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Virtual Machines have been a common computation platform in areas of cloud
computing for some time now. VMs offer a decent amount of isolation for security
and system resources, and from application perspective they behave much like native
environments. Software containers are gaining popularity, as a new application
delivery technology. Just like VMs, applications started inside containers are
running in isolated environments but without the performance overhead caused by
virtualization of system resources. This makes containers seem like a more effient
option for VMs.
In this thesis, different combinations of containers and VMs are benchmarked. For
each benchmark, host environment is also measured, to understand the overhead
caused by the underlying virtuel environment technology. Benchmarks used include
storage and network access benchmarks, and also an application benchmark of
compiling Linux kernel.
As another part of the thesis, a CPU intensive workload is run on the virtualization
host server. Then the benchmarks are repeated, in order to determine how much
the given workload effects the benchmark score, and also if this effect can be
observed from the virtualization guest side by measuring CPU steal time.
Results show that containers are slightly slower in the application benchmark than
the host. The main difference is expected to come from the way docker handles
storage accesses. With default network configuration, the container is losing in
terms of performance to the host.
In every benchmark we did, VMs always lost to host and containers in performance.
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Virtuaalikoneista on tullut yleinen laskentaalusta pilvitietokoneille. Ne eristävät
virtuaaliympäristön muista palveluista samalla fyysisellä koneella ja sovellusten
näkökulmasta ne toimivat lähes samalla tavalla kuin natiivit ympäristöt. Ohjel-
mistokontit ovat nousseet suosioon tehokkaana sovellusten toimitusteknologiana.
Molemmat, sekä virtuaalikoneet, että ohjelmistokontit tarjoavat niiden sisällä suo-
ritettaville sovelluksille eristetyn virtuaaliympäristön. Ohjelmistokontit eivät pyri
virtualisoimaan kaikkia järjestelmän resursseja vaan käyttävät alla olevaa käyt-
töjärjestelmän ydintä hyväkseen. Tämä tekee ohjelmistokonteista houkuttelevan
vaihtoehdon virtuaalikoneille.
Tässä diplomityössä suoritettiin erillaisia suorituskykymittauksia ohjelmistokont-
tien ja virtuaalikoneiden avulla luoduissa ympäristöissä. Myös alla olevan isän-
täkoneen natiivisuorituskyky mitattiin, josta saatiin hyvä arvo erilaisten virtu-
aaliympäristöjen vertailuun. Mittasimme pysyvän muistin, verkon ja sovelluksen
suorituskyvyn. Sovelluksena toimi Linux:in kääntäminen lähdekoodista toimivaksi
käyttöjärjestelmäksi.
Tuloksemme osoittavat että sovellussuorituskykytestissä kontit häviävät natiivi-
järjestelmän suorituskyvylle vain vähän. Eron oletetaan johtuvan tavasta, jolla
valitsemamme konttiteknologia hoitaa pysyvän muistin lukemisen ja kirjoittamisen.
Oletusverkkoasetuksilla, kontit hävisivät natiivijärjestelmälle myös.
Kaikissa tekemissämme suorituskykymittauksissa virtuaalikoneet hävisivät natiivi-
järjestelmälle, sekä ohjelmistokonteille.

Avainsanat: Virtualisointi, Ohjelmistokontit
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1 Introduction
This chapter is written in order to describe the structure of this thesis, what kind of
questions it is seeking to answer and also tries to highlight the underlying motivation
behind the work.

1.1 Motivation
Virtualized mobile network functions are subject to performance overhead caused by
the given virtualization environment. New software delivery methods and paradigms
include isolating the software in a software container. Some container technologies
such as Docker add additional overhead when the isolated process accesses disk or
network interfaces. When different virtual environments are nested, the overheads
become cumulative.

Virtualization of computing resources is not a new topic. Use cases for it have
been around perhaps as long as digital computers have existed. Goldberg (1974) [44]
describes an early use case, in which a developer might need to write a program for
machine architecture, which has been specified but not been implemented yet. In
this case, the system can be virtualized first to enable developers work, and when
the actual hardware is implemented, the software can be moved from the virtual
environment to the actual physical environment. This type of virtual environment is
called a Virtual Machine (VM).

1.1.1 Virtualized Network Functions

Network Function Virtualization (NFV) paradigm is later on introduced in the text.
As a general idea, NFV aims to run network functions inside virtual environments,
instead of dedicated hardware, and more specifically as Virtual Machines (VMs).
Usually these VMs are deployed in private clouds. However, VM is not the only
form of virtual environment, by which applications can be delivered and executed on.
Software containers, for example, provide a virtual execution environment and smaller
virtualization overhead when comparing to VMs. It is possible, that if a network
element vendor wanted to move their legacy software from VM to a container, they
might first run some parts of the program inside containers, and start this container
inside the VM. This leads to one of the nested virtual environments inspected in
this work: container inside VM.

1.1.2 Nested virtual machines

Another nested virtual environment that we are measuring is a traditional nested
virtualization environment: VM inside VM. This kind of virtualization has many
use cases. Zhang et al (2011) [35] introduces a use case for improving VM security,
through a nested VM ordeal.

Hypervisor is a program used to create VMs, and is mainly in charge of virtualizing
the system resources that a VM requests to use. Oracle [3] is offering a hypervisor
designed for nested virtualization. This kind of hypervisor can be deployed on any
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public cloud service (such as Amazon’s EC2) in order to standardize the environment
for the VM. The claim here is that cloud computing environments with different
data centers, hypervisors and VM images are not exactly same.

Operating Systems (OSs) are gaining hypervisor functionality for example, newer
Windows OSs running older ones through a hypervisor. These OSs need nested
virtualization support from the environment, should they be deployed on top of a
VM.

1.1.3 Software containers

Another kind of virtual environment is provided by software containers. Software
containers do not seek to virtualize the underlying system resources but rather to
isolate a group of processes.

Docker is a platform used to create software containers. It is mainly designed
to support the needs of software continuous delivery paradigm but as it provides
a virtual environment, other uses are also proposed. Chamberlain et al (2014)
[16] describe a way to use Docker in scientific research, in order to create easily
reproducable environments. They list Docker having several benefits in this area,
some examples are: Unlike VM images, Docker images are natively versioned and
Docker container filesystem is every time created from the original image, providing
unchanged computational environment.

1.2 Research questions
This thesis tries to answer two research questions, first being:

How big effect a given virtualization environment has to a given performance
benchmark? In other words, a virtualization overhead is to be determined.

Second research question tries to estimate a state of computing environment,
through benchmark results and by measuring CPU steal time. The question is:

What is the effect of competing host loads to those performance benchmarks,
that were run in order to answer the first research question. Simple CPU and
memory based stress processes are started to compete for hardware resources with
the virtualization software. We will also limit the CPU time of those stress processes,
in order to try to define some kind of threshold, after which the software running in
virtual environment would be greatly affected.

We ask these questions from perspective of a general cloud applicaton. This
kind of cloud application is unaware of the underlying host state. The host may be
dedicated to the guest only, or may be overcommissioned to run multiple VMs at
the same time. Also this kind of application is hardly a strict realtime application,
as it is unaware of what kind of scheduling policy the host is applying to it.

1.3 Thesis structure
Chapters 2, 3 and 4 discuss technological background of the thesis. Chapter 2 aims to
describe how network function virtualization is following other trends, emerging from
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data centers, such as SDN. Chapter 3 presents general terminology and concepts in
virtualization, VMs and software containers are more closely inspected. Chapter 4
is presenting important opensource software used in creating and running virtual
environments.

Chapter 5 describes benchmarking related details. Used hardware and software
are presented. Used virtualization software and its configuration is discussed. Chosen
benchmarks are reviewed. And also how, and what kind of statistics were measured,
both from virtulization host side, and virtulized guest’s side.

Chapters 6 and 7 demonstrate results obtained from measurements. Chapter 8
attempts to draw conclusions based on these results.

Chapter 9 aims to make some conclusions about nested virtualization, and how
different kinds of virtual environments could be taken into use in future.
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2 Path to network virtualization
This chapter talks about how increasing use of cloud services and data centers lead to a
computer networking paradigm called Software Defined Networking. Eventually SDN
was followed by another paradigm called Network Function Virtualization (NFV).
In NFV, network services that were previously running on dedicated hardware were
moved to data centers and to Virtual Machine (VM) environments. In mobile
networks side, this lead first to virtualization of the network core elements, and
eventually virtualizating the network radio elements. [74, 33]

Virtualizing radio elements is expected to carry many benefits. They may increase
network capacity by allowing more light weight deployment of new Base Band Units,
energy effiency is expected to increase and cost savings can be achieved on baseband
resources. [36]

2.1 Data centers and cloud
Netscape was started at 1994, Amazon and eBay at 1995. These were early internet
sites selling services to customers. At 1999 salesforce.com started selling cloud
services to businesses. Amazon started their Amazon Web Services at 2006. It was
the first time cloud computing resources were available to everyone, not just big
businesses and organizations. Business services were now sold and operated over web
browsers. Some estimates say that in 2015 Amazon hosted 1,5 million servers and
Google and Microsoft 1 million each. [51, Chap. 5]

With cloud services becoming more and more common, latency quickly became
an issue. One reason to this is, that theoretical throughput of TCP is limited by
latency, as seen in (1). It was partly solved by building additional cloud sites around
the world. Another way to tackle this issue is to use a Content Delivery Network
(CDN) companies, such as Akamai. CDNs allow streaming services such as Netflix
to stream digital content to subscribers by using local caches. Akamai operated in
2014 in 102 different countries. Google and Netflix both also have their own CDN
operations. Netflix’s one is called Netflix Open Connect Network and Google’s one
is called Google Global Cache. Both of these operations aim to put these so called
’network caches’ directly into Internet Service Providers networks. [51, Chap. 5]

Maximum throughput = TCP window size
Round Trip Time (1)

Cisco (2016) [63] has predicted some numbers relating to growth of cloud service
usage. The amount of large scale public cloud datacenters will grow by 53% during
time from 2015 to 2020 and at the end of 2020, they will add up to 47% of all data
centers. Data center IP Traffic, that consists of to, from and inside of data centers
will grow from 4.7 ZettaByte (ZB, 1021) in 2015, to 15.3 ZB by year 2020. At 2015,
77% of the data center IP traffic stays within the data center, and this is expected to
stay steady atleast until year 2020. Rack-local traffic is exluded from these numbers.

