chosen as 3 or 65537 since they are small numbers and thus make
encryption faster. To encrypt a message m in to the cipher text c, you use the
following formula:

c = me mod N (2.5)

The private key is made up of three other integers < P, Q, d >. P and Q are
mentioned above and d is the private exponent. d is chosen so that it satisies the
following equation:

e · d ≡ 1 mod (P − 1)(Q− 1) (2.6)

To decrypt the ciphertext back into plaintext, the ciphertext c is exponentiated
to the power of the private exponent d modulo N .

m = cd mod N (2.7)

Usually the public key is used to encrypt the data and the private key decrypts
ensuring that only the owner of the private key can read the message, which is how
it was used above. However another way of using RSA is to create signatures. If the
private key is used to sign the message, the public key can then be used to check the
signature as so:

c′ = m̄d mod N (2.8)

m̄ = c′e mod N (2.9)

Using the private exponent irst then the public one would still get back the
original plaintext. However, the intermediate product after ”encrypting” with the
private key can be read by anyone with the public key. This order is not used to
protect the secrecy of the data but rather to ascertain the identity of the sender of the
data as well as its authenticity. Usually, when using signatures to verify authenticity,
the hash of the message (m̄) is used rather than the actual message (m).

2.3 Correctness of RSA
The reason exponentiation with the private exponent cancels out the exponentiation
by the public exponent and viceversa starts with this identity by Euler and Fermat
[HW79]:

mφ(n) ≡ 1 mod n (2.10)

The function ϕ is deined on an integer N as the number of integers less than N
that are coprime with N . If N is a product of two prime numbers P and O as is the
N used in RSA then ϕ(N) = (P − 1)(Q− 1).

Rewriting equation (2.6) to use ϕ:
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e · d ≡ 1 mod ϕ(N) (2.11)
This means that:

ed = 1 + kϕ(N) (2.12)
Let us consider the case of a message encrypted by the public key then decrypted

by the private key. This means that it is raised to the power of ed:

m = (me)d = med mod N

= m1+kφ(N) mod N

= m ·mkφ(N) mod N

= m · (mφ(N))k mod N

(2.13)

Using equation (2.10) this can be reduced to:

m · (mφ(N))k = m · 1k = m mod N (2.14)
Equation (2.14) shows that encryption and decryption are inverses of each other

and doing one after the other results in the original message.

2.4 Security of RSA
The security of RSA is based on the diiculty of factoring large products of primes.
Both P and Q are secret and are not really needed after the calculation of the private
exponent d. Calculating ϕ(N) is trivial with access to the prime factors P and Q,
however it is not so easy with just the access to N .

There is no formal proof showing that RSA is diicult, however, the original RSA
paper [RSA78] shows that the private exponent d can be used to factor N eiciently.
This means that breaking RSA is at least as hard as factoring large products of primes.
The best algorithm currently known is the ”number ield sieve factoring algorithm”
[Lan01] which still has a sub-exponential time complexity to guarantee security for
RSA.

In order for RSA to be secure, the primes P and Q have to be large. Currently
for secure RSA, it should be implemented with 2048 bit moduli at least. This leaves
a margin of error, since the 768 bit RSA modulus has already been broken [Kle+10],
potentially leaving the 1024 bit moduli in jeopardy.

2.5 RSA in TLS
RSA is sometimes used during the handshake part of TLS (Transport Layer Security).
The end result of TLS is to have a preshared secret key between the server and the
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user’s browser for use in encrypting communication. This starts by a handshake
where the server and the browser exchange credentials as well as work together to
create the shared key.

The TLS handshake (shown in ig 2.1) starts with the client/browser sending the
”client hello” message. The message usually lists the capabilities of the browser, with
regards to the cryptographic algorithms it supports. The server then responds with
a choice of one of the supported algorithms as well as the server certiicate.

The server may also request a client certiicate to authenticate the user, however
that is optional and rarely used. The client replies with its portion of the shared key
material encrypted using the server’s public key. Finally they exchange ”inished”
messages signed using the shared key they came up with (to make sure that both
arrived at the same key). This ends the handshake portion and the rest of the
communication is encrypted using the newly created shared key.

Certiicates contain an RSA public key as well as the domain name of the website.
Trusted third parties, ie. Certiicate Authorities (CA), sign the certiicate by hashing
the certiicate contents and encrypting the hash using their private key to arrive at a
signature. The client/browser can verify the signature by calculating the hash of the
certiicate contents and decrypting the signature comparing it to the calculated hash.
If they match then the certiicate is authentic.

Since the signature is created by encrypting the hash with the private key of
the CA, it can be veriied using the public key of the CA (which is assumed to be
preloaded in the browser/OS of the user).

The server certiicate is static, ie. it does not change per request. This means that
every request uses the same certiicate with the same private/public key pair. Thus,
many encryptions with the same key are performed every day/hour. Furthermore,
discovering said private key can lead to an attacker being able to unencrypt secure
connections.
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CHAPTER 3
Implementing RSA

The security of RSA is based on the fact that the numbers are very large and thus
factorization is expensive. The problem with having such large numbers is that
computations using those numbers are more expensive. RSA deals with numbers
more than a 1000 bits long. These numbers will not it on even the largest registers
on a CPU. This means that certain optimizations and implementation decisions have
to be considered when implementing RSA in actual code. This chapter discusses what
those optimizations are as well as how these optimizations may lead to vulnerabilities
that are the subject of this thesis.

3.1 Square and multiply
To naively implement modular exponentiation, you would raise to the power of the
exponent irst then reduce modulo the modulus. However the exponentiation part
would become very expensive and if the exponent is big, which it is in RSA, you
will end up with extremely huge numbers, many orders of magnitude larger than the
modulus and the required result.

The simplest way of solving this problem is to solve the modular exponentiation
problem sequentially and reduce regularly keeping the intermediate steps within an
order of magnitude of the modulus.

