
A	functional	characterization	of	a	

Go-opsin	and	a	ratio-chromatic	depth	

gauge	in	Platynereis	dumerilii	

	
	
	
	
	

Dissertation	
der	Mathematisch-Naturwissenschaftlichen	Fakultät	

der	Eberhard	Karls	Universität	Tübingen	
zur	Erlangung	des	Grades	eines	
Doktors	der	Naturwissenschaften	

(Dr.	rer.	nat.)	
	
	
	
	
	

vorgelegt	von	
M.Sc.	Bioinf.	Martin	Gühmann	

aus	Berlin	
	
	
	
	

Tübingen	
2017	

	II	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Tag	der	mündlichen	Qualifikation:	 17.07.2017	
Dekan:	 Prof.	Dr.	Wolfgang	Rosenstiel	
1.	Berichterstatter:	 Dr.	Gáspár	Jékely	
2.	Berichterstatter:	 Prof.	Dr.	Heinz-R.	Köhler	
	

	 III	

Abstract	
Light	guides	marine	invertebrate	larvae	to	their	settlement	places.	A	light	guided	
behavior	 is	 phototaxis,	 which	 is	 mediated	 by	 opsins.	 Among	 the	 opsins,	 the	
Go-opsins	 are	 ancient,	 but	 poorly	 characterized,	 because	 they	 only	 survived	 in	
marine	 invertebrates.	A	Go-opsin	 is	expressed	with	 two	rhabdomeric	opsins	 in	
the	 adult	 eyes	 of	 the	 larva	 of	Platynereis	 dumerilii.	 In	 the	 larva,	 the	 adult	 eyes	
mediate	phototaxis.	
Here,	 I	 functionally	 characterized	 this	 Go-opsin1,	 by	 generating	 a	 Go-opsin1	
knockout	line	with	zinc-finger-nucleases.	I	designed	several	assays	to	study	light	
guided	 behaviors	 of	 the	 larvae	 and	 to	 compare	 phototaxis	 of	 wild	 type	 and	
Go-opsin1	knockout	larvae.	The	Go-opsin1	knockout	larvae	were	phototactic	but	
less	phototactic	to	blue-cyan-green	light,	which	is	the	spectral	range	that	closely	
matches	the	in	vitro	spectrum	of	Go-opsin1.	
Additionally,	I	found	a	new	light	guided	behavior,	which	is	as	fast	as	phototaxis.	
When	I	stimulated	the	larvae	with	UV-light,	the	larvae	swam	down	irrespective	
whether	the	light	came	from	the	top,	the	bottom	or	diffusely	from	all	sides.	This	
UV-response	is	a	positive	geotaxis	induced	by	non-directional	UV-light.	The	UV-
response	worked	against	phototaxis;	the	larvae	swam	down	to	certain	ratios	of	
UV	 and	 visible	 light.	 The	 ratios	 did	 not	 change	 when	 the	 light	 was	 dimmed.	
Therefore,	 the	 UV-response	 forms	 with	 phototaxis	 a	 ratio-chromatic	 depth	
gauge.	The	UV-response	spectrum	matched	the	absorption	spectrum	of	c-opsin1.	
C-opsin1	 is	 expressed	 in	 the	 ciliary	 photoreceptor	 cells,	 which	 have	 stacked	
membranes	and	so	may	be	very	sensitive.	
Therefore,	 the	 ciliary	 photoreceptor	 cells	 with	 c-opsin1	 may	 mediate	 the	 UV-
response,	 while	 phototaxis	 is	 mediated	 by	 Go-opsin1	 and	 the	 rhabdomeric	
opsins.	 Go-opsin1	 seems	 to	 couple	 to	 a	 Gq-protein	 in	 the	 rhabdomeric	
photoreceptor	 cells	of	 the	adult	 eyes.	Therein,	Go-opsin1	differs	 from	a	 scallop	
Go-opsin,	which	seems	to	couple	to	a	Go-protein	in	ciliary	photoreceptor	cells.	
Ciliary	photoreceptor	cells	as	in	Platynereis	dumerilii	are	common	among	marine	
invertebrate	larvae	so	that	the	depth	gauge	may	be	common	among	those	larvae,	
too.	 The	 depth	 gauge	may	 even	 trace	 back	 to	 the	 last	 common	 ancestor	 of	 all	
bilaterians.	The	depth	gauge	helps	the	larvae	to	find	the	right	depth	for	settling	
on	a	global	level,	while	positive	and	negative	phototaxis	helps	the	larvae	to	select	
locally	a	settlement	site.	
	

	IV	

Zusammenfassung	
Licht	 lenkt	 die	 Larven	 mariner	 Wirbellosen	 zu	 ihren	 Siedlungsorten.	 Ein	
lichtgelenktes	 Verhalten	 ist	 Phototaxis,	 welches	 durch	 Opsine	 vermittelt	 wird.	
Unter	den	Opsinen	sind	die	Go-Opsine	sehr	alt,	aber	schlecht	charakterisiert,	weil	
sie	 nur	 noch	 in	 marinen	 Wirbellosen	 existieren.	 Ein	 Go-Opsin	 ist	 mit	 zwei	
rhabdomerischen	 Opsinen	 in	 den	 definitiven	 Augen	 der	 Larve	 von	 Platynereis	
dumerilii	exprimiert.	In	der	Larve	vermitteln	die	definitiven	Augen	Phototaxis.	
Hier	charakterisierte	ich	dieses	Go-Opsin1	funktionell,	indem	ich	eine	Go-Opsin1-
Knockout-Linie	mit	Zinkfingernukleasen	erzeugte.	 Ich	entwickelte	verschiedene	
Versuche,	 um	 lichtgelenktes	 Verhalten	 der	 Larven	 zu	 untersuchen,	 und	 um	
Phototaxis	 von	 Wildtyp-	 und	 Go-Opsin-Knockout-Larven	 zu	 vergleichen.	 Die	
Go-Opsin-Knockout-Larven	 waren	 phototaktisch	 aber	 sie	 reagierten	 weniger	
phototaktisch	auf	blau-zyan-grünes	Licht,	welches	den	Spektralbereich	abdeckt,	
der	dem	in	vitro	Absorptionsspektrum	von	Go-Opsin1	entspricht.	
Außerdem	 fand	 ich	 ein	 neues	 lichtgelenktes	 Verhalten,	 das	 genauso	 schnell	
einsetzt	wie	Phototaxis.	Als	ich	die	Larven	mit	UV-Licht	stimulierte,	schwammen	
sie	 nach	 unten,	 egal	 ob	 das	 Licht	 von	 oben,	 unten	 oder	 diffus	 von	 allen	 Seiten	
kam.	Diese	UV-Antwort	ist	eine	positive	Geotaxis,	die	von	UV-Licht	aktiviert	wird.	
Die	UV-Antwort	arbeitet	gegen	Phototaxis:	Die	Larven	schwammen	nach	unten,	
wenn	UV	und	sichtbares	Licht	in	bestimmten	Verhältnissen	zueinanderstanden.	
Diese	 Verhältnisse	 änderten	 sich	 nicht,	 als	 das	 Licht	 gedimmt	 wurde.	 Daher	
bildet	 die	 UV-Antwort	mit	 Phototaxis	 einen	 ratio-chromatischen	 Tiefenmesser.	
Das	 UV-Antwortspektrum	 stimmte	 mit	 dem	 Spektrum	 von	 C-Opsin1	 überein.	
C-Opsin1	ist	in	den	ziliären	Photorezeptorzellen	exprimiert,	die	Membranstapel	
besitzen,	und	somit	sehr	sensitiv	sein	könnten.	
Daher	 könnten	 die	 ziliären	 Photorezeptorzellen	 mit	 C-Opsin1	 die	 UV-Antwort	
vermitteln,	 während	 Phototaxis	 durch	 Go-Opsin1	 und	 den	 rhabdomerischen	
Opsinen	 vermittelt	 wird.	 Go-Opsin1	 scheint	 in	 den	 rhabdomerischen	
Photorezeptorzellen	 der	 definiten	 Augen	 an	 ein	 Gq-Protein	 zu	 koppeln.	 Darin	
unterscheidet	 sich	 Go-Opsin1	 von	 einem	 Muschel-Go-Opsin,	 welches	 an	 ein	
Go-Protein	in	ziliären	Photorezeptorzellen	zu	koppeln	scheint.	
Ziliäre	Photorezeptorzellen	sind	verbreitet	unter	marinen	Wirbellosenlarven,	so	
dass	auch	der	Tiefenmesser	verbreitet	sein	könnte,	ja	sogar,	dass	er	bereits	vom	
letzten	 gemeinsamen	 Vorfahren	 aller	 Zweiseitentiere	 verwendet	 worden	 sein	
könnte.	Der	Tiefenmesser	hilft	den	Larven,	die	richtige	Tiefe	im	Allgemeinen	zu	
finden,	während	positive	und	negative	Phototaxis	den	Larven	vor	Ort	hilft,	einen	
Siedlungsort	zu	wählen.	

	 V	

Acknowledgements	
I	thank	Gáspár	Jékely	my	supervisor	for	all	the	support,	the	discussions,	and	the	
opportunity	to	work	with	him	on	such	a	wonderful	project,	which	turned	out	to	
be	more	complex	than	we	originally	thought.	I	guess	this	is	normal	and	the	whole	
point	of	doing	science.	And	obviously	not	everything	is	what	it	seems.	
I	thank	Nico	K.	Michiels	for	visiting	his	lab,	where	we	tinkered	with	the	column	
setup	 to	 remove	 some	 reflections.	However,	 the	 larvae	did	not	 care	 and	 swam	
down	the	same	way	as	before	to	UV-light.	Therefore,	he	concluded	that	the	UV-
response	is	not	negative	phototaxis	but	a	response	to	non-directional	light.	This	
changed	the	view	on	the	project	and	is	the	main	idea	that	helped	me	to	solve	the	
puzzle	of	the	depth	gauge.	
I	thank	Huiyong	Jia	and	Shozo	Yokoyama	for	measuring	the	absorption	spectra	of	
our	 opsins.	 This	 is	 not	 a	 trivial	 task	 and	 if	 I	 look	 at	 the	 literature	 with	 the	
Japanese	 quail	 and	 the	 chicken	 neuropsins,	 which	 should	 have	 the	 same	
absorption	spectrum	but	for	some	technical	reasons	do	not,	then	I	am	happy	that	
we	gave	this	task	to	them	the	experts.	
I	 thank	 all	 the	 past	 and	 present	 members	 of	 the	 Jékely	 lab	 whose	 company	 I	
enjoyed	and	who	helped	me	with	the	smaller	and	the	bigger	things	that	are	too	
hard	to	enumerate	here.	
Especially,	 I	 thank	Philipp	Bauknecht	and	Sarah-Lena	Offenburger	 for	 trying	 to	
measure	 the	 in	 vitro	 absorption	 spectra	 of	 the	 opsins;	 even	 so,	 they	 did	 not	
succeed.	And	I	thank	Philipp	Bauknecht	for	cloning	the	c-opsin1.	I	thank	Nadine	
Randel	 for	purifying	my	Go-opsin1	antibody	and	trying	to	stain	Go-opsin1	with	
it;	even	so	she	could	not	stain	Go-opsin1.	I	thank	Elizabeth	A.	Williams	for	giving	
me	 her	 analysis	 of	 the	Platynereis	 dumerilii	 single	 cell	 transcriptome,	 so	 that	 I	
could	estimate	how	many	opsins	are	expressed	in	the	ciliary	photoreceptor	cells.	
I	thank	Sanja	Jasek	for	the	nice	conversation	with	her	about	biology,	programing,	
language,	operating	systems,	browsers,	and	internet	security.		
I	thank	the	inventors	of	the	Internet,	without	it;	I	could	not	find	so	much	relevant	
literature	with	so	many	topics	and	process	it	all.	
I	thank	the	Flying	Spaghetti	Monster	for	delivering	us	from	the	creationists.	
And,	 I	 thank	my	parents	Herbert	 and	Christel,	my	 sister	Gabi,	 and	my	nephew	
Vincent	for	being	around	and	supporting	me.	
	 	

	VI	

Table	of	Contents	
1	 Introduction	...	1	
1.1	 Opsins	...	2	
1.1.1	 Ciliary	opsins	..	5	
1.1.2	 Rhabdomeric	opsins	...	7	
1.1.3	 Go-opsins	...	8	

1.2	 Platynereis	dumerilii:	A	model	organism	..	10	
1.2.1	 Platynereis	dumerilii	ecology	..	10	
1.2.2	 Platynereis	dumerilii	reproduction	..	11	
1.2.3	 Platynereis	dumerilii	development	and	life	cycle	..	12	
1.2.4	 Platynereis	dumerilii	as	a	model	animal	..	13	
1.2.5	 Studying	gene	expression	in	Platynereis	dumerilii	...	13	
1.2.6	 Modifying	gene	expression	in	Platynereis	dumerilii	...	14	
1.2.7	 The	connectome	of	Platynereis	dumerilii	..	15	
1.2.8	 Studying	behaviors	in	Platynereis	dumerilii	..	15	
1.2.9	 Cell	ablation	–	a	way	to	study	the	eyes	of	Platynereis	dumerilii	16	
1.2.10	 The	photoreceptor	cells	and	phototaxis	in	Platynereis	dumerilii	17	

1.3	 The	goals	...	19	

2	 Material	and	Methods	..	20	
2.1	 Platynereis	dumerilii	culture	..	20	
2.1.1	 Platynereis	dumerilii	batches	...	20	
2.1.2	 Culturing	batches	and	worm	culture	..	20	
2.1.3	 Water	change	in	the	culture	...	21	
2.1.4	 Platynereis	dumerilii	feeding	..	21	
2.1.5	 Go-opsin1	knockout	mutant	culture	..	21	
2.1.6	 Genotyping:	Single	worms	in	six-well-plates	..	22	

2.2	 Opsin	intron/exon	annotation	..	22	
2.3	 Go-opsin1	knockdown	and	knockout	...	23	
2.3.1	 The	injection	setup	...	23	
2.3.2	 The	injection	procedure	...	23	
2.3.3	 Go-opsin1	expression	knockdown	with	morpholinos	...	24	
2.3.4	 Go-opsin1	zinc-finger-nucleases	...	25	
2.3.5	 Genotyping	of	larvae	and	worms	...	25	
2.3.6	 Go-opsin1	mutant	crossing	..	27	

2.4	 Opsin	absorption	spectrum	measurement	..	29	
2.5	 Photobehavior:	The	experimental	assays	..	30	
2.5.1	 The	horizontal	phototaxis	assay	...	30	
2.5.2	 The	vertical	column	setup	for	measuring	photoresponses	31	
2.5.3	 The	protocols	for	the	vertical	column	..	32	

	 VII	

2.5.4	 Custom	java	program	for	controlling	the	monochromator	35	
2.5.5	 The	vertical	cuvette	setup	for	measuring	photoresponses	37	

2.6	 Photobehavior:	The	data	analyses	..	37	
2.6.1	 The	ImageJ	macros	...	38	
2.6.2	 ImageJ	modifications	...	38	
2.6.3	 The	Perl	script	..	41	
2.6.4	 Perl	script	mass	calling	...	48	
2.6.5	 Repairing	corrupted	avi-files	...	52	

3	 Results	...	52	
3.1	 The	larvae	swam	down	to	UV	and	up	to	green	light	..	52	
3.2	 The	larvae	switched	repeatedly	the	direction	with	the	wavelength	54	
3.3	 The	larvae	switched	swimming	direction	at	420	nm	..	55	
3.4	 Generating	a	Platynereis	dumerilii	Go-opsin1	knockout	line	..	55	
3.5	 Go-opsin1	knockout	larvae	are	less	phototactic	to	cyan	light	58	
3.6	 Go-opsin1	is	a	cyan	opsin	and	c-opsin1	is	a	UV	opsin	..	60	
3.7	 UV-response	and	phototaxis	can	be	separated	..	61	
3.8	 Larvae	swim	towards	UV	and	green	light	from	the	bottom	...	63	
3.9	 Already	41-hour-old	larvae	show	the	UV-response	..	64	
3.10	 From	36	hours	on,	larvae	respond	to	diffuse	UV-light	...	66	
3.11	 The	larvae	swim	down	to	diffuse	UV-light	in	a	narrow	spectrum	67	
3.12	 Platynereis	dumerilii	larvae	have	a	ratio-chromatic	depth	gauge	68	

4	 Discussion	..	71	
4.1	 Go-opsin1	contributes	with	other	opsins	to	phototaxis	..	71	
4.1.1	 Go-opsin1	and	the	circalunar	clock	...	73	
4.1.2	 What	is	the	G-protein	that	Go-opsin1	activates?	...	74	
4.1.3	 Other	opsins	that	may	couple	to	other	G-proteins	in	vivo	75	
4.1.4	 Why	do	different	phototransduction	cascades	exist	for	opsins?	78	
4.1.5	 What	determines	the	phototransduction	cascade?	..	79	

4.2	 The	UV-response	forms	with	phototaxis	a	depth	gauge	..	80	
4.2.1	 The	function	of	the	depth	gauge	...	83	
4.2.2	 Why	a	UV	down-swimming	response	instead	of	negative	phototaxis?	84	

4.3	 Outlook	and	evolutionary	context	of	ciliary	and	Go-opsins	...	85	
4.4	 Beyond	phototaxis	and	opsins	..	88	
4.4.1	 What	switches	the	sign	of	phototaxis	in	the	larvae?	..	88	
4.4.2	 How	do	the	larvae	know	where	is	down?	...	92	

4.5	 Conclusion	...	94	

5	 Contributions	..	95	

6	 List	of	Figures	..	95	

7	 List	of	Tables	...	96	

	VIII	

8	 List	of	Program	Codes	..	96	

9	 List	of	Abbreviations	...	97	

10	 Literature	...	98	

11	 Appendix	..	117	
11.1	 The	ImageJ	macros	for	larva	tracking	...	117	
11.2	 The	Perl	files	for	track	analysis	...	128	
11.3	 Controlling	the	monochromator	via	the	serial	port	...	168	
11.4	 Opsins	translated	with	annotated	introns	..	175	
11.5	 Test	statistics	details	for	Figure	13A	...	177	
11.6	 Test	statistics	details	for	Figure	13B	...	180	

	

	 1	

1 Introduction	
If	an	organism	moves	to	the	light	it	is	positively	phototactic	(photopositive).	If	it	
moves	 away	 from	 the	 light	 it	 is	 negatively	 phototactic	 (photonegative)(Jékely,	
2009;	 Menzel,	 1979).	 Phototaxis	 helps	 pelagic	 larvae	 of	 benthic	 marine	
invertebrates	to	spread.	The	larvae	are	first	photopositive	and	thus	move	to	the	
light	at	the	water	surface.	At	the	surface,	streams	can	move	the	larvae	far	away.	
Most	 larvae	become	photonegative	 later	 in	their	 life,	so	that	they	move	back	to	
the	bottom	of	 the	sea,	 ideally	to	a	similar	place	as	their	parents	have	 inhabited	
(Thorson,	1964)	or	other	shaded	places	like	ship	hulls	(Visscher,	1927).	Larvae	
of	different	species	differ	in	the	time	they	stay	photopositive	and	thus	how	long	
they	 stay	 in	 the	 open	 water	 column	 (Thorson,	 1964).	 However,	 how	 far	 the	
larvae	spread	depends	on	their	behavior:	Models	 treating	the	 larvae	as	passive	
particles	overestimate	 the	distance	 the	 larvae	disperse	 (Koehl	and	Reidenbach,	
2007;	Shanks,	2009).	Larvae	may	still	settle	close	to	their	parents’	place,	even	so	
they	have	lived	long	in	the	open	water	column	(Shanks,	2009).	
The	 open	 water	 column	 is	 a	 dangerous	 place,	 because	 there,	 the	 larvae	 are	
exposed	 to	 predators	 and	 ultraviolet	 (UV)	 light.	 UV-light	 can	 kill	 planktonic	
larvae	 (Thorson,	 1964).	 The	 larvae	 could	 use	 pigments	 to	 protect	 their	 bodies	
from	 UV-light.	 However,	 pigments	 also	 make	 the	 larvae	 or	 other	 planktonic	
organisms	 more	 visible	 to	 predators	 and	 thus	 avoiding	 UV-light	 is	 preferable	
(Leech	and	Jonsen,	2002).	
Some	species	only	live	in	a	2	m	layer	of	water	(in	any	depth).	To	get	there,	their	
larvae	must	move	away	from	the	water	surface,	which	they	could	do	by	negative	
phototaxis.	But	 they	must	not	swim	too	deep,	which	 they	could	do	by	negative	
gravitaxis	(Thorson,	1964),	which	brings	them	up.	
However,	some	larvae	must	have	also	other	possibilities	to	get	down:	The	larvae	
of	 the	 hydroid	 Clava	 multicornis	 seem	 to	 choose	 a	 settlement	 site	 with	
phototaxis.	They	are	photopositive	if	they	crawl	over	inert	surfaces,	but	become	
photonegative	 if	 they	 crawl	 over	 the	 surface	 of	 the	 brown	 alga	 Ascophyllum	
nodosum,	their	natural	settling	substrate	(Williams,	1965).	Similar	are	the	larvae	
of	 the	 sinistral	 spiral	 tubeworm	 Spirorbis	 borealis.	 They	 also	 become	
photonegative	 when	 they	 contact	 their	 preferred	 brown	 alga	 Fucus	 serratus.	
Fucus	serratus	extract	is	enough	to	make	them	photonegative	as	long	as	it	is	on	a	
surface,	 however	 the	 extract	 has	 no	 effect	 if	 it	 just	 dissolved	 in	 the	 seawater	
(Williams,	 1964).	 In	 general,	 negative	 phototaxis	 seems	 to	 be	 associated	 with	