Modern data centers consist of densely packed racks. Racks contain so called
blades which usually contain a single physical server. Figure 1 shows 5 data center
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cabinets, each hosting tens of physical servers. Single server could be a host for
example 20 Virtual Machines. If a data center contains 120 000 blades, it might have
to provide networking for 2 400 000 Virtual Machines. Each rack communicates to
the rest of the network through a Top Of the Rack (TOR) switch. As this setup is
mainly static, it sets different kind of requirements for networking, than the prior
networks. Data center traffic has different topology, traffic patterns and scale, as
traditional networks. Software Defined Networking (SDN) is a technology that was
designed to answer the shortcomings of traditional internet traffic routing. [59, 1.3]

Research conducted by Facebook [11] indicates that most of the traffic happens
inside cluster (57,5%). 12,9% happens inside rack and 11,9% happens inside the
datacenter. The rest is traffic that is going outside of datacenter (17,7%). The
research was measuring network traffic inside 3 sets of data centers, i.e. clusters,
running different applications.

From these examples, it is clear that data center IP traffic will continue to grow,
and create new kind of routing challenges and possibilities to data center operators.

2.2 Software Defined Networking
Separation of data plane and control plane, as well as the use of OpenFlow form basis
of SDN. Also the management of network distribution state, regardles of chosen
centralization method, is important part of SDN. [60, pp. 71]

Management of network distribution state also defines one of the fundamental
research questions in SDN. Network states range from Strictly centralized to Fully
distributed control plane. Modern SDN controllers typically adopt logically-centralized
control plane, which is somewhere in between of the two. Fully distributed approach
is proven to handle failures very well but may encounter some convergence difficulties.
Convergence difficulties in this case, may mean for example infinite loops in network.
[60, pp. 9-10] Strictly centralized distribution state is not a feasible option because
of three major weaknesses: It has slow responsiveness, because of single point of
failure it is not reliable and it is difficult to scale. [45, pp. 1]

SDN packet routing is done in data plane, guided by rules received from control
plane. These rules are put into a forwarding table. According to the forwarding
table entries, data plane may perform one or more actions on a given packet. Some
examples of actions are: forward, drop, re-mark, count and queue. Data plane may
also provide Access Control List and QoS -services. [60, pp. 16-17]

Packet being on fast path, means that it already has entry in a Forwarding
Information Base (FIB) and the data plane may just forward it according to the
given rule. Sometimes an incoming packet may have address, which is unknown to
the data plane. In these situations the data plane needs to send the packet to the
control plane. Control plane then looks its Routing Information Base (RIB) to create
correct rule for these type of packets. In general, RIB contains information about
the network topology and when it is found to be stable, FIB is created based on it.
A control plane packet may deliver new information about the Network, in which
case the RIB may possibly be updated. [60, pp. 11-12, 16]
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Figure 1: Data center cabinets, serving as physical mounting points for tens of servers.

2.3 OpenFlow
OpenFlow defines protocol to be used between controller and a network router, and
also the expected behavior of the router. It first emerged in computer networking
scene at 2008. First it was used by research groups and network vendors, for trying
out new protocols in existing networks. About three years later, SDN started to
have impact on the networking industry. [59, 3.3]

OpenFlow only defines set of protocols and programmable interface. So a controller
which is implementing OpenFlow, always needs also an application program to provide
the actual functionality.

The protocols are divided into two groups. A wire protocol sets up a control
session, defines message structure when changing flow modifications, and defines
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fundamental structure of switch ports and tables. Configuration and management
protocol allocates physical switch ports, defines high availability and behavior of
controller failure. [60, pp. 49]

2.4 Open Networking Foundation
Open Networking Foundation (ONF) is a nonprofit organization that was found
in 2011 by Deutsche Telekom, Facebook, Google, Microsoft, Verizon and Yahoo.
Its purpose is to openly define new SDN standards and solutions, and bring them
to market. OpenFlow was developed to commercial viability by ONF. ONF has
published OpenFlow Switch Specifications and also OpenFlow Configuration and
Management Protocol. [71]

ONF has defined five features for SDN Architecture. First network control
functions can be programmed, because they are no longer tied to forwarding functions.
Second the network wide traffic flow can be changed by system administrators. Third
network is logically placed around SDN controllers that have whole view of the network.
Fourth, system administrators can adjust network parameters with opensource SDN
programs. Fifth, network is simpler as it is implemented with open standards and as
vendor-neutral. [33]

2.5 Network Function Virtualization
Ultimately OpenFlow and SDN have led to Network Function Virtualization (NFV),
where network vendors have been able to move network functions that were previously
running on dedicated hardware into virtual environments.

According to Gray, Nadeau (2016) [52, Chap. 1] NFV consists of three components:
SDN controller development, VM orchestration, and Commerial Off The Shelf (COTS)
component evolution. Since 2013, opensource software has grown its potential in
networking and compute environments. Many orchestration components and SDN
controllers are based on opensource software.

Others sources [64] have also defined NFV in a similar manner. However, this
work emphasizes how SDN is not an irreplaceable part of NFV, but admits that
NFV may benefit from SDN. It also says that opensource software and declining
costs of server hardware components make important part of NFV.

Service Function Chaining (SFC) was added to NFV concept later. Internet
Engineering Task Force (IETF) standard RFC 7665 defines SFC architecture. Service
Function (SF) is a function, that has a predefined way of handling packets. It may be
located in one of many OSI-layers, and it can be running in either virtual environment
or dedicated hardware. Same network element may have many SFs. By definition,
SFC means multiple SFs in an ordered chain. SFC also consists of order constrains
that are applied to the packets arriving at the SFC. [75, pp. 6]

Adding SFC to NFV plans allowed true service overlay. Also from original plans,
Operations Support Systems (OSS) were missing. OSS is used for operating and
managing the NFV networks. [52, Chap. 1]
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Historically speaking a single network service used to locate on a single device.
Some rare expections to this are for example DNS and DHCP services. When services
residing on dedicated hardware, were chained together, a physical cabling or internal
connection was required. This kind of requirement lead to services being tied to
a specific slot in some architecture and also, even to a certain physical location.
When comparing to network virtualization, this kind of setup is referred to as tighly
integrated service. [52, Chap. 2]

A step from tighly integrated network services towards virtualization of network
functions, is loose integration. Gray and Naudeau (2016) [52, Chap. 2] explain
that there are three kinds of problems that need to be answered when creating
loosely integrated network services. First is, how the required configuration data
is passed to the elements. This means, that all of the SFs are required to have
similar configuration interface, otherwise the configuration task becomes unnecessary
complicated. Second is, how to pass the so called metadata between different SFs.
Metadata consists of for example subscriber or session ID. After being virtualized,
the SFs sending and receiving this data, may be located on different machines and
need to connect to each other by using standard protocols. Third problem is the
distribution of the user data classification work to different SFs.

Gray and Naudeau (2016) summarize that the combination of advances in OSS,
in COTS to support virtualization and high speed network forwarding, and the latest
trends in opensource network components form the NFV. [52, Chap. 1]

2.6 Cloud operating systems
Managing cloud resources, such as deploying virtual machines for computational
purposes or storage volumes for saving files, relies heavily on cloud operating systems
such as Open Stack.

Open Stack is used to control virtualized hardware. The hardware may provide
for example computing, storage and networking resources. Common feature in cloud
operating systems is a web browser based dashboard, which allows cloud users to
take cloud resources into use by e.g., enabling a deployment of server instances. Open
Stack consists of dozens of services. Services are divided into groups of core services
and optional services. Some examples of core services are Nova, which takes care
of a lifecycle of a computing instance. Core service Cinder allows creating a block
device for storing data, and attaching it to a computing instance. [29]

Another opensource cloud operating system is called Eucalyptus. It offers frame-
work to control computational and storage infrastructure. Big benefit in using
Eucalyptus is that its interface is compatible with Amazon EC2 -interface. This way
for example a research setup working with eucalyptus private cloud, can easily be
ported into commercial public cloud environment. [37, pp. 2-3]

On high level, eucalyptus consists of 4 components. There is one Node Controller
on each host and it is used to control VM instances. Cluster Controller is using Node
Controllers and also manages virtual networks. Storage Controller provides interface
for accessing storage data, for example VM images. Finally, Cloud Controller offers
primary interface for users and administrators. [37, pp. 2-3]
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2.7 Summary
This chapter was mainly focussing on Software Defined Networks. After reading this
chapter the reader should have a brief overview how the increased use of data centers
created new demands for computer networking, and how SDN is supposed answer
those demands. Network Function Virtualization then was accepted as a paradigm to
move network functions from dedicated hardware into virtual environments, running
on Common Off-The Shelf components. SDN is considered as a important part of
NFV.

Also two cloud operating systems were briefly reviewed. Anybody using cloud
services from server administration perspective should easily find themselves facing
one of these two, or another kind of cloud operating system.
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3 Virtualization concepts
In this chapter, two different kinds of technologies for creating virtual environ-
ments are discussed: Hypervisors and Software Containers. Also hardware assisted
virtualization is introduced. In hardware side mainly Intel technologies are reviewed.

3.1 Hypervisors (Virtual Machine Monitors)
Popek, Goldberg (1974) [43] defined Virtual Machine (VM) and whether a given
architecture can be virtualized. This definition has been widely accepted and
referenced in literature. They also defined an idea of Virtual Machine Monitor
(VMM) and gave it three characteristics. The three characterstics are: First, VMM
should create environment which is identical to the original machine. Only exceptions
allowed are available system resources and timing dependencies. Second characteristic
is: Resource performance should be almost native. It is required that most of the
processor instructions are handled without VMM interference. Third characteristic
is defined as: VMM must be in control of all hardware resources. This means that a
program running under VMM may only access resources, which are directly allocated
to it and also, that the VMM should be able to regain control of these resources
when necessary. In this characteristic definition, the processor may be excluded from
the hardware resources. Popek and Goldberg conclude that ’Virtual Machine is the
environment created by the Virtual Machine Monitor’.

In literature and this thesis, the system running VMM is sometimes referred to
as host and the VM is referred to as guest.

VMMs are commonly divided into two types, type 1 and type 2. Type 1 VMM is
also known as bare-metal VMM and it is run directly on hardware. Some examples
of type 1 VMMs are VMware ESX, Microsoft Hyper-V and Xen. [53, Chap. 2]

Type 2 VMMs are run as applications of an operating system. Some examples
of type 2 VMMs are VMware Player, VMware Workstation, and Microsoft Virtual
Server. [53, Chap. 2]

Type 1 VMMs are considered to be more efficient and secure, because they are
not run as a part of an operating system. Type 2 VMMs are considered to be easier
to install and deploy, and to be able to support more different kinds of hardware.
[53, Chap. 2]

3.2 Hardware assisted virtualization
Basic operation principle of desktop, server, embedded and mobile computers has
been revolving around a few simple steps for years. Processor reads a program
from persistent storage (typically hard disk or Flash memory) into main memory
(typically RAM). It then reads instructions from the program residing in memory
and executes them one at a time, sometimes reading and writing data to main
memory, persistent storage or other devices such as network controller. Hardware
assistance for virtualization allows a virtual machine to take control of this processor,
with the hypervisor still being able to take the control back, if the virtual machine



11

is about to break its virtual boundaries. This section mainly discusses hardware
assisted virtualization on Intel processors. AMD also has its own hardware assisted
virtualization technologies, but they are not discussed here. Intel offers hardware
assistance for virtualization of instruction set, memory page tables and device
emulation.

