
Towards a Resilient In-Band SDN Control Channel
Polina Goltsman

and Martina Zitterbart
Institute of Telematics

Karlsruhe Institute of Technology
Email: {goltsman,zitterbart}@kit.edu

Arthur Hecker
Huawei European Research Center
Email: artur.hecker@huawei.com

Roland Bless
Institute of Telematics

Karlsruhe Institute of Technology
Email: bless@kit.edu

Abstract—In-band SDN control simplifies SDN deployment but
introduces new challenges as the network control commands are
running on top of the data plane they are configuring. We argue
to put responsibility of maintaining connectivity of the control
channel on the switches. Based on this idea this paper presents a
design of a distributed protocol which focuses on resilience and
low protocol overhead.

I. INTRODUCTION

In software-defined networks (SDN) the network control
plane is physically separated from the data plane. A (logically-
) centralized SDN controller is deployed on a dedicated
node(s) within the network. This raises the question: how
the connectivity between the two planes is established and
maintained. The SDN controller requires a communication
channel to each SDN switch which we refer to as an SDN
control channel. Two principle design options exist: an out-of-
band or an in-band control channel. The former runs over a
separate management network, while the latter shares network
links with normal network traffic. Although not maintaining
a separate management network offers several benefits [1],
maintaining connectivity of the in-band control channel is
challenging, as controller’s changes to the data plane may
affect the connectivity of the control channel and, thus, the
ability of the controller to manage the switches.

Connectivity of the control channel is critical for a seamless
operation of an SDN-based network. In addition to physical
failures, connectivity of the control channel can also be broken
by (erroneous) management commands. Note, that the control
logic is implemented in applications hosted on the controller.
Such an application could, for example, issue a command to
close a port, that is currently used by the control channel, thus
introducing a link failure. If the connectivity of the control
channel is maintained by the controller itself, as it is done in [1],
[2], special mechanisms to prevent such situations are required.
Contrary to these works, we argue that the control channel
will be more resilient if the responsibility of maintaining the
connectivity to the controller lies on switches and not on the
controller.

We are currently developing the distributed protocol IS-C
(intermediate system to controller) for maintaining connectivity
of the in-band control channel. To keep the protocol overhead
low, IS-C is tailored to the traffic pattern of the SDN
control channel. Furthermore, it incorporates several resiliency
mechanisms, including fast reroute [3], to minimize packet

losses in case of failures. Within this short paper we present
the basic concepts behind IS-C.

II. OVERVIEW OF IS-C

The design of IS-C is based on two main ideas. First, on
the SDN control channel the traffic is flowing only between
the controller and each switch and the protocol only needs to
maintain these routes. Existing protocols, such as STP, OSPF
or IS-IS/Trill, allow to route traffic between all pairs of nodes.
Instead IS-C should reduce protocol overhead by calculating
only the necessary paths. Second, the SDN control channel
is critical for the operation of the network. Thus IS-C should
aim at maintaining connectivity during recovery from failures.

IS-C is distributed, therefore, each switch hosts an entity of
IS-C’s control plane. The control plane entity communicates
with its switch’s data plane using OpenFlow. In particular, it
installs rules in the OpenFlow pipeline. IS-C uses the IPv6
packet format, but assigns different semantics to individual
fields.

Additionally, we defined following requirements for the
protocol. As the space in OpenFlow tables is a limited resource,
the protocol should minimize the necessary number of entries
in the flow tables. The protocol should not require manual
configuration. However, we assume that the switches have
unique identifiers from a possibly flat address space.

The resulting protocol is consists of the following three main
building blocks: (1) a spanning tree, (2) a labeling scheme [4],
and (3) a fast reroute mechanism [3]. Below we describe the
functionality of IS-C’s control plane.

A. IS-C in a Nutshell

The protocol calculates a minimum depth spanning tree
rooted at the controller. The traffic is flowing only along the
branches of the tree in both directions. We utilize a prefix-
based labeling scheme to assign temporary addresses to nodes
(see Fig. 1). The address of each node encodes its position
in the tree. This allows prefix-based forwarding in the data
plane if each node installs rules to its children. Therefore,
IS-C keeps forwarding tables small, that is O(node degree),
without requiring manually assigned hierarchical addresses.
Finally, each node pre-calculates backup recovery paths that
route around parent link and node. All of the sub-tasks are
performed using distributed algorithms.