	2	

settlement,	because	shaded	parts	of	ship	hulls	are	more	fouled	(Visscher,	1927),	
that	means	more	larvae	settle	there.	
If	 the	 larvae	 use	 negative	 phototaxis	 to	 choose	 a	 settlement	 site	 and	 do	 so	 by	
becoming	 photonegative	 locally,	 they	 need	 another	 mechanism	 to	 find	 the	
correct	depth,	which	could	be	a	ratio-chromatic	depth	gauge.	Such	a	depth	gauge	
is	 based	 on	 the	 different	 attenuation	 of	 different	 wavelengths	 in	 water	 and	 is	
independent	 of	 the	 absolute	 light	 intensity.	 For	 instance,	 monochromatic	 blue	
light	 (470	nm)	penetrates	water	 the	deepest	while	UV-light	 (380	nm)	or	 green	
light	(540	nm)	disappears	before	blue	light	(Lythgoe,	1988).	
Such	a	depth	gauge	has	been	proposed	for	the	polychaete	worm	Torrea	candida.	
Torrea	 candida	 has	 an	 eye	with	 a	main	 retina	 and	 two	 accessory	 retinae.	 The	
main	 retina	 is	 maximally	 sensitive	 to	 UV-light	 (400	nm)	 and	 the	 accessory	
retinae	 are	 maximally	 sensitive	 to	 green-yellow	 light	 (560	nm).	 The	 light	
perceived	from	both	retinae	types	needs	only	be	compared	to	indicate	the	depth	
(Wald	 and	 Rayport,	 1977).	 A	 ratio-chromatic	 depth	 gauge	 has	 also	 been	
proposed	at	the	level	of	photoreceptor	cells:	Where	a	cell	contains	two	types	of	
opsins,	 one	 type	 hyperpolarizing	 and	 another	 type	 depolarizing	 the	 cell.	 Both	
types	 would	 use	 different	 signal	 cascades	 and	 work	 antagonistically	 (Nilsson,	
2009,	2013).	Such	an	antagonism	works	in	the	parietal	eye	of	the	lizard	(Su	et	al.,	
2006),	 however	 it	 does	 not	 gauge	 depth,	 but	 detects	 dawn	 and	 dusk	 (Solessio	
and	 Engbretson,	 1993).	 Such	 an	 antagonism	 was	 suggested	 to	 be	 the	
evolutionary	 reason,	 why	 opsins	 exist	 that	 couple	 to	 different	 signal	 cascades	
and	thus	hyperpolarize	or	depolarize	their	host	cells,	respectively	(Nilsson,	2009,	
2013).	

1.1 Opsins	
The	first	opsin	was	described	by	Boll	(1876)	from	the	isolated	dark-adapted	frog	
retina.	 Such	 a	 frog	 retina	 looks	 to	 the	 human	 eye	 purple.	 The	 purple	 becomes	
yellow	and	eventually	colorless	when	the	retina	 is	exposed	to	 light	(Boll,	1876;	
Kühne,	1878).	The	purple	can	be	mistaken	as	red.	Therefore,	Boll	called	the	color	
visual	 purple	 first	 (Boll,	 1876)	 and	 then	 visual	 red	 (Boll,	 1877).	 Further,	 Boll	
speculated	whether	the	visual	red	was	a	physical	property	of	 the	rods	or	a	rod	
pigment,	which	he	would	have	called	erythropsin	if	he	could	have	isolated	it.	The	
pigment	was	then	isolated	and	called	visual	purple	by	Kühne	(1878).	Kühne	also	
called	 the	 yellow	 and	 the	 colorless	 pigment	 visual	 yellow	 and	 visual	 white,	
respectively.	Later,	Ewald	and	Kühne	(1878)	coined	international	synonyms	for	

	 3	

visual	 purple,	 yellow,	 and	 white:	 Rhodopsin,	 xanthopsin,	 and	 leukopsin,	
respectively.	
Rhodopsin	 consists	 of	 a	 colorless	 protein	 and	 a	 covalently	 bound	 retinal	
molecule	 (originally	 named	 retinene)(Wald,	 1934),	 which	 is	 linked	 in	 11-cis-
conformation	 (Brown	 and	Wald,	 1956;	 Oroshnik,	 1956;	 Oroshnik	 et	 al.,	 1956;	
Wald	et	al.,	1955)	via	a	protonated	Schiff	base	(Collins,	1953;	Pitt	et	al.,	1955)	to	
a	 Lysine	 (Bownds,	 1967)	 in	 the	 seventh	 of	 seven	 transmembrane	 domains	
(Hargrave	et	al.,	1983;	Murakami	and	Kouyama,	2008;	Palczewski	et	al.,	2000).	
The	colorless	protein	is	called	opsin	since	1951	(Hubbard	and	Wald).	Retinal	was	
originally	 called	 retinene	 and	 renamed	 (Morton	 and	 Goodwin,	 1944;	 Wald,	
1968),	afterwards	it	was	found	to	be	the	aldehyde	of	Vitamin	A	(Ball	et	al.,	1946,	
1948).	Xanthopsin	 is	 in	 fact	 a	mixture	of	 the	 colorless	protein	and	 free	 retinal,	
which	 is	 yellow.	The	 retinal	 changes	 to	 vitamin	A,	which	 is	 colorless,	 and	 thus	
leukopsin	is	a	mixture	of	a	protein	and	vitamin	A	(Wald,	1934,	1935).	
Rhodopsin	 gains	 its	 purple	 color	 by	 binding	 11-cis-retinal,	 covalently.	 11-cis-
retinal	 isomerizes	 to	 all-trans-retinal	 upon	 light	 exposure	 and	 changes	 the	
conformation	of	rhodopsin	via	 intermediates	to	metarhodopsin	II	(Wald,	1968)	
its	 active	 state	 (Choe	 et	 al.,	 2011;	 Hargrave,	 2001).	 Metarhodopsin	 II	 releases	
all-trans-retinal	 and	 becomes	 colorless	 at	 or	 above	 0°C.	 As	 long	 as	
metarhodopsin	 II	has	not	released	all-trans-retinal,	 it	 can	be	converted	back	 to	
11-cis-retinal	by	another	photon	(Wald,	1968).	Below	0°C,	metarhodopsin	II	does	
not	 release	all-trans-retinal	 so	 that	metarhodopsin	 II	 is	 as	 stable	 as	 rhodopsin.	
This	state	is	called	bistable.	
The	opsin	terminology	is	complicated	in	the	literature,	because	it	evolved	and	at	
the	 beginning,	 people	 could	 only	 look	 at	 the	 superficial	 features	 like	 its	 color.	
Therefore,	 Hubbard	 and	 Wald	 (1951)	 distinguished	 between	 rhodopsin	 and	
opsin.	 Opsin	 is	 here	 only	 the	 protein	 component,	 while	 rhodopsin	 is	 the	
photoreceptor:	Opsin	with	a	covalently	bound	retinal.	Koyanagi	et	al.	(2002)	and	
Terakita	et	al.	(2004)	use	rhodopsin	also	for	other	opsins	than	for	the	opsins	of	
the	vertebrate	rods,	even	if	those	opsins	are	not	purple.	Hofmann	and	Palczewski	
(2015)	 use	 rhodopsin	 to	 exclusively	 refer	 to	 the	 opsin	 of	 the	 vertebrate	 rods,	
irrespective	whether	 retinal	 is	 actually	 bound	 or	 not.	 Porter	 et	 al.	 (2012)	 and	
Feuda	et	al.	(2012)	use	rhodopsin	exclusively	for	the	opsin	of	the	vertebrate	rods	
and	opsin	for	all	other,	irrespective	weather	retinal	is	bound	or	not.	Here,	I	will	
also	use	opsin	for	all	opsins,	irrespective	whether	retinal	is	bound	or	not	and	use	
rhodopsin	for	the	opsin	of	the	vertebrate	rods,	only.	

	4	

This	 view	 also	 focuses	 more	 on	 the	 molecular	 properties	 and	 not	 whether	 a	
pigment	is	purple	or	has	another	color.	Pigment	is	also	misleading:	Even	so,	it	is	
popular	in	the	literature,	because	a	pigment	is	a	substance	that	gives	its	color	to	
another	 substance.	 It	 does	 so	 by	 absorbing	 certain	 wavelengths	 of	 light	 and	
reflecting	 diffusely	 the	 other	 wavelengths	 to	 an	 observer.	 The	 observer	
interprets	these	wavelengths	as	color.	However,	biologically	it	is	not	about	what	
wavelengths	 an	 opsin	 reflects	 but	 the	 wavelengths	 it	 absorbs,	 and	 thus	 can	
detect.	
This	may	depend	on	the	kind	of	retinal,	for	instance	the	rod-opsin	of	the	bullfrog	
can	contain	either	11-cis-retinal	or	11-cis-3-dehydroretinal	in	the	same	retina	at	
the	same	time.	The	11-cis-3-retinal-rod-opsin	absorbs	maximally	at	502	nm	and	
the	11-cis-3-dehydroretinal-rod-opsin	at	522	nm	(Reuter	et	al.,	1971).	Reuter	et	
al.	but	already	Wald	(1937)	used	 for	 these	 forms	of	opsin	 the	 terms	rhodopsin	
and	porphyropsin,	respectively.	
However,	 the	 absorption	 spectrum	 of	 an	 opsin	 largely	 depends	 on	 its	 amino-
acid-sequence.	The	chicken	short	wavelength	sensitive	1	(SWS1)	opsin	absorbs	
maximally	 at	 415	nm	 and	 if	 serine	 84	 is	 replaced	 by	 a	 cysteine,	 it	 absorbs	
maximally	at	369	nm	(Yokoyama	et	al.,	2000),	which	is	a	shift	of	46	nm.	Similar	
the	human	red	and	green	opsins:	They	differ	in	15	of	their	364	amino	acids,	and	
only	seven	amino	acids	shift	their	absorption	maxima	by	31	nm	from	532	nm	to	
563	nm.	A	single	amino	acid	may	shift	 the	absorption	maximum	by	2	 to	15	nm	
(Asenjo	et	al.,	1994).	This	way,	an	opsin	absorption	spectrum	can	be	fine-tuned	
across	a	range	of	wavelengths:	The	vertebrate	middle/long	wavelength	sensitive	
(M/LWS)	 opsins	 maximally	 absorb	 between	 500	 and	 580	nm	 if	 they	 contain	
11-cis-retinal,	 if	 they	contain	11-cis-3-dehydroretinal	 they	absorb	between	515	
and	625	nm,	maximally	(Amora	et	al.,	2008).	
Opsins	did	not	only	diversify	by	absorption	spectra	but	also	in	other	ways.	They	
belong	 to	 the	 superfamily	 of	 G-protein	 coupled	 receptors	 (GPCRs)	 (Terakita,	
2005)	and	diversified	into	several	families	during	the	early	evolution	of	marine	
metazoans.	Opsins	 (of	bilaterians)	have	been	classified	 into	 four	major	groups,	
the	 xenopsins	 (Ramirez	 et	 al.,	 2016),	 the	 rhabdomeric	 (r-)opsins,	 the	 ciliary	
(c-)opsins,	and	the	tetraopsins	uniting	Go-opsins,	neuropsins,	retinochromes	and	
retinal	 G-protein-coupled	 receptor	 (RGR)	 opsins,	 and	 peropsins	 (Cronin	 and	
Porter,	2014;	Delroisse	et	al.,	2014;	Feuda	et	al.,	2012;	Feuda	et	al.,	2014;	Porter	
et	 al.,	 2012).	Whether	 the	 peropsins	 are	 separate	 from	 the	 retinochromes	 and	
RGR-opsins	 is	 so	 far	unclear.	These	 four	groups	 trace	back	 to	 the	 last	 common	
ancestor	of	cnidarians	and	bilaterians	(Porter	et	al.,	2012;	Ramirez	et	al.,	2016).	

	 5	

They	 may	 even	 trace	 back	 to	 the	 last	 common	 ancestor	 of	 cnidarians,	
ctenophores,	and	bilaterians	(Feuda	et	al.,	2014;	Suga	et	al.,	2008).	Rhabdomeric	
opsins	and	ciliary	opsins	have	been	extensively	studied,	because	they	represent	
visual	opsins	 from	invertebrates	and	vertebrates,	however	we	know	less	about	
the	tetraopsins.	

1.1.1 Ciliary	opsins	
The	ciliary	opsins	are	housed	in	ciliary	photoreceptor	cells	and	mediate	vision	in	
vertebrates.	The	first	ciliary	opsin	was	described	by	Boll	(1876)	(see	section	1.1	
above).	 Ciliary	 opsins	were	 previously	 called	 vertebrate	 opsins,	 but	 the	 labels	
vertebrate	and	invertebrate	opsins	became	meaningless,	when	melanopsin	was	
discovered	 in	 the	African	 clawed	 frog	 (Xenopus	 laevis),	 because	melanopsin	 is	
more	 like	 invertebrate	 than	 vertebrate	 visual	 opsins	 (Provencio	 et	 al.,	 1998).	
Therefore,	Arendt	and	Wittbrodt	(2001)	referred	to	vertebrate	and	invertebrate	
opsins	 as	 ciliary	 and	 rhabdomeric	 opsins,	 respectively.	 In	 fact,	 Arendt	 et	 al.	
(2004)	 found	 later	 a	 ciliary	 opsin	 in	 the	 brain	 of	 the	 invertebrate	 Platynereis	
dumerilii.	The	ciliary	opsins	of	the	vertebrate	rods	and	cones	have	been	studied	
and	reviewed	extensively	(e.g.	Arshavsky	et	al.,	2002;	Filipek	et	al.,	2003;	Luo	et	
al.,	2008;	Yau	and	Hardie,	2009):	
Ciliary	opsins	bind	the	chromophore	11-cis-retinal.	When	11-cis-retinal	is	hit	by	
a	photon,	 it	 isomerizes	 to	all-trans-retinal,	 and	 so	 changes	 the	 conformation	of	
the	 opsin.	 This	 activates	 inside	 the	 cell	 a	 trimeric	 Gt-protein	 (also	 called	
transducin).	The	Gt-protein’s	alpha	subunit	activates	a	phosphodiesterase	(PDE),	
which	hydrolyzes	cyclic	guanine	monophosphate	(cGMP).	Thus,	the	intracellular	
cGMP	 concentration	 decreases	 and	 cGMP	 is	 removed	 from	non-selective	 cyclic	
nucleotide	 gated	 (CNG)	 cation	 channels.	 In	 darkness,	 the	 CNG	 channels	 are	
constantly	kept	open	by	cGMP,	so	that	a	steady	inward	current	(dark	current)	is	
maintained,	which	keeps	the	membrane	potential	at	 -30	mV,	which	depolarizes	
the	cell	 enough	 to	 release	 the	 transmitter	glutamate,	 continuously.	 In	 light,	 the	
CNG	 channels	 close	 and	 the	 cell	 hyperpolarizes	 and	 stops	 releasing	 glutamate	
(Figure	 1).	 This	way,	 upon	 light,	 the	 cell	 switches	 from	 an	 activated	 state	 to	 a	
deactivated	state.	Therefore,	this	response	to	light	has	been	called	OFF-response	
(Tosches	et	al.,	2014;	Vopalensky	et	al.,	2012).	However,	the	term	OFF-response	
is	misleading,	because	it	also	has	been	used	to	denote	the	response	of	a	cell	when	
the	light	is	switched	off	(Cornwall	and	Gorman,	1983;	McReynolds	and	Gorman,	
1970b).	

	6	

Rod	and	cone	opsins	are	intensively	studied,	because	they	mediate	vision.	Other	
ciliary	opsins	have	been	less	studied,	because	they	do	not	mediate	vision	or	are	
not	found	in	humans	or	at	least	in	mammals.	Other	vertebrate	ciliary	opsins	are	
the	 vertebrate	 ancient	 opsins	 (Soni	 and	 Foster,	 1997),	 the	
encephalopsins/panopsins	 (Blackshaw	and	Snyder,	 1999;	Halford	 et	 al.,	 2001),	
the	 parapinopsins	 (Blackshaw	 and	 Snyder,	 1997),	 the	 parietopsins	 (Su	 et	 al.,	
2006),	and	the	pinopsins	(Okano	et	al.,	1994).	A	parietopsin	and	a	pinopsin	in	the	
parietal	eye	of	the	lizard	differ	in	their	phototransduction	cascades	to	vertebrate	
visual	 opsins.	 The	 parietopsin	 couples	 to	 a	 Go-protein	 that	 inhibits	 a	
phosphodiesterase,	 while	 the	 pinopsin	 couples	 to	 a	 Ggust-protein,	 which	
activates,	like	a	Gt-protein,	the	phosphodiesterase.	The	photoreceptor	cells	of	the	
parietal	 eye	 have	 also	 CNG	 channels	 and	 thus	 pinopsin	 hyperpolarizes	 while	
parietopsin	 depolarizes	 (Su	 et	 al.,	 2006)	 (Figure	 1).	 Pinopsin	 and	 parietopsin	
antagonize	each	other	chromatically	to	enhance	the	contrast	between	dawn	and	
dust	(Solessio	and	Engbretson,	1993;	Su	et	al.,	2006).	
Ciliary	opsins	are	also	found	in	protostomes,	like	the	honeybee	and	other	insects,	
where	 they	 belong	 to	 the	 pteropsins,	 which	 are	 absent	 from	 Drosophila	
melanogaster	(Feuda	et	al.,	2016;	Velarde	et	al.,	2005).	Pteropsins	are	thought	to	
entrain	the	circadian	clock	in	insects	(Velarde	et	al.,	2005).	A	ciliary	opsin	is	also	
found	in	the	marine	annelid	Platynereis	dumerilii,	the	ciliary	opsin	is	thought	to	
entrain	 the	 circadian	 clock,	 as	well	 (Arendt	 et	 al.,	 2004).	 Another	 ciliary	 opsin	
was	 thought	 to	 be	 found	 in	 the	 eyes	 of	 the	 brachiopod	 larva	 of	 Terebratalia	
transversa	 where	 it	 was	 suggested	 to	mediate	 phototaxis	 (Passamaneck	 et	 al.,	
2011).	However,	this	opsin	was	reclassified	as	a	xenopsin	(Ramirez	et	al.,	2016).	
The	protostome	ciliary	opsins	do	not	couple	to	Gt-proteins,	because	protostomes	
do	not	have	Gt-proteins	(Lagman	et	al.,	2012;	Wilkie	and	Yokoyama,	1994).	Most	
likely	ciliary	opsins	in	vertebrate	ancestors	coupled	to	Gi-proteins	(Lamb,	2013).	
The	 Gt-proteins	 are	 derived	 from	 Gi-proteins,	 because	 all	 three	 vertebrate	
Gi-protein	genes	form	tandem	repeats	with	Gt-protein	genes	(Wilkie	et	al.,	1992;	
Wilkie	and	Yokoyama,	1994),	with	which	they	also	share	the	introns	(Oka	et	al.,	
2009).	
Whether	 vertebrate	 and	 protostome	 ciliary	 opsins	 further	 differ	 is	 unknown,	
especially	whether	their	phototransduction	cascades	are	conserved.	Protostome	
ciliary	opsins	may	activate	a	Gi-protein	since	a	mosquito	ciliary	opsin	couples	to	
a	Gi-protein	and	less	efficiently	to	a	Go-protein	(Koyanagi	et	al.,	2013).	Whether	
protostome	 ciliary	opsins	 are	bistable	unlike	 rod	and	 cone	opsins	 is	 unknown.	
Other	 ciliary	 opsins	 are	 bistable	 at	 non-physiological	 low	 temperatures:	

	 7	

Parietopsin	 is	 bistable	 at	 -10°C	 and	 monostable	 at	 20°C	 (Sakai	 et	 al.,	 2012),	
parapinopsin	 is	bistable	at	4°C,	vertebrate	ancient-long	opsin	 is	bistable	at	0°C	
(Sato	 et	 al.,	 2011),	 teleost	 multiple	 tissue	 opsins,	 which	 belong	 to	 the	
encephalopsins,	are	bistable	at	0°C	(Sakai	et	al.,	2015).	However,	whether	this	is	
physiologically	relevant	is	unknown,	since	Rhodopsin	is	also	bistable	below	0°C	
(Wald,	1968).	