3.2.1 Instruction set

Processor architecture x86 is commonly used in the processors of cloud infrastructures.
However, fully virtualizing it, has been challenging. In order for hypervisor to maintain
control of CPU, the CPU needs to generate a trap when its privileged state is exposed
and this is not happening with every instruction in x86. Also hiding privilege state
from guest is difficult. [40, pp. 225]

An instruction is said to trap, if after executing it, the processor state is restored
into the state it was before executing the trapping instruction, and any storage is
left untouched. [43, pp. 414]

To overcome the problems in x86 virtualization, AMD and Intel implemented their
virtualization extensions. In hardware assisted instruction set virtualization, some
guest instructions are executed directly on the processor without VMM intervention.
Often this is considered faster than software virtualization, as the VMM does not have
to read or modify those instructions. Downside is that those instructions which do
need VMM intervention, require VMM to do additional procedures when executing
them.

In order to support hardware assisted virtualization Intel processors have intro-
duced two new operating modes: VMX root operation and VMX non-root operation.
Also two new transitions are defined. Transition where processor changes mode into
VMX non-root, is called VM entry. The transition back to VMX root mode is called
VM exit. These modes and transitions are illustrated in 2. VM is supposed to run in
VMX non-root operation as this mode has limited amount of instructions and some
registers have been made unaccessible. Also in this mode, some instructions are
modified to cause VM exit causing processor control being handled back to VMM.
VMM is supposed to run in VMX root operation mode, as in this mode the processor
has no VMX-related restrictions. After VM exit, VMM may do any necessary actions
it deems, and then resume VM execution with a VM entry. [61, Chap 23-1] Under
Linux systems, cpu flag vmx indicates this capability.

Necessary data to handle transitions between VMX root operation and VMX
non-root operation is stored in Virtual-Machine Control Structures (VMCS). VMM
may use different VMCS for every VM it has created and may also use different
VMCS for every virtual processor. The host processor allocates a memory region for
every VMCS. [62, Chap 24-1]

Data contained in VMCS can be categorized into three groups. Guest state,
which stores virtualized guest CPU registers. Host state holds host CPU registers, to
be used when CPU is switched back to root mode. Control data, through which the
VMM may for example send interrupts to guest machine. Control data also allows
the VMM to define VM exit reasons and allows VMM to see after VM has exited,
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which VM exit reason caused the exit. [46, pp. 4]
Intel has also implemented Shadow VMCS in order to decrease performance

overhead caused by nesting VMs. When using Shadow VMCS, the host VMM
creates a Shadow VMCS in processor memory. Then the guest VMM can access this
specific VMCS directly, without getting interrupted by the host VMM. The host
VMM still needs to keep a copy of this shadowed VMCS in system memory, which
requires additional copying of data. However, turns out that often 90% of data in
VMCS is not read, and 95% of data is never written to. VMCS are edited only with
instructions called VMREAD and VMWRITE and Shadow VMCS feature allows
host VMM to define bitmaps for these instructions, in order to restrict access to
the shadowed VMCS data fields. This reduces time it takes to copy the shadowed
VMCS from processor memory into system memory by up to 15 times. [70, pp. 5]

VMX root
(hypervisor operating 

mode)

VMX non-root (virtual
machine operating mode)

VM entry

VM exit

Figure 2: Figure illustrating VMX operation modes and transitions of a processor. In
VMX non-root operation mode, not all instructions are available and some instructions
and memory areas are configured to cause a VM exit.

3.2.2 Memory page tables

Memory management of VMs also has its own hardware level support. Before trying
to explain it, a basic memory management of Linux is quickly reviewed.

In order to use memory and CPU more efficiently, Linux implements a basic
memory management technique called virtual memory. The idea of virtual memory
is to divide process memory into small units called pages. Then also main memory
is divided into page frames which are of the same size as pages. Now the kernel
maintains a record called page tables, through which it can map each page into a
page frame. [56, pp. 118-120]
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x86-architecture processors support memory paging. The memory page table
address is stored in Control Register 3. Thus meaning, that in this architecture the
address translation is done on hardware level. [62, Chap. 25-2, 3-4]

A step towards full virtualization of memory management is shadow page tables.
These page tables are maintained by hypervisor and map guest virtual addresses
directly into host physical addresses. Maintaining shadow page tables creates some
virtualization overhead however, because whenever the guest updates its own page
tables, the hypervisor needs to update the changes to the shadow tables. [40, pp.
227]

Intel’s technology for hardware assisted virtualization of memory page tables is
called Extended Page Tables (EPT). The basic concept of EPT is to translate a
guest physical address into an actual physical memory address, along with the host
physical addresses. This is done by using a set of EPT paging structures. For every
incoming access to a memory address, the processor checks page tables of both guest
and host. [61, Chap. 25-2]

A maximum of 4 EPT paging-structure entries are read while translating an ad-
dress. EPT paging structure, and how the addresses are resolved is fairly complicated
to explain in the scope of this thesis, but still an example of an address resolving
path is given: Address of EPT Page-Directory-Pointer-Table Entry (PDPTE) is used
to access EPT Page Directory Entry (PDE). PDE is then used to read EPT page
table. And from this page table, a physical address is actually discovered. [61, Chap.
25-2]

Several sources have measured EPT to be superior, when comparing it to shadow
page tables. VMWare (2008) [72] claims EPT to deliver 48% better performance in
MMU stressing benchmarks and up to 600% better performance in MMU stressing
microbenchmarks. Chamarthy (2013) [41] reports a kernel compilation benchmark
to be 6 times faster with EPT than with shadow page tables.

3.2.3 Device emulation

In hardware assisted device emulation, VMM can assign I/O-resource directly to a
VM. This way the VM may perform Direct Memory Access (DMA) transfers on
the device and access its device generated interrupts. However, this ordeal prevents
other VMs from accessing the I/O-device. [27]

Intel processors such as Intel Xeon E5-2600 v2 have capability to emulate guest
interrupts in the hardware.[65] This reduces required VM exits and re-entries when
guest is handling interrupts or accessing Advanced Programmable Interrup Controller.
The processor is able to access guest APIC using virtual-APIC page, address of
which is stored in VMCS. [62, Chap 29-1]

Commonly packets arriving from network to a Network Interface Controller (NIC),
cause the NIC to send an interrupt request to a CPU, in order to let the CPU know,
that a packet has arrived. When the packet is actually dedicated to a VM, the
host CPU needs to send another interrupt to the virtual CPU, which decreases the
performance of VM packet processing. This lead to Intel creating Virtual Machine
Device Queues (VMDQ), which allowed hypervisor to assign a specific packet queue
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for each VM, that is accessing the physical NIC. This enabled the NIC to send
interrupts directly to each VM. [5]

After VMDQ, SR-IOV was developed in order to more enhance the VM packet
processing capability. SR-IOV is a standard in order to enable VMs to share devices
natively. A device implementing SR-IOV provides interrupts, memory area and DMA
streams for each VM that is accessing it. This physical device may support many
Virtual Functions and appear as multiple physical devices. From VMs perspective,
those additional functions appear in PCI configuration space, each having own Base
Address Register. [68, pp. 11-13]

3.3 Software Containers
In this section, the basic idea behind software containers is explained. Also one type
of software container technology is more closely inspected: Docker. Other software
container technologies also exist, such as LXC, but they are not discussed here.

In terms of virtualization, software containers are usually referred to as Operating-
system-level virtualization. This is a virtualization concept where underlaying kernel
is used by the virtual environments. Unlike VMs they do not have a hypervisor
restricting access to some system resources. In Docker default configuration, reading
and writing files to disk is done through storage driver. Also the filesystem is limited
to the container image, which is explained later.

Grey, Nadeau (2016) [52, Chap. 7] list several issues in the usage of hypervisors:
Hypervisor creates overhead of full Operating System and introduces nondeterministic
behavior to the system through scheduling of virtual processors and traffic shaping on
virtual NICs. Industry has moved towards direct access of processors and memory, so
including hypervisor in the system may introduce testing permutation problem when
supporting and validation is performed. Containers can answer to these problems
and also often outperform VMs.

But containers have also their own drawbacks. According to Weldon (2016) [51,
Chap. 5], VMs isolate their work loads better than containers. This means that they
keep to their virtual boundaries better than containers, in terms of system resources
and security. Another key point is that containers need to be run on the same OS,
as the OS which the container was created for. VMs do not have this weakness, as
their image always contains the kernel program.

3.3.1 Docker

Docker is a software container system that is designed for application delivery and
process isolation. It consists of docker images, running containers, registries and
services. Docker is written with programming language called Go and runs on Linux
systems. Docker used to be based on LXC but is now using libcontainer. Docker
Engine forms a core of the Docker technology. It consists of in-host daemon and
Docker client. Outside of Docker Engine is the Docker Hub, which is a platform for
storing public and private docker images, among other things. [10]

Docker Engine uses Linux namespaces to isolate the processes that are running
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inside a container. Following namespaces are used: Process ID (pid), Networking
(net), Interprocess Communication (ipc), Mount (mnt) and Unix Timesharing System
(uts). To limit the available hardware resources such as memory to the process, docker
uses Linux control groups. [6] Namespaces and control groups are more thoroughly
inspected in the next chapter of this thesis.

