
NEAT: Network Experiment Automation Tool
Andreas Schmidt, IEEE Student Member and Thorsten Herfet, IEEE Senior Member

Telecommunications Lab
Saarland Informatics Campus, D-66123 Saarbrücken, Germany

Email: {andreas.schmidt, herfet}@cs.uni-saarland.de

Abstract—Executing network experiments is crucial for vali-
dating results of networking research, but the process is often
highly manual and seldomly reproducible. This slows down
the innovation process, and peer reviews cannot be carried
out appropriately, as it is hard to understand and reproduce
the system-under-test. This paper presents an abstract view
on network experiments and sketches the design of NEAT, a
first prototype to automate network experiments in physical
networks using state-of-the-art automation technologies. Using
NEAT, experiments can be defined in a transparent human-
and machine-readable manner allowing automated execution for
higher efficiency, flexibility and reproducibility.

Index Terms—SDN/NFV deployments in datacenter, ISP, in-
dustrial, and campus networks, SDN/NFV testbeds and emulation
platforms

I. INTRODUCTION

Research in network design and implementation comes with
a significant portion of time spent on executing evaluations
to prove viability of novel approaches or compare different
solutions in different scenarios. The reviewing process, when
done right and following approaches from [1], [2], requires
to completely and precisely rebuild the scenario and validate
the results. Even though networking is a systems rather than
a computational research domain, the rules mentioned in [3]
apply, and are going to be referred to in the following paper as
§1 to §10. We especially deal with the rules “for every result,
keep track of how it was produced” (§1), “archive the exact
versions of all external programs used” (§3), “version control
all custom scripts” (§4), and “record all intermediate results,
when possible in standardized formats” (§5).

Establishing a physical testing environment is costly and
time-consuming, so that many scientists use fully virtualized
networks, such as GENI [4], or network simulators such
as OMNnet [5] or Mininet [6]. This leads to either quick
simulations that might lack precision, suffer from resource
limitations and relation to physical setups, or extensive testbed
setups that are costly to build and maintain. In this situation,
we see a lot of potential in using recent advances in network
softwarization and automation to run high fidelity experiments
with tolerable effort.

The contribution of this paper is twofold:

• We identify an abstract structure of a network experiment,
describing an experiment in a human- and machine-
readable way, to foster reproducible research.

• We present NEAT, a prototype tool for executing network
experiments in automated network environments.

II. NETWORK EXPERIMENTS

As in every other experimental domain, network exper-
iments run in three phases, namely preparation, execution
and post-processing. The preparation usually involves the
following steps: Firstly, the network architecture is defined,
which means that the topology is implemented by manually
connecting devices or adding links in virtual environments.
This includes a definition of link characteristics, including
latency (delay, jitter), reliability (loss, reorder, corruption) and
capacity (data rate). In a second step, the end-hosts are added
and equipped with the services or applications used to carry
out the experiment. This involves again some wiring effort,
software installation, and additional system configurations.

When dealing with experiments in the domain of SDN, the
next step is usually the deployment of a well-defined network
controller. This step also includes initial communication be-
tween the SDN nodes and the controller instance, so that the
setup is already done before the experiment.

After this preparation phase, the execution of the experiment
starts by either triggering a function inside the network con-
troller or starting one or more network applications running
on end hosts. Following the experiment, all the execution data
has to be gathered, which comes in various forms e.g. packet
traces, log files, or tables. Following §5, this should be done
using standardized formats, such as .pcap or .csv. The
subsequent analysis should then follow rules §2, §6, §7, §8,
§9 and §10, but this is out of scope for this paper.

III. NETWORK EXPERIMENT AUTOMATION TOOL

Now that we have defined an abstract pattern for network
experiments, we want to automate this by exploiting different
technologies for network automation.

A. Experiment Description

The first component we need to make experiments repro-
ducible, is a human-readable format to describe the aspects
that differ between experiments. Thereby, we can ensure that
the origins of results are tracked (§1) and archived using
version control (§4). We chose to use YAML [7], as it is
also used in the solution we chose in Sec. III-D, but it could
as well be done in other languages as JSON, which is less
expressive, or XML, which is highly verbose and hard to write
by hand. An example for a straightforward RTT measurement
experiment is depicted in Fig. 1. Here we see how the involved
hosts, controller as well as server and client application are
specified, together with the links and their characteristics.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/92702203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


controller:
minion: ctrl.uds.on
image: registry.uds.on/LARN/Ryu:v1.0
args: --relaying=True stp

links:
- minion: n1.uds.on,

interfaces:
eth0:

bandwidth: ’10Mbps’,
delay: ’20ms’,
...

server:
minion: h2.uds.on
image: registry.uds.on/LARN/rtt:v0.7
args: --server=True
ip: 10.5.1.21/24,
mac: ’AB:CD:EF:01:23:67’,
port: 8081
result: /var/rtt.csv

client: ...