1.1.2 Rhabdomeric	opsins	
The	 rhabdomeric	 opsins	 are	 housed	 in	 rhabdomeric	 photoreceptor	 cells	 and	
mediate	vision	in	invertebrates.	They	were	called	invertebrate	opsins,	but	when	
melanopsin	 was	 discovered	 (Provencio	 et	 al.,	 1998),	 the	 name	 was	
inappropriate,	 because	 melanopsin	 is	 a	 vertebrate	 rhabdomeric	 opsin.	 Since	
rhabdomeric	opsins	mediate	vision	in	invertebrates,	they	have	been	studied	and	
reviewed	 extensively	 (e.g.	 Hardie,	 2012;	 Hardie	 and	 Juusola,	 2015;	 Montell,	
1999,	2012;	Yau	and	Hardie,	2009;	Zuker,	1996):	
Rhabdomeric	 opsins	 are	 bistable	 at	 physiological	 temperatures,	 unlike	
vertebrate	 visual	 ciliary	 opsins.	 Rhabdomeric	 opsins	 bind	 11-cis-retinal.	When	
11-cis-retinal	is	hit	by	a	photon,	it	isomerizes	to	all-trans-retinal,	and	so	changes	
the	conformation	of	the	opsin.	This	activates	inside	the	cell	a	trimeric	Gq-protein.	
The	 Gq-protein’s	 alpha	 subunit	 activates	 a	 phospholipase	C	 (PLC),	 which	
hydrolyzes	 phosphatidylinositol-4,5-bisphosphate	 (PIP2)	 to	 inositol-1,4,5-
trisphosphate	 (InsP3),	 diacylglycerol	 (DAG)	 and	 a	 proton.	 This	 reaction	 opens	
transient	receptor	potential	(TRP)	channels	and	TRP	 like	(TRPL)	channels.	The	
TRP	 and	 TRPL	 channels	 let	 in	 Calcium	 ions	 so	 that	 the	 photoreceptor	 cell	 is	
depolarized	(Figure	1).	
How	the	TRP	and	TRPL	channels	are	exactly	opened	is	still	unclear	(Hardie	and	
Juusola,	 2015).	 When	 in	Drosophila	 melanogaster,	 rhabdomeric	 photoreceptor	
cells	are	illuminated,	their	membranes	contract.	This	may	be	a	physical	effect	of	
depleting	 PIP2.	 PIP2	 is	 a	 membrane	 phospholipid	 and	 when	 its	 inositol	 head	
group	is	cleaved	off,	the	membrane	area	is	reduced,	which	may	activate	the	TRP	
and	the	TRPL	channels	mechanically.	At	 least	 the	system	also	works	 if	 the	TRP	
and	the	TRPL	channels	are	replaced	by	gramicidin,	a	mechanosensitive	channel	
that	 responds	 to	 changes	 in	 the	 physical	 properties	 of	 the	 cell	 membrane,	
however	the	TRP	and	the	TRPL	channels	could	still	be	regulated	by	acidification	
caused	by	the	released	protons	(Hardie	and	Franze,	2012).	The	Drosophila	TRP	
and	TRPL	channels	are	closely	related	to	the	mammalian	canonical	TRP	(TRPC)	
channels	(Christensen	and	Corey,	2007).	In	fact,	TRPC6	can	also	be	activated	by	

	8	

stretching	the	membrane	mechanically	(Christensen	and	Corey,	2007;	Spassova	
et	 al.,	 2006).	 TRPC6	 mediates	 in	 mouse	 with	 TRPC1,	 TRPC3,	 and	 TRPC5	 the	
mechano-sensations	hearing	and	touch	(Quick	et	al.,	2012;	Sexton	et	al.,	2016).	
TRPC6	 and	 TRPC7	 mediate	 cell	 depolarization	 in	 intrinsically	 photosensitive	
retinal	 ganglion	 cells	 (Berson	 et	 al.,	 2002;	Xue	 et	 al.,	 2011).	 These	 cells	 do	not	
have	 rhabdomeres,	 but	 express	 a	 vertebrate	 rhabdomeric	 opsin:	 Melanopsin.	
Melanopsin	also	depolarizes	via	a	phospholipase	C	(PLCβ4)	(Xue	et	al.,	2011),	the	
TRPC6	 and	 TRPC7	 channels,	 and	 three	 Gq-type	 G-proteins:	 Gq,	 G11,	 and	 G14	
(Hughes	et	al.,	2015).	The	G-protein	types	can	replace	each	other	functionally,	so	
that	knocking	out	 two	of	 them	does	not	yield	a	phenotype	 (Chew	et	al.,	2014).	
This	 phototransduction	 cascade	 resembles	 the	 rhabdomeric	 phototransduction	
cascade	 in	 protostomes	 so	 that	 the	 urbilaterian,	 the	 last	 common	 ancestor	 of	
protostomes	and	deuterostomes,	may	have	had	it,	already.	
In	Xenopus	laevis,	melanopsin	is	expressed	in	dermal	melanocytes,	the	brain,	and	
the	 eye.	 In	 the	 eye,	 it	 is	 expressed	 in	 the	 iris,	 the	 retinal	 pigment	 epithelium	
(RPE),	and	the	inner	retina	(Provencio	et	al.,	1998).	In	mammals,	melanopsin	is	
found	 in	 blood	 vessels	 (Sikka	 et	 al.,	 2014),	 the	 iris	 (Xue	 et	 al.,	 2011),	 and	 the	
inner	 retina	 (Provencio	 et	 al.,	 2000).	 In	 the	 inner	 retina,	 it	 is	 restricted	 to	 the	
intrinsically	photosensitive	retinal	ganglion	cells	(Hattar	et	al.,	2002).	These	cells	
entrain	 the	 circadian	 clock	 (Berson	 et	 al.,	 2002;	 Hannibal	 et	 al.,	 2002)	 and	
mediate	the	light	reflex	of	the	pupil	(Hughes	et	al.,	2015;	Lucas	et	al.,	2001;	Lucas	
et	al.,	2003).	Mouse	and	human	melanopsins	are	most	sensitive	at	479	nm	and	
484	nm	 (cyan	 light),	 respectively	 (Bailes	 and	 Lucas,	 2013).	 Since	melanopsins	
are	 rhabdomeric	 opsins,	 they	 are	 to	 be	 expected	 to	 be	 bistable,	 too.	 However,	
melanopsins	are	either	bistable	or	monostable	(Davies	et	al.,	2011).	

1.1.3 Go-opsins	
Among	 the	 tetraopsins,	 the	 Go-opsins	 only	 exist	 in	 lophotrochozoans	 and	
invertebrate	 deuterostomes;	 they	 are	 lost	 in	 both	 ecdysozoans	 (Hering	 and	
Mayer,	2014)	and	vertebrates	(Porter	et	al.,	2012).	The	first	Go-opsin	was	found	
in	the	scallop	mantle-edge	eye	(Kojima	et	al.,	1997).	The	scallop	retina	has	two	
layers	of	photoreceptor	cells	(Dakin,	1928;	Küpfer,	1915),	a	layer	of	depolarizing	
rhabdomeric	 photoreceptor	 cells,	 and	 a	 layer	 of	 hyperpolarizing	 ciliary	
photoreceptor	cells	 (Barber	et	al.,	1967;	McReynolds	and	Gorman,	1970b).	The	
ciliary	 photoreceptor	 cells	 coexpress	 a	 Go-opsin	 and	 a	 Go-alpha	 subunit	 of	
trimeric	 G-proteins	 (Kojima	 et	 al.,	 1997)	 suggesting	 that	 the	Go-opsin	 initiates	
hyperpolarization	via	the	Go-alpha	subunit	(Gomez	and	Nasi,	2000;	Kojima	et	al.,	

	 9	

1997).	 The	 Go-alpha	 subunit	 activates	 a	 nitric-oxide-insensitive	 guanulylate	
cyclase,	 which	 hydrolyses	 GTP	 to	 cGMP	 (Gomez	 and	 Nasi,	 2000).	 The	 cGMP	
opens	 potassium	 selective	 CNG	 channels,	 leading	 to	 cell	 hyperpolarization	
(Cornwall	 and	 Gorman,	 1983;	 Gomez	 and	 Nasi,	 1995;	 Gomez	 and	 Nasi,	 1997;	
Gorman	 and	 McReynolds,	 1978)	 (Figure	 1).	 The	 hyperpolarizing	 response	 is	
most	sensitive	at	500	nm	(McReynolds	and	Gorman,	1970a),	suggesting	that	the	
scallop	 Go-opsin	 is	 a	 cyan-green	 opsin.	 Only	 tree	 more	 Go-opsins	 are	
characterized	 beyond	 their	 sequence:	 A	 Go-opsin	 expressed	 in	 the	 gastrula	 of	
Terebratalia	 transversa	 (Passamaneck	 and	 Martindale,	 2013).	 A	 Go-opsin	
expressed	 in	 two	 cells	 flanking	 the	 apical	 organ	 of	 the	 pluteus	 larva	 of	
Strongylocentrotus	 purpuratus	 (Valero-Gracia	 et	 al.,	 2016).	 And	 an	 amphioxus	
Go-opsin,	which	was	cloned	from	complementary	DNA	(cDNA)	and	characterized	
in	 vitro:	 The	 amphioxus	 Go-opsin	 binds	 11-cis-retinal,	 it	 absorbs	maximally	 at	
483	nm	when	11-cis-retinal	is	bound,	and	it	can	convert	back	11-cis-retinal	from	
all-trans-retinal	by	absorbing	another	photon	at	0°C	and	20°C	 (Koyanagi	 et	 al.,	
2002;	Tsukamoto	et	al.,	2005).	

	
Figure	1:	The	different	bilaterian	phototransduction	cascades	
The	 different	 phototransduction	 cascades	 found	 in	 bilaterian	 animals.	 Top	 to	 bottom:	 The	 ciliary	
phototransduction	cascade	(as	found	in	vertebrate	vision,	however	in	invertebrates	the	Gt-protein	may	be	
only	 replaced	 by	 a	 Gi-protein,	 but	 other	 differences	 are	 possible);	 the	 rhabdomeric	 phototransduction	
cascade;	 the	Go-opsin	mediated	phototransduction	 cascade	of	 the	 scallop	eye;	 and	 the	phototransduction	
cascades	 mediated	 by	 parietopsin	 and	 pinopsin	 of	 the	 parietal	 eye	 of	 the	 lizard.	 Each	 opsin	 acts	 on	 it	
G-protein,	 which	 then	 acts	 on	 its	 effector	 enzyme	 either	 by	 activating	 (é)	 or	 deactivating	 (ê)	 it.	 The	
effector	 enzyme	 may	 add	 (é)	 or	 remove	 (ê)	 second	 messenger	 molecules	 from	 the	 cell	 or	 the	 cell	
membrane.	For	the	rhabdomeric	cascade,	all	molecules	involved	are	shown,	because	which	of	the	molecules	
is	the	second	messenger	or	what	the	exact	mechanism	is,	is	not	clearly	known.	The	second	messengers	open	
or	 close	cation	channels,	which	 leads	either	 to	depolarization	 (Dp.)	or	hyperpolarization	 (Hp.)	of	 the	cell.	
The	channels	are	cyclic	nucleotide	gated	non-selective	cation	channels	(CNGs),	transient	receptor	potential	
cation	 channels	 (TRPs),	 or	 potassium	 selective	 cyclic	 nucleotide	 gated	 channels	 (K+CNGs).	 The	 second	
messengers	or	molecules	 involved	are	cyclic	guanosine	monophosphate	(cGMP),	phosphatidylinositol-4,5-
bisphosphate	(PIP2),	inositol-1,4,5-trisphosphate	(InsP3),	or	diacylglycerol	(DAG).	The	effector	enzymes	are	
phosphodiesterase	(PDE),	phospholipase	C	(PLC),	or	guanulylate	cyclase	(GC).	

 c-opsin è

 r-opsin è

 Go-opsin è

Parietopsin è

 Pinopsin è

Gt/Gi è

Gq è

Go è

Go è

Ggust è

PDEé è

PLCé è

GCé è

PDEê è

PDEé è

close CNGs

open TRPs

open K+CNGs

open CNGs

close CNGs

Hp.

Dp.

Hp.

Dp.

Hp.

cGMPê è

PIP2ê

InsP3é è

DAGé

cGMPé è

cGMPé è

cGMPê è

	10	

Go-opsins	are	difficult	to	study,	because	scallops	and	amphioxus	are	difficult	to	
manipulate	experimentally	and	they	are	missing	in	ecdysozoans	and	vertebrates,	
the	 classes	 that	 contain	 our	 classical	 genetically	 tractable	 model	 organisms.	
Therefore,	 their	 physiological	 functions	 are	 still	 unknown.	 However,	 Gáspár	
Jékely	 found	 a	 Go-opsin	 expressed	 in	 the	 nectochaete	 larva	 of	 Platynereis	
dumerilii	(Figure	2A,	D,	F,	J,	L).	

1.2 Platynereis	dumerilii:	A	model	organism	
Platynereis	dumerilii	was	originally	described	as	Nereis	dumerilii	by	Audouin	and	
Milne-Edwards	(1834)	and	was	later	reassigned	to	the	Platynereis	genus	(Fauvel,	
1914;	Read,	2015).	It	is	a	marine	annelid	worm	also	called	Dumeril’s	clamworm.	
Platynereis	 dumerilii	 lives	 in	 a	 wide	 range:	 In	 the	 waters	 of	 the	 Azores,	 the	
Mediterranean,	the	North	Sea,	the	English	Channel,	and	the	Atlantic	down	to	the	
Cape	of	Good	Hope.	 It	also	 lives	 in	 the	Black	Sea,	 the	Red	Sea,	 the	Persian	Gulf,	
the	Sea	of	Japan,	the	Pacific,	and	the	Kerguelen	Islands	(Fauvel,	1914).	

1.2.1 Platynereis	dumerilii	ecology	
Platynereis	dumerilii	lives	in	0	to	5	m	depth	in	tubes	on	the	substrate.	It	lives	on	
pelagic	Sargassum	rafts	in	the	Sargasso	Sea	(Fine,	1970;	Huffard	et	al.,	2014).	It	
has	 been	 found	 on	 a	 cliff	 in	 0	 to	 2	m	 depth	 on	 algae	 covered	 hard	 bottoms	
(Giangrande,	 1988),	 but	 also	 on	 sea	 grass	 (Jacobs	 and	 Pierson,	 1979)	 and	 in	
shallow	sea	grass	beds	in	1.7	m	depth	(Lewis	and	Stoner,	1981).	Additionally	at	
sites	in	1	and	3	m	depth	(Gambi	et	al.,	1992),	and	in	5	m	depth	(Giangrande	et	al.,	
2003).	 And	 so,	 it	 is	 typical	 of	 shallow	 infra-littoral	 photophilic	 environments	
(Giangrande	 et	 al.,	 2003).	 However,	 Platynereis	 dumerilii	 was	 also	 found	 on	 a	
buoy	in	50	m	depth	(Aliani	and	Meloni,	1999)	and	on	rotting	seaweed	in	100	m	
depth	 (Cram	 and	 Evans,	 1980).	 It	may	 also	 live	 in	 less	 favorable	 habitats,	 like	
rotting	plant	debris	(Clark	and	Milne,	1955),	thermal	vents	(Giménez	and	Marín,	
1991;	Lucey	et	al.,	2015),	or	polluted	areas	near	sewer	outfall	pipes	(Surugiu	and	
Feunteun,	2008).	In	general,	it	dominates	polluted	areas	(Bellan,	1980;	Musco	et	
al.,	2009)	or	areas	of	pH	values	around	6.5	(Ricevuto	et	al.,	2014),	which	also	fits	
to	 the	 preferred	 pH	 value	 of	 a	 subpopulation	 of	 late	 Platynereis	 dumerilii	
nectochaete	larvae	(Ramanathan	et	al.,	2015).	
Platynereis	 dumerilii	 eats	what	 it	 lives	on:	 In	 its	 gut,	 sea	 lettuce,	 sediment,	 and	
brown	algae	were	found	(Cram	and	Evans,	1980).	Whether	the	brown	algae	are	
fresh	or	 rotting	does	not	matter	 (Bedford	 and	Moore,	 1984,	 1985).	Platynereis	
dumerilii	 prefers	 to	 eat	 and	 settle	 on	 algae	 that	 are	 not	 eaten	 by	
omnivorous/herbivorous	 fish	 (Hay	 et	 al.,	 1988).	 Platynereis	 dumerilii	 is	

	 11	

considered	 to	be	herbivorous,	 in	 the	 field	 (Fauchald	and	 Jumars,	1992).	 In	our	
lab,	 it	 eats	 organic	 spinach,	 the	 green	 alga	Tetraselmis	 marinus,	 and	 the	 brine	
shrimp	Artemia.	

1.2.2 Platynereis	dumerilii	reproduction	
Platynereis	 dumerilii	 worms	 live	 three	 to	 18	months	 (Fischer	 and	 Dorresteijn,	
2004;	Hauenschild	and	Fischer,	1969).	Then,	they	metamorphose	into	male	and	
female	 pelagic	 epitokes.	 The	 epitokes	 are	 the	 sexually	 mature	 forms.	 The	
epitokes	 swarm	 to	 the	 surface,	 in	 fact	 they	 are	 attracted	 by	 light	 and	 can	 be	
collected	with	a	lamp	there	(Korringa,	1947).	At	the	surface,	when	the	males	and	
females	 are	 close	 together,	 they	 start	 a	 nuptical	 dance.	 While	 dancing,	 they	
release	sperm	and	eggs	so	that	the	eggs	are	fertilized	in	the	water	(summarized	
by	 Zeeck	 et	 al.,	 1998).	 Then,	 the	 epitokes	 die	 (Fischer	 and	 Dorresteijn,	 2004;	
Fischer	et	al.,	2010).	
Because	 the	 epitokes	 die,	 Platynereis	 dumerilii	 is	 a	 mass	 spawner	 and	 lays	
batches	 from	 2000	 to	 3000	 (Fischer	 and	 Dorresteijn,	 2004),	 several	 1000	
(Hutchinson	et	al.,	1995),	or	from	20000	to	40000	eggs	(Jha	et	al.,	1995).	From	
my	 experience,	 all	 these	 estimates	 are	 reasonable	 and	 the	 actual	 batch	 size	
depends	on	the	size	of	the	mother.	
The	epitoke	metamorphosis	is	controlled	by	a	circalunar	body	clock.	The	clock	is	
entrained	 by	 the	 moon.	 The	 moon	 determines,	 when	 most	 worms	 become	
epitokes.	 The	moon	 can	 be	 simulated	with	 light	 as	 low	 as	 0.02	Lux	 (full	moon	
0.2	Lux)	 (Hauenschild,	 1955).	 The	 moon	 lengthens	 the	 day	 by	 additional	
illumination,	so	that	periods	of	short	and	long	days	alternate.	A	long	day	can	be	
entirely	 illuminated	by	 light	 of	 the	 same	 intensity,	 so	 that	 long	 and	 short	 days	
only	differ	by	 length.	Here,	 the	 relative	 length	matters:	For	 instance,	 short	and	
long	 days	 can	 have	 0	 h	 and	 16	 h,	 respectively,	 or	 16	 h	 and	 24	 h,	 respectively	
(Hauenschild,	 1961).	 When	 the	 short-day-period	 begins,	 the	 worms	 start	 to	
metamorphose.	The	worms	need	16	to	20	days,	even	in	an	artificial	month	of	ten	
short	and	ten	long	days	(Hauenschild,	1956).	However,	if	all	days	have	the	same	
length	 then	 the	 worms	 become	 epitokes	 on	 every	 day	 without	 a	 swarming	
maximum	(Hauenschild,	1955,	1956;	Zantke	et	al.,	2013).	
The	 swarming	maximum	stays	 at	 the	 same	days,	 even	 so	 if	 the	worms	are	not	
entrained	 by	 the	 shift	 from	 long	 to	 short	 days	 anymore.	 The	 maximum	
diminishes	over	three	to	four	months,	then	the	worms	become	epitokes	on	every	
day	(Hauenschild,	1956;	Zantke	et	al.,	2013).	The	swarming	maximum	can	also	
be	shifted:	The	worms	are	set	into	a	new	artificial	mooncycle	that	is	shifted	for	

	12	

instance	by	two	weeks.	The	worms	need	two	months	to	adapt:	In	the	first	month,	
most	worms	are	not	shifted,	yet.	 In	the	second	month,	most	worms	are	shifted.	
And	 in	 the	 third	 month,	 all	 the	 worms	 are	 shifted	 into	 the	 new	 cycle	
(Hauenschild,	1955,	1956).	