Docker images have a layered filesystem and this provides several benefits when
comparing to traditional filesystem images like qcow. In software development, a new
image update is just a filesystem layer on top of the old image. When customer has
downloaded an application image, downloading each following update to the image
is significantly faster, when comparing for example, to downloading a new whole
qcow image for every update. [52, Chap. 7]

When creating a docker process, a new thin layer is created on top of the container
image. Inside docker process, every write is stored on top of this newly created layer.
Every other underlying filesystem layer stays the same. This means that multiple
docker processes can use the same image, and all the writes they make to the image,
are only stored in their own ’local’ layer. This kind of layer-sharing makes docker
startup really fast, as no new data needs to be written to disk when creating new
docker process. [8]

Docker offers many possible storage drivers for handling disk accesses and creating
image layers of a docker process: OverlayFS, AUFS, Btrfs, Devicemapper, VFS
and ZFS. Devicemapper is discussed here, as it was used later on, when doing
performance benchmarks inside Docker environment. Devicemapper was developed
by Red Hat developers to replace AUFS used in debian Docker. It relates to Linux
framework called Device Mapper, which is also developed by Red Hat, but it is not
the same thing. [7]

Three steps are performed, when docker allocates disk space for new container
image. First, devicemapper creates a thin pool from block device or loop mounted
file. Second, a base device is created, which is a snapshot with a filesystem. Third,
new image is created by taking a thin provisioned copy-on-write snapshot of the base
device. [7]

Thin provisioning is a technique for taking snapshots of data volumes. It offers
two benefits over previous methods of takings snapshots: Multiple virtual devices
can be saved on same data volume and any number of recursive snapshots is allowed.
Previous implementation caused performance to degrade steadily with the increased
number of snapshot depth. Another characteristic of thin provisioning is that it allows
saving metadata separate from the actual data. This way for example, performance
of metadata could be improved by storing it on a faster permanent storage. [20]1

Disk read operations from applications are done through pointers. The devicemap-
per will find contents of the file from correct layer, and store it to the application
memory. When writing, two different kind of operations may be performed: copy-on-
write, when overwriting existing data, and allocate-on-demand when writing new data.
Write operations are done in block level instead of file level. These operations may
introduce additional overhead and latency for the applications disk I/O performance.

1Commit e4c78e210daea17f82f12037005df225e22189b9,
Documentation/device-mapper/thin-provisioning.txt
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[7] Our benchmarks later on in the thesis aim to measure this overhead, when running
docker natively and also inside a VM.

Docker also allows binding parts of filesystem directly to the container’s filesystem.
When using these bound filesystem parts, there is no any additional overhead, and
the disk I/O performance is same as on the host. [7]

According to Docker documentation, Docker is not designed to be a virtualization
technology, but instead it is supposed to be an application delivery technology. Key
difference is for example that if one wishes to update Docker container, they are
expected to shutdown the old container, update the image and then just start a
new container. VMs on the otherhand can be updated like normal computers, just
running the update program and maybe rebooting the VM. [9]

3.4 Summary
This chapter introduced two ways of creating virtual environments: Through hy-
pervisors which seek to emulate all devices required by the guest operating system
and through software containers which merely isolate a process. After reading this
chapter the reader should also have an idea about hardware assisted virtualization
and basic services offered by Docker.



17

4 Linux virtualization components
This section discusses important opensource software that is mainly developed for
Linux environments, has commercial significance and is used for virtualization or to
increase its performance.

Also some Linux kernel features that have effect on, or enable virtualization are
reviewed.

4.1 Qemu
Qemu is a VMM, that can emulate many unmodified guest Operating Systems
(e.g. Windows and Linux), on many host OS (e.g. Windows, Linux and Mac OS
X). Inners of Qemu can be categorized to 6 subsystems: CPU emulator, Emulated
devices, Generic devices, Machine descriptions, Debugger and User interface. The
CPU emulator can emulate many CPU architectures such as x86, PowerPC, ARM
and Sparc. [48, pp. 41]

The emulation of CPU architecture is done by dynamically translating every
guest CPU instruction into a host CPU instruction. In short, this procedure has
couple of steps. First, each guest CPU instruction is splitted into few more simple
instructions, called micro operations. These small pieces of code are compiled into
an object file by GNUs C Compiler. During compilation, a program called dyngen is
used to generate a dynamic translator from the object file. Then at the guest CPU
runtime, this translator translates guest instructions, modifies them if necessary, and
executes them on host CPU. [48, pp. 42]

Performance of Qemu was benchmarked using BYTEmark benchmark using
native and emulated x86 CPU-architecture. On code doing integer computations,
guest was roughly 4 times slower than host. When doing floating-point computations,
the difference grew to guest being 10 times slower than host. When emulating whole
system, Qemu virtualized Memory Management Unit is about 2 times slower than
native MMU. [48, pp. 45]

4.2 Kernel-based Virtual Machine
KVM is a kernel module, which together with Qemu works as a VMM. KVM is
used through a device node inside linux filesystem: /dev/kvm. This device allows for
example: creating new virtual machines, allocating memory to virtual machines, and
running virtual processors. KVM provides virtualization for Memory Management
Unit, processor, and I/O. It also supports hardware assisted virtualization of modern
Intel and AMD processors. [40]

IBM’s Turtles project was merged into Linux kernel upstream during 2011. [20]2
Theoretically the Turtles project enables starting arbitrary amount of VMs, each one
being launched on top of the next one. This has hardly any uses cases whatsoever,
so we are discussing nested VMs here, which refers to a VM running inside a VM.
Running nested VMs was made possible for Intel processors with VMX-capability and

2Commit 801d342432190947928e18f893f073fd87cd8bdf
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it allowed host VMM to create guests, which also seemed to have the VMX-capability.
However, the guest VMX-instructions are actually emulated by the host hypervisor.
[46, pp. 3-4]

Timekeeping of VM may be trivial, as the VM has no real means to discover, if
the hypervisor is slowing it down. A basic way to keep VMs clock synchronized with
host’s time, is sending interrupts to the VM, with fixed length time between every
interrupt. The time is then calculated from the interrupts but it goes easily wrong,
if for example, the host can not send the interrupt on time. [18]

In order to tackle with this problem, KVM offers to guests a para-virtualization
clock device. The time information is then passed from host to guest through a
memory page allocated by the guest. [18] This way the guest can update its clock
any time it wishes and always get same time as the host.

4.3 Para-virtualization driver for I/O: Virtio
Here the basic principle of Linux para-virtualization driver virtio is explained. Other
hypervisors such as Xen and WMWare have also their own para-virtualization
solutions but here the focus is on virtio. In para-virtualization, guest operating
system is running as a modified VM. This provides some benefits: It allows using
a VMM in situations where hardware cannot be fully virtualized, performance is
increased, and interface between guest OS and virtualized device becomes more
simple. [54]

By 2008, Linux kernel supported atleast 8 different virtualization platforms. Virtio
was created in order to have one set of para-virtualization drivers that would work on
all of these virtualization solutions. This would reduce the amount of work needed
to optimize and maintain all virtualization drivers needed by those platforms. Also,
when KVM was introduced in 2006, it had no para-virtualization drivers, an issue
that virtio would answer. [34, pp. 95]

Virtio contains backend drivers that are located on the host side inside hypervisor
and frontend drivers which are located on the guest side. Frontend drivers are located
in the kernel source. Five types of frontend drivers are used: block devices, network
devices, PCI emulation, balloon drive and console driver. Virtio relies on virtual
queues, and each separate driver may have their own desired amount of these queues.
After getting connected with the virtio queue interface, each frontend driver may
reach their corresponding backend drivers. [26, pp. 2-3]

Originally virtio used Qemu inside user space. This lead to memory copying and
context switches when packets travelled from KVM in kernel space to Qemu in user
space. Later this was changed and the network stack and virtual queues were simply
moved to kernel space, an effort aiming to reduce unnecessary overhead caused by
Qemu. [52, Chap. 7]

In a benchmark with KVM and virtio used for networking, TCP bandwidth was
increased roughly 40 times, from 7.41 MB/sec to 303.35 MB/sec, when comparing
to emulating RTL-8029 NIC with KVM. [19]
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4.4 Data Plane Development Kit
Data Plane Development Kit (DPDK) is a framework for packet processing in data
plane applications. It has been created and maintained by Intel as opensource
software. The DPDK can be compiled under Linux systems. [67, pp. 3]

DPDK handles packets using a Run to completion or pipeline model. Run to
completion is a multicore packet processing model, where a packet being processed
is handled by a single thread only. Opposite of it, but also a multicore model, is
Request based model where different stages required by packet processing are handled
by different threads. Main benefit of Request based model is that the number of
packets being currently processed, can exceed the number of threads dedicated to
processing. Main benefit of Run to completion model is that the thread can store
packet descriptor in thread’s local memory instead of shared memory. [66, pp. 15-16]

In pipeline model, only a single core polls the NIC for packets.
DPDK has 5 libraries that form its core components. Memory Manager is used

for allocating memory. It allocates memory from hugepages instead of heap. The
aim here is to reduce cache misses in processors Translation Lookaside Buffer. Ring
Manager provides a lockless First In First Out queue. Memory Pool Manager handles
pools of objects in memory. It uses rings provided by Ring Manager to store them.
Network Packet Buffer Management API is used to allocate and free memory buffers
that are used to store messages. Timer Manager provides a timer service, in order to
allow asynchronous function exection. [67, pp. 4-6]

Important part of DPDK are the Poll Mode Drivers (PMDs). PMDs drivers
access the NIC packet descpriptors without waiting for interrupts. [67, pp. 43] This
kind of setup increases potential maximum throughput, but the downside is that the
host hast to dedicate a whole CPU core to constantly poll the NIC.

Redhat [31] claims that they have measured bare-metal like performance when
running DPDK inside a software container. They used DPDK sample applications,
like l2fwd, for packet forwarding.

4.5 Open vSwitch
OVS is opensource network switch software that implements OpenFlow. According to
tests performed by Emmerich, Raumer, et al (2015) Open vSwitch provided highest
packer per second (pps) rate amongst all techniques compared using Linux kernel
network stack. With using Intel physical NIC, OVS delivered throughput of 1,88
Mpps, when for example Linux IP forwarding gave throughput of 1,58 Mpps. By
using same test setups DPDK applications were much faster, as DPDK vSwitch was
delivering throughput of 11,31 Mpps. They conclude that major bottleneck for packet
forwarding with Linux is the kernel network stack. Among things listed as kernels
weaknesses, are a spinlock when queueing for packets from NIC and unnecessary
memory management. When a system is dedicated to perform only packet forwarding,
these features give very little benefits. [47]
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4.6 Namespaces and control groups
This section discusses Linux kernel features, that are important for software isolation,
and which some software container technologies, such as Docker, heavily rely on:
Namespaces and Control Groups.

Linux provides namespace interface for processes to allow them joining existing
namespaces, creating new ones or leaving their current namespace. Following names-
paces are provided: PID, User, Mount, Cgroup, IPC, Network, and UTS [21]. In
this section, each namespace is described.