The square and multiply method starts with a running result value 1. It then goes
over each bit of the exponent from right to left and squares the current result. If the
current bit of the exponent is a 1 then it multiplies the base into the result before the
squaring. Algorithm 1 shows this in detail.

3.2 Multiple precision integers
As is stated, the numbers used in RSA are very large and they can not it on a single
register. In order to compute with and store such large numbers, they need to be split
of into multiple digits. This complicates the computation since you can no longer
just depend on the hardware to perform the multiplication or squaring but all those
operations have to be implemented in software. This is done using multiple precision
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Algorithm 1 Square multiply exponentiation
Input: base b, modulus m, N-bit exponent e represented as N bits ei

{eN , eN−1, ..., e1}.
Output: be mod m

1: r ← 1
2: b← b mod m
3: for i = 1 to N do
4: if ei = 1 then
5: r ← r ∗ b mod m
6: end if
7: r ← r ∗ r mod m
8: end for
9: return r

integers that are split into multiple digits with a base b. The base used is usually a
multiple of 256 since each digit is stored in one or more bytes.

Multiplication is one of the required operations used in the modular exponenti-
ation since it can also be used instead of squaring. Algorithm 2 shows how to do
multiplication between multiple precision integers. The algorithm is the same as the
pen and paper multiplication method taught in grade school.

Algorithm 2 Multiple precision integer multiplication
Input: integers x (xnxn−1...x0)b, y (ytyt−1...y0)b having n + 1 and t + 1 digits, base

b, respectively.
Output: the product x · y = (wn+t+1...w1w0)b

1: for i = 0 to n + t + 1 do
2: wi ← 0
3: end for
4: for i = 0 to t do
5: c← 0
6: for j = 0 to n do
7: (uv)b ← wi+j + xi · yj + c
8: wi+j ← v
9: c← u

10: end for
11: wi+n+1 ← u
12: end for
13: return (wn+t+1...w1w0)
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3.3 Sliding window exponentiation
In RSA, modular exponentiation is the main operation used in encryption and decryp-
tion. Thus, this is the main target for optimization from the algorithmic perspective.
One way of optimizing the modular exponentiation is using a sliding window repre-
sentation of the exponent.

The sliding window representation of an exponent e is a sequence of windows wi

each having length L(wi). Each window is either all 0s or starts with a 1 and ends
with a 1. With a window size S each non-zero window satisies 1 ≤ L(wi) ≤ S, thus
has an odd value between 1 and 2S − 1.

As shown in Algorithm 3, the sliding window exponentiation technique irst cal-
culates the multipliers for each possible window and stores them in array g then uses
the multipliers in g to calculate the actual result of the exponentiation.

Algorithm 3 Sliding window exponentiation
Input: Window size S, base b, modulo m, N-bit exponent e represented as n windows

wi of length L(wi) each.
Output: be mod m

1: //Precomputation
2: g[0]← b mod m
3: s← MULT(g[0], g[0]) mod m
4: for j = 1 to 2S−1 do
5: g[j]← MULT (g[j − 1], s) mod m
6: end for//Exponentiation
7: r ← 1
8: for i = n downto 1 do
9: for j = 1 to L(wi) do

10: r ← MULT(r, r) mod m
11: end for
12: if wi ̸= 0 then
13: r ← MULT(r, g[(wi − 1)/2]) mod m
14: end if
15: end for
16: return r

For example let us take an exponent e = 11749 = (10110111100101)2 and window
size 3. Spliting it into windows would generate (101, 101, 111, 00, 101). We then only
need to multiply 4 times corresponding to the none-zero windows.

3.4 Montgomery modular exponentiation
Montgomery reduction is a method for modular multiplication that does not require
the expensive classical modular reduction step. TR−1 mod m is called a Montgomery
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reduction of T modulo m with respect to R. If are R is chosen correctly, Montgomery
reduction can be computed eiciently.

For Montgomery reduction to work, R and T have to be integers such that R > m,
gcd(R, m) = 1 and 0 ≤ T < mR. For Montgomery reduction to be computed
eiciently R is chosen to be bn where b is the base of digits of the modulus m and n
is the number of digits of m. This guarantees that R > m, and for practical purposes
(i.e. RSA implementations), b is a power of 2 and m is odd thus gcd(R, m) = 1.

Let x and y be integers such that 0 ≤ x, y < m. Let x̃ = xR mod m and ỹ = yR
mod m, called the Montgomery forms of x and y. The Montgomery reduction of
x̃ỹR−1 mod m = xyR mod m.

If R is chosen as bn where b is a power of 2 then multiplication by R is a shift left
and division is a shift right. If multiple modular multiplications with the same modu-
lus are to be expected, as is the case in modular exponentiation, the entire algorithm
can be changed to use Montgomery reduction by converting the inputs of the multi-
plication to Montgomery form, doing the multiplication and then using Montgomery
reduction. [Men+96] (14.29) implies that if R is chosen as bn then Montgomery
reduction can be computed more eiciently than classical modular reduction.

The sliding window exponentiation in Algorithm 3, in practical implementations,
is usually improved by converting the multipliers to Montgomery form, then using
Montgomery multiplication instead of the MULT function and performing Montgomery
reduction before returning the result.

3.5 Attacking optimized implementations
Optimizations such as the one shown in section 3.3 improve the run time of the
cryptographic function, however, they may indirectly create new attack surfaces. As
shown in the computation part, the access patterns of the multipliers depend on the
values of the bits in the secret RSA exponent thus leak information to an observer.

If an attack process monitors the relevant cache lines, it can ind the access times
of the multipliers relative to each other and to the start of the exponentiation. This se-
quence of multipliers can then be used to get the secret exponent since each multiplier
has an index that is the value of a window inside the exponent.