1.2.3 Platynereis	dumerilii	development	and	life	cycle	
When	 the	 Platynereis	 dumerilii	 epitokes	 have	 released	 sperm	 and	 eggs,	 the	
fertilized	eggs	start	to	develop.	The	eggs	divide	asymmetrically	into	a	smaller	AB	
and	a	bigger	CD	cell.	The	AB	cell	divides	symmetrically	into	an	A	and	a	B	cell.	The	
CD	cell	divides	asymmetrically	 into	a	C	and	a	D	cell	 (Dorresteijn,	1990).	The	D	
cell	is	the	biggest	cell	and	eventually	forms	the	germ	line	(Rebscher	et	al.,	2007;	
Zelada-González,	2004).	Other	cell	lines	can	also	be	tracked,	because	the	embryo	
is	 transparent	 (Dorresteijn,	 1990).	 The	 cell	 lines	 develop	 very	 stereotypically	
between	individuals	(Dorresteijn,	1990;	Fischer	and	Arendt,	2013).	
Although,	 the	 Platynereis	 dumerilii	 embryo	 and	 larva	 develop	 very	
stereotypically,	 their	 developmental	 speed	 depends	 on	 the	 temperature,	
therefore	 the	 following	 times	are	given	with	a	 reference	 temperature	of	18	 °C:	
24	hours	after	fertilization,	the	Platynereis	dumerilii	embryo	has	developed	into	a	
trochophore	 larva.	 The	 trochophore	 larva	 has	 a	 spherical	 shape	 and	 has	 a	
diameter	of	180	µm.	It	is	divided	by	a	prototroch	into	an	upper	head	and	a	lower	
trunk	 region.	 The	 prototroch	 is	 a	 band	 of	 cilia,	 which	 the	 larva	 uses	 for	
swimming.	 After	 48	hours,	 the	 trochophore	 larva	 has	 developed	 into	 a	
metatrochophore	 larva.	 The	metatrochophore	 larva	 has	 a	 longer	 trunk,	 which	
makes	 it	 cone	shaped.	The	 trunk	also	bears	chaetae.	Both	 the	 trochophore	and	
the	 metatrochophore	 larva	 are	 pelagic,	 this	 means	 they	 swim	 in	 the	 water	
column.	 After	 three	 days,	 the	 metatrochophore	 larva	 has	 developed	 into	 a	
nectochaete	 larva.	 The	 nectochaete	 larva	 becomes	 benthic	 and	 is	 errant;	 that	
means	 it	 stops	 swimming	 in	 the	 open	water	 column	 and	 settles	 on	 a	 suitable	
substrate,	but	still	can	move	around.	It	is	160	µm	wide	(left	to	right)	and	300	µm	
long.	 The	 nectochaete	 larva	 has	 three	 clear	 segments,	 each	 with	 a	 pair	 of	
parapodia	and	chaetae.	The	nectochaete	 larva	 is	 longish	and	resembles	a	short	
worm	(Fischer	et	al.,	2010).	Most	larvae	start	feeding	between	six	and	eight	days	
after	fertilization	(Fischer	and	Dorresteijn,	2004;	Fischer	et	al.,	2010;	Williams	et	
al.,	 2015).	 Then,	 the	 larvae,	 depending	 on	 food	 intake,	 develop	 at	 individual	
speed.	When	the	larvae	have	five	segments,	the	first	segment	is	incorporated	into	
the	head.	This	 is	called	cephalic	metamorphosis.	After	cephalic	metamorphosis,	
Platynereis	 dumerilii	worms	 live	 in	 tubes,	which	 they	build	with	 their	 spinning	

	 13	

glands.	The	worms	grow	until	they	have	50	segments,	then	they	start	to	produce	
immature	 gametes.	When	 the	 worms	 have	 reached	 70	 segments,	 the	 gametes	
start	 to	 mature,	 the	 atokous	 worms	 metamorphose	 into	 the	 sexually	 mature	
epitokes	 (Fischer	 et	 al.,	 2010).	 The	 epitokes	 swarm	 to	 the	 water	 surface	 and	
release	there	their	eggs	and	sperm,	so	that	the	life	cycle	completes.	

1.2.4 Platynereis	dumerilii	as	a	model	animal	
Platynereis	 dumerilii	 lives	 at	 many	 places,	 copes	 with	 many	 conditions,	 even	
unfavorable	conditions,	and	produces	many	relatively	fast	developing	offspring.	
Therefore,	Platynereis	dumerilii	 is	suited	 for	 the	 lab.	 It	has	been	kept	 in	 the	 lab	
since	 1953	 (Fischer	 and	 Dorresteijn,	 2004).	 It	 is	 suited	 for	 developmental	
studies,	 because	 the	 embryo	 is	 transparent	 and	 thus	 the	 cell	 divisions	 can	 be	
easily	 followed	 (Dorresteijn,	 1990),	 and	 because	 the	 embryo	 develops	 very	
stereotypically	 (Fischer	 and	 Dorresteijn,	 2004),	 until	 it	 has	 become	 a	 feeding	
nectochaete	larva	(Fischer	et	al.,	2010).	
Platynereis	dumerilii	is	not	only	a	model	organism	for	developmental	biology	but	
also	 for	 evolution	 (Simakov	 et	 al.,	 2013):	 It	 has	 been	 considered	 to	 be	 ancient	
that	means	it	has	less	derived	characters	than	ecdysozoa,	for	instance	(Miller	and	
Ball,	2009).	It	can	teach	us	about	the	last	common	ancestor	of	all	bilaterians,	the	
urbilaterian,	because	it	has	fewer	group	specific	characters	(Tessmar-Raible	and	
Arendt,	 2003),	 it	 has	 conserved	 cell	 types	 (Tessmar-Raible	 et	 al.,	 2007),	 and	 a	
conserved	genome	organization	(Raible	et	al.,	2005).	
The	 Platynereis	 dumerilii	 genome	 has	 approximately	 1	Gbp,	 however	 it	 is	 not	
published,	 yet	 (Zantke	 et	 al.,	 2014,	 http://4dx.embl.de/platy/,	 password	
protected).	The	genome	 is	organized	 into	2n	=	28	chromosomes	 (Ipucha	et	 al.,	
2007;	Jha	et	al.,	1995).	And	compared	to	ecdysozoan	genomes	such	as	Drosophila	
melanogaster	or	Caenorhabditis	elegans,	it	is	intron	rich	like	vertebrate	genomes	
(Raible	 et	 al.,	 2005),	 and	 so	 it	 is	 less	 derived	 than	 those	 from	 classical	
invertebrate	models.	

1.2.5 Studying	gene	expression	in	Platynereis	dumerilii	
In	Platynereis	dumerilii,	gene	expression	can	be	studied	by	staining	proteins	with	
antibodies	 (Dorresteijn	 et	 al.,	 1993),	 or	 by	 labeling	 mRNA	 with	 in	 situ	
hybridization	probes,	in	larvae	(Arendt	et	al.,	2001;	Tessmar-Raible	et	al.,	2005),	
in	juvenile	worms	with	posterior	regenerating	segments	(Backfisch	et	al.,	2013;	
Prud'homme	et	al.,	2003),	or	in	adults	(Backfisch	et	al.,	2013).	In	situ	probes	can	
be	 fluorescent	 (Tessmar-Raible	 et	 al.,	 2005)	 or	 non-fluorescent	 (Arendt	 et	 al.,	
2001).	 Even	 non-fluorescent	 in	 situ	 probes	 can	 be	 imaged	 on	 a	 fluorescent	

	14	

confocal	 microscope	 with	 a	 special	 reflection	 technique	 (Jékely	 and	 Arendt,	
2007).	 Two	 in	 situ	 probes	 can	 be	 used	 on	 the	 same	 specimen	 to	 detect	 gene	
coexpression	within	 the	 same	 cell.	 The	 two	 probes	 can	 be	 both	 fluorescent	 or	
one	 can	 be	 fluorescent	 and	 the	 other	 non-fluorescent.	 This	 technique	 is	 called	
double	in	situ	hybridization	(Tessmar-Raible	et	al.,	2005).	
Double	 in	situ,	however,	can	only	detect	coexpression	of	a	few	genes.	For	many	
genes,	the	mRNA	expression	patterns	from	many	individuals	can	be	mapped	into	
expression	atlases,	because	not	only	the	development	of	Platynereis	dumerilii	 is	
stereotypical	but	also	the	gene	expression	patterns.	Gene	expression	atlases	exist	
for	 the	 metatrochophore	 (Asadulina	 et	 al.,	 2012;	 Tomer	 et	 al.,	 2010)	 and	 the	
nectochaete	larva	(Asadulina	et	al.,	2012).	The	atlases	can	be	easily	visualized	by	
the	 software	Blender	 so	 that	 coexpression	 can	be	 easily	 seen	 (Asadulina	 et	 al.,	
2015).	
Atlases	are	 limited	 to	existing	 in	 situ	 probes	 for	known	genes.	Unknown	genes	
can	 also	 be	 found	 in	 transcriptomes.	 In	 Platynereis	 dumerilii,	 transcriptomes	
exist	 for	different	 stages	of	 the	whole	body	 (Conzelmann	et	al.,	2013a)	and	 for	
single	 cells	 of	 the	metatrochophore	 head.	 The	 single	 cell	 transcriptomes	 allow	
creating	 virtual	 in	 situ	 patterns	 if	 the	 known	 genes	 are	 mapped	 against	 an	
expression	atlas	(Achim	et	al.,	2015).		
In	 Platynereis	 dumerilii,	 gene	 expression	 can	 be	 studied	 with	 high	 temporal	
resolution	by	quantitative	PCR,	which	is	however	limited	to	a	preselected	set	of	
genes	(Dray	et	al.,	2010;	Tosches	et	al.,	2014;	Zantke	et	al.,	2013).	

1.2.6 Modifying	gene	expression	in	Platynereis	dumerilii	
Gene	 expression	 in	Platynereis	 dumerilii	 can	 be	modified	 in	 several	 ways.	 The	
genes	 can	 be	 knocked	 down	 with	 morpholinos	 (Conzelmann	 et	 al.,	 2013b;	
Shahidi	 et	 al.,	 2015;	Williams	 et	 al.,	 2015),	which	 bind	 to	 the	mRNA,	 and	may	
block	either	the	start	site	or	a	splice	site	so	that	the	mRNA	is	not	translated	or	is	
misspliced	 (Eisen	 and	 Smith,	 2008).	 Ideally,	 missplicing	 creates	 a	 premature	
stop-codon	 that	 also	 triggers	 nonsense	 mediated	 decay	 (NMD	 reviewed	 by	
Lejeune	 and	Maquat,	 2005),	which	 removes	 the	mRNA.	However,	morpholinos	
are	restricted	to	the	early	developmental	stages,	because	morpholinos	have	to	be	
injected	 into	fertilized	eggs	and	are	diluted	out	during	development	(Eisen	and	
Smith,	2008).	
The	genes	can	be	modified	at	their	mRNA	sequence	by	A-to-I	RNA	editing,	which	
may	optionally	be	controlled	by	light	(Hanswillemenke	et	al.,	2015).	A-to-I	RNA	
editing	 can	 change	 the	meaning	 of	 codons	 including	 start	 and	 stop-codons.	 In	

	 15	

principle,	 also	 splice	 sites	 can	 be	modified	 (Bass,	 2002;	Nishikura,	 2010).	 This	
can	 create	mRNA	with	 a	 premature	 stop-codon	 that	 triggers	 NMD,	 or	without	
stop-codons,	a	condition	that	triggers	non-stop	decay	(Vasudevan	et	al.,	2002).	In	
both	cases,	the	mRNA	is	removed	from	the	cell.	
Genes,	in	other	organisms,	can	be	knocked	out	with	zinc-finger-nucleases	(ZFNs),	
transcription	 activator-like	 effector	 nucleases	 (TALENs),	 or	 the	 CRISPR-Cas9	
system	 (clustered	 regularly	 interspaced	 short	 palindromic	 repeat;	
Chandrasegaran	and	Carroll,	2015).	In	Platynereis	dumerilii,	knockouts	via	ZFNs	
(Tosches,	2013)	and	TALENs	(Bannister	et	al.,	2014)	have	been	reported.	
Additionally,	 genes	 can	 be	 introduced	 transiently:	 For	 instance,	 to	 express	 a	
calcium	 indicator	 (Gühmann	 et	 al.,	 2015;	 Randel	 et	 al.,	 2014;	 Tosches,	 2013;	
Tosches	et	al.,	2014;	Verasztó	et	al.,	2017;	Williams	et	al.,	2015).	Or	permanently	
with	 germ-line	 transmission	 via	 transposons	 to	 express	GFP	 for	 the	whole	 life	
(Backfisch	et	al.,	2014;	Backfisch	et	al.,	2013;	Veedin-Rajan	et	al.,	2013).	

1.2.7 The	connectome	of	Platynereis	dumerilii	
In	 the	 Platynereis	 dumerilii	 larva,	 the	 neurons	 and	 their	 connections	 can	 be	
reconstructed	via	serial-section	transmission	electron	microscopy	(Randel	et	al.,	
2014).	 The	 neurons	 and	 their	 connections	 are	 also	 stereotypical	 between	
individuals	 (Randel	 et	 al.,	 2015).	 The	 neurons	 can	 be	 immuno-gold	 labeled	 in	
single	 electron	 microscopy	 sections	 for	 neuropeptides.	 The	 neuropeptides	
identify	 a	 neuron	 by	 gene	 expression	 to	 the	 resolution	 of	 electron	microscopy	
(Shahidi	et	al.,	2015).	The	neuropeptide	expression	can	be	linked	to	expression	
of	 other	 genes	 in	 the	 same	 cell	 and	 possibly	 also	 to	 neighboring	 cells	 via	 a	
neuronal	 atlas	 (Asadulina	 et	 al.,	 2012).	 The	 expression	 could	 also	 be	 linked	 to	
single	 cell	 transcriptome	 data	 if	 single	 cell	 data	were	 available	 from	 the	 same	
larval	 stage.	 From	 the	 neurons	 and	 their	 connections,	 circuits	 can	 be	
reconstructed	 that	 allow	 understanding	 behaviors	 like	 putative	 chemosensory	
behaviors	(Shahidi	et	al.,	2015),	phototaxis	(Randel	et	al.,	2014)	or	how	different	
ciliated	fields	are	synchronized	across	the	whole	body	(Verasztó	et	al.,	2017).	

1.2.8 Studying	behaviors	in	Platynereis	dumerilii	
Many	 behaviors	 exist	 in	 Platynereis	 dumerilii	 and	 so,	 many	 ways	 to	 observe	
them:	
The	 adults	 can	 be	 observed	 in	 a	 petridish,	 how	 they	 rebuilt	 their	 tube	 (Daly,	
1973).	Or	in	a	box	with	video	recording	how	they	spend	their	time	on	searching	
for	 food,	 irrigating	 their	 tube,	 fighting	with	 each	other,	 or	 being	 idle:	 Either	 to	

	16	

compare	Platynereis	dumerilii	with	other	species	 (Cram	and	Evans,	1980)	or	 to	
distinguish	day	from	night-behavior	(Zantke	et	al.,	2013).	
Nectochaete	 larvae	can	be	observed	under	a	microscope,	how	 they	bend	when	
one	eye	is	illuminated.	The	bending	determines	their	swimming	direction,	which	
can	be	observed	in	a	horizontal	cuvette	(Randel	et	al.,	2014).	
Trochophore	 larvae	 can	 also	 be	 observed	 under	 a	microscope,	 how	 their	 cilia	
beat	differently	when	one	larval	eye	is	illuminated.	This	allows	the	larvae	to	turn	
to	the	 light,	which	can	be	observed	 in	a	horizontal	cuvette	(Jékely	et	al.,	2008).	
The	 cilia	 also	 respond	 to	 neuroactive	 compounds	 supplied	 to	 the	 surrounding	
seawater	(Tosches	et	al.,	2014),	including	neuropeptides	that	regulate	the	depth	
of	 the	 larvae,	 which	 can	 be	 observed	 in	 a	 vertical	 column	 (Conzelmann	 et	 al.,	
2011);	 for	 instance,	 myo-inhibitory	 peptide	 brings	 the	 larvae	 down.	 It	 makes	
them	 settle	 (Conzelmann	 et	 al.,	 2013b)	 and	 controls	 their	 feeding	 behavior	
(Williams	et	al.,	2015),	both	can	be	observed	in	a	single	culture	dish.	
The	larvae	can	be	assayed	for	their	preferred	pH-value	and	salt	concentration	in	
a	laminar	flow	microfluidic	device	(Ramanathan	et	al.,	2015).	

1.2.9 Cell	ablation	–	a	way	to	study	the	eyes	of	Platynereis	dumerilii	
Platynereis	dumerilii	eyes	and	their	function	can	be	studied	by	cell-ablation:	The	
eyes	 can	 be	 ablated	 with	 a	 laser	 and	 in	 the	 adult	 with	 an	 electrode,	 too.	
Additionally,	the	eyes	can	be	chemically	ablated.	When	the	larval	eyes	are	laser-
ablated	in	trochophore	larvae,	the	larvae	are	not	phototactic	anymore	(Jékely	et	
al.,	2008).	However,	if	the	larval	eyes	are	laser-ablated	in	nectochaete	larvae,	the	
larvae	are	 still	 phototactic,	 but	 if	 the	adult	 eyes	are	ablated,	 the	 larvae	are	not	
phototactic	anymore	(Randel	et	al.,	2014).	Therefore,	phototaxis	 is	mediated	 in	
the	 trochophore	 larva	 by	 the	 larval	 eyes;	 and	 in	 the	 nectochaete	 larva	 by	 the	
adult	eyes.	When	the	eyes	in	the	juvenile	worm	are	laser	ablated,	the	worms	still	
entrain	 their	 circadian	body	clock	 (Keplinger,	2010),	 therefore	 the	eyes	do	not	
entrain	the	circadian	clock,	at	 least	not	alone.	When	the	eyes	of	the	adult	atoke	
worms	are	electro-ablated,	 the	atokes	still	 synchronize	epitoke	metamorphosis	
to	 the	mooncycle	 (Hauenschild,	 1961).	 However,	 the	 eyes	 regenerate	 partially	
within	 a	week,	 so	 that	 some	 cells	 still	 could	 entrain	 the	 circalunar	 clock.	 This	
problem	can	be	solved	by	chemical	ablation.	Here,	 the	 target	 cells	are	made	 to	
express	 nitroreductase.	 Nitroreductase	 produces	 a	 cytotoxic	 substance	 from	
metronidazole.	Metronidazole	needs	only	be	added	to	the	seawater	surrounding	
Platynereis	dumerilii,	 to	kill	any	nitroreductase	expressing	cell.	The	cells	can	be	

	 17	

killed	 anytime	during	development	 if	 nitroreductase	 is	 expressed	permanently	
(Veedin-Rajan	et	al.,	2013).	