Process ID namespace isolates process identifiers (PID)s. This way same PID
can occur multiple times in same operating system, as long as they are located in
different PID namespaces. The PIDs in a new namespace start always from 1 and the
process with PID of 1 has a special role. It is called "Namespace init process" and if it
is terminated, the kernel will terminate all of the processes in that namespace. Every
PID namespace has a parent namespace. A process is visible to other processes in
its ancestor PID namespace. However, processes in parent namespace are not visible
to the processes in a child namespace. Visibility of PID means that a process is able
to use a visible PID as argument for system calls that require it. Processes have a
PID in every namespace, in which they are visible. [23]

User namespace allows isolation of user IDs, group IDs, root directory, kernel
keys and kernel capabilities. Kernel capabilities are separate attributes that may be
granted for normal user, in order to perform tasks that are usually allowed only for
a root user [17]. Just like PID namespaces, user namespaces can be nested. Since
version 3.11 of Linux Kernel, maximum of 32 levels of nested user namespaces are
allowed. A process gains all of the capabilities which the user namespace had, the
process joined to. If the process created a new user namespace, it gains full set of
capabilities in that namespace. [24]

Mount namespace isolates the list of mount points. Creating a new mount
namespace creates a copy of the callers mount point list. Whenever using systemcall
mount, a mount event propagation type may be defined. The possible options are:
Shared, private, slave, and unbindable. These allow for example to share mount
events with other mount namespaces or totally isolate a mount point. In the latter
case, the new mount point would only be visible in the current mount namespace.
[25]

Network namespaces virtualize network related resources, such as network devices,
IPv4 and IPv6 protocol stacks, IP routing tables, firewalls, and port numbers. As one
physical network device can only exist in one network namespace, a virtual network
device can be used to connect different network namespaces. [21]

Control groups is a Linux feature that allows grouping of processes and then
performing tasks on those groups. Control groups were required to gather processes
in a way, that when a process forks, its child process becomes also a member of the
same control group. Control groups also allow hierarchies, in such a way that each
process is mentioned once in each hierarchy. [28]

Practical example of Control group is cpuset. Cpuset allows user to allocate
specific CPUs and memory nodes to a specific set of processes. Then, a process is



21

only able to see those CPUs which are defined in its control group. [4]

4.7 Process scheduling
When running VMs and Hypervisors inside Linux, Linux scheduler has big effect on
their performance. It decides which processor cores they run on and how much CPU
time they get. Looking from virtualization point of view, scheduler is important part
of operating system, as it is in charge of how much execution time the hypervisor
process receives. Thus this section tries to explain basic principles of scheduler
and reviews one scheduler implementation more closely: Completely Fair Scheduler
(CFS). Also some common parallel computing technologies such as Hyper-Threading
and NUMA are discussed, since they affect scheduling decisions.

Scheduler goals can be divided into two groups: Goals from user’s perspective and
goals from system’s perspective. Goals from user’s perspective include minimizing
the waiting time the process has to spend waiting for other processes and minimizing
response times of user interface actions. Also being predictable can be included in
these goals, as predictability makes operating the system easier and more comfortable.
Important goals from system’s perspective include maximizing process completion
rate, i.e. throughput and balancing the utilization of CPU and I/O resources. [58,
Chap. 6.6]

Hyper-Threading is a Simultaneous Multi-Threading (SMT) technology from
Intel. This allows multiple threads to use a single CPU core at the same time. The
goal is to reduce the processor idle time, which is caused, when an instruction loads
something from the memory, and the processor has to wait for the data to arrive.
In SMT system, during this wait time, the processor can execute instructions from
another thread. [38]

Non-Uniform Memory Access systems have multiple processors, each having own
local memory and being considered as a single NUMA-node. All of the NUMA-nodes
have also access to the common system memory. [57, Chap. 8]

A Linux feature called scheduling domains was created in order to help scheduler
make more intelligent decisions, when balancing loads between CPUs. A single
scheduling domain contains a set of CPUs with common properties and scheduling
policies. Under every scheduling domain, there are one or more CPU groups. The
CPU load of a domain is tried to be kept even among all of the CPU groups. When
the scheduler is doing its load balancing duties, it consideres each CPU on multiple
levels. On Hyper-Threading level, moving process from one CPU to another is
relatively light operation, and may occur every 1 or 2 milliseconds. On physical
processor level, moving process from one CPU to another is more costly. On this
level, the inbalance between CPUs is expected to be higher than on Hyper-Threading
level, before balancing commences. On NUMA-node level, the cost is highest and
scheduling policy acknowledges this. [32]

Current scheduler in Linux kernel is CFS. It was added to the kernel source code
in version 2.6.23. CFS tries to model ideal and precise multi-tasking CPU on physical
processor. Through introducing a concept of virtual runtime, it aims to meet this
goal. Virtual runtime is calculated by dividing the real time process has ran on CPU
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by total amount of processes. Virtual runtime should be almost the same between
all of the processes, and to ensure this, CFS always executes the process with lowest
virtual runtime. [20]3

The process information is stored in a Red-Black Tree, ordered by the virtual
runtime of a process. Red-Black Tree is a binary search tree, with each tree node
being colored either red or black. The node coloring has to satisfy couple of properties:
Every tree leaf has to be black, every child of a red tree node has to be black and
all of the tree leaves have to have equal black depth. [50, Chap. 4.3] CFS always
executes the process most far on left. This way, the virtual runtime of that task is
increased, and it is more likely to end up moving more right on the tree.

4.8 Summary
This chapter presented Linux based opensource software and also parts of the kernel.
From software the most important points are that qemu and KVM are commonly
used together as a hypervisor, and virtio is a paravirtualization driver seeking to
improve VM performance, especially in areas of disk and network accesses. From
kernel side, it was told how namespaces and control groups enable process isolation in
different areas. Also it should be understood, that every process running in modern
multitasking operating system is often competing for resources with other processes,
and that the scheduler is distributing those resources.

3Commit 09c3bcce7c3f640b560df148a3f47d4a3a13dc5e,
Documentation/scheduler/sched-design-CFS.txt
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5 Benchmark setups
This section describes how virtual environments were built and which benchmarks
were used to measure them.

5.1 Previous research
Recently a lot of papers have been released about benchmarking VM and software
container performance. Here two are briefly introduced.

Felter et al. (2015) [49] have done several benchmarks to compare peformance
overhead of containers and VMs. They noticed that containers and VMs have close
to nothing overhead when performing CPU and memory intensive tasks. However,
when doing MySQL application benchmark, an overhead can be seen. In VMs this
is expected but also Docker AUFS image system, with Docker NAT networking are
measured to have reduced performance when comparing to the same benchmark
being run natively on host. In disk I/O benchmarks the host mount is used with
Docker, which bypasses Docker storage driver and thus introduces no overhead.

Morabit et al. (2015) [39] compared Docker, KVM, LXC and host environment.
They observed that when using y-cruncher as benchmark, multicore CPU performance
is similar between the two container solutions and the host environment, but the
KVM is slightly slower. NBENCH benchmark resulted in similar single threaded CPU
performance between all of the environments. Only in the memory benchmark of
NBENCH, KVM lost to other environments by resulting in over 30% worse benchmark
score. When measuring disk I/O performance with Bonnie++, Docker and LXC are
discovered to be slightly slower than the host. However, KVM sequential write speed
is measured to be one third of that of the host, and read speed is one fifth of that of
the host. After doing other disk I/O related benchmarks as well, such as Sysbench,
dd, IOZone, the authors note that the results have some kind of fluctuations and
conclude that it may be challenging to measure performance of disk I/O.

5.2 Test environments
Our benchmarks were run in 5 different virtual environments and on the host. Three
of the virtual environments were so called ’nested virtual environments’. The nested
environments consist of: VM on VM, VM on docker, and docker on VM. In other
words, ’docker on VM’ environment means a docker isolated process started inside a
VM. Sometimes, we drop out the ’on’, when referring to these environments and in
this case, ’docker on VM’ becomes just ’docker-VM’.

VM and docker environments were also benchmarked alone, and are later referred
to as ’Native VM’ and ’Native docker’ or sometimes just ’VM’ and ’docker’. Figure 3
demonstrates hierarchy inside the total of 6 test environments.
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Figure 3: Benchmarked environments and their names.

5.3 Environment setups
This section describes briefly how test environments were configured and what kind
of scripts were created for running the tests and recording the results.

5.3.1 Platform software

In all of the environments, Fedora 25 Linux distribution was used as operating system.
Particularly, Xfce version of it. Fedora Xface is a lightweight version of the Fedora
desktop. Using desktop was necessary for installing the virtual machines, and during
other times Command Line Interface (CLI) was preferred, because of its sophisticated
automation capabilities. The underlying Linux kernel version was 4.8.6.

Fedora was chosen because the scope of the thesis is on general cloud applications,
and thus a realtime operating system is not required. This kind of cloud application
can respond to realtime-like requirements by for example, dedicating CPU cores
to a certain process using Linux control groups. Fedora has a packet manager and
repository from which most of the virtualization and benchmarking software was
retrieved. Also its configuration is well documented [12].

As hypervisor KVM was used together with qemu. Other hypervisor options were
narrowed out of the scope of this thesis. Qemu version was 2.7.1.

Docker was chosen as the software container technology. The Docker version used
was 1.12.6.

These versions are summarized in Table 1.



25

Table 1: Summary of platform software versions.

Distribution Kernel Qemu Docker
Host Fedora 25 4.8.6 2.7.1 1.12.6
VM Fedora 25 4.8.6 2.7.1 1.12.6

Nested VM Fedora 25 4.8.6 - -

5.3.2 Automated scripts

A set of scripts was created to automate redundant testing. To connect to running
virtual environments, these scripts used SSH-commands. In order to make it more
simple to connect to nested virtual environments, a port redirection was created
from the host to target environment. Docker offers a CLI option for this, but with
libvirt we had to resort to SSH command’s tunneling feature. Important part of
these scripts was also to name test result files correctly, in order to make it easy to
organize and recognize measured data and results, and also do some post processing
of the measured data, to summarize most interesting results.

The automated scripts were also responsible for starting host loads, when mea-
suring guest steal time. Host loads were mainly stressing CPU and memory. A single
host load process was launched before running the actual benchmarks, for every CPU
core the host system had. Then these loads were distributed evenly among the cores
using Linux kernel feature: cpusets. The loads were also given CPU limits using
program cpulimit.

When starting tens of background processes and their CPU limiting counterparts
with a script, some issues were encountered. Sometimes some CPU limiting processes
would exit, thus making the load run with all of the CPU time it can get from the
scheduler. A bash feature called disown was used but the problem could not be fully
solved. Then instead of starting the host loads from a measurement script, a systemd
service was created to start the loads when requested. This solved the problem, and
the host loads were always getting the CPU time that was desired.

A perl script was created to measure and log performance related statistics from
the host. The script stores different types of CPU times every second from Linux kernel
file: /proc/stat. Packet throughput was recorded from kernel file: /proc/net/dev. It
also stores Disk read and write statistics with the help of a program: iostat. During
every test, this script was running to see what actually happens on the host system,
when tests were performed inside virtual environments. The script was also used
inside virtual environments in order to see mainly guest CPU statistics. In order
to minimize its effect on the measurement results, the script was sleeping between
sampling times.
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5.3.3 Virtual machines

Virtual machines were created using virtualization library libvirt. Libvirt was cre-
ating VMs using Qemu together with KVM as hypervisor. CPU was set to ’host-
passthrough’, which enables KVM to provide the VM with identical CPU as the
host has. Virtio was used as a virtual NIC. Inside docker environment, VM was
installed and started by directly calling qemu with CLI, as running libvirt inside
container proved to be challenging because of missing systemd. VMs were connected
to network through libvirt default bridge, except for case ’VM on docker’, in which
qemu user mode networking was used.