C
0

a
01

e011f012

g
013

b
02

h
021

i
022 j

023

c
03

k
032

2−→

l
031

1−→
3−→

d
04

m
0422−→

n
0411−→

4−→

tree link non-tree link

Figure 1. An illustration of the labeling scheme. Each node numbers its
children (only shown for the nodes on the right) and this number is appended
to the parent label. Each number is encoded as a fixed-width binary.

B. Fast Reroute

Besides normal primary routes the protocol calculates
alternative recovery paths that are used if links or nodes on
the primary paths fail. We use pre-calculated recovery paths as
this feature is supported by OpenFlow. The following scheme
protects against a single link or node failure.

Each node calculates a recovery path to its tree parent (to
protect against link to parent failure) and the parent of its parent
(parent node failure). To find these paths nodes use breadth-
first-search to learn the topology of their local neighborhood.
We use a scheme that is similar to [5]. Once the paths are
determined, the node uses signaling mechanism to install the
routes on the nodes along the path. An example of a backup
path is shown in Fig. 2.

C. Handling Topology Changes

We aim to not disrupt packet flow during route recalculations.
In IS-C the primary technique to accomplish this is to introduce
sequence numbers to labels. The labels have the form {sequence
number, prefix}. When the tree is recalculated, the sequence
number is increased and the prefixes are updated. This allows
two versions of the tree to coexist temporarily: when the labels
change, new rules are added to the data plane and an expiration
timeout is set on the old rules. The packets can be forwarded
using the “old” tree while the “new” tree is being calculated.

With fast reroute employed, the protocol does not need
to recalculate the primary routes immediately after failures.
Instead we use periodic convergence with a fairly large period
of several minutes to suppress convergence on transient failures.
During the convergence, that is recalculating of the new tree
and re-labeling, the nodes use old addresses and old routes.
Once the convergence is finished and new rules are written
to the data plane, the controller signals the nodes to use the
new addresses. This ensures update consistency. The protocol
utilizes distributed termination detection which is a known
problem in the area of distributed systems. Since the old tree
remains routable for this time, the packet flow is only disrupted
by failures not covered by fast reroute.

ancestor

parent n

n1 n11
C

recovery path from parent to n
recovery path from n to root

resume normal
forwarding

Figure 2. An example of recovery paths calculated by node n.

D. Outlook

We are currently working on improving the following two
features of the protocol. First, the fast-reroute scheme will be
extended to protect against several failures with at least high
probability. Second, currently, each change in the topology
requires re-labeling of the complete tree. Our goal is to replace
this mechanism with a mechanism which requires relabeling
of only the affected sub-tree.

III. RELATED WORK

Most current deployments use out-of-band control [2].
Centralized protocols to maintain connectivity of the in-band
control channel are developed, for example, in [1], [2]. In
both projects, the routes for the control channel are installed
and maintained by the controller. Similar to our work, [6]
proposes that the switches, not the controller, maintain the
control channel connectivity. Their work is complementary to
ours as [6] focuses on the integration of a distributed protocol
for the control channel into an SDN network while using an
existing protocol OSPF as a proof-of-concept. We focus on
the design of the protocol itself, including especially improved
and built-in resiliency.

REFERENCES

[1] S. Sharma, D. Staessens, et al., “Automatic bootstrapping
of openflow networks”, in 19th IEEE Workshop on Local
& Metropolitan Area Networks (LANMAN), IEEE, 2013.

[2] M. Canini, I. Salem, et al., “A self-organizing distributed
and in-band SDN control plane”, in 37th IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), 2017.

[3] M. Shand and S. Bryant, “IP fast reroute framework”,
RFC 5714.

[4] N. Santoro and R. Khatib, “Labelling and implicit routing
in networks”, The computer journal, vol. 28, no. 1, 1985.

[5] W. Tavernier, D. Papadimitriou, et al., “Self-configuring
loop-free alternates with high link failure coverage”,
Telecommunication Systems, vol. 56, no. 1, 2014.

[6] T. Omizo, T. Watanabe, et al., “Resilientflow: Deploy-
ments of distributed control channel maintenance modules
to recover sdn from unexpected failures”, IEICE Trans-
actions on Communications, vol. 99, no. 5, 2016.