1.2.10 The	photoreceptor	cells	and	phototaxis	in	Platynereis	dumerilii	
The	 larval	 eyes	 of	 the	 Platynereis	 dumerilii	 trochophore	 larva	 consist	 of	 a	
pigment	 cell	 and	 a	 rhabdomeric	 photoreceptor	 cell	 (Rhode,	 1992).	 The	
photoreceptor	cell	expresses	a	rhabdomeric	opsin,	r-opsin3	(Randel	et	al.,	2013),	
and	is	shaded	by	the	pigment	cell,	so	that	it	only	detects	light	from	one	direction.	
With	a	pair	of	these	eyes,	which	innervate	the	prototroch	directly,	the	larva	can	
swim	 phototacticly	 to	 the	 light,	 but	 to	 do	 so,	 the	 larva	 must	 rotate.	 The	
trochophore	larva	is	only	positively	phototactic	(Jékely	et	al.,	2008).	
However,	Platynereis	dumerilii	nectochaete	 larvae	are	positively	and	negatively	
phototactic.	The	phototaxis	sign	is	switched	within	the	nervous	system,	but	the	
exact	 sensory	 input	 that	 switches	 the	 sign	 is	 unknown.	 Phototaxis	 in	 the	
nectochaete	larvae	is	mediated	by	two	pairs	of	adult	eyes.	The	adult	eyes	do	not	
innervate	 the	 prototroch	 directly,	 but	 relay	 the	 signals	 to	 a	 visual	 processing	
center	that	creates	a	four-pixel-image,	which	tells	the	larva	from	where	the	light	
is	coming	from,	so	that	it	does	not	need	to	rotate	anymore.	This	visual	phototaxis	
may	be	advantageous	for	living	at	the	bottom	of	the	sea	(Randel	et	al.,	2014).	
The	 adult	 eyes	 are	 already	 developing	 in	 the	 metatrochophore	 larva	 (Rhode,	
1992)	and	express	two	rhabdomeric	opsins,	r-opsin1	and	r-opsin3	(Randel	et	al.,	
2013),	 before	 they	 become	 functional.	 When	 they	 become	 functional	 (in	 the	
3-day-old	 nectochaete	 larva),	 they	 express	 at	 least	 three	 opsins	 (Figure	 2A-C),	
which	are	in	the	same	cells:	The	two	rhabdomeric	opsins	and	a	Go-opsin	called	
Go-opsin1	(Figure	2D-I).	Go-opsin1	is	also	cellularly	coexpressed	in	the	larval	eye	
with	 r-opsin1	 (Figure	 2J-L),	 but	 not	 with	 r-opsin3,	 because	 r-opsin3	 is	 not	
expressed	in	the	larval	eye	(Randel	et	al.,	2013).	The	larval	eye’s	function	in	the	
nectochaete	 larva	 is	 unknown.	Go-opsin1	 is	 also	 expressed	 in	 another,	 slightly	
asymmetrical	 median	 cell	 (Figure	 2A),	 however	 its	 function	 there	 is	 also	
unknown.	
Additionally,	 to	 the	 rhabdomeric	 photoreceptor	 cells	 of	 the	 eyes,	 the	 larva	 has	
deep	 brain	 ciliary	 photoreceptor	 cells,	 which	 are	 very	 prominent	 in	 the	
acetylated	 tubulin	 staining	 (Figure	 2A-C).	 The	 ciliary	 photoreceptor	 cells	 exist	
already	 in	 the	2-day-old	metatrochophore	 larva	 (Arendt	et	al.,	2004).	They	are	
found	 in	 many	 polychaetes.	 They	 have	 stacked	 membranes	 and	 no	 shading	
pigment	(Arendt	et	al.,	2004;	Hausen,	2007;	Purschke,	2005).	This	indicates	that	

	18	

they	respond	to	non-directional	light	with	a	short	integration	time,	which	points	
to	a	UV	avoidance	response	(Nilsson,	2009)	or	a	shadow	response.	
	

	
Figure	2:	Opsin	expression	in	the	eyes	of	the	nectochaete	larva	of	Platynereis	dumerilii	
Opsin	 mRNA	 expression	 in	 3-day-old	 nectochaete	 larvae	 of	 Platynereis	 dumerilii	 was	 stained	 via	 whole	
mount	in	situ	hybridization.	The	larvae	were	double	stained	with	a	non-fluorescent	(red)	and	a	fluorescent	
(cyan)	 in	 situ	 probe.	Two	kinds	of	 opsin	mRNA,	were	 stained	per	 larva.	The	 larvae	were	 counter	 stained	
with	an	antibody	against	acetylated	tubulin	(white),	which	marks	neurons	and	cilia.	

r-opsin1 r-opsin3Go-opsin1

r-opsin1

r-opsin3 r-opsin1

Merge

Merge

A B

E

C

D F

G H I

r-opsin1 MergeJ K LGo-opsin1

Go-opsin1

AE

LE

	 19	

1st	 row:	 Z-stack	 projections	 of	 the	 head	 nervous	 system	 and	 the	 ciliary	 band	 (trochophore)	 of	 different	
larvae	with	Go-opsin1	(A),	r-opsin1	(B),	and	r-opsin3	(C)	expression;	apical	views	with	dorsal	up	and	ventral	
down.	The	yellow	arrow	points	at	two	ciliary	photoreceptor	cells,	which	are	visible	in	the	tubulin	staining.	
2nd	row:	A	close-up	from	a	confocal	section	of	the	adult	eye	of	one	larva.	D:	Go-opsin1	is	labeled	with	a	non-
fluorescent	in	situ	probe.	E:	R-opsin3	is	labeled	with	a	fluorescent	in	situ	probe.	F:	Merge	of	D	and	F.	
3rd	row:	A	close-up	from	a	confocal	section	of	 the	adult	eye	of	another	 larva.	G:	R-opsin3	 is	 labeled	with	a	
non-fluorescent	in	situ	probe.	H:	R-opsin1	is	labeled	with	a	fluorescent	in	situ	probe.	I:	Merge	of	G	and	H.	
4th	row:	A	close-up	from	a	confocal	section	of	the	larval	eye	of	one	larva.	J:	Go-opsin1	is	labeled	with	a	non-
fluorescent	 in	 situ	 probe.	K:	R-opsin1	 is	 labeled	with	 a	 fluorescent	 in	 situ	 probe.	 L:	Merge	of	 J	 and	K.	The	
acetylated	tubulin	channel	has	been	enhanced	to	visualize	the	cell	membrane.	
Abbreviations:	 AE,	 adult	 eye;	 LE,	 larval	 eye.	 Images	 from	 the	 same	 raw	 data	 have	 been	 published	 in	 the	
meantime	(Gühmann	et	al.,	2015;	Randel	et	al.,	2013).	Images	and	raw	data	are	courtesy	to	Gáspár	Jékely.	
	

However,	 the	 ciliary	 photoreceptor	 cells	 have	 been	 speculated	 to	 entrain	 the	
circadian	 body	 clock	 (Arendt	 et	 al.,	 2004),	 especially	 because	 they	 are	
surrounded	by	cells	that	express	clock	related	genes	in	both	the	larva	(Tosches	
et	al.,	2014)	and	 the	adult	 (Zantke	et	al.,	2013).	The	ciliary	photoreceptor	cells	
resemble	molecularly	 the	 photoreceptor	 cells	 of	 the	 vertebrate	 retina	 and	 the	
pineal	 organ	 (Tosches,	 2013).	 The	 pineal	 organ	 entrains	 the	 circadian	 clock	 in	
many	 non-mammalian	 vertebrates	 (Vigh	 et	 al.,	 2002),	 while	 in	 mouse	 the	
circadian	clock	is	also	entrained	by	rod	and	cones	(Panda	et	al.,	2003).	Therefore,	
entraining	 the	 circadian	 clock	 may	 be	 an	 ancient	 function	 of	 ciliary	
photoreceptor	 cells,	 but	 so	 far,	 what	 the	 function	 of	 the	 ciliary	 photoreceptor	
cells	in	Platynereis	dumerilii	is,	is	unknown.	

1.3 The	goals	
Platynereis	dumerilii	expresses	in	its	eyes	a	Go-opsin.	Go-opsins	are	not	very	well	
studied,	 because	 they	 are	 lost	 in	 ecdysozoans	 and	 vertebrates,	 to	 which	 our	
classical	model	animals	belong.	However,	since	Platynereis	dumerilii	has	this	rich	
toolbox	 to	manipulate	 genes	 and	 to	 study	 its	 behavior,	 I	 can	 use	 it	 to	 study	 a	
Go-opsin	and	its	physiological	 function.	Go-opsin1	 is	expressed	in	the	adult	eye,	
which	is	the	only	place	of	expression	with	a	known	function.	Therefore,	I	focused	
on	the	adult	eye	and	its	function:	Visual	phototaxis.	
At	first,	I	tested	the	larvae	in	a	vertical	column	illuminated	with	green	(520	nm)	
and	UV	(400	nm)	light	coming	from	the	top.	The	larvae	swam	up	to	green	light	
and	swam	down	to	UV-light	(see	results	section	3.1).	I	originally	thought	this	was	
positive	 and	 negative	 phototaxis,	 respectively.	 I	 hypothesized	 that	 Go-opsin1	
switched	 the	 larvae	 between	 positive	 and	 negative	 phototaxis	 by	 forming	 a	
chromatic	 antagonism	with	 the	 rhabdomeric	 opsins	within	 the	 same	 cell.	 This	
would	 have	 implemented	 a	 chromatic	 depth	 gauge	 that	 is	 independent	 of	 the	
absolute	light	intensity	as	proposed	by	Nilsson	(2009,	2013).	

	20	

Therefore,	 I	 generated	 a	 Go-opsin1	 knockout	 line	 with	 zinc-finger-nucleases	
(ZFN).	But	the	knockout	 larvae	still	swam	up	to	green	 light	and	swam	down	to	
UV-light.	 This	 falsified	 my	 hypothesis,	 but	 I	 had	 found	 another	 behavior:	 It	
responded	 fast	 to	 UV-light	 and	 was	 also	 non-directional.	 So	 that	 it	 may	 be	
mediated	by	the	ciliary	photoreceptor	cells.	
Therefore,	my	 two	 goals	were:	 1st	 to	 identify	 the	 function	 of	 Go-opsin1	 in	 the	
adult	eye	in	the	context	of	phototaxis	and	2nd	to	characterize	and	to	identify	the	
function	of	the	UV-induced	down-swimming	behavior.	

2 Material	and	Methods	

2.1 Platynereis	dumerilii	culture	
From	 our	 laboratory	 culture,	 I	 used	wild	 type	Platynereis	 dumerilii	 larvae	 and	
worms.	The	larvae	and	worms	were	handled	by	all	members	of	the	lab	according	
to	 established	 breeding	 procedures	 derived	 from	 those	 of	 Hauenschild	 and	
Fischer	(1969).	Below,	I	describe	the	main	procedures	so	that	I	can	also	describe	
how	I	treated	my	mutant	worms	differently.	

2.1.1 Platynereis	dumerilii	batches	
For	Platynereis	dumerilii	batches,	natural	seawater	was	filled	into	a	100	ml	glass	
beaker,	which	had	been	autoclaved,	and	one	male	and	one	female	epitoke	worm	
(sometimes	more)	were	added.	Once	the	worms	had	released	their	gametes,	they	
were	removed	and	the	beaker	was	tagged	with	the	date	and	time	as	the	moment	
of	fertilization.	When	the	eggs	had	settled,	most	water	was	poured	off	to	remove	
excess	sperm.	The	remaining	sperm	was	diluted	by	refilling	the	beaker	to	avoid	
polyspermy.	 The	 fertilized	 eggs	 develop	 jelly,	 which	 the	 larvae	 leave	 after	
24	hours.	 24	hours	 later,	 the	 empty	 jelly	 was	 removed	 with	 a	 10	ml	 pipette	
(Eppendorf	 Research	 10	ml),	 so	 that	 the	 jelly	 could	 not	 rot.	 The	 batches	were	
kept	at	18°C	or	22°C	until	they	were	used	for	experiments	or	cultured.	

2.1.2 Culturing	batches	and	worm	culture	
The	Batches	were	cultured	four	to	six	days	after	fertilization	in	a	culture	box.	The	
box	received	five	to	eight	batches	and	was	filled	up	with	a	one-to-one	mixture	of	
natural	 and	artificial	 seawater,	 so	 that	1	or	2	cm	water	 covered	 the	 larvae	and	
later	 the	worms.	 The	 larvae	 and	 the	worms	were	 kept	 at	 18°C	 or	 22°C,	 in	 an	
artificial	 day/night	 cycle	 of	 16	h	 light	 and	 8	h	 darkness.	 In	 each	month,	 seven	

	 21	

consecutive	 nights	 were	 illuminated	 by	 an	 artificial	 moon,	 which	 was	 a	
15	W	light	bulb.	

2.1.3 Water	change	in	the	culture	
The	water	was	changed	the	first	time	when	the	worms	were	two	months	old	or	
big	enough.	Then,	the	water	was	changed	every	second	week.	The	old	water	was	
poured	from	the	culture	box	 into	the	sink	without	caring	whether	a	worm	was	
lost.	The	boxes	with	older	worms	where	cleaned	with	brushes	to	remove	algae	
and	worm	feces.	

2.1.4 Platynereis	dumerilii	feeding	
In	 the	 boxes,	 the	 worms	 were	 fed	 with	 algae-fish-soup,	 spinach,	 and	 Artemia	
each	week.	
The	 algae-fish-soup	was	mixed	 from	 finely	 grinded	dry	 flake	 fish	 food	 and	 the	
benthic	 flagellate	 alga	 Tetraselmis	 marinus,	 which	 was	 cultured	 in	 natural	
seawater.	 The	 algae-fish-soup	 was	 given	 in	 different	 amounts	 to	 the	 worms	
depending	 on	 their	 age	 and	 size.	 The	 worms	 got	 5	ml	 before	 the	 first	 water	
change,	and	afterwards	10	ml.	
The	 spinach	 was	 bought	minced	 from	 organic	 farming.	 The	 spinach	 was	 only	
given	 to	worms	 after	 the	 first	water	 change.	 The	 smaller	worms	 received	 less	
spinach	than	the	bigger	worms,	but	not	too	much	so	that	the	spinach	would	not	
rot.	
The	Artemia	were	 grown	 in	natural	 seawater	 and	were	 given	 to	 all	 boxes	 that	
had	a	water	change,	the	amount	was	10	ml	for	each	box.	

2.1.5 Go-opsin1	knockout	mutant	culture	
I	cared	about	my	Go-opsin1	knockout	mutant	worms,	alone.	The	mutants	in	the	
boxes	were	exclusively	kept	at	22°C.	I	changed	their	water,	gave	them	extra	food,	
and	crossed	them.	
At	water	 change,	 the	 boxes	were	 cleaned	 less	 vigorously	 so	 that	 fewer	worms	
were	brushed	out	 accidentally	 and	 that	 the	 algae	 film	of	 the	box	 stayed	 intact.	
The	algae	 film	served	as	additional	 food	source,	 so	 that	 the	worms	could	grow	
faster.	However,	the	worms	only	eat	green	algae,	probably	Tetraselmis	marinus,	
therefore	every	biofilm	that	was	red	or	black	was	removed.	Additionally,	the	old	
water	was	not	poured	into	the	sink	directly,	but	into	another	box	first,	to	recover	
any	worm	that	was	poured	out.	This	is	very	important	for	worms	that	had	been	
injected	as	eggs,	because	every	such	worm	could	found	a	mutant	line.	

	22	

For	 each	 batch,	 only	 one	 female	 and	 one	male	were	 crossed.	 The	worms	 that	
were	 homozygous	 mutants	 were	 crossed	 before	 the	 worms	 that	 were	
heterozygous,	 to	minimize	 contamination	 by	 accidental	 sperm	 carryover.	
Contamination	was	also	excluded	by	genotyping	each	batch.	Worms	that	did	not	
release	their	gametes	were	squeezed	with	the	side	of	a	plastic	Pasteur-pipette	to	
release	 their	gametes.	The	worms	were	pressed	against	 the	wall	of	 the	beaker.	
The	males	were	only	pressed	gently,	so	that	they	would	not	be	split.	The	pipette	
was	moved	along	the	body	to	the	tail,	to	release	some	sperm,	but	not	too	much	to	
avoid	polyspermy.	The	females	were	squeezed	in	the	middle	so	much	that	they	
were	 split.	 The	 pieces	were	 squeezed	 along	 the	 length	 axis	 to	 the	 split	 site	 to	
release	the	eggs	there.	
This	gave	good	batches,	even	so	the	survival	of	the	eggs	and	larvae	seemed	to	be	
reduced.	 This	 is	 in	 contrast	 to	what	Hauenschild	 and	 Fischer	 (1969)	 reported.	
They	could	only	 retrieve	viable	 sperm	 from	males	 that	were	cut	and	could	not	
obtain	viable	eggs	from	females.	

2.1.6 Genotyping:	Single	worms	in	six-well-plates	
During	 and	 after	worm	 genotyping,	 I	 kept	 the	worms	 in	 six-well-plates	 (Nunc	
multidish	#150239,	Thermo	Scientific)	 in	a	mixture	of	one-to-one	artificial	and	
natural	 seawater.	 The	worms	were	 fed	 as	 the	 ones	 in	 the	 boxes,	 but	with	 less	
food	so	that	 it	could	not	rot.	The	worms	got	two	to	three	drops	of	Artemia	and	
algae-fish-soup	 from	 a	 plastic	 Pasteur-pipette,	 and	 got	 one	 or	 two	 leaves	 of	
spinach.	The	worms	got	fresh	water	every	second	week.	
The	 worms	 were	 kept	 in	 the	 wells	 until	 they	 became	 sexually	 mature.	 The	
mature	worms	were	crossed	to	another	worm	with	a	matching	genotype.	If	there	
was	no	worm	with	 a	matching	 genotype,	 the	 lonely	worm	was	put	 to	 4°C	 in	 a	
fridge.	This	allowed	the	worm	to	survive	one	night;	exceptionally	a	worm	could	
survive	 up	 to	 five	 days,	 however	 this	 did	 not	 guarantee	 that	 a	 worm	 would	
survive	the	first	night.	

2.2 Opsin	intron/exon	annotation	
The	 introns	 and	 exons	 of	 Go-opsin1,	 Go-opsin2,	 r-opsin2,	 and	 r-opsin5	 were	
annotated.	 Their	 complementary	 DNA	 (cDNA)	 sequences	 were	 searched	 with	
BLAST	 (Altschul	et	 al.,	 1990)	 in	a	database	of	 genomic	and	cDNA	sequences	of	
Platynereis	 dumerilii	 (http://4dx.embl.de/platy/,	 unpublished,	 password	
protected)	 for	matches.	The	matches	were	assembled	with	Velvet	(Zerbino	and	
Birney,	2008)	and	viewed	in	the	assembly	viewer	Tablet	(Milne	et	al.,	2009).	In	
Tablet,	the	introns	were	identified	by	the	part	of	the	genomic	DNA	sequence	that	

	 23	

did	not	match	to	the	cDNA	sequence	and	by	the	intron	start	GT	and	end	AG	bases.	
The	 introns	 of	 Go-opsin1	 were	 annotated	 by	 Gáspár	 Jékely;	 I	 annotated	 the	
introns	of	Go-opsin2,	r-opsin2,	and	r-opsin5.	For	the	translated	opsin,	sequences	
with	 annotated	 introns	 see	 the	 appendix	 section:	 Opsins	 translated	 with	
annotated	introns.	

2.3 Go-opsin1	knockdown	and	knockout	
I	used	morpholinos	 to	knockdown	 the	expression	of	Go-opsin1	 and	zinc-finger-
nucleases	to	generate	a	Go-opsin1	knockout	line.	I	injected	the	morpholinos	and	
the	zinc-finger-nucleases	into	freshly	fertilized	Platynereis	dumerilii	eggs.	

2.3.1 The	injection	setup	
The	 injection	 setup	 consisted	 of	 an	 Axiovert	 40	 CFL	 inverted	 microscope	
equipped	 with	 an	 A-Plan	 5x/0,12	 Rh0	 objective	 for	 specimen	 location	 and	 an	
A-Plan	 10x/0,25	 Rh1	 objective	 for	 injection.	 The	 setup	 had	 a	 temperature	
controllable	 Mini	 PCT	 chamber	 III	 (Luigs	 &	 Neumann)	 controlled	 by	 a	
temperature	controller	type	TC05	(Badcontroller	V,	Luigs	and	Neumann)	with	a	
Cyclo	II	water	pump	(Roth)	for	removing	the	heat.	The	injections	were	done	with	
a	FemtoJet	(Eppendorf)	microinjector	equipped	with	a	Femtotip	II	(Eppendorf)	
needle.	 The	 needle	 was	 mounted	 on	 a	 Luigs	 and	 Neumann	 motorized	
micromanipulator	and	loaded	with	the	injection	solution.	