In order to make file accesses faster, operating systems maintain page cache.
Recently accessed files are stored in this cache, which resides in main memory. This
makes frequent accesses of same files faster. [14]

When creating a VM with KVM, both the host and guest may create and update
their own page caches. It is considered as a good practice, to only resort to one of
these caches, and complete ignore the other [14]. When creating VMs, we set them
to bypass hosts page cache. Virtio -driver was used as a hard disk driver and VM
image format was raw.

5.3.4 Software containers

Dockerfile was used to build the docker image. This image was based on Fedora and
was built to contain the necessary tools for benchmarks. The image was configured to
start SSH-server when it launched, to make it easy for automated scripts to connect
to the environment. Devicemapper was used as a storage driver and network settings
were left to default, which makes docker to add the process to Docker-bridge network.
This type of networking gives the docker process a visible IP-address inside its host
environment. Docker storage backend was configured to use direct LVM instead of
loopback mount, as advised on their manual. [7] Also trying to setup 124 GB file
with fio, inside docker environment running with the loopback configuration, ended
up with a kernel I/O error. This error was no longer happening with the direct LVM
configuration.

Backing filesystem of Docker’s direct LVM was xfs while the host filesystem was
ext4. They are both journalling filesystems, which means that the filesystem keeps a
journal of each disk operation performed. Now if a power failure occurs, the next
time disk is booted, operating system does not have to go through whole disk to
look for corrupted data. Instead it needs only to check recently accessed files for
inconsistencies. [55, Chap. 6]

5.4 Hardware specifications
A single data center capable blade was used as the benchmarking environment host.
The physical blade, surrounded by other server racks and mounted in a data center
cabinet, is illustrated in Figure 4. The physical blade with cover removed, exposing
standard hardware components, such as Intel processor can be seen in Figure 5.
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As a processor, it had two Intel Xeon E5-2630 v3s. This kind of processor has 8
cores with each having 2 Hyper-Threads. The base frequency is located at 2.3GHz
and the processor is based on Intel’s Haswell microarchitecture. [15] This processor
has many of the hardware virtualization capabilities that were introduced earlier.
Some examples of capabilities are mentioned here: VMX, EPT, VMCS, Shadow
VMCS, and APICV.

Hard disk was Seagate’s Constellation ES3. This is a RAID capable, SATA-
inferface connected hard disk and it is implemented with a traditional rotating disk
technique [69]. Table 2 summarizes the hardware specifications.

Figure 4: Server rack mounted inside data center cabinet. At least 8 different physical
servers can be seen in this picture, as well as some empty slots.
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Figure 5: Server rack with top cover removed. In the middle of the picture two
processor heat sinks can be seen. At bottom middle is first power unit, and second
one is at right edge. Between the two power units, are located two network interface
controllers. Hard disks, which are located at top-left, are barely visible. Main memory
combs are surrounding the processor heat sinks.

5.5 Performance Benchmarks
Here the benchmarks used to measure virtualization performance are presented.
General points of each benchmark are discussed and also the actual program versions,
as well as command line calls are shown.

Single core CPU performance was also briefly tested, but the results are not
reported here. In this case VM, docker and host benchmark scores should be very
close, if not equal.
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Table 2: Table describing Bare metal host specifications.

CPU model CPU cores Memory Disk NIC
Host E5-2630 32 62 GB 1 TB 82599ES
VM E5-2630 17 20 GB 600 GB virtio

Nested VM E5-2630 16 10 GB 200 GB virtio

5.5.1 Compilation benchmark

General multi-core CPU performance is tested by timing compilation of Linux kernel.
It also stresses memory and disk I/O. Compilation of Linux also represents a real
application load, one which could be actually run for commercial or academic purposes
inside a virtual environment. Linux was chosen to be the compilation benchmark,
because the same benchmark has been used elsewhere also. Although the results are
not directly comparable because of different hardware and compilation configuration
were used, the previous research [41] [42] gives us a hint what the virtualization
overhead could be. Basically, instead of Linux, any other program could have been
compiled, and it should yield same kind of results.

The compilation is configured in a host environment and then the same configura-
tion is used on all of the test environments. In every environment the compilation was
performed 10 times, then cleaned, and the average of these compilations is reported.
15 jobs, as understood by GNU make command, were used for each compilation.

5.5.2 Disk I/O

Linux program fio was used to test disk I/O performance. Previous research that
we reviewed also used the same benchmark [49]. Other choices for this benchmark
would have been Bonnie++ and sysbench, use of which has also been documented
[39].

Fio was created by a maintainer of Linux’s block layer in order to simplify kernel
debugging [13].

Fio was configured to do sequential read and writes on a 124 GB sized file, which is
the double of the host’s RAM size. I/O was performed in native Linux asynchronous
way and was set to access disk directly, bypassing the disk cache. Fio version was 2.12.
Following listing shows the actual command line command to start the benchmark:

$ f i o −−minimal −−rw=rw −−s i z e =124g −−i o eng in e=l i b a i o \
−−d i r e c t=1 −−ramp_time=4 −− f i l e=FILENAME

5.5.3 Disk latency

Linux program ioping was used to test disk operation latency. It tests how long disk
request took to complete.
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Ioping version was 0.9. Measurement was repeated 10 times. Upper and lower
bounds of accepted results were also set, in order to avoid results that would heavily
differ from others. The command used for measuring was:

$ i op ing . −c 10 −t 100 us −T 2ms −q

5.5.4 Network throughput

Network performance was tested with iperf. It was configured to transmit for 60
seconds, and bandwidth statistics were collected for every 10 second period. Version
of iperf was 2.0.8. The client side iperf command was:

$ i p e r f −c SERVER−IP −y c − i 10 −t 60

5.5.5 Network latency

Network latency was measured using ping. Ping is based on sending Echo Request
packets according to ICMP and measures packet travel time from given environment
to target environment and back.

The command used was simply:
$ ping −w 10 SERVER−IP

5.6 Measuring guest steal time
When application is running inside a VM, it is difficult and may be even impossible to
try to debug problems caused by host hypervisor. However, one measurable quantity
is CPU steal time.

When running in virtualized environment with virtual processor, CPU Steal Time
is the time, in which the guest requested CPU time but did not get it from the
hypervisor. Measuring steal time may be important when using IAAS and not having
access to the underlying machine, as it may be cause for decreased performance
inside the virtual environment.

Under KVM hypervisor, steal time indicates the time when virtual CPU was not
running, and it is not including idle time. [20]4 The information is actually retrieved
from a scheduler data structure, which tells how much a given process was waiting
on scheduler runqueue for other processes, in order to use the CPU. [20]5

Netflix has defined a threshold of steal time. The application running inside
VM is measuring CPU steal time, and if the threshold gets crossed, then the VM is
shutdown and another one is started on a different physical host. Netflix claims that
in their case, the problem of increased CPU steal time in some physical machine
usually does not go away by starting a new VM, which is why they prefer to start
the new VM in different physical host. [22]

4Commit 5924bbecd0267d87c24110cbe2041b5075173a25, Documentation/virtual/kvm/msr.txt,
Line 231

5Commit 2beb6dad2e8f95d710159d5befb390e4f62ab5cf, arch/x86/kvm/x86.c, Line 2130
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Steal time is not only caused by hypervisor being genuinely busy with other VMs
or competing for host resources with other load. In Amazon Web Services, steal time
is used to indicate throttling down of CPUs, to prevent users from getting more
powerful CPU, or more computation time than what they are paying for. When user
is starting a VM instance in AWS, a choice is given where the user has to define the
instance type. This chosen type, such as m1.large, actually maps to a EC2 Compute
Unit (ECU), instead of mapping to actual physical hardware or virtual CPU. [1]
Amazon started using ECUs to normalize the differences between hardwares. When
user is renting ECUs, they can expect to always get around the same computation
power, despite what the underlying hardware is. [2]
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6 Results: Initial benchmarks
This chapter presents initial benchmark results. That is, for the case in which no
intentional host load was running, except the benchmark. Results of five benchmarks
are presented and then discussed. For kernel compilation, in addition to results,
also disk accesses and CPU times as measured from the host, are shown. For disk
access bandwidth, total amount of disk accesses are also displayed. For the rest of
the benchmarks, only results are presented.

6.1 Kernel compilation benchmark
Figure 6 shows the results of this benchmark as graphs. Table 3 shows the results in
numbers. For each virtual environment, average compilation time is reported and
also proportion of standard deviation of the average time is shown. Compilation
times are normalized to host results in order to demonstrate the overhead caused by
virtualization.

Average CPU times during the benchmark are shown in Table 4. Basically 100
units of CPU time account for one processor core for one second. They show that
kernel compilation is a proper benchmark for multicore CPU performance. Most of
the time CPU is executing something, in either User or System mode. Also it can be
seen from ’Sum’ column that, in all cases roughly 14 cores out of 15 are constantly
used. Only with Docker-VM this does not hold, and 13 cores are mostly used out of
15.

Docker and VM-docker have high IOWait times, when comparing to other en-
vironments. One reason for this could be that docker environment has faster CPU
instruction execution time and memory than VM, so it is spending proportionally
more time waiting for I/O operations than VMs. On the other hand, the host is
expected to have faster I/O than docker, so the host is spending relatively little time
waiting for disk operations to complete.

VMs use less system CPU time and more user CPU time than other environments.
This is because qemu runs these processes in user space instead of kernel space.

Host’s standard deviation suffers because during first compilation, all of the
source files are read from the disk. This compilation lasted for about 10% longer,
than the others. On consequtive compilations, because of disk caching, kernel source
files are read from RAM. This leads to compilations done after first one being faster
and also to have less standard deviation between the results.

Native docker’s average times also suffer from high standard deviation, for unex-
plained reason. When compiling inside docker environment, often the compilaton
was about 5% slower than on host. However, for 2 times of 5 compilations, the
process took 40% longer than on host. Compilation benchmark inside native docker
environment was repeated but the results were very similiar.

Docker is not expected to lose much to native host environment. The difference
is partially explained by docker performing more disk accesses, as demonstrated by
Table 5. This table also shows how all of the virtual environments perform more disk
accesses than host.
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Docker is expectedly faster than VM. Docker on VM is the slowest environment.
One reason for this, could be that emulating devicemapper -storage driver could be
slower than emulating virtio of VM.