The index of a certain multiplier can be found by looking at the access patterns
of the multiplier at the start of the exponentiation. The multipliers are initialized in
order, which points to their index and the value of the window they represent. Even
if in the implementation of the library, they are not initialized in ascending order but
in a more complicated one to obfuscate their index, the code of the library will still
show the actual order of initialization and thus an attacker can still get the index
from monitoring cache accesses.



CHAPTER 4
Memory Architecture

and Cache Timing
Techniques

4.1 Memory paging and virtual addresses

Memory is a contested resource when multiple programs are running at the same
time. The OS tries to alleviate some of this contention by running each process in
its own virtual address space. To any running program, the entirety of the virtual
address space is free for its own use and it does not have to worry about interfering
with other running programs.

The virtual address space is divided into pages and the physical address space
is divided into frames that it those pages. Pages are blocks of address ranges of a
speciic size speciied by the OS. For each program, the OS maps the used pages inside
the virtual address space of the program to frames of the same size in the physical
address space. Virtual memory is transparent to a normal program and any memory
accesses by the program are translated on the ly to their real physical address space
counter part before reads and writes are passed to the main memory.

The virtual to physical mapping, maps entire pages from the virtual address space
to the physical one. This means that within a virtual page the ofset of a certain line is
the same as its ofset within the counterpart physical frame. So for an N -bit address
and a page size S, the least signiicant log2(S) bits are the ofset within the page
while the most signiicant N− log2(S) bits constitute the page address/frame number
that is replaced when the translation occurs. The most common page size is 4KiB.
This means that the least signiicant log2(4096) = 12 bits are used as an ofset within
the page.
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4.2 Hugepages
Memory mappings of virtual pages to frame numbers have to be stored and looked
up frequently. Basically every time a memory or cache access occurs (outside the L1
cache which uses virtual addresses, see section 4.4) this translation has to be looked
up. To speed this up, the most recent mappings are stored in a TLB, or a Translation
Lookaside Bufer. The TLB allows fast translations for the most recently used pages.
However, the TLB has a limited size. If there is a large number of pages, then many
of them may not be stored in the TLB at any given time.

If there is a TLB miss, the memory mappings have to be read from main memory.
The page table in the main memory has a layered hierarchy. In x86-64 there are 4
layers of page tables [AMD]. A virtual address in a standard 4KiB page has 12 bits
page ofset. The remainder of the 48-bit virtual address is divided into 4 9-bit indices
used to select entries from the 4 levels of the page table.

Each entry in one level of the page table points to the next level of the page table
or to the actual physical page in case of the last layer of the page table. This process
to retrieve the memory mapping in case of a TLB miss is called the page walk. The
page walk is expensive since it requires multiple consecutive accesses to the main
memory.

The TLB is a scarce and precious resource. With the rise of applications requiring
huge amounts of memory, optimizing the use of the TLB is important. This leads
to newer kernels ofering the option of larger page sizes. Instead of the standard
4KiB page, kernels with huge pages support ofer page sizes of 2/4 MiB and even
1GiB. Larger pages use less of the TLB for the same amount of physical memory
mapped. This makes huge pages very beneicial in virtualized environments. Since
virtual machines require large memory allocations, by using huge pages, the TLB is
able to it more of those mappings and reduce the latencies that occur in case of TLB
misses.

4.3 Cache overview
The processor is currently the fastest part of pipeline in modern computing. However,
the real world performance is usually bounded by the speed of the memory, which
provides the instructions and the data that the processor needs. With this being the
case, speeding up the processor without an equivalent speedup to the memory does
very little to the overall performance of the machine and applications that run on it.

While high speed memory does exist, it is a lot more expensive if all available
memory was high speed. That would make the computer very expensive. The way
the speed issue is solved while keeping computer prices low, is by using high speed
caches above the main memory which is slower but more reasonably priced.

Whenever the processor requests access to a certain memory location, the cache is
checked irst, if it exists (a cache hit) then the cache responds appropriately otherwise
(a cache miss) the main memory responds and the data is loaded into the cache for
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The way cache addressing works is that for an address of a byte in memory the
lowest order log2(B) bits of the address are the ofset within its cache line for that
byte. The next log2(S) bits are then used as a set index for the cache line. The rest of
the high order address bits are used as a tag to diferentiate between the lines within
a cache set.

If the cache architecture uses cache slices then a hash function of the high order
tag bits is used to determine the cache slice index for that cache line. This hash
function is not usually released. Figure 4.1 shows how cache addressing would work
for a 64B cache line in an 8GB address space with 4KiB and a 2MiB page size.

4.6 Cache eviction
Since there are more than W lines that share their set index bits in the main memory
address space, not all of them can it in the cache at the same time. This means that
if a cache set is full, some of the other cache lines in that set have to be evicted for a
new cache line to be loaded in.

There are a number of strategies that are used to decide which cache line to evict
according to recent access patterns. One is called LRU (Least Recently Used) which
evicts the cache line which has not been been accessed for the longest time.

The other cache eviction strategy is the MRU (Most Recently Used). This evicts
the cache line that has been accessed most recently. It acts almost completely opposite
to LRU. However, both of these strategies are better in diferent situations depending
on the accesses patterns of the code currently running on the processor.

The hardware either has to pick one strategy and stick with it for all programs
or has to somehow pick the better strategy based on the running program. The way
Intel handles this problem is by using an adaptive eviction strategy. It basically runs
each eviction strategy on a small sample of cache sets and measures the number of
cache misses. Whichever strategy produces the least cache misses is applied to more
cache sets. This way the cache eviction strategy adapts to the running program.

4.7 Inclusive vs exclusive caches
As was described in section 4.4, there are multiple layers of cache. Each layer is larger
than the previous with the LLC being the largest. There is an important property
in Intel caches which is inclusivity. Inclusivity means that each layer of cache stores
all the data inside the previous layers. So if an entry exists in the L1 cache it is
guaranteed to exist in the L3 cache as well.