2.3.2 The	injection	procedure	
Several	 Platynereis	 dumerilii	 batches	 were	 set	 up	 and	 incubated	 at	 18°C	 for	
45	min.	The	best	batch	was	used.	Good	batches	have	eggs	that	have	developed	a	
lot	 of	 jelly.	 The	 jelly	 also	 creates	 between	 each	 egg	 some	 distance,	 which	 is	
ideally	the	same	between	each	egg.	
The	 eggs	 were	 poured	 into	 a	 sieve	 within	 a	 beaker.	 The	 eggs	 were	 always	
covered	by	natural	seawater,	because	eggs	exposed	to	air	may	die.	The	eggs	were	
rinsed	until	the	water	flew	through	the	sieve	without	resistance,	which	indicated	
that	 all	 the	 jelly	 was	 gone.	 Usually,	 0.5	l	 natural	 seawater	 was	 needed.	 The	
dejellied	eggs	were	treated	with	Proteinase	K	(final	concentration:	70	µg/ml)	for	
1	min	to	soften	their	cuticle.	The	Proteinase	K	was	removed	by	rinsing	the	eggs	
with	another	0.5	l	natural	seawater.	
300	to	400	eggs	were	put	into	a	groove	on	a	2%	agarose	gel	made	with	natural	
seawater.	The	grove	was	1	mm	wide	and	was	 limited	by	an	upper	and	a	 lower	
wall.	The	 lower	wall	had	scratches	 for	removing	the	eggs.	The	gel	was	put	 into	
the	 lid	of	a	 little	petridish	(Nunc	diam.	x	H	35	mm	x	10	mm,	Thermo	Scientific)	

	24	

and	 covered	 by	 natural	 seawater.	 The	 petridish	 was	 placed	 in	 the	 Mini	 PCT	
chamber	III	of	 the	 injection	setup.	The	petridish	was	kept	at	14.5	°C	during	the	
injection,	 to	 slow	down	egg	development.	Each	egg	was	 injected	by	pressing	 it	
against	 the	higher	wall	of	 the	gel	until	 the	needle	went	 in,	 then	 it	was	 injected,	
and	finally	striped	off	at	the	scratches	of	the	lower	wall.	
The	injection	was	started	with	an	injection	pressure	of	600	hPa,	a	compensation	
pressure	of	35	hPa,	and	a	manual	injection	time.	Injection	pressure	and	injection	
time	were	adjusted	during	the	injection	session	to	compensate	for	partial	needle	
clogging.	During	injection,	the	egg	plasma	was	observed	for	clearance,	indicating	
the	 injected	volume.	The	 injection	volume	was	 targeted	 to	be	10	%	of	 the	 total	
egg	volume	so	that	the	egg	would	not	be	destroyed.	
After	injection,	the	injected	eggs	were	collected	from	the	gel	and	put	into	a	well	
of	a	six-well-plate	(Nunc	multidish	#150239,	Thermo	Scientific).	Uninjected	eggs	
from	the	gel	were	placed	into	another	well	of	the	same	plate	as	control.	

2.3.3 Go-opsin1	expression	knockdown	with	morpholinos	
I	ordered	the	morpholinos	to	knockdown	Go-opsin1	from	Gene	Tools.	Gene	Tools	
designed	and	synthesized	four	morpholinos:	The	first	to	block	the	start	site,	the	
second	 for	 the	 start	 site	with	 five	mismatches	 as	 control,	 the	 third	 to	 remove	
exon	5,	and	the	fourth	to	keep	intron	3.	The	morpholino	sequences	are	given	in	
Table	 1.	 The	 underlined	 sequences	 are	 the	 reverse	 complement	 of	 the	 coding	
regions.	 The	 lower-case	 letters	 indicate	 mismatches.	 The	 morpholinos	 were	
dissolved	 and	 diluted	 in	 water	 before	 injection,	 their	 respective	 final	
concentrations	are	given	in	Table	1.	

Table	1:	The	Go-opsin1	morpholinos	I	injected	

Morpholino	Name	 Sequence	 Final	
Concentration	

Go-opsin1	Start	Site	 GTGTGATTAAATTCCATGGTTACTT	 0.5	mM	
Go-opsin1	 Start	 Site	 with	
five	mismatches	

GTGTcAaTAAATTgCATGcTTAgTT	 0.5	mM	

Go-opsin1	Exon	5	Skip	 CCATCGTCATCTGAAAGGTCAAGAT	 0.2	mM	
Go-opsin1	Intron	3	Keep	 AATTGTCTGGAGTGAATTACCTTAT	 0.45	mM	
	
	Only	one	morpholino	was	injected	per	session	to	maximize	the	number	of	larvae	
per	 batch	 and	 condition.	 After	 injection,	 uninjected	 eggs	 were	 set	 apart	 as	
control.	Three	days	later,	the	injected	and	the	control	larvae	were	used	to	study	
their	 behavior	 in	 a	 horizontal	 high-intensity	 phototaxis	 setup	 (Gühmann	 et	 al.,	

	 25	

2015).	 If	 the	 larvae	 were	 injected	 with	 a	 splice	 site	 morpholino,	 they	 were	
recovered	after	 the	experiment	 to	 check	 for	misspliced	mRNA.	The	mRNA	was	
extracted	with	 trizol,	 reverse	 transcribed,	 and	 the	 exon	or	 the	 intron	was	PCR	
amplified	from	the	neighboring	exons.	The	PCR-product	was	sequenced.	

2.3.4 Go-opsin1	zinc-finger-nucleases	
The	 Go-opsin1	 zinc-finger-nucleases	 (ZFN)	 were	 designed,	 produced,	 and	
validated	by	 Sigma-Aldrich	 (CompoZrä	 Custom	Zinc	Finger	Nucleases).	 Sigma-
Aldrich	 placed	 the	 ZFNs	 into	 the	 first	 exon	 of	Go-opsin1,	which	 lies	 before	 the	
first	transmembrane	domain	of	Go-opsin1.	Ideally,	the	ZFNs	should	have	avoided	
a	single	nucleotide	polymorphism,	but	Sigma-Aldrich	could	not	avoid	one.	Sigma-
Aldrich	tested	the	ZFNs	with	the	MEL-1	reporter	assay	(Doyon	et	al.,	2008).	The	
Go-opsin1	 ZFNs	 showed	 59%	 activity	 six	 hours	 after	 induction	 relative	 to	 the	
positive	control	ZFNs	of	Sigma-Aldrich.	Sigma-Aldrich	considers	ZFNs	that	show	
more	than	50%	relative	activity	six	hours	after	induction	“as	useful	for	genome	
editing”.	 The	Go-opsin	 ZFNs	 did	 not	 show	 any	 activity	 in	 the	 uninduced	 state.	
Sigma-Aldrich	regards	those	ZFNs	that	also	show	activity	in	the	uninduced	state	
“as	superior”.	
The	 ZFN	 recognition	 site	 was	 AAGGTGGAAGCTGAAatattGAATGCCATGGGTAC.	
The	binding	sites	are	given	in	upper	case	and	the	cut	site	in	between	is	given	in	
lower	case.	The	sequence	is	the	complement	of	the	coding	sequence.	
Sigma-Aldrich	 shipped	 the	 ZFNs	 encoded	 by	 plasmids	 (pZFN1	 (pVax-3FN-
27507-FokKK)	 and	 pZFN2	 (pVAX-N2A-3FN-27506-FokEL2))	 and	 by	 mRNA	
ready	 for	 injection.	 I	 only	 injected	 the	 mRNA	 from	 Sigma-Aldrich	 in	 a	 final	
concentration	of	40	ng/µl.	

2.3.5 Genotyping	of	larvae	and	worms	
For	 genotyping	 of	 the	Go-opsin1	 locus,	 genomic	 DNA	was	 isolated	 from	 single	
larvae,	 groups	 of	 20	 larvae,	 or	 from	 the	 tentacular	 cirri	 of	 adult	 worms.	 The	
worms	were	placed	 into	a	well	of	a	 six-well-plate	 (Nunc	multidish	no.	150239,	
Thermo	Scientific)	 and	 their	 cirri	were	 taken	with	a	pair	of	 forceps.	Either	 the	
cirri	 were	 torn	 off	 by	 me	 or	 by	 the	 worms,	 which	 seems	 to	 be	 an	 escape	
response.	The	DNA	was	isolated	with	the	dilution	protocol	of	the	Phusion	Human	
Specimen	 Direct	 PCR	 Kit	 (Thermo	 Scientific).	 The	 protocol	 slightly	 differed	
between	 larvae	 and	 cirri	 (Table	 2).	 The	 DNA	 was	 amplified	 by	 PCR	 (forward	
primer:	 5’-CTGCTGAATGCCATTAGTTGACG-3’,	 reverse	 primer:	 5’-
AACACCAATGACCATATAGACCCG-3’)	 with	 the	 reagents	 (Table	 3)	 and	 the	
instructions	(Table	4)	of	the	PCR	Kit.	The	PCR	product	comprised	258	bp	of	the	

	26	

first	exon	of	Go-opsin1.	The	PCR	product	was	sequenced	directly	in	our	in-house	
sequencing	 facility	 with	 a	 nested	 sequencing	 primer	 (5’-
CCAAATTGGACAAGAAAAGTAACC-3’)	 to	 avoid	 sequencing	 of	 unspecific	 PCR	
product.	 In	 a	 PCR-product	 sample,	 a	mixture	 of	 wild	 type	 and	 deletion	 alleles	
gave	double	peaks	in	the	sequencing	chromatograms,	with	the	relative	height	of	
the	double	peaks	reflecting	the	relative	allele	ratio	in	the	sample	(Figure	3).	
	

	
Figure	3:	Sequencing	chromatogram	illustrates	the	genotyping	method	
This	 is	 the	 sequence	 chromatogram	 of	 20	 larvae	 of	 the	 Go-opsin1	 knockout	 founder	 batch.	 The	
chromatogram	illustrates	the	method.	A)	shows	an	overview	of	the	last	90	bp	of	the	PCR	fragment	used	for	
genotyping.	 B)	 shows	 a	 close-up	 on	 the	 zinc-finger-nuclease	 binding	 site,	 where	 the	 double	 peaks	 are	
starting.	The	minor	peaks	are	1/3	of	the	size	of	the	major	peaks,	which	fits	to	the	expected	allele	ratio	of	1/4	
if	the	father	was	wild	type	and	the	mother	was	heterozygous	or	at	least	her	complete	germ	line.	The	major	
peaks	have	the	sequence	TATAACTTACGGTACCC.	The	minor	peaks	have	the	sequence	ACGGTACCC,	which	is	
identical	 to	 the	major	peaks	 except	 that	 the	 first	8	bp	are	missing.	 C)	 shows	a	 close-up	of	 the	 end	of	 the	
chromatogram	with	 the	 end	of	 the	double	peaks	 including	 the	big	 terminating	 adenine	peak.	The	double	
peaks	also	end	8	bp	before	the	last	peak.	Note	that	I	use	this	figure	to	illustrate	the	method,	however	it	also	
includes	the	result	of	the	Go-opsin1	8	bp	deletion,	which	is	summed	up	in	Figure	7B.	
	

A

CB

	 27	

Table	2:	Sample	collection	and	tissue	lysis	for	genotyping	

Larvae	as	sample	 Cirrus	as	sample	
Take	 20	 larvae,	 remove	 seawater	 as	
much	as	possible	

Add	50	µl	Dilution	Buffer	

Add	50	µl	Dilution	Buffer	 Add	cirrus	
Add	1.5	µl	DNARelease	Additive	 Add	1.5	µl	DNARelease	Additive	
Incubate	at	RT	for	5	min	 Incubate	at	RT	for	5	min	
Incubate	at	98	°C	for	2	min	 Incubate	at	98	°C	for	2	min	
	

Table	3:	Go-opsin	PCR	reaction	for	genotyping	

Reagent	 Amount	
PCR	grade	water	 7.1	µl	
2x	Phusion	Human	Specimen	PCR	Buffer	 10.0	µl	
Forward	Go-opsin1	Primer	F001	10	µM	 1.0	µl	
Reverse	Go-opsin1	Primer	B001	10	µM	 1.0	µl	
Phusion	Human	Specimen	DNA	Polymerase	 0.4	µl	
Tissue	Lysis	Solution	 0.5	µl	
Total	Volume	 20.0	µl	
	

Table	4	Go-opsin1	PCR	cycling	conditions	for	genotyping	

Cycle	Step	 Temperature	 Time	 Cycles	
Initial	denaturation	 98	°C	 5:00	 1	
Denaturation	 98	°C	 0:01	

40	Annealing	 65	°C	 0:05	
Extension	 72	°C	 0:30	
Final	Extension	 72	°C	 1:00	 1	

2.3.6 Go-opsin1	mutant	crossing	
Larvae	 from	 eggs	 injected	 with	 Go-opsin1	 zinc-finger-nucleases	 were	 kept	 at	
18°C	for	five	to	eight	days	in	six-well-plates	(Nunc	multidish	no.	150239,	Thermo	
Scientific)	 and	 then	 cultured	 at	 22°C	until	 sexual	maturity.	 The	mature	worms	
were	crossed	to	wild	type	worms	to	produce	an	F1	generation	batch.	
From	each	batch,	20	larvae	were	pooled	and	genotyped.	This	gave	one	founder	
batch.	 Its	 sequence	chromatogram	showed	double	peaks	with	minor	peaks	one	
third	 as	 high	 as	 the	major	 peaks	 (Figure	 3).	 This	matched	 the	 expected	 allele	
ratio	of	one	to	three	in	the	F1	generation	(Figure	4).	From	the	founder	batch,	the	
other	larvae	were	distributed	across	three	culture	boxes,	so	that	the	larvae	had	

	28	

more	space	to	become	mature	worms.	96	of	the	worms	were	genotyped	before	
they	became	mature	and	were	distributed	 into	 the	wells	of	 six-well-plates	 and	
kept	 there	 until	 sexual	 maturity.	 The	 mature	 worms	 that	 were	 heterozygous	
were	crossed	with	each	other	to	produce	F2	generation	batches.	
	

	
♂	 	

♀	

	F1	 	 	

	 	 	

	 	 	

	

F2	 	 	

	 	 	

	 	 	

	

	

F3	 	 	

	 	 	

	 	 	

	

Figure	4:	Mutant	Crossing	schemes	
The	worms	with	the	Go-opsin1Δ8	knockout	allele	were	crossed	to	obtain	a	homozygous	knockout	line	within	
three	 generations.	 The	 crossing	 started	 with	 a	 founder	 mother	 and	 a	 wild	 type	 father	 to	 obtain	 the	 F1	
generation.	In	the	F1	generation,	half	of	the	individuals	carried	the	knockout	allele,	so	that	a	quarter	of	the	
alleles	in	the	F1	generation	were	knockout	alleles.	This	means	that	the	mother	or	at	least	her	germ	line	was	
heterozygous	 for	 the	 knockout	 allele.	 From	 the	 F1	 generation,	 two	heterozygous	worms	were	 crossed	 to	
obtain	the	F2	generation.	In	the	F2	generation,	a	quarter	of	the	individuals	were	homozygous	mutants,	half	
of	 them	were	heterozygous	mutants,	and	a	quarter	of	 them	were	homozygous	wild	 types.	Thus,	 in	 the	F2	
population	 half	 of	 the	 alleles	 were	 knockout	 alleles.	 From	 the	 F2	 generation,	 two	 homozygous	 mutant	
worms	were	crossed	to	obtain	the	F3	generation.	In	the	F3	generation,	all	individuals	were	homozygous	for	
the	knockout	allele	and	thus	in	the	population	all	alleles	were	knockout	alleles.	The	drawings	of	a	male	and	
a	 female	 Platynereis	 epitoke	 worms	 were	 taken	 from	 Fischer	 et	 al.	 (2010),	 who	 tock	 and	 modified	 the	
drawings	 from	 Hauenschild	 and	 Fischer	 (1969).	 Fischer	 et	 al.	 (2010)	 published	 the	 drawings	 under	 the	
terms	of	the	Creative	Commons	Attribution	License	(http://creativecommons.org/licenses/by/2.0).	
	

The	F2	batches	were	also	genotyped	by	pooling	20	 larvae.	This	 gave	 sequence	
chromatograms	with	 double	 peaks	 that	 had	 equal	 size,	matching	 the	 expected	
allele	ratio	of	one	to	one	in	the	F2	generation	(Figure	4).	The	F2	larvae	were	also	
raised	 to	 adulthood	 and	 genotyped	before	 they	 became	 sexually	mature.	 Since	
the	 F2	 generation	 had	 only	 half	 as	 many	 homozygous	 worms	 than	 the	 F1	

wt	 wt	

Δ8	 wt	Δ8	 wt	Δ8	

wt	 wt	wt	 wt	wt	

Δ8	 wt	

Δ8	 Δ8	Δ8	 wt	Δ8	

wt	 Δ8	wt	 wt	wt	

Δ8	 Δ8	

Δ8	 Δ8	Δ8	 Δ8	Δ8	

Δ8	 Δ8	Δ8	 Δ8	Δ8	

	 29	

generation	had	heterozygous	worms	(Figure	4),	192	instead	of	96	worms	were	
genotyped.	The	homozygous	worms	were	 crossed	 to	each	other	 to	produce	F3	
generation	batches.	The	F3	batches	were	also	genotyped	to	confirm	their	status.	
The	 genotyping	 gave	 also	data	 to	 check	whether	 the	Go-opsin1	 knockout	 allele	
was	inherited	in	a	Mendelian	ratio	compared	to	the	wild	type	allele.	

2.4 Opsin	absorption	spectrum	measurement	
Originally,	 we	wanted	 to	measure	 the	 in	 vitro	 spectra	 of	 the	 opsins	 ourselves.	
Therefore,	I	amplified	full-length	Platynereis	dumerilii	r-opsin1,	r-opsin3,	r-opsin4	
Go-opsin1,	and	peropsin1	from	cDNA	of	an	expressed	sequence	tag	(EST)	library	
by	PCR.	The	PCR	primers	were	designed	in	the	following	way:	
The	 forward	 primers	 contained	 nine	 to	 ten	 spacer	 bases	 that	 matched	 the	
endogenous	sequence	13	bases	upstream	of	the	start	codon.	The	twelve	bases	in	
between	were	filled	with	a	BamHI	site	and	a	Kozak	sequence	(GCCACC)	(Kozak,	
1987).	The	primers	contained	another	20	to	30	specific	bases	starting	at	the	start	
codon.	
The	 reverse	 primers	 contained	 20	 to	 50	 specific	 bases	 upstream	 of	 the	
endogenous	 stop-codon.	 Between	 the	 specific	 bases	 and	 the	 stop-codon	 a	 rho	
1D4	tag	sequence	was	inserted.	The	stop-codon	was	followed	by	an	XbaI	site	and	
seven	 to	 nine	 unspecific	 spacer	 bases.	 The	 PCR-products	were	 cloned	 into	 the	
BamHI	and	XbaI	sites	of	pcDNA3.1	(+)	vectors	(Invitrogen).	
The	 vectors	 were	 transfected	 into	 HEK	 293	 cells	 by	 Sarah-Lena	 Offenburger	
(2011)	and	Philipp	Bauknecht	 (2013)	 to	express	 the	opsins.	Philipp	Bauknecht	
also	 reconstituted	 the	 opsins	 with	 retinal	 and	 tried	 to	 measure	 their	 spectra.	
However,	he	could	not	measure	a	spectrum.	Therefore,	we	gave	the	opsins	plus	
c-opsin1,	which	was	 cloned	 by	Philipp	Bauknecht	 in	 the	 same	way,	 to	 experts:	
Huiyong	Jia	and	Shozo	Yokoyama.	
They	purified	 the	opsins	and	measured	 their	spectra,	as	Yokoyama	(2000)	did.	
However,	they	used	their	own	expression	system.	Therefore,	the	opsins	from	the	
pcDNA3.1	(+)	vectors	were	amplified	by	PCR	with	overhang	primers	containing	
EcoRI,	Kosak,	and	SalI	sequences.	The	PCR-products	were	cloned	into	the	EcoRI	
and	 SalI	 restriction	 sites	 of	 pMT5	 expression	 plasmids.	 The	 plasmids	 were	
transfected	 into	 COS1	 cells	 to	 express	 the	 opsins.	 The	 opsins	 were	 incubated	
with	 11-cis-retinal	 (a	 gift	 from	 Dr.	 Rosalie	 K.	 Crouch	 at	 Storm	 Eye	 Institute,	
Medical	University	of	South	Carolina,	and	National	Eye	Institutes)	to	regenerate	
photopigments.	 The	 pigments	 were	 purified	 with	 an	 immobilized	 rho	 1D4	
antibody	 (The	 Culture	 Center,	 Minneapolis,	 MN)	 in	 buffer	 W1	 (50	 mM	 N-(2-

	30	

hydroxyethyl)	 piperazine-N’-2-ethanesulfonic	 acid	 (HEPES)	 (pH	 6.6),	 140	 mM	
NaCl,	3mM	MgCl2,	20%	(w/v)	glycerol	and	0.1%	dodecyl	maltoside)	(Yokoyama,	
2000).	 The	 pigments’	 UV/VIS	 spectra	 were	 recorded	 at	 20°C	 with	 a	 Hitachi	
U-3000	 dual	 beam	 spectrophotometer.	 The	 spectral	 data	 were	 analyzed	 with	
Sigmaplot	software	(Jandel	Scientific,	San	Rafael,	CA).	
	