This benchmark was redone with different settings. The significance of configuring
docker to use thinpool storage system instead of loopback mount, was realized only
at late parts of the thesis. It seems like virtualizing this loopback setup is rather
costly, when comparing to thinpool. The redone benchmark results are illustrated in
Figure 7. In these results, the performance of docker-VM is much closer on native
VM.

In these redone measurements, 4 things were intentionally changed. Same kernel
configuration was copied to every environment. Docker storage configuration was
changed from loopback to thinpool. VM on docker -environment’s VM cache configu-
ration was changed from default to ’none’. The compiled results were synced to disk
after every compilation and host as well as guest operation systems were ordered to
drop disk caches after every compilation. This more resembles the real use case of
compilation application; the compilation needs to be repeated very seldom.

The redone measurements are probably more succesful, as the three VM en-
vironments are very close in resuls: VM, docker-VM, and VM-docker. This is in
line with our idea, that the docker performance penalty should be very small. The
VM-VM environment is now very slow, presumambly because of disk cache dropping;
the nested VM setup needs to read a lot of files while also being slowed down by
virtualization.

Figure 6: Graph demonstrating virtulization overhead by compiling Linux kernel in
different environments.

6.2 Disk I/O bandwidth
Figure 8 shows results of this benchmark. Interestingly, in this benchmark docker is
faster than the host, altough it is showing higher standard deviation. The reason
why native docker was faster than the host, may relating to performance differences
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Figure 7: Results of redone compilation benchmarks with different configurations.

Table 3: Table showing results of kernel compilation benchmark as absolute values.
’Avg’ means ’Average time in seconds’.

Avg Std dev Guest Steal Norm. avg Prop. std dev
Host 418 37 0 100 9

Docker 495 159 0 118 32
VM 535 20 34 128 4

VM on Docker 578 21 15 138 4
VM on VM 605 21 4 145 3

Docker on VM 621 23 29 149 4

between different filesystems. One is that docker was configured to use xfs as backing
filesystem, while host’s filesystem was ext4.

In the results, VM is significantly slower than docker and host, and running docker
on top of the VM adds only very little overhead. VM-docker is suprisingly much
slower than docker-VM. It is surprising because on the VM-docker -case, docker is
running natively, while on the docker-VM case, docker related processor instructions
are more or less emulated by hypervisor.

Table 6 shows total amount of disk accesses during these benchmarks. It is added
here to indicate that during this benchmark, all of the environements read and wrote
same amount of data to the actual physical disk. Although there are some small
differences in the amounts, they do not correlate with the results and can be ignored.
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Table 4: Average CPU times on host side during compilation benchmark. Sum
-column shows the sum of all CPU times with Idle being excluded from it. Nice and
Steal times are not shown, as their values are constantly 0.

Environment User System Idle IOWait Interrupt Soft-Interrupt Sum
Host 1238 151 1811 14 5 3 1411

Docker 1155 153 1850 64 6 6 1384
VM 1386 19 1820 11 7 4 1427

VM-Docker 1314 37 1836 60 8 6 1425
VM-VM 1305 147 1757 11 9 4 1476

Docker-VM 1210 35 1976 19 7 5 1276

Table 5: Total megabytes read and written to disk during all of the compilation
benchmarks.

Environment Read Write
Host 749 49129

Docker 996 65247
VM 804 58332

VM-Docker 1059 63228
VM-VM 723 63066

Docker-VM 1032 66912

6.3 Disk operation latency
Figure 9 shows results of this benchmark. The order of environments is expected.
Docker adds little latency to disk operations when comparing to the host environment,
and VM adds a lot. Docker on VM loses to its counterpart VM on docker. Nested
VM is again significantly slower than other environments.

The results of this benchmark seem to correlate well, with the perception of
virtualization overhead of the different environments. Again, host is fastest with
docker being only a little bit slower, because of the storage driver performance penalty.
Next comes VM. Slower than VM, is VM running inside docker environment. Docker-
VM is second last in the results, as virtualizing the storage driver is expected to
decrease its performance. Even with virtio, the nested VM is almost 6 times slower
than the host, with also being the slowest environment of all.

6.4 Network throughput benchmark
Figure 10 shows the results of network throughput benchmark. The absolute values
are shown in Table 7. VM on Docker had very low throughput, because qemu user
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Figure 8: Chart demonstrating disk I/O benchmark results

Table 6: Total amount of disk accesses in megabytes during disk bandwidth bench-
marks.

Environment Read Write
Docker 130504 260985
Host 130491 261035
VM 132344 264295

Docker-VM 130801 261803
VM-Docker 130846 260905

VM-VM 130866 261588

mode network was used instead of libvirt network bridge.
Docker is again faster than VM. One reason for this could be that they both use

similar linux network bridge with Network Address Translation, but the VM has to
also emulate NIC behavior, even when using virtio.

This benchmark was conducted to measure throughput from virtual environment
to host but measuring throughput to external server would have provided insight on
more realistic use-case. However, because of the high transfer speeds, a sufficient
network connection was unavailable. In benchmark environment we used 1 Gbps
link but even a single 10 Gbps link would not be sufficient to support these transfer
speeds, and thus would be the bottleneck of this benchmark.

6.5 Network latency benchmark
Figure 11 shows results of network latency benchmark. VM on docker is missing
from results as qemu usermode network does not support ICMP packets, which are
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Figure 9: Results of disk operation latency benchmark

Figure 10: Graph demonstrating overhead in networking, from virtual environment
to host.

required by our measuring tool ping. The target server was located on the next rack,
and was connected to our test environment through a network switch. Standard
deviations are not reported as their values are less than 1/1000th of results in all of
the cases.

The results show how docker networking adds roughly a 50 ms network latency
when comparing to host environment. The same latency can be seen in two docker



38

Table 7: Absolute values of network bandwidth benchmarks. The unit is megabytes
and it shows the throughput from given environment to host. The host performance
was measured through a network loop-interface.

name avg std dev
Host 28274 11832

Docker 24521 4813
VM 21747 1695

Docker-VM 20125 3892
VM-VM 8802 739

VM-Docker 819 78

cases: Native docker and docker on VM.

Figure 11: Results of network latency benchmark.
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7 Results: Steal time benchmarks
This chapter presents results for compilation, network, and disk benchmarks, when
running under additional host load. 10 different levels of host loads were simulated.
These loads were ranging from 0 to 100, and were directly given as argument to
cpulimit. The compilation benchmarks and network throughput were only done for 4
of the 6 environments used before. In order to keep the measurement times feasible,
each measurement was only done twice. For other benchmarks, only one virtual
environment was used: docker-VM.

7.1 Compilation benchmark
Figure 12 shows results of compilation benchmark under host load measurements.
Table 8 shows the normalized values. VM on docker was mostly effected by the
host load and it is not shown in the picture, as it is almost on a different magnitude
than other environments. One compilation benchmark under 100 host load took
approximately 7 hours, when without host load it takes around 9 minutes.

VM on VM is not much effected by steal time, probably because this kind of
environment performs a lot of disk accesses, and thus needs to spend a lot of its CPU
time waiting for disk operations to complete.

Figure 12: Graph demonstrating how measured steal time correlates with increased
compilation time.

7.2 Disk I/O bandwidth
Only after host load is set to 50, we start to see its effect on disk bandwidth benchmark.
At this point, the benchmark result has dropped roughly 17% from its initial value.
This is illustrated in Figure 13. From host load of 50 to 80 the benchmark result
steadily decreases and we can see similar trend on guest steal time. After host load
of 80 the benchmark result drops rapidly and steal time rises fast.
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Table 8: Table describing normalized compilation benchmark average of each envi-
ronment, and how it is effected by increased host load. For each environment, first
normalized average is described and then CPU steal time.

Load VM Steal Docker-VM Steal VM-Docker Steal VM-VM Steal
0 100 35 100 26 100 16 100 4
10 105 58 100 52 111 50 85 5
20 118 97 110 81 119 99 92 5
30 130 134 116 110 135 191 104 5
40 140 162 127 163 160 322 116 10
50 154 211 138 210 212 516 121 13
60 180 316 162 307 288 710 155 23
70 190 345 196 447 436 949 194 32
80 201 361 234 559 737 1246 209 37
90 211 370 267 623 1509 1663 247 40
100 232 402 299 639 - - 269 46

From these measurements we can conclude, that a measured steal time of 5 can
be expected to have a slight worsening effect on disk access speed. And performance
of disk accesses is greatly hindered, if steal time measured is over 10.

Figure 13: Results of disk bandwidth benchmark when it is run under additional
host load.
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7.3 Disk latency
Disk latency benchmark results fluctuate strongly. Some kind of unexpected trend
of decreasing latency can still be seen. This may hint that benchmark requires some
extensive warmup measures, and that results would keep chancing for some time
after starting the benchmark runs. 14 shows results of these measurements. Since
the latency is decreasing as the measured steal time is increasing, it is safe to assume
that host load does not have much effect on disk operation latency.

Figure 14: Results of disk operation latency benchmark when it is run under additional
host load.

7.4 Network bandwidth
Maximum possible network throughput is strongly effected by other host load. From
even the lowest host load the throughput is effected. Figure 15 illustrates these
results. Table 9 shows these values normalized.

However, this benchmark has couple of things to consider. First, in this virtual
environment to host setup the host server is also affected by the host load. This
could or could not make the server a bottleneck and whether or not this affects the
results, was not confirmed. Second, these transfer speeds are hardly realizable when
transferring data between two physical machines.

This test was repeated using 1 Gbps link to another server from docker-VM
environment. During these measurements, the host load is barely seen to have any
effect on throughput. Even at 100 host load, the performance has decreased only
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12% of the maximum throughput. This is illustrated in image 16. The CPU steal
time starts to show around 50 host load and significantly increases after 80 host load.

Figure 15: Graph demonstrating how measured steal time correlates with decreased
throughput.

Table 9: Table describing normalized network throughput benchmark average of each
environment, and how it is effected by increased host load.

Load VM steal Docker-VM steal VM-Docker steal VM-VM steal
0 100 0 100 0 100 1 100 8
10 86 0 78 0 92 1 87 4
20 84 1 75 1 81 1 88 2
30 81 2 61 2 91 8 74 3
40 76 5 52 3 85 7 66 4
50 62 6 47 8 91 10 55 6
60 55 9 43 7 94 13 55 2
70 43 12 37 13 89 14 39 3
80 29 19 30 17 79 23 29 8
90 9 17 9 15 61 40 14 4
100 7 52 8 60 34 54 2 29
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Figure 16: Graph demonstrating how measured steal time correlates with decreased
throughput when transferring data to external server.
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8 Discussion
This section discusses the benchmark results and aims to draw conclusions on them.
Also another kind of experiment is discussed, an attempt to start multiple level nested
VMs. Last, some concepts that were noticed during the thesis work are presented,
that might be of use when considering future benchmarking.