The other side of the coin is exclusive caches. In exclusive caches, a cache line can
be present in only one of the cache levels. Exclusive caches allow for more eicient
use of the cache space since cache lines do not need to be duplicated across the cache
levels. Inclusive caches on the other hand, while they do store redundant data, they
are much simpler to implement (new lines are just propagated up the cache hierarchy).
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A main point to consider with inclusive caches, that is very relevant to this thesis,
is how eviction works with inclusive caches. If the cache is inclusive and a line is
evicted from the LLC then it is also evicted from lower cache levels as well. This
allows an attack process to only monitor the LLC but still have a complete picture of
the memory accesses performed by a victim process. The attacks described in chapter
5 and 6 make use of this property of Intel caches to bypass the requirement of running
on the same core to monitor the L1 cache.

4.8 Cache latencies vs main memory
While all cache levels are faster than memory, diferent cache levels have diferent
latencies. For skylake based processors the L1 cache which is closest to the core has a
latency of 4 cycles [Coo09]. L2 has a latency of 12 clock cycles and L3 has a latency
of 44 clock cycles. A miss on the LLC can have latencies higher than 150 cycles.

While possible, it is not that easy to diferentiate between the cache hit vs miss
of lower level caches. However, an LLC hit/miss is very visible to an attack process
monitoring a cache set.

4.9 Exploiting cache vs memory latencies
There are many ways of using the cache side channel in order to gain information
about the memory access patterns of an operation inside another process, for example
an encryption with a private key within a server process. In the subsections below, two
of the techniques, the Evict+Time and the Prime+Probe techniques, are described.

4.9.1 Evict+Time technique
This technique assumes that the start time and end time of any encryption operation
is known and that the triggering of the encryption operation can be performed by the
monitoring process.

The way this technique works is, irst, trigger an encryption operation twice and
measure the time it takes for the second run. The irst run ills the cache with the
required data while the second run is used as a control measurement. Then before
the next run of the encryption operation, a cache set is illed up so that all lines
previously inside are evicted. This cache set should be chosen in such a fashion that
access to a line mapped to it is dependant on the secret key used in the encryption
operation.

The encryption is then triggered in the server process and the time it takes for
the operation to complete is measured and compared to the control time previously
measured.

If the encryption tried to access a cache line mapped to the evicted cache set
then a cache miss would occur and that would cause a time penalty while the data is
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fetched from the main memory. However if no access to a cache line mapped to that
cache set is required by the encryption operation then the time it takes will not be
afected by the cache eviction.

This allows the monitoring process to ind out if a certain cache set has been
accessed during the encryption operation and with knowledge of how the encryption
code works and strategic choices for the cache set(s) being evicted, the monitoring
process can gain information about the secret key used by the encryption.

4.9.2 Prime+Probe technique
This is the approach being used in this thesis. This allows for high resolution moni-
toring of a cache set throughout the encryption operation. By reading the code of the
encryption operation, you can ind certain memory locations that are accessed based
on the secret key or more probably a set of memory locations whose access order and
pattern depends on the secret key. To monitor a certain cache set, an eviction set is
created for that cache set. An eviction set is a set of W memory lines that all share
the same set index thus ill up a cache set.

The monitoring process then primes the cache by accessing all the elements in the
eviction set. Then it probes the set by accessing them all again and recording the
time taken for the probe operation. Whenever the encryption operation accesses a
line that maps to that cache set, it loads the line into the cache and evicts one of the
lines from the eviction set of the monitoring process.

When the monitoring process tries to probe the eviction set again it would take
longer for the probe to inish due to the eviction caused by the monitored process. By
doing this process repeatedly during the encryption operation, the monitoring process
is able to igure out the memory access patterns of the encryption with regards to the
monitored cache sets.



CHAPTER 5
Practical Cache

Timing Attacks
In order to abuse the cache side channel to get memory access patterns from a victim,
the attack process needs to irst get an eviction set for a certain cache set. Then it
has to use said eviction set to monitor the cache set and collect timing data. Finally
some post processing on the collected timing data is needed to get information about
the memory access patterns of the victim process.

This chapter discusses the practical aspects of creating an attack process that
can monitor memory access patterns of another victim process. The attack was
implemented on an Intel Core i7-4600 CPU, because of access to the cache selection
hash function. The attack can be implemented on most processors as long as the
cache slice selection function is known.

5.1 Controlling the set index
The irst step is to get an eviction set for a speciic cache set. Figure 4.1 shows how an
address is used to determine where in the cache it is stored. As discussed in section
4.5 the least signiicant log2(B) bits are used for cache line ofset, where B is the
cache line size. The next log2(S) bits are used as a cache set index where S is the
number of sets in the cache/slice.

The igure shows how the address is divided for cache indexing. In an 8GiB address
space with 2048 sets in a slice and 64B per cache line, the set index is log2(2048) = 11
bits long and starts at bit 6 through 16. If the cache under consideration has W ways
of associativity for each set, then, to create an eviction set for a certain set index we
need W bytes mapping to diferent cache lines all having an address with the same
set index bits (6 through 16). For caches other than L1 which is not shared between
cores, these addresses are physical addresses rather than virtual ones. This is because
address translation happens before reading and writing to caches (other than L1).

In virtual address space, only the bits in the page ofset are visible to the running
process. This is because during translation to physical address space the higher
address bits forming the page number are changed to the associated frame number
in physical address space.
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In 4KiB pages the page ofset is only 12 bits long. The set index is then split,
with some of the bits inside the page ofset can be seen and controlled by the running
process and the rest inside the frame number are not controlled or seen by the running
process. In huge pages of size 2MiB, however, the page ofset bits are 21 bits long.
This is more than enough to cover all the set index bits.

So to create the eviction set, a large bufer (at least twice the size of the monitored
cache), is allocated on huge pages. The eviction set can be chosen as a set of lines
from this bufer that all share the same set index bits in their address.