The	last	paragraph	is	modified	and	adapted	from	Gühmann	et	al.	(2015)	and	was	not	originally	written	by	
me.		

2.5 Photobehavior:	The	experimental	assays	
To	study	the	photobehavior	of	Platynereis	dumerilii	larvae,	I	build	several	setups	
and	designed	several	protocols.	I	build	a	beaker	setup	to	measure	phototaxis	in	a	
horizontal	 environment,	 so	 that	 the	 larvae	 had	more	 space	 around	 and	 above	
them	compared	to	previous	flat	cuvette	setups	(Gühmann	et	al.,	2015;	Jékely	et	
al.,	2008;	Randel	et	al.,	2014).	I	build	a	column	setup	that	allowed	me	to	study	the	
photobehavior	of	 the	 larvae	 in	response	 to	 light	coming	 from	the	 top,	diffusely	
from	the	side,	or	 from	the	bottom.	And	I	build	a	vertical	cuvette	setup	to	study	
how	the	 larvae	react	 to	 light	coming	 from	the	side	of	different	wavelength.	For	
the	setups,	I	was	supported	by	our	metal	and	electro-workshops.	I	also	wrote	or	
modified	programs	to	analyze	the	data	and	to	control	a	monochromator.	

2.5.1 The	horizontal	phototaxis	assay	
Horizontal	phototaxis	of	3-day-old	Platynereis	larvae	(nectochaete)	was	assayed	
in	 100	ml	 glass	 beakers.	 Each	 beaker	 contained	 50	 to	 several	 100	 larvae.	 The	
larvae	 had	 been	 exposed	 to	 daylight	 in	 their	 culturing	 incubator	 before	 the	
experiment.	 During	 the	 experiment,	 the	 larvae	 were	 exposed	 to	 alternating	
monochromatic/white	light	stimuli	from	opposite	directions.	The	white	light	was	
provided	by	a	halogen	cold-light	source	(Schott	KL	2500	LCD,	Schott	AG,	Mainz,	
Germany).	 The	 monochromatic	 light	 was	 provided	 by	 a	 monochromator	
(Polychrome	II,	Till	Photonics).	The	monochromatic	light	passed	a	diffuser	(Ø1"	
20°	Circle	Pattern	Diffuser,	ED1-C20;	Thorlabs)	and	a	collimating	lens	(LAG-65.0-
53.0-C	with	MgF2	Coating,	CVI	Melles	Griot)	before	 it	hit	 the	column.	The	 light	
could	be	blocked	with	a	shutter	(ultra-thin	shutter	04UTS201,	shutter	controller	
04ISC850;	both	CVI	Melles	Griot)	placed	between	the	diffuser	and	the	lens.	
The	larvae	were	stimulated	with	monochromatic	light	from	340	nm	to	680	nm	in	
20	nm	 steps.	 The	 last	 step	 was	 followed	 by	 a	 dark	 phase,	 to	 record	 a	 dark	
measurement	 for	 background	 subtraction.	 The	 larvae	were	 illuminated	 before	
each	monochromatic	light	stimulus	with	white	light	from	one	side	of	the	beaker	

	 31	

to	 redistribute	 them.	 Afterwards,	 they	 were	 stimulated	 with	 monochromatic	
light	 from	 the	 other	 side	 so	 that	 the	 larvae	 turned	 180	 degrees.	 Their	
displacement	 along	 the	 light	 vector	was	measured	 between	 15-30	s	 after	 light	
direction	change.	All	monochromatic	and	white	light	stimuli,	as	well	as	the	dark	
phase,	 lasted	 30	s	 (Table	 5).	 The	 behavior	 was	 recorded	 at	 10	 Hz	 with	 an	
AxioCam	MRm	camera	(Carl	Zeiss	AG,	Jena,	Germany)	mounted	on	a	Zeiss	Stemi	
2000-CS	 stereomicroscope.	During	 recording,	 the	beaker	was	 illuminated	 from	
the	 bottom	 with	 transmitted	 white	 light	 filtered	 by	 a	 750	nm	 long-pass	 filter	
(BrightLine	 HC	 736/LP,	 AHF	 Analysentechnik).	 The	 camera,	 the	 light,	 and	 the	
shutter	 were	 controlled	 by	 the	 program	 AxioVision	 4.8.2.0	 (Carl	 Zeiss	
MicroImaging	GmbH).	

Table	5:	Horizontal	protocol:	340	nm	to	680	nm	(duration:	00:19)	

Wavelength	 From	 Increment	per	cycle	 Duration	 Cycles	
White		 Left	 -	 30	s	

18	
340	nm	to	680	nm		 Right	 20	nm	 30	s	
Dark	 -	 -	 30	s	 1	

2.5.2 The	vertical	column	setup	for	measuring	photoresponses	
Photoresponses	 of	 larvae	 of	 different	 ages	were	 assayed	 in	 a	 vertical	 Plexiglas	
column	(31	mm	x	10	mm	x	160	mm	water	height).	The	column	was	 illuminated	
from	top	with	 light	 from	a	monochromator	(Polychrome	II,	Till	Photonics).	The	
monochromator	was	 controlled	by	AxioVision	4.8.2.0	 (Carl	 Zeiss	MicroImaging	
GmbH)	via	analog	voltage	or	a	custom	written	program	via	the	serial	port.	The	
light	 passed	 a	 collimator	 lens	 (LAG-65.0-53.0-C	with	MgF2	Coating,	 CVI	Melles	
Griot)	 before	 it	 hit	 the	 column.	 The	 column	 was	 placed	 in	 an	 aquarium	 for	
temperature	buffering.	Under	the	aquarium	and	the	column,	three	UV	(395	nm)	
or	 three	 green	 (525	nm)	 light-emitting	 diodes	 (LEDs;	 SMB1W-395	 Roithner	
Lasertechnik)	were	 placed	 to	 stimulate	 the	 larvae	 from	 the	 bottom.	 The	 LEDs	
were	run	at	4	V	(overvoltage	for	green	LEDs)	and	were	manually	controlled.	The	
column	 was	 hold	 by	 a	 scaffold.	 The	 scaffold	 held	 two	 arrays	 of	 light-emitting	
diodes	 (LEDs).	One	array	 contained	UV	 (395	nm)	LEDs	 (SMB1W-395,	Roithner	
Lasertechnik)	 mounted	 along	 infrared	 (810	nm)	 LEDs	 (SMB1W-810NR-I,	
Roithner	Lasertechnik).	The	UV	LEDs	were	run	at	4	V	to	stimulate	the	larvae	in	
the	 column	 from	 the	 side.	 The	 infrared	 LEDs	were	 run	 at	 8	V	 (overvoltage)	 to	
illuminate	 the	 larvae	 in	 the	 column.	 The	 second	 LED	 array	 contained	 more	
infrared	(810	nm)	LEDs	(ELD-810-525,	Roithner	Lasertechnik),	which	were	run	
at	9	V	(overvoltage),	to	illuminate	the	larvae	for	the	camera	(DMK	22BUC03,	The	

	32	

Imaging	 Source),	 which	 recorded	 videos	 at	 15	 frames	 per	 second	 and	 was	
controlled	by	 IC	Capture	 (The	 Imaging	Source).	 IC	Capture	 saved	 the	videos	 in	
the	uncompressed	Y800	monochrome	avi-file	 format.	Since	the	camera	and	the	
monochromator	 were	 controlled	 by	 different	 programs,	 the	 videos	 and	 the	
monochromator	protocols	were	started	separately.	

2.5.3 The	protocols	for	the	vertical	column	
I	 used	 several	 protocols	 to	 study	 the	 behavior	 of	 the	 larvae	 in	 the	 vertical	
column.	Before	a	protocol	was	started,	the	larvae	were	mixed	to	distribute	them	
equally.	The	first	protocol	(Table	6)	tested	whether	the	larvae	could	repeatedly	
switch	 between	 UV	 induced	 down-swimming	 and	 visible	 light	 induced	 up-
swimming.	Therefore,	the	larvae	were	stimulated	six	times	alternatively	with	UV	
(380	nm)	and	green	(520	nm)	light.	Each	stimulus	lasted	4.5	min.	The	last	3	min	
were	analyzed	for	vertical	displacement	of	the	larvae.	The	light	was	provided	by	
the	monochromator,	which	was	controlled	by	AxioVision.	

Table	6:	Vertical	protocol	1:	380	nm	520	nm	switching	(duration:	01:05)	

Wavelength	 Duration	 Cycles	
Dark	 4.5	min	 1	
380	nm	 4.5	min	

6	
520	nm	 4.5	min	
Dark	 4.5	min	 1	
	
The	second	(Table	7)	and	third	protocol	(Table	8)	measured	the	photoresponses	
of	the	larvae	across	the	spectrum	from	340	nm	to	680	nm.	Since	the	larvae	were	
swimming	down	below	420	nm	and	swimming	up	above	420	nm,	the	protocols	
overlapped	with	 their	 ranges	 of	wavelengths.	 This	way,	 the	 larvae’s	 switching	
point	 could	 be	 determined	 and	 the	 results	 of	 the	 two	 protocols	 could	 be	
combined	 into	 one	 spectrum.	 The	 results	 of	 both	 protocols	 agreed	 about	 the	
switching	point	at	420	nm.	The	light	was	provided	by	the	monochromator,	which	
was	controlled	by	AxioVision.	

Table	7:	Vertical	protocol	2:	340	nm	to	480	nm	alternating	with	520	nm	(duration:	01:05)	

Wavelength	 Increment	per	cycle	 Duration	 Cycles	
Dark	 -	 3.5	min	 1	
520	nm	 -	 3.5	min	

8	
340	nm	to	480	nm	 20	nm	 3.5	min	
Dark	 -	 3.5	min	 1	
	

	 33	

The	 second	protocol	 (Table	7)	 stimulated	 the	 larvae	with	monochromatic	 light	
from	the	top	between	340	nm	and	480	nm	in	20	nm	steps.	Between	the	stimuli,	
additional	520	nm	stimuli	were	introduced	to	redistribute	the	larvae	within	the	
column.	Each	stimulus	 lasted	3.5	min.	The	last	2	min	were	analyzed	for	vertical	
displacement	of	the	larvae.	
The	 third	 protocol	 (Table	 8)	 stimulated	 the	 larvae	 with	 monochromatic	 light	
from	the	top	between	400	nm	and	680	nm	in	20	nm	steps.	Between	the	stimuli,	
additional	400	nm	stimuli	were	introduced	to	redistribute	the	larvae	within	the	
column.	Each	stimulus	 lasted	3.5	min.	The	last	2	min	were	analyzed	for	vertical	
displacement	of	the	larvae.	

Table	8:	Vertical	protocol	3:	420	nm	to	680	nm	alternating	with	400	nm	(duration:	01:50)	

Wavelength	 Increment	per	cycle	 Duration	 Cycles	
Dark	 -	 3.5	min	 1	
400	nm	 -	 3.5	min	

14	
420	nm	to	680	nm	 20	nm	 3.5	min	
Dark	 -	 3.5	min	 1	
	
The	fourth	protocol	stimulated	the	larvae	with	UV	(395	nm)	or	green	(525	nm)	
light	 from	LEDs	at	 the	bottom.	The	LEDs	were	controlled	manually.	The	 larvae	
were	 stimulated	 for	 5	min	 after	 a	 5	min	 dark	 period.	 The	 larvae’s	 horizontal	
displacement	was	analyzed	in	an	interval	from	1	to	1.5	min	after	stimulus	onset.	
Weather	UV	or	green	light	was	given	first,	was	randomized.	
The	fifth	protocol	(Table	9)	stimulated	the	larvae	with	UV	(395	nm)	light	coming	
from	 LEDs	 from	 the	 side	 to	 check	 whether	 the	 larvae	 would	 react	 to	 non-
directional	UV-light.	Afterwards	the	larvae	were	stimulated	with	cyan	(480	nm)	
light	 coming	 from	 the	 top	 to	 check	 for	 phototaxis.	 Each	 stimulus	 lasted	 4	min.	
The	LEDs	were	controlled	manually	and	the	monochromator	was	controlled	via	
AxioVision	but	also	manually.	

Table	9:	Vertical	protocol	5:	395	nm	from	side	and	480	nm	from	top	(duration:	00:12)	

Wavelength	 Duration	
Dark	 4	min	
395	nm	from	side	LEDs	 4	min	
480	nm	from	top	 4	min	
	
The	 sixth	 protocol	 (Table	 10)	 stimulated	 the	 larvae	 with	 UV-cyan	 (380	nm,	
480	nm)	 ratiometric	 light	 from	 the	 top.	 The	 protocol	 started	 with	 660	nm	 a	

	34	

wavelength	the	larvae	can	hardly	see.	Then	the	larvae	were	exposed	to	UV-light,	
which	was	stepwise	reduced.	 In	each	step,	10	%	UV-light	was	replaced	by	cyan	
light.	Each	step	was	 followed	by	a	cyan	 (480	nm)	 light	 stimulus	 to	 redistribute	
the	larvae.	For	instance,	the	90	%	of	UV-light	ratio	was	created	by	giving	UV-light	
for	 450	ms	 and	50	ms,	which	was	 repeated	until	 the	 stimulus	 ended.	The	 light	
was	 optionally	 dimmed	 by	 a	 1	OD	 neutral	 density	 filter	 (CSND-4-100.0M,	 CVI	
Melles	Griot).	The	light	was	given	by	the	monochromator,	which	was	controlled	
via	 the	 serial	 port	 by	 a	 custom	 java	 program	 (See	 section	 2.5.4).	 Each	 light	
condition	lasted	4	min.	
The	 seventh	 protocol	 (Table	 11)	 is	 a	 modification	 of	 the	 sixth	 protocol.	 The	
ratiometric	 ratio	 of	 UV-cyan	 light	 was	 replaced	 by	 a	 ratio	 of	 UV-red	 (380	nm,	
660	nm)	light.	

Table	 10:	 Vertical	 protocol	 6:	 380	nm	 :	 480	nm	 ratiometric	 alternating	 with	 480	nm	
(duration:	1:20)	

Wavelengths	 Ratio	times	 Ratio	 %	of	380	nm	 Duration	
660	nm	 	 	 	 4	min	
380	nm	 	 10:0	 100	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 450	ms	:	50	ms	 9:1	 90	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 400	ms	:	100	ms	 8:2	 80	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 350	ms	:	150	ms	 7:3	 70	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 300	ms	:	200	ms	 6:4	 60	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 250	ms	:	250	ms	 5:5	 50	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 200	ms	:	300	ms	 4:6	 40	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 150	ms	:	350	ms	 3:7	 30	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 100	ms	:	400	ms	 2:8	 20	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	480	nm	 50	ms	:	450	ms	 1:9	 10	%	 4	min	
	
	

	 35	

	

Table	 11:	 Vertical	 protocol	 7:	 380	nm	 :	 480	nm	 ratiometric	 alternating	 with	 480	nm	
(duration:	1:20)	

Wavelengths	 Ratio	times	 Ratio	 %	of	380	nm	 Duration	
660	nm	 	 	 	 4	min	
380	nm	 	 10:0	 100	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 450	ms	:	50	ms	 9:1	 90	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 400	ms	:	100	ms	 8:2	 80	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 350	ms	:	150	ms	 7:3	 70	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 300	ms	:	200	ms	 6:4	 60	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 250	ms	:	250	ms	 5:5	 50	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 200	ms	:	300	ms	 4:6	 40	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 150	ms	:	350	ms	 3:7	 30	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 100	ms	:	400	ms	 2:8	 20	%	 4	min	
480	nm	 	 	 	 4	min	
380	nm	:	660	nm	 50	ms	:	450	ms	 1:9	 10	%	 4	min	

2.5.4 Custom	java	program	for	controlling	the	monochromator	
The	monochromator	can	give	light	switching	rapidly	between	two	wavelengths,	
a	 feature	 I	 used	 to	 stimulate	 the	 larvae	with	 two	wavelengths	 simultaneously.	
However,	 this	 feature	 cannot	 be	 activated	 via	 analog	 voltage,	 which	 uses	
AxioVision,	only.	Therefore,	I	used	the	serial	port	to	control	the	monochromator.	
For	 that,	Till	Photonics	provides	 the	program	TILL	ADC	Communication,	which	
allows	setting	the	wavelength	steps	manually.	This	is	however	cumbersome	and	
error-prone.	
Therefore,	I	customized	a	java	program,	so	that	it	can	send	commands	from	a	list	
to	 the	 monochromator	 via	 the	 serial	 port.	 I	 added	 also	 a	 timer	 so	 that	 each	
command	can	be	send	after	a	 certain	 time.	The	commands	and	 their	meanings	
can	be	looked	up	in	the	help	file	of	TILL	ADC	Communication.	The	java	program	I	

	36	

modified	is	BlackBox	from	the	Java	Communications	API.	It	already,	provided	an	
interface,	 so	 that	 I	 only	 needed	 to	 add	 the	 timer,	 a	 way	 to	 load	 and	 run	 the	
protocol	to	its	Transmitter.java	file	(Code	15)	and	recompile	it.	The	protocol	file	
to	run	the	380/480	nm	ratios	in	BlackBox	is	given	by	Code	1.	
The	command	SR	connects	to	or	disconnects	 from	the	monochromator;	 ID	gets	
the	 monochromator’s	 ID;	 WL	 sets	 the	 wavelengths;	 PD	 sets	 an	 alternating	
wavelength	 to	 the	 memory	 of	 the	 monochromator;	 and	 PC	 activates	 the	
wavelength	protocol.	The	first	 three	numbers	are	time	intervals,	 the	first	 is	 the	
dead	time,	which	the	monochromator	needs	to	switch	between	wavelengths,	the	
second	 is	 the	 time	 for	 the	 first	 wavelength,	 and	 the	 third	 is	 the	 time	 for	 the	
second	wavelengths.	The	 times	are	given	 in	 tenth	of	ms,	not	ms	as	 the	manual	
claims.	The	last	two	numbers	are	the	first	and	second	wavelength.	The	keyword	
Wait	 is	 for	 BlackBox	 to	 wait	 the	 specified	 seconds.	 The	minimum	 number	 of	
seconds	 between	 commands	 is	 1;	 otherwise,	 the	 monochromator	 cannot	 be	
controlled	 properly.	 Therefore,	 1	s	 is	 removed	 from	 the	 one-wavelength	 only	
periods	to	set	the	wavelength	protocol;	and	1	s	later,	it	is	activated.	