Figure 1. rtt.yml

B. Software-Defined Networking

Running network experiments comes with applying specific
routing and forwarding policies. The best way to make this
transparent and reproducible is by using an SDN controller
that implements the desired behavior. Our experiment uses
Ryu [8], which is a lightweight controller implementation in
Python, but one could as well employ any other controller, as
long as it comes in form of a Docker [9] container.

C. Network Function Virtualization

For the applications on the end hosts and intermediate
network functions, we are again using Docker. Thereby all
applications and libraries are bundled together so they can be
installed in a single action. This ensures §3, as the version of
any software that was involved in the experiment is archived.
In contrast to other virtualization techniques, such as virtual
machines, containers provide a lightweight and fast alternative,
which integrates nicely with softswitch solutions.

D. Configuration Management (CM)

While SDN enables us to reconfigure our network operation
easily via packet-manipulation and dynamic forwarding, it
does not allow us to orchestrate the systems that are part of
the network. For data centers, this is an additional crucial part
of an automation strategy, which is also true for experiment
automation. The relevant tasks are for instance moving files
to and from a system, starting services and applications, as
well as running arbitrary shell commands. We particularly use
the modules involved with deploying and integrating Docker
containers, executing commands to set link parameters and
retrieving the experiment results. There are a lot of open source
and proprietary solutions for CM available, amongst the most

popular ones are SaltStack, Puppet, Chef and Ansible. We
picked SaltStack [10], because it is open-source, is imple-
mented and extensible via Python and integrates smoothly with
the rest of our tools.

E. Version Control (VC) and Continuous Integration (CI)

Finally, a fully automated solution also includes the network
software development process. This can be done using ver-
sion control and continuous integration [11] tools, where the
software is stored, build and archived for future inspection.
This ensures §4 and §3 so that we can fully reconstruct an
executed experiment from the used artifacts. In our lab, we
are intensively using a self-hosted version of GitLab CI [12]
to track the state of our experiment components.

IV. CONCLUSION

This paper presented NEAT, a prototype implementation
used to enable reproducible networking research within au-
tomatized environments. While we are entering an age of fully
automated networks within data center and ICT environments,
we should also make use of these technologies for network
experiments. Finally, we also adhere to §10, and will publish
NEAT1, which is part of the OpenNetworking project at
Saarland Informatics Campus2.

Acknowledgments. This work was supported by the Ger-
man Research Foundation (DFG) as part of the priority pro-
gramme SPP 1914 “Cyber-Physical Networking” under grant
HE 2584/4-1.

REFERENCES

[1] ACM, “Result and artifact review and badging.”
https://www.acm.org/publications/policies/artifact-review-badging.
Accessed: 2017-07-04.

[2] “Reproducing network research | network systems ex-
periments made accessible, runnable, and reproducible..”
https://reproducingnetworkresearch.wordpress.com/. Accessed: 2017-
07-04.

[3] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten Simple
Rules for Reproducible Computational Research,” PLoS Computational
Biology, vol. 9, no. 10, pp. 1–4, 2013.

[4] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “GENI: A federated testbed for innovative
network experiments,” Elseview Journal on Computer Networks, vol. 61,
pp. 5–23, 2014.

[5] “OMNeT++ Discrete Event Simulator.” https://omnetpp.org/. Accessed:
2017-07-24.

[6] “Mininet: An Instant Virtual Network on your Laptop (or other PC).”
http://mininet.org/. Accessed: 2017-07-24.

[7] “YAML Ain’t Markup Language.” http://www.yaml.org/start.html. Ac-
cessed: 2017-07-24.

[8] “Ryu SDN Framework.” https://osrg.github.io/ryu/. Accessed: 2017-07-
04.

[9] “Docker - Build, Ship, and Run Any App, Anywhere.” https://docker.io/.
Accessed: 2017-07-04.

[10] “SaltStack intelligent orchestration for the software-defined data center.”
https://saltstack.com/. Accessed: 2017-07-04.

[11] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works
http://www.thoughtworks.com/ContinuousIntegration.pdf, 2006.

[12] “Code, test, and deploy together with GitLab open source git repo
management software.” https://about.gitlab.com/. Accessed: 2017-07-04.

1http://neat.larn.systems
2https://www.on.uni-saarland.de

http://neat.larn.systems
https://www.on.uni-saarland.de

	Introduction
	Network Experiments
	Network Experiment Automation Tool
	Experiment Description
	Software-Defined Networking
	Network Function Virtualization
	Configuration Management (CM)
	Version Control (VC) and Continuous Integration (CI)

	Conclusion
	References

