
Transparency for Control Plane Software
Benjamin Hof Georg Carle

Technische Universität München
{hof, carle}@in.tum.de

Abstract—A shift from traditional networking to SDN requires
considering the security properties not only of the policies, but
also of the software implementing these functions. We propose
a transparency-based approach to secure the distribution of the
code implementing the software components in SDN-based net-
works. The goal is to ascertain freedom from targeted backdoors
for all installed code. To achieve this, the software packages are
logged into an append-only log server by the distributor. Monitors
verify the correct operation of the log server and are able to detect
and warn about irregularities in the software distribution.

I. INTRODUCTION

Security is an important driver for the deployment of SDN.
The security of an SDN network depends on the policies
implemented by the controller or network operating system. To
have confidence in the rule sets emitted by the controller, the
operator must assure the integrity of the controller software. As
a precondition for running a secure SDN network, the operator
must therefore be certain that the software they intend to run
is the software that is actually executed on the SDN controller.

To install an SDN controller, the operator would typically
start by installing a Linux distribution such as Debian on a
server. Using the integrated package manager APT, an SDN
controller software package can then be installed, customized,
and configured. During the life time of the controller, security
updates are provided through the distribution. Package down-
loads for installation and updates are traditionally secured with
cryptographic signatures [1].

This mechanism critically depends on the secret key used
for signing and is in particular vulnerable to targeted back-
doors introduced by the publisher. A backdoor is targeted,
when it is presented only to a selected victim. To combat
this, we propose a transparency-based approach that achieves
detection of targeted backdoors, verification of relationship
between source code and binary, and developer accountability
in case of violations.

II. BACKGROUND AND RELATED WORK

Package-based software distribution is regularly based on
releases. A release fixes by cryptographic hash the package
contents and meta data e.g., dependencies [2]. If any of
these change, a new release file must be created. In the case
of Debian, this release file is signed by the archive server,
the authoritative central distribution point. The archive then
distributes the packages and meta data to a content distribution
network, making it available for installation by clients.

Augmenting systems traditionally based on cryptographic
signatures, Merkle tree-based append-only log servers have

archive log monitor

CDN client/SDN controller

submit release

publish
release

inclusion,
consisteny proofs

Figure 1. Transparency log for software releases.

been proposed to improve security in several applications.
They allow to efficiently prove inclusion of elements and
historic consistency.

In Certificate Transparency, all certificates are submitted
into a public Merkle tree-based log [3]. User agents verify this
inclusion. Site operators can now notice unexpected certifi-
cates by monitoring the logs, and thereby identify certification
authorities misissuing certificates.

In CHANIAC, witness servers act as log for software
updates and signing keys [4]. These witness servers cooperate,
but must be independent. Approval by multiple developers is
required for a release.

III. DESIGN

We propose a design for a transparency system for APT-
based distributions such as Debian. In Debian, developers
upload signed source code, accompanied by meta data such as
build instructions, for compilation by the archive. The archive
creates new releases per policy. These are published to a CDN,
where clients such as SDN controllers retrieve them. This
operation is shown in Figure 1, where the transmission of
software package is noted in dashed lines.

We now introduce the transparency system consisting of a
public, append-only Merkle tree log, a monitor, and a modified
client. Trusted components are marked gray in Figure 1. The
log is untrusted and kept trustworthy through the actions
of potentially many monitors. The archive submits release
information into the log. The monitors verify the correct
operation of the log and communicate with the client if there
are problems with the log’s record keeping. For a new release,
clients check if it was published in the log.

The log, monitor and client constitute a pledged trans-
parency overlay as defined and proven by Chase and Meik-
lejohn [5]. We will describe their respective functions briefly,
and present the additional verification functions required to
adapt the overlay for our use case.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/92702195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Log operation

The proofs provided by the log follow standard Merkle tree
operations as described in other hash tree-based systems [3],
[5]. Should any of these proofs not succeed, the client has
cryptographic evidence of misbehaviour by the log. This
evidence can be published out of band and constitutes the
starting point of an investigation into the compromise of the
distribution infrastructure.