5.2 Controlling the cache slice
As discussed in section 4.5 the higher index bits of the physical address are used to
determine the cache slice. The exact cache slice selection function difers between
each processor. The Intel Core i7-4600 processor is used here as an example. The
Intel Core i7-4600 uses this cache slice selection function:

Ci = p17 ⊕ p18 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p28 ⊕ p30 ⊕ p32 (5.1)

Ci refers to the cache slice index that would be chosen based on the result of the
hash function and pi refers to the i-th bit of the physical address (the least signiicant
bit is the 0-th bit).

The Intel Core i7-4600 has only two cache slices. To choose which cache slice
a data line ends in, the relevant bits according to the above equation are XORed
and the resultant 1 or 0 is the cache slice used. The bits that afect the cache slice
selection all start from bit 17. This is the very irst bit after the most signiicant bit
in the set index. To monitor a speciic cache set, the eviction set must be in the same
cache slice.

Using equation (5.1) the attack process is able to ind the cache slice for the
monitored cache line. The next step is to augment the process described in section
5.1 so that not only do all lines in the eviction set share the same set index bits but
also they all reside on the same cache slice.

It is important to note that there are 4 bits being used in the cache slice selection
function that are within the page ofset bits for huge pages. We can use this to our
advantage. The Intel Core i7-4600 L3 cache is 16 way set associative, thus to monitor
a speciic cache line, an eviction set of 16 lines that all map to the same cache slice
and cache set as the monitored line is required.

Given an address to monitor, the set index and cache slice can be extracted by
looking at the relevant bits. Allocating a 2MiB huge page gives us 21 bits of address
space preceded by a preix of a frame number. We can choose addresses from this
page to add to the eviction set. We can get the physical address of the allocated page
and then XOR the relevant bits of the address, according to equation (5.1). This
results in the the cache slice that this address will be mapped to (if we don’t change
bits 17, 18 and 20 that are under our control).
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We can compare this cache slice to the cache slice of the cache line we want to
monitor. If they match then for all our choices for the eviction set within the page,
bits 17, 18 and 20 should XOR to 0 (so that the cache slice does not change). If the
cache slice of our allocated page and the monitored cache line do not match, then we
should choose addresses such that bits 17, 18 and 20 should XOR to 1.

Of the 21 bits that can be chosen freely, bits 0 through 5 are useless since addresses
with those bits diferent would still map to the same cache line, then bits 6 through
16 are the set index for the cache line that is monitored. Based on the restrictions
from the previous paragraph, bits 17 through 20 allow for only 8 diferent addresses
that map to a speciic cache set and cache slice. So to create a 16 address eviction
set at least 2 huge pages must be allocated with 8 addresses extracted from each.

5.3 Measuring time
Section 5.2 talked about getting an eviction set, the next step is to time the probe.
X86 processors have a Time Stamp Counter (TSC) which is a 64bit register that
stores the number of cycles since the last processor reset. It can be used to measure
the relative time of events [Coo].

The ”RDTSC” instruction copies the TSC into the registers EAX and EDX. The
main idea of timing is to call ”RDTSC” to start the timer and store EAX and EDX
in a 64 bit register. After what you want to measure is complete, to stop the timer,
call ”RDTSC” again for the new value of the TSC. Finally subtracting the old value
from the new value results in the elapsed CPU cycles between the start and the stop
of the timer.

There are a few issues with the naive approach described above. One of which is
that ”RDTSC” is not a serializing instruction. The reason why this is a problem is
instruction reordering. Instruction reordering allows the CPU to execute instructions
in an order diferent than they are read in to improve the speed at which program
runs or to better utilize the CPU resources. For example a memory read can be
started early in case it is a cache miss while the rest of the code completes or a write
can be pushed further down if it will not afect the execution.

Since ”RDTSC” is not serializing, then the scheduling of the instruction is up to
the CPU at runtime and it may not wait for the previous instructions to complete
before it runs and instructions following it may be run before it does. To ix this,
Intel recommends it should be preceded by a serializing instruction such as ”CPUID”
or ”LFENCE”.

On newer processors that support it, the instruction ”RDTSCP” may be used
instead. ”RDTSCP” also reads the TSC however waits until previous instructions
have been completed before the read is performed [Coo]. There are other issues
related to optimization that afect the timing code and its efectiveness, section 5.6
talks about that in more details.
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5.4 Implementing Prime+Probe
For this thesis, the prime+probe technique [TOS10] described in section 4.9.2 was
implemented to monitor the memory access patterns of a victim process. The method
described in section 5.2 was implemented to get an eviction set for a speciic data
line.

The eviction set is then placed in a singly linked list, where each entry points to
the next address on the list. The prime function accesses the eviction set to add them
them to the relevant cache set and evict all other entries. Then the attack process
loops, probing the cache set by accessing the eviction set and measuring the time it
takes. The entries from this stage were then stored in ile for later post-processing.

One thing to consider with this method is thrashing. Probing the eviction set
implicitly primes it for the next probe. However, using consecutive probes can cause
problems. This is due to the LRU cache replacement policy. Basically, if the victim
process evicts a line from the cache set being monitored, it will evict the oldest line
(which is the irst entry in the linked list). On the next probe, loading the irst entry
would then evict the second entry from the cache. This will go on for the entire probe.
A way to solve this is by using a doubly linked list so that the prime stage loops over
the eviction set in the opposite order than the probe stage.

5.5 Using cache side channel for communication
To test the setup that was described in this chapter, we tried to implement a covert
communication channel between willing parties using cache-timing [WXW12]. Since
both the sender and receiver are not synchronized a Return-To-Zero (RZ) self clocking
scheme is used [Liu+15; GG].

The algorithm starts by the sender picking two lines that map to diferent cache
sets and sharing them with the receiver. The receiver then uses the previously men-
tioned methods to create an eviction set for each line. The receiver then starts
monitoring both lines one at a time and keeping track of the probe time.