8.1 Conclusions about benchmark results
From results, it is clear that performance of host and docker is very similar in many
areas. The docker storage driver is documented to bring slight overhead to disk
accesses, in order to support image layering. This overhead can then be seen in
the kernel compilation benchmark. The only difference in compilation benchmark
between host and docker is expected to emerge from disk I/O performance. This
difference grows when docker is virtualized, by running it inside a VM. The docker
I/O overhead was barely visible in our disk bandwidth benchmarks but shows up
again in the disk operation latency benchmark. This overhead was again hidden in
compilation benchmark, when we run a VM inside docker. The compilation results
are exactly same as with the native VM.

Docker default network bridge with Network Address Translation creates a per-
formance penalty to network throughput and latency. This penalty is smaller than
in libvirtd default network bridge, when benchmarking connections from VMs. For
docker this is not the only way to achieve network connection, and even the host
network could be exposed to it. This kind of ordeal would not introduce any perfor-
mance penalty. Interestingly, docker loses with 50ms to host network latency, and
when it is virtualized, again it loses to VM with the same difference of 50ms.

Pure single/multicore CPU or memory performance benchmarks were not done
in this thesis. A process inside docker container is able to use the processor the
same way as other processes on the system. It is usually also under same scheduler
governance. The same applies to main memory accesses. VM with hardware assisted
virtualization is expected to have same or slightly worse CPU performance as the
host.

8.2 Conclusions about steal time measurements
In compilation benchmark under host load some intresting observations were done.
First, the VM-VM -setup result time increases with the increased host load. But this
does not show at all in the measured steal time, which only slightly correlates with
the results or host load. Seems like the underlying VM is unable to add up the steal
time properly. With VM and docker-VM environments the steal time correlates with
the increased host load and compilation time. From host load 50 to 60 steal time
increases more rapidly than before. Docker-VM keeps up with the new trend but
with VM, after the increased trend, the steal time then goes back to previous rate.

Disk bandwidth benchmark shows that small host load does not affect guest’s
disk access based operations. Only after host load of 40 the disk bandwidth starts
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to decrease, and it greatly decreases after host load of 80. The steal times for these
two trends are respectively: around 5 and around 10. Disk operation latency is not
affected by host load.

Our network throughput benchmark shows that the maximum guest throughput
suffers even after a slight increase of host load. The steal time is barely measurable
at this stage. However, this maximum throughput is not often realizable in real cases,
as it would require for example, a 40GBs capable NIC. If we assume the docker-VM
-setup is using as 10 Gbps NIC, the throughput is first time affected at host load of
40.

According to our measurements a baseline for steal time can determined. First of
all, it is likely that a VM will always get little steal time. For single core, steal time
value of 1 over one second is very typical. When the value reaches 5, it is safe to
assume that an application running inside virtual environment is somehow affected.
After the value is over 10, the application is expected to be heavily effected.

8.3 Multi-level nested virtual machines
An attempt to define limits of nested virtualization with KVM was done. This was
done just out of curiosity as this kind of environments do not have many real life use
cases.

In multi-level setup three VMs were started, a new one being started on top of
the previous one. In following terminology, L0 means the host hypervisor. L1-L3 are
VMs nested on top of each other. This is illustrated in Figure 17. In this experiment,
installing and booting L3 was observerd to be very unstable. Often when trying
to boot the VM, the VM execution ended in an unrecoverable error called Kernel
panic. In those cases, which the L3 VM was able to boot, the CPU performance
was measured to be around 5% of the host, which hints of reducing from hardware
accelerated virtualization into software virtualization.

8.4 What could have been done differently
As benchmarking virtual and nested virtual environments is a complicated process
with lots of tunable parameters, this section discusses some of them. Also some other
notes for future benchmarking are presented.

Measuring steal time and its effect on application is challenging for many reasons.
Simulating generic host load is difficult, because in real case this type of load could
be consisting of many different combinations of CPU, memory, disk I/O and network
I/O -type loads. Also the levels of stress they introduce to those system resources
are likely to vary. Our host load only stressed CPU and memory, constantly on the
same level during one benchmark.

Limiting the host load to a certain level was done with cpulimit. Now cpulimit
itself is a program which also uses some, although little, CPU time. Other choices of
limiting the process CPU time also exist, for example control group cpuset.

Doing compilation benchmark for 4 environments, with 10 different host loads and
10 repetitions would last too long for some environments. Thus in disk bandwidth
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L0: Cloud hypervisor

L1: Cloud instance
OS: Fedora25

Virtualization technology: qemu + 
kvm

L2: First nested VM
OS: Fedora25

Virtualization technology: qemu + 
kvm

L3: Nested guest
OS: Fedora25

Figure 17: Image shows virtual machine relations to each other

and application benchmark runs were cut down to 2, which lead to high standard
deviation in some cases. In some cases the results were even counter intuitive, by
benchmark with low host load being slower than benchmark with higher host load.

We could also include host environment in steal time benchmarks. This would
demonstrate how native processes compete for CPU time.

Also our CPU time logging script was itself also using CPU time, which is then
included in the results. CPU user time and system time of a benchmarking process
could be read directly as recoreded by kernel, in proc-filesystem. However, this does
not show steal time, as it is accounted for a whole virtual CPU, and not for a single
process.

Our testing environments were limited to Linux Fedora distribution, KVM hy-
pervisor and Docker container environment. Other opensource options also remain,
and their conception of CPU steal time may differ. The tests could be repeated for
example for Xen hypervisor or LXC-container solution.

We only measured network benchmark to external server over 1 Gbps link. Almost
all of the environments can easily provide this much throughput, even when the
system is under a heavy stress. This benchmark should be repeated with 10 Gbps
link.

Docker inside docker was not included in our test environments. Whether it is
interesting or not, it should reveal something about nested docker storage drivers.
Also network performance would likely be effected.

Kernel module KVM records lots of VM related statistics, and these statistics
could be observed and included in future measurements. Those statistics show for
example reasons for VM exits.
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9 Future work
How Docker and software containers are adopted remains to be seen. Docker allows
exposing many container isolation features. For example, filesystem and network
of host can be exposed to container, so that the processes inside the container can
freely access these resources on the host. Docker also has a option to run container
privileged, which means that the processes which have access to host resources, can
access these resources without any restrictions i.e., with root priviledges.

Exposing host files to container is necessary for example, in a case where the
process running inside container needs to start a VM with KVM. This is only possible
if file /dev/kvm is bound to container filesystem. With VM, the virtual kernel could
just create new, virtualized KVM. How these kinds of limitations are solved remains
to be seen.

Follow up for this thesis, could be deeper dive into the cloud applications and
CPU steal time. We discovered that under Linux host, steal time is actually retrieved
from scheduler data structures inside kernel space. How disk access based host load
shows up as steal time? Or does it perhaps show as increased IOWait time? A lot of
questions remain open about steal time and how cloud applications should measure
it, and also, how to interpret it.
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A Preliminary measurements
This appendix describes two measurements that were done before the actual bench-
marks. Three different types of storage were tested, just to see that our disk benchmark
technique yields acceptable results. Then, the kernel compilation benchmark was
also done on all of these three storages, to understand the effect the storage type has
to the benchmark.

A.1 Storage disk speeds
Three different types of storages were tested: ephemeral which is a physical harddisk
connected to the machine, Elastic Block Storage which is a network storage system,
ramfs where all of the data is actually stored on RAM. Different storage system
speeds are illustrated in A1. Two different type of storage benchmarks were done:
Sequential read/write and random read/write.

The results are as expected. Ramfs is much faster than the two permanent
storages, and ephemeral is faster than EBS.

Figure A1: Figure illustrating performance of different file storage systems. As a
general observation, EBS is slower than ephemeral, and ephemeral is slower than
RAM-disk.

A.2 Storage performance effect on compilation benchmark
Figure A2 shows how usage of disk cache effects on compilation benchmark. Com-
manding kernel to drop caches before benchmark, increases the compilation time.
Slower the disk, more the compilation time is increased. On RAM, the effect is
rougly 2%, and on permanent storages it is around 5-7%.
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Figure A2: Graph demonstrating how much storage speed effects compilation bench-
mark
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B DPDK with VM from VM
DPDK based packet forwarding was going to be used as one of the benchmarks of
this thesis but considering how long time it took to setup one of the cases (VM-VM),
it was replaced with iperf. Unlike DPDK, iperf uses linux IP stack normally, but it
is much simpler to setup for benchmarking network throughput.

B.1 DPDK inside nested environments
DPDK source code was downloaded and the project was built using standard tools.

To measure DPDK performance, two VMs connected via Linux bridge were used.
In the tests the host was also a VM. DPDK pktgen -example application was used
to generate OSI-layer 2 packets on generator VM, which were send to the bridge.
Then forwarder VM read the packets from the first bridge and forwarded them to a
second bridge. The second bridge then lead back to the Generator VM. This setup
is described in B1.

Cloud instance – Qemu, KVM
Cloud hypervisor - KVM

VM – Fedora 24 Xvnc - pktgen

TX 
CPU

VM – Fedora 24 Xvnc – l2fwd

RX 
CPU

Bridge 1

vNIC 1

Bridge 2

TX 
CPU

RX 
CPU

vNIC 2 vNIC 1 vNIC 1

Figure B1: DPDK Forwarding test setup. One VM is generating packets as the other
one is forwarding them from one linux bridge to another.

B.2 DPDK CPU loads
As first test, DPDK pktgen application CPU loads were measured. These were
measured for two cases. First case, shown in Figure B2, where DPDK was using
kernel IP stack, just like a normal program that wishes to send IP packets inside
Linux. The second case can be seen in Figure B3. In this case, NICs were bound
directly to DPDK, which is how the DPDK is designed to be used. CPU times show
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clearly how the DPDK bypasses the Kernel IP stack. Packet throughput is described
in Figure B4. It was measured from host side, as the guest kernel is unaware of any
network activity on DPDK bound NIC.

Figure B2: Graph showing system CPU time of a CPU core running DPDK pktgen
application and packets per second, measured from a specific network interface.
pktgen is configured to generate packets for 10 seconds at a time, then pause for 5
seconds and generate packets again with doubling the desired throughput after every
pause. Graph shows how the system time (yellow) increases, as the throughput gets
higher (light blue).
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Figure B3: Graph showing user CPU time of a CPU core running DPDK pktgen
application. As mainly user time is used for packet generation and sending, the
graph varies very little.

Figure B4: Graph showing packet throughput from host side. Note how the rate has
increased when comparing to the DPDK Kernel IP-stack -case.
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