The archive submits the release file, meta data files, and
source code to the log server. The log server must respond
with signed statements promising inclusion of these items into
the Merkle tree, similar to a receipt.

The inclusion promises are distributed via the CDN together
with the packages. Using the properties of the log’s Merkle
tree, clients can now verify that a given release file had been
logged by querying the log server for cryptographic proof.
This proof contains in particular the signed root of the hash
tree.

The client can also verify that the state of the log server
is consistent with the state at the time of last contact, i.e. it
has operated append-only. To do this, the log is queried for a
proof of consistency between the roots of the hash tree at the
time of the previous update and the tree root observed in the
previous step.

B. Monitor functions

To ensure the honest operation of the archive and the log,
monitors continually retrieve tree roots and the elements
covered by the hash tree as they become available. When a
new release file is downloaded from the log, the following
additional validation procedures are executed.

1) Complete coverage: Verify that all elements covered by
the release file are logged, including the release file itself,
meta data files, and source code. This check ensures that all
information the client depends on when installing package is
public and immutable.

2) Source availability: For each software package it is
checked that the corresponding source code has been logged.
This ensures the presence of source code in case of code
audits.

3) Version increment: When the contents of a package,
its meta data, or its source code change, its version number
must be incremented. This ensures no client can be tricked by
maliciously meddling with version numbers or dependencies
e.g., into installing an older version with known vulnerabilities.
Changes to a binary package must be accompanied by a
change in build instructions or source code.

4) Authorization: For each changed package source it is
verified that it was uploaded and signed by developer autho-
rized for this package.

5) Reproducibility: For each changed package source, the
source code is compiled. The hash of the resulting binary
package is compared to the hash contained in the meta data
covered by the release file.

If any of these checks fail, the monitor issues an alert.
Additionally, clients may contact monitors in order to compare

their view on the tree. Using the tree roots they have observed
respectively, they can request a consistency proof from the
log. This proof demonstrates that the trees presented to both
parties are consistent with each other.

IV. EVALUATION

We implemented a prototype of this system for Debian, based
on the Trillian hash tree implementation. In the following, we
outline the security properties.

The security of the log system itself is derived from the
pledged transparency overlay [5]. Alerts in monitor functions
identify misbehaviour attributable to the archive.

Assume there is a backdoor in one of the packages. The
client requests proof from the log that the release is covered by
the hash tree. By monitor function III-B1, all meta information
is present in the log and the corresponding source can be
identified. By functions III-B2 and III-B5, the source matching
the binary package is available. Since the source is signed by
the developer, the backdoor can be attributed to them. Should
any other step fail, the archive or log operator is to blame.

Concluding, we achieve the goals lined out in the beginning.
By verifying the log inclusion of all code, any backdoor must
be public and cannot be targeted, i.e. presented selectively to
the victim. The provenance of code can be traced back to
a specific developer by logging the signed source code. The
relationship between source code and binary is verified by
monitor functions.

V. CONCLUSION

This work presents a transparency system for APT-based
distributions of software packages as are often used in Soft-
ware Defined Networking. We achieve detection of targeted
backdoors, ascertain mapping between source code and ex-
ecutable binary, and provide developer attribution in case
of malfeasance. This approach provides security properties
to softwarized networks that are not achieved in traditional
networks. Investigating secure distribution of shared module
components e.g., of network operating systems, remains future
work.

ACKNOWLEDGEMENTS

We thank Lukas Schwaighofer for valuable suggestions and
Markus Teich for help with programming.

REFERENCES

[1] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look in the
Mirror: Attacks on Package Managers,” in Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08.

[2] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable Key
Compromise in Software Update Systems,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS ’10.

[3] E. Messeri, A. Langley, E. Käsper, B. Laurie, and R. Stradling,
“Certificate Transparency Version 2.0.” [Online]. Available:
https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-24

[4] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “CHAINIAC: Proactive Software-
Update Transparency via Collectively Signed Skipchains and Verified
Builds,” in 26th USENIX Security Symposium (USENIX Security ’17).

[5] M. Chase and S. Meiklejohn, “Transparency Overlays and Applications,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16.