The sender on the other hand uses the preshared lines to send the message. One
line is for a 0 bit and the other line for the 1 bit. To send a bit, the sender reads the
relevant line repeatedly for a period of time Tmark. After each bit there is a period of
waiting Tpause to make sure that no bit is missed by the receiver. Algorithms 4 and
5 shows this methodology in detail for both sides.

Figures 5.1 and 5.2 shows the probe time detected by the receiver during the
message sending. ”Line 0” refers to the memory address that is used for sending
a ”0” bit and ”Line 1” is used for sending a ”1” bit. The igure shows alternating
peaks in the lines representing the 0 and and the 1 bits. Tmark and Tpause were
set to 1, 000, 000 clock cycles each (based on the TSC). The igure shows that there
were a lot of redundant probes happening for each bit so we could reduce the Tmark

and Tpause times to increase throughput of the channel, however, this will lead to a
reduction in the signal to noise ratio.
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Algorithm 4 Cache timing communication protocol (Sender Side)[Liu+15]
Input: D[N ] the N -bit message to send.

1: for i = 0 to N − 1 do
2: if D[i] = 1 then
3: for an amount of time Tmark do
4: access line1
5: end for
6: else
7: for an amount of time Tmark do
8: access line0
9: end for

10: end if
11: end for

Algorithm 5 Cache timing communication protocol (Receiver Side)[Liu+15]
1: for an amount of time Tmonitor do
2: Prime set 0
3: Prime set 1
4: Probe set 0
5: Probe set 1
6: end for

5.6 Fighting ”optimization”
Normally, optimization is a desirable result, especially when it is applied automatically
by the compiler or by the hardware at runtime. However, timing code is very sensitive
to optimization. Instruction reordering or data prefetching may mess up the timing
to the level of uselessness. This section discusses the diferent ”optimizations” that
may happen to the timing code and how they were overcome. It will also discuss how
certain strategies for timing could not be implemented because optimizations ruined
the end result.

5.6.1 Compiler optimization
Nowadays, compilers are very good at removing ineiciencies from the code, changing
code order or ignoring useless statements to try and speed up the inal result. Nor-
mally this is a good thing, you want your program to run as fast as possible without
having to optimize everything manually and maybe make your code less readable.

However, timing code that deals with assembly and makes a lot of assumptions
about code order is very vulnerable to compiler ”Optimizations”. A compiler may
look at a useless variable access and remove it (during the prime or probe stage when
you are accessing locations just to put them in the cache). It can reorder reads vs
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the timing code, and also it can choose to ignore statements that lead to undeined
behavior.

All of these are reasonable behaviors in real world code, where rarely if ever you
require the inal machine code to do exactly as you want it to do, in a ixed order. In
a cache timing attack, however, you can run into many of those situations unwittingly
because sometimes the aim of the code is just to ill the cache rather than anything
particularly useful.

To play around that, the best thing to do is to disable optimizations from the
compiler, for example using the lag ”-O0” with GCC. It is also recommended to
enable all warnings to make sure that the compiler does not complain about your
code so as to make sure nothing gets ”optimized” away.

5.6.2 Prefetching
Section 4.8 describes how main memory is much slower than cache by sometimes even
2 orders of magnitude or more. A cache miss is a big setback for the performance
of the CPU in terms of instructions executed per second. Processor manufacturers
see this as a problem and thus try to reduce the number of cache misses as much as
possible.

One way the CPU tries to improve the cache hit rate is by using cache prefetch-
ing. Prefetchers work by predicting a likely address that might be requested in the
next couple of instructions that will lead to a cache miss. The prefetcher can then
load those lines from memory into a separate bufer earlier than required before an
instruction is even encountered that would lead to the aforementioned cache miss.

If an instruction requests a data line not in cache but has been predicted by the
prefetcher, the prefetched data from the bufer is promoted to the cache and is sent
back to the execution unit of the CPU faster than it would have if the cache miss
lead to reading the data directly from main memory.

When measuring timing for a cache timing attack, a correct prediction by the
prefetcher can cause the code to believe a cache hit rather than the cache miss that
would have actually happened if not for the prefetcher. This can lead the attack
process to make wrong predictions about the memory access patterns of the victim
process and increase the noise in the collected data.

One thing that prefetchers are vulnerable to is pointer dereferencing. If the next
requested address is based upon the information stored in the currently requested
address it would usually defeat the prefetcher predictions and allow cache hits and
cache misses to happen naturally.

To try and increase the probability that the prefetcher mispredicts, the addresses
in the eviction set should be farther from each other which prevents spacial based
prefetchers to work. Also the strides between the lines in the eviction set should be
irregular so that a stride prefetcher does not predict cache misses either.

It is diicult to defeat the prefetcher 100% for all processors since most manufac-
turers keep the prefetcher designs they use private and because every new processor
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may bring a more complicated prefetcher. However following the tips above can
reduce the efectiveness of most practical prefetchers that currently exist [Mit16].

5.7 Avoiding overhead
The way the probe and timing works, it detects if the cache set was used since the
last prime. If the time between the prime and the probe is too large then multiple
accesses can be detected as only one. If the time between the probe end and then next
prime is too large, a memory access between them may not be detected. Therefore,
it is important for the time between probes to be as little as possible so as to allow
for the highest resolution.

Since compiler optimizations are bad because of the reasons listed in section 5.6.1,
some practices have to be observed when writing the code, speciically the code that
is used around and within the timed probe. For example, any functions called should
be marked inline so as to reduce the function call overhead. Unnecessary functions
should not be called, only the minimum of the prime and probe function should be
used during the monitoring phase.

Another thing is using complex structures such as vectors, maps, pairs and other
c++ STL constructs is a bad idea. Although they are easier to work with in terms of
code readability, on the other hand, without any code optimizations by the compiler
they are very expensive to use. It is best to store the timings returned by the probe
function in C arrays so that the code is as eicient as possible. Finally there should
be minimal branching and loops should be unrolled as much as possible to reduce
those overheads.

Postprocessing can then be done after the monitoring stage is complete to move
the data into better containers for further processing or to write them out to iles to
allow for oline processing.



CHAPTER 6
Attacking LibTomMath

The main contribution of this thesis is the development of a cache timing attack on
the LibTomMath [Lib15] modular exponentiation implementation. LibTomMath is
used in a some cryptographic libraries including LibTomCrypt as well as WolfCrypt
part of the WolfSSL commercial cryptographic library [Inc17]. For simplicity, we
irst attack a modiied variant of the library that allows us some assumptions such
as knowing the addresses of the multipliers and knowing the start and end of the
exponentiation process. The modiications are outlined in more detail in section 6.2.
In section 6.5, we then discuss the required modiications for the attack to work on a
vanilla LibTomMath implementation.

6.1 LibTomMath implementation details

6.1.1 Multi-precision integers
The main idea of LibTomMath (LTM) is to provide functions that work with very
large numbers that dont it in a single register. The kind of numbers required to
make things like RSA secure. So they provide an implementation for Multi-precision
integers as well as functions that can perform mathematical operations on said im-
plementation, i.e. addition, multiplication, exponentiation, etc.

Multi-precision integers are deined as a C struct and contain a reference to an al-
located array for the bits of the integer. All the functions then pass around references
to these structs for their inputs and outputs.

6.1.2 Multi-precision modular exponentiation
The main focus of the attack is on the modular exponentiation function of the LibTom-
Math. The modular exponentiation function, in the LibTomMath library, is imple-
mented based on sliding window exponentiation using montgomery reduction. The
algorithm is explained in section 3.4 in more detail.

The function starts with allocating an array on the stack to store the structs for
the multipliers. It then initializes the multipliers based on the window size. The
exponent is divided into windows such that all non-zero windows start with the 1
bit. This means that only multipliers in the upper half of the table (the ones that
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start with the 1 bit) will be used during the actual computation phase. This fact
is exploited by the precomputation part which only computes the upper half of the
multiplier table.

The next part of the function performs the actual computation. The windows are
extracted. Whenever a 1 is encountered it starts a window which continues on for the
maximum window size. The current result is then squared as many times as there are
bits in the window and then multiplied with the multiplier that has an index equal
to the value inside the current window.

Zeros encountered outside a window, i.e. the previous window is complete and
another 1 bit has not yet been encountered to start a new window, are not added to
any window but the result is squared for each one.

After the entirety of the exponent is processed, the memory allocated for the
multipliers is freed and the result is returned.

6.2 Attacking a simpliied implementation
The original code of the modular exponentiation function was modiied to enable a
simpler version of the attack. The attack theoretically could be performed without
the modiications, section 6.5 goes into more details on how to enhance the attack
described below to work on the vanilla implementation of LibTomMath.

There are two main changes to the original code. The irst is meant to allow the
monitoring process to ind the start of the modular exponentiation. This was done by
adding code to the exponentiation function that accesses a certain pre-shared memory
line repeatedly for a certain period of time before starting the actual exponentiation.
The activity over this line then acts as a clock for the start of the exponentiation.
The attack process would then monitor that line, using the Prime+Probe technique
described in section 5.4. At the start of each modular exponentiation, the cache set
associated with that line would show high activity for an extended period allowing
the attack process to synchronize with the exponentiation.

The second major change to the code is the ixed location of the multipliers. In
the original code the function would store an array of structs on the stack. Each of
those structs would contain a reference to the location containing the actual multiplier.
The multiplier data would reside on dynamically allocated memory on the heap. We
made the change to allocate the multipliers statically so as to know their location
in memory from the attacking process much more easily without the need for clever
preprocessing as shown in section 6.5.

Finally the last change was needed to output the relevant addresses for the above
changes. So a printf statement was written to output the clocking line from the
irst change as well as the starting address of the list of multipliers from the second
change. And since the physical addresses were required, because virtual addresses are
process scoped, the LibTomMath code was run as root and a function was written in
to convert the virtual addresses to physical ones before printing them to the console.
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6.3 Implementing the attack
The attack uses prime+probe to monitor speciic lines in the victim process. The
attack process takes as input the synchronization line as well as the irst line from the
multiplier table (both outputed by the modiications in section 6.2). It starts by cre-
ating an eviction set for each line in the multiplier table as well as the synchronization
line.

Then starts the probing phase. The main issue is how to arrange the primes and
probes of the table lines. If there is too much time between the prime and the next
probe then the resolution of the measurement is very low. If code primes then probes
one line then moves on to the next, for the entire table, then by the time the code
goes back to monitoring the irst line in the table again, many memory accesses have
potentially been missed.

So to ix this problem and to allow for a high resolution, each line from the
multiplier table was monitored separately in conjunction with the synchronization
line. By monitoring only one line from the table (plus the synchronization line) at
a time, the resolution is high enough to not miss consecutive accesses to the same
multiplier line. By using the synchronization line, it is possible to then synchronize
the traces of all probe times of the diferent table lines since the memory access
patterns are the same.

Each line is monitored for a total of 20000 prime+probe cycles and then the
attack process switches to the next line in the table. It also keeps track of the probe
time as well as the TSC value at each probe. After all the lines of the table have
been monitored for the requisite number of probes, the data is written to a ile for
post-processing.

Figure 6.1 shows a graph of the captured data for 4 multipliers. Each multiplier
is monitored separately along with the synchronization line.

6.4 Post-processing the results
To process the results, we start by converting the probe times to be either a 0 or a 1
based on whether a memory access has been detected or not. After experimentation,
it was found that a probe time below 800 clock cycles means that there was no cache
miss and no memory accesses occurred between the prime and the probe. Between
800 and 4000 clock cycles, means that a memory accesses occurred. Anything higher
than 4000 is undeined. This is because really high probe times most likely correspond
to context switches in the attack function rather than just a memory access in the
victim process. Figure 6.2 shows how the inal result of a monitored cache line looks.

The next step was to extract entire exponentiation phases to study them. Using
the synchronization line, multiple consecutive accesses to the line was a synchroniza-
tion signal for the start of an exponentiation. All probes between synchronization
signals belonged to one exponentiation. This meant that we now have the access
patterns for multiple exponentiations with the same exponent for each multiplier.
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means that if you have a set of multiplier cache traces, the index of the multiplier
belonging to each cache trace can be found by looking at the access patterns during
the initial phase of the multiplication.

For the rest of the exponentiation function, the access patterns of the multipliers
can no longer be predicted so easily. However some statistical analysis can be used to
diferentiate between multiplier cache traces vs other cache traces. The average dis-
tance between non-zero windows in an exponent for window size S is S +1 [Men+96].
So for an N -bit exponent we can expect around N/(S + 1) non-zero windows. Since
there are 2S−1 diferent values for a non-zero window, (window size S and all non-zero
windows must start with the 1 bit), this means that each multiplier is expected to be
used around 21−S ·N/(S + 1) times during the computation phase [Liu+15].

Using the previous result we can ilter out cache traces of lines that are not accessed
very often or accessed too often to be a multiplier. The end result can have some
false positives, however they can be more easily iltered manually by looking at the
access patterns at the start of the exponentiation during the precomputation phase.

The other problem that required changes to the original LibTomMath code was
the clocking line to igure out when the encryption starts. This can be done by
monitoring the lines of code at the start of the function. Since the code location is
static with respect to the ofset of the library in the address space, if you igure out
where in the physical address space the library is mapped, you can monitor accesses
to speciic lines of code. On linux, the attack process can check memory mappings
for other processes if it is running as root.

The inal change mentioned in section 6.2 is the outputting of the relevant line
addresses as well as the conversion of said addresses from virtual to physical addresses
is no longer required if the attack process already has the relevant addresses from the
enhancement mentioned in this section.



CHAPTER 7
Applicability and

Mitigation
7.1 Applicability
The attack described in this thesis does not depend on a speciic processor or library
implementation but is potentially applicable to many libraries that implement table
based optimizations for modular exponentiation. It does require the processor to have
inclusive caches as well as the attacker to have access to huge pages.

The attack requires that the attacking code and the victim code run on the same
CPU. The attack also works in a virtual machine based environment, where the
attacker and the victim are running on diferent VMs. The attack does not require
any escalation of privileges outside of having root within its own VM.

Intel processors have inclusive caches thus the attack is applicable on a wide range
of diferent processors. Furthermore, hugepages allow for a much better utilization
of the TLB which is a scarce resource, therefore, this feature is enabled for most
virtualization implementations ofered by IaaS providers.

Finally, whether a library is afected or not depends on which optimizations they
use as well as on how they store and access the multiplier table. This is discussed
further in section 7.2.

7.2 Mitigation
One way to mitigate the attack depends on the method of accessing the multiplier.
Some implementations, such as in LibGnuPG, always access all multipliers in the table
each time but uses a bitwise ”AND” to only get the value of the correct multiplier.
OpenSSL stores the multipliers vertically rather than horizontally. As in each line
in memory consists of a single part of each multiplier. So the irst line in memory
contains the irst 4 bits of each multiplier then the next line in memory contains the
next 4 bits from each multiplier and so on. To get a single multiplier all memory lines
must be accessed and thus making it harder for an attacker to ind which multiplier
is used.
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Another way to mitigate the attack is to use a constant time implementation that
does not have any secret dependant branching or memory references. Techniques for
this have been explored and implemented [BLS12]. However, these implementations
seem to be tricky to get right as is shown by attacks on the ”constant time” OpenSSL
implementation on ARM processors [Coc+14].

IaaS providers can protect their customers against these kinds of attacks by dis-
abling hugepages for their virtualization solution. This however leads to a degra-
dation in the quality of service due to more TLB misses. Another way is avoiding
co-residency of Virtual Machines on the same processor package. This however goes
against the motivation for cloud computing which is resource sharing.

Finally, another technique that can be used to limit the applicability of cache
timing based attacks is page coloring. The technique works by grouping frames into
diferent colours and ensuring that frames from diferent colors cannot have lines
mapped to the same cache set. VMs from diferent customers can then have their
pages mapped to frames of diferent colors thus limiting the applicability of cache
timing based attacks [Shi+11; WL08].



CHAPTER 8
Conclusion

Our contribution is an implementation of a cache timing attack on the LibTomMath
modular exponentiation implementation. The attack uses the prime+probe technique
to use cache timing as a side channel in order to extract the secret exponent.

The attack targets the LLC, thus is possible cross-VM, which makes it applicable
in situations where an attacker is able to run their code on another VM on the
same processor package as the target. This scenario is not unlikely due to the rising
popularity of using IaaS providers by smaller companies which run VMs belonging to
diferent customers on the same machine.

The attack requires a few things to work. Hugepages support must be turned on
by the service provider. This requirement is easily satisied because IaaS providers
usually have it turned on to prevent performance degradation due to TLB contention.
The attack also requires the processor to have inclusive caches however almost all
Intel CPU caches are inclusive.

The attack also requires the knowledge of the cache slice selection algorithm in
advance in order to craft the eviction set. Those are not released by Intel however
there are techniques available in order to reverse engineer those hash functions for
any processor [IES15b].

Since the requirements of the attack are prevalent in most IaaS installations, it is
up to library developers to protect themselves against this kind of attack. Changing
the way the multiplier table is accessed so that cache timing attacks are not able to
get secret based information appears to be the best strategy.
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