Code	1:	Protocol	file	for	the	380/480	nm	ratio	for	BlackBox	

SR,0; Wait 1
ID; Wait 1
WL,660; Wait 238
WL,380; Wait 240
WL,480; Wait 239
PD,30,500,4470,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,1000,3970,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,1500,3470,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,2000,2970,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,2500,2470,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,3000,1970,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,3500,1470,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,4000,970,380,480; Wait 1
PC,0; Wait 240
WL,480; Wait 239
PD,30,4500,470,380,480; Wait 1
PC,0; Wait 240
SR,1;

	 37	

2.5.5 The	vertical	cuvette	setup	for	measuring	photoresponses	
2-day-old	 Platynereis	 dumerilii	 larvae	 were	 assayed	 in	 a	 vertical	 cuvette	 of	
10	mm	x	10	mm	x	42	mm	(L	x	W	x	H).	The	larvae	were	kept	at	18°C	and	had	been	
exposed	 to	daylight	before	 the	experiment.	The	 larvae	were	 illuminated	with	a	
monochromator	 (Polychrome	II,	 Till	 Photonics)	 controlled	 by	 AxioVision	 from	
one	side	and	were	illuminated	from	the	other	side	with	the	same	light	reflected	
by	 a	 mirror	 (PFSQ20-03-F01,	 Thorlabs).	 The	 light	 passed	 a	 diffuser	 (Ø1"	 20°	
Circle	 Pattern	 Diffuser,	 ED1-C20;	 Thorlabs)	 and	 a	 collimating	 lens	 (LAG-65.0-
53.0-C	with	MgF2	Coating,	CVI	Melles	Griot)	before	it	hit	the	cuvette.	The	cuvette	
was	 illuminated	 with	 infrared	 (850	nm)	 light-emitting	 diodes	 (LEDs)	 (L2X2-
I3CA,	 Roithner	 Lasertechnik)	 from	 the	 side.	 The	 LEDs	 were	 run	 at	 6.0	 V.	 The	
larvae	were	stimulated	with	 light	 from	340	nm	to	680	nm	in	20	nm	steps.	Each	
step	lasted	1	min.	The	steps	were	separated	by	1	min	darkness,	so	that	the	larvae	
could	redistribute	after	each	stimulus	(Table	12).	The	larvae	were	recorded	at	16	
frames	 per	 second	 with	 a	 DMK	 23GP031	 camera	 (The	 Imaging	 Source)	
controlled	 by	 IC	 Capture.	 The	 camera	 was	 equipped	 with	 a	 macro	 objective	
(Macro	Zoomatar	1:4/50-125	mm,	Zoomar	Muenchen).	 It	was	mounted	with	 a	
close-up	 lens	 (+2	 52	 mm,	 Dörr	 close-up	 lens	 set	 368052).	 The	 larvae	 were	
tracked	and	their	vertical	displacement	was	analyzed	during	the	last	45	s	of	each	
stimulus	period	for	the	UV-response	and	for	the	first	30	s	for	phototaxis.	

Table	12:	Vertical	cuvette	protocol:	340	nm	to	680	nm	(duration:	00:39)	

Wavelength	 Increment	per	cycle	 Duration	 Cycles	
Dark	 -	 1	min	 1	
Dark		 -	 1	min	

18	
340	nm	to	680	nm		 20	nm	 1	min	
Dark	 -	 1	min	

1	
Dark	 -	 1	min	

2.6 Photobehavior:	The	data	analyses	
The	 larvae	 in	 the	 videos	 were	 tracked	 with	 ImageJ	 macros	 using	 the	 plugin	
mTRack2.	 The	 resulting	 tracks	were	 analyzed	with	 a	 Perl	 script	 that	 extracted	
the	average	displacement	of	the	larvae	along	the	axis	parallel	to	the	light	vector,	
which	was	 in	 the	video	either	 the	x-	or	 the	y-axis.	The	 ImageJ	macros	and	Perl	
scripts	were	derived	from	previous	scripts	(Conzelmann	et	al.,	2011)	and	heavily	
modified.	 For	 horizontal	 phototaxis	 in	 the	 beaker,	 the	 displacement	 values	 for	
each	wavelength	and	each	batch	were	normalized	to	the	last	dark	measurement,	

	38	

by	 subtracting	 the	 displacement	 value	 of	 the	 dark	 measurement	 from	 the	
measurements	for	each	wavelength.	

2.6.1 The	ImageJ	macros	
I	wrote	three	ImageJ	macros,	one	for	the	horizontal	beaker	(Code	9),	one	for	the	
vertical	 column	 (Code	 10),	 and	 one	 for	 the	 vertical	 cuvette	 (Code	 11).	 The	
macros	ask	either	for	a	list	of	input	and	output	directories	or	for	one	input	and	
one	 output	 directory.	 The	 input	 directory	 should	 only	 contain	 video	 files;	
otherwise,	 the	macro	will	 stop	processing.	The	video	 files	can	be	 in	all	 formats	
ImageJ	can	read.	The	macros	may	remove	the	first	n	frames,	which	the	user	can	
specify.	 This	 feature	 allows	 adjusting	 for	 the	 delay	 between	 the	manual	 video	
start	 and	 the	manual	 start	 of	 the	monochromatic	 light	 protocol.	 However,	 this	
feature	was	only	used	for	the	vertical	column.	
Then	 the	macros	 cut	 the	 videos	 in	 intervals	 of	 30	 s	 (Code	9,	 Code	10)	 or	 15	 s	
(Code	 11),	 which	 corresponds	 to	 50,	 450,	 and	 240	 frames,	 respectively.	 The	
frames	are	here	specified,	because	the	macros	do	not	know	the	frame	rates	of	the	
videos.	The	macros	may	remove	additional	frames	at	the	start	or	the	end	of	the	
cut	 interval.	 This	 allows	 cutting	 a	 video	 into	 intervals	without	 having	 to	 cut	 it	
precisely.	For	 instance,	when	the	light	stimulus	changes	then	the	 larvae	change	
also	their	behavior	and	when	the	light	stimulus	changes	than	the	illumination	in	
the	videos	changes,	which	may	be	a	problem	for	further	processing:	The	macros	
convert	 the	 videos	 into	 black	 and	 white	 only,	 by	 removing	 the	 background,	
filtering,	and	converting	all	 the	pixel	values	below	a	certain	 threshold	 to	black.	
This	results	in	moving	black	dots	representing	the	larvae.	The	larvae	are	tracked	
with	 the	 ImageJ	 plugin	mTrack2.	 The	 tracks	 are	 saved	 in	 a	 text	 file.	 Also,	 the	
distribution	of	the	larvae	is	saved	to	another	text	file	in	a	text	image	format.	
The	 three	macros	 differ	 how	 they	 convert	 the	 videos	 to	 black	 and	white.	 This	
depends	 weather	 for	 instance	 the	 larvae	 are	 brighter	 or	 darker	 than	 the	
background.	The	macros	also	differ	how	mTrack2	tracks	the	larvae.	For	instance,	
in	the	vertical	cuvette	videos,	the	larvae	are	bigger	than	in	the	column;	therefore,	
the	particle	size	and	their	velocities,	which	mTrack2	receives	as	arguments,	are	
also	bigger.	

2.6.2 ImageJ	modifications	
To	 automate	 the	data	 analysis	 in	 ImageJ	 1.46r,	 I	modified	 three	 source	 files	 of	
ImageJ	 and	 recompiled	 it.	 For	 recompiling,	 I	 used	 the	 integrated	 development	
environment	NetBeans	7.1.2.	

	 39	

The	 first	 file	 I	modified	was	AVI_Reader.java.	There	 I	modified	 the	 showDialog	
method	 of	 the	 AVI_Reader	 class.	 The	method	 is	 given	 below	 (Code	 2)	 and	 the	
added	code	is	underlined.	This	way,	ImageJ	does	not	ask	for	user	input	when	it	is	
opening	an	avi	file	and	if	it	runs	in	automatized	macro	mode.	
I	also	modified	the	readMovieData	method	(Code	3)	of	the	AVI_Reader	class	by	
adding	the	actual	number	of	frames	the	ImageStack	object	will	contain	so	that	it	
can	 allocate	 all	 the	 needed	memory	 in	 advance	 instead	 of	 having	 to	 reallocate	
memory,	which	is	time	consumptive.	For	that	I	had	to	fix	one	of	the	ImageStack	
(Code	4)	constructors	in	the	file	ImageStack.java.	
The	 third	 file	 was	 LutApplier.java.	 There	 I	 modified	 the	 apply	 method	 of	 the	
LutApplier	class	(Code	5).	This	way,	ImageJ	does	not	throw	an	error,	if	nothing	is	
to	be	done	 in	macro	mode.	 In	 fact,	 this	 is	not	an	error;	 it	 just	 stops	 the	 ImageJ	
macro	analyzing	the	data.	

Code	2:	Modified	showDialog	method	of	the	AVI_Reader	class	of	ImageJ	

/** Parameters dialog, returns false on cancel */
 private boolean showDialog (String fileName) {
 if (IJ.isMacro()) {
 // If we run a marcro we don't want to be asked everytime
 firstFrame = 0;
 lastFrame = dwTotalFrames;
 isVirtual = false;
 convertToGray = false;
 flipVertical = false;
 return true;
 }
 if (lastFrame!=-1)
 lastFrame = dwTotalFrames;
 if (!IJ.isMacro()) {
 convertToGray = staticConvertToGray;
 flipVertical = staticFlipVertical;
 isVirtual = staticIsVirtual;
 }
 GenericDialog gd = new GenericDialog("AVI Reader");
 gd.addNumericField("First Frame: ", firstFrame, 0);
 gd.addNumericField("Last Frame: ", lastFrame, 0, 6, "");
 gd.addCheckbox("Use Virtual Stack", isVirtual);
 gd.addCheckbox("Convert to Grayscale", convertToGray);
 gd.addCheckbox("Flip Vertical", flipVertical);
 gd.showDialog();
 if (gd.wasCanceled()) return false;
 firstFrame = (int)gd.getNextNumber();
 lastFrame = (int)gd.getNextNumber();
 isVirtual = gd.getNextBoolean();
 convertToGray = gd.getNextBoolean();
 flipVertical = gd.getNextBoolean();
 if (!IJ.isMacro()) {
 staticConvertToGray = convertToGray;
 staticFlipVertical = flipVertical;
 staticIsVirtual = isVirtual;
 }
 IJ.register(this.getClass());
 return true;

	40	

 }

Code	3:	The	modified	part	of	readMovieData	method	of	the	AVI_Reader	class	of	ImageJ	

/**Read from the 'movi' chunk. Skips audio ('..wb', etc.), 'LIST'
'rec' etc, only reads '..db' or '..dc'*/
 void readMovieData(long endPosition) throws Exception,
IOException {
 if (verbose)
 IJ.log("MOVIE DATA "+posSizeString(endPosition-
raFile.getFilePointer())+timeString());
 if (verbose)
 IJ.log("Searching for stream "+streamNumber+": '"+
 fourccString(type0xdb)+"' or
'"+fourccString(type0xdc)+"' chunks");
 if (isVirtual) {
 if (frameInfos==null) // we might
have it already from reading the first chunk
 frameInfos = new Vector<long[]>(100); // holds
frame positions in file (for non-constant frame sizes, should hold
long[] with pos and size)
 } else if (stack==null)
 stack = new ImageStack(dwWidth, biHeight,
lastFrameToRead);

Code	4:	Modified	ImageStack	constructor	of	ImageJ	

/** Creates a new, empty image stack with a capacity of 'size'. All
 'size' slices and labels of this image stack are initially
null.*/
 public ImageStack(int width, int height, int size) {
 this.width = width;
 this.height = height;
 this.cm = null;
 stack = new Object[size];
 label = new String[size];
 nSlices = 0;
 }

Code	5:	The	first	part	of	the	modified	apply	method	of	the	LutApplier	class	of	ImageJ	

void apply(ImagePlus imp, ImageProcessor ip) {
 if (ip.getMinThreshold()!=ImageProcessor.NO_THRESHOLD) {
 imp.unlock();
 IJ.runPlugIn("ij.plugin.Thresholder", "skip");
 return;
 }
 min = (int)ip.getMin();
 max = (int)ip.getMax();
 if (min==0 && max==255) {
 if(!IJ.isMacro())
 {
 IJ.error("Apply LUT", "The display range must first be
updated\n"
 +"using Image>Adjust>Brightness/Contrast\n"
 +"or threshold levels defined using\n"
 +"Image>Adjust>Threshold.");
 }

 // For a macro we don't care, there is nothing to do, we just
want to continue
 return;
 }

	 41	

2.6.3 The	Perl	script	
The	 Perl	 script	 TrackProcessor.pl	 (Code	 12)	 processes	 the	 output	 from	 the	
ImageJ	macro.	The	script	depends	on	MTrack.pm	(Code	13).	
MTrack.pm	 parses	 the	 output	 of	 mTrack2	 or	 mTrack3,	 dependent	 on	 a	
parameter.	MTrack.pm	is	derived	from	the	mTrack2	parser	of	a	previous	script	
(Conzelmann	et	al.,	2011),	which	 I	 rewrote	 to	modularize	and	 tidy	 the	code	so	
that	 it	 can	 be	 better	maintained.	 I	 added	 an	mTrack3	 parser	 and	moved	 it	 to	
MTrack.pm	as	a	library	file	so	that	the	same	code	can	be	reused	by	different	files	
instead	of	being	copied	to	different	places.	
The	other	code	stayed	in	the	main	file	TrackProcessor.pl,	which	has	twelve	input	
parameters	(Table	13).	The	first	parameter	is	the	input	file,	which	was	generated	
by	 one	 of	 the	 ImageJ	 macros	 and	 contains	 the	 coordinates	 of	 the	 tracks.	 The	
input	file	is	accompanied	by	a	second	file	that	has	the	base	name	of	the	input	file	
appended	by	“_vertical.text_image.txt”,	which	is	the	distribution	file	in	text-image	
format.	The	second	parameter	is	the	frame	rate	with	that	the	analyzed	video	was	
recorded.	The	third	and	seventh	parameter	give	the	width	of	the	field	of	view	in	
pixels	or	mm,	respectively.	The	frame	rate	and	the	width	of	the	field	of	view	are	
used	to	normalize	the	displacements	of	the	larvae	to	the	unit	mm/s.	The	fourth	
and	 fifth	 parameter	 give	 the	 number	 of	 pixels	 that	 should	 be	 removed	 in	 the	
video	at	the	top	and	bottom,	respectively.	This	allows	removing	pixels	at	the	top	
and	 bottom	 of	 a	 vertical	 column	where	mirror	 images	 of	 larvae	were	 tracked.	
The	 sixth	 parameter	 gives	 the	 version	 of	 mTrack	 that	 was	 used.	 The	 value	 2	
indicates	mTrack2,	any	other	value	indicates	mTrack3.	
The	 twelfth	 parameter	 determines	 how	 the	 tracks	 are	 plotted	 in	 the	 track	
images.	Two	examples	are	shown	in	Figure	5.	The	examples	were	created	with	a	
value	 of	 2,	 for	 values	 of	 0	 and	 1;	 more	 information	 is	 plotted.	 The	 eighth	
parameter	determines	whether	on	the	track	images,	the	tracks	pointing	up	and	
down	(value	0)	or	left	and	right	tracks	(value	1)	are	color-coded	differently.	The	
ninth	 parameter	 determines	 whether	 for	 each	 frame	 an	 image	 is	 created	 that	
shows	 the	 positions	 of	 the	 larvae	with	 color-coded	 dots.	 These	 images	 can	 be	
used	 to	 create	 movies.	 If	 the	 value	 is	 0,	 nothing	 is	 done.	 If	 the	 value	 is	 1,	 it	
encodes	the	tracks	by	time.	If	it	is	2,	it	encodes	them	by	moving	angel.	And	if	it	is	
greater	 than	2,	 it	 encodes	 the	 tracks	by	 time	and	angle.	The	 size	of	 the	dots	 is	
determined	 in	 pixels	 by	 the	 eleventh	 parameter.	 The	 tenth	 parameter	
determines	 the	 background	 color	 of	 the	 images;	 if	 it	 is	 0,	 the	 background	 is	
white,	if	it	is	1,	the	background	is	black;	if	it	is	bigger	than	1,	no	image	is	saved.	

	42	

Table	13:	Input	parameters	of	TrackProcessor.pl	

#	 Description	 Example	
1	 File	to	process	(input	file)	 /File/Path/Example.res	
2	 Video	frame	rate	(fps)	 15	
3	 Field	of	view	width	in	pixels	 142	
4	 Number	of	pixels	above	column	 5	
5	 Number	of	pixels	at	bottom	 5	
6	 Version	of	mTrack	 Default:	2	
7	 Column	width	in	mm	 Default:	31	
8	 Display	from	left	to	right	 Default:	0	
9	 Print	frames	 Default:	0	
10	 Frames	background	 Default:	0	
11	 Particle	size	 Default:	10	
12	 Track	image	style	 Default:	0	
	
The	Perl	script	TrackProcessor.pl	saves	three	files	into	the	directory	of	the	input	
file:	 The	 first	 shows	 the	 distribution	 of	 the	 larvae	 along	 a	 vertical	 axis.	 The	
vertical	 axis	 can	 be	 changed	 to	 a	 horizontal	 axis	 if	 the	 eighth	 input	 parameter	
(Display	from	left	to	right)	is	1.	The	second	file	shows	the	tracks	of	the	larvae	in	
the	field	of	view	and	the	tracks	put	to	a	common	origin.	The	third	 is	a	text	 file,	
which	 contains	 the	 results	 for	 the	 calculations	 and	 is	 called	 Results.txt.	
Results.txt	 is	 created	 if	 it	 does	 not	 exist	 with	 a	 header	 row	 and	 a	 data	 row.	
Otherwise,	another	data	row	is	added.	This	way,	the	results	of	many	input	files	
can	be	compiled	into	one	output	file.	
Results.txt	 contains	many	 columns,	 because	 I	 tried	many	 ways	 to	 process	 the	
data.	Eventually,	I	settled	on	the	values	highlighted	in	cyan	in	Table	14.	These	are	
“#Average	 x	 Displacement”	 for	 the	 horizontal	 beaker	 experiments	 and	 the	
“#Average	 y	 Displacement”	 for	 the	 vertical	 experiments.	 These	 are	 like	
“#Average	 x	Movement”	 and	 “#Average	 y	Movement”,	which	 are	 based	 on	 the	
tracks	as	units	instead	on	single	track-pieces.	A	track-piece	is	the	part	of	a	track	
between	 consecutive	 frames.	Whole	 tracks	may	 not	 follow	 a	 larva	 completely,	
because	mTrack2	may	not	track	a	larva	continuously.	Therefore,	two	tracks	may	
represent	 one	 larva.	 Each	 larva	 however	 is	 represented	 by	many	 track-pieces	
and	therefore	if	some	of	the	path	of	a	larva	has	not	been	tracked	then	the	mistake	
is	smaller	 than	adding	a	 larva	 twice	 to	 the	average.	This	 is	 theoretically	better,	
however	practically	 the	values	 for	“#Average	y	Displacement”	and	“#Average	y	
movement”	only	differ	slightly.	Additional	useful	values	(even	so	not	presented	

	 43	

here)	 are	 “#Larvae”	 and	 “#Speed	 (mm	 per	 sec)”	 for	 checking	 the	 number	 of	
larvae	and	their	speed	in	the	experiment.	
Results.txt	 is	 a	 tab-delimited	 list	 that	 can	 be	 pasted	 into	 an	 Excel	 file	 that	
contains	 formatting	 and	 graphs	 so	 that	 the	 data	 can	 be	 reviewed	 quickly.	 The	
data	 can	 be	 copied	 to	 an	 average	 sheet	 manually,	 or	 it	 can	 be	 copied	
automatically,	via	another	Perl	script.	

Table	14:	Column	fields	in	the	output	file	Results.txt	

Column	 Description	
File	Name	 Name	and	full	path	of	the	input	file	
#Vectors	 Number	of	vectors	derived	from	mTrack	traces	
#upward	Vectors	 Number	of	vectors	pointing	up	
#downward	Vectors	 Number	of	vectors	pointing	down	
#leftward	Vectors	 Number	of	vectors	pointing	left	
#rightward	Vectors	 Number	of	vectors	pointing	right	
%upward	Vectors	 Percentage	of	vectors	pointing	up	
%downward	Vectors	 Percentage	of	vectors	pointing	down	
%leftward	Vectors	 Percentage	of	vectors	pointing	left	
%rightward	Vectors	 Percentage	of	vectors	pointing	right	
#Average	x	Displacement	 Average	displacement	of	the	larvae	along	the	x-axis	

in	mm/s	(based	on	track	pieces)	
#Average	y	Displacement	 Average	displacement	of	the	larvae	along	the	y-axis	

in	mm/s	(based	on	track	pieces)	
#Average	x	positive	
Displacement	

Average	 displacement	 of	 the	 rightward	 swimming	
larvae	 along	 the	 x-axis	 in	 mm/s	 (based	 on	 track	
pieces)	

#Average	y	positive	
Displacement	

Average	 displacement	 of	 the	 upward	 swimming	
larvae	 along	 the	 y-axis	 in	 mm/s	 (based	 on	 track	
pieces)	

#Average	x	negative	
Displacement	

Average	 displacement	 of	 the	 leftward	 swimming	
larvae	 along	 the	 x-axis	 in	 mm/s	 (based	 on	 track	
pieces)	

#Average	y	negative	
Displacement	

Average	displacement	of	 the	downward	swimming	
larvae	 along	 the	 y-axis	 in	 mm/s	 (based	 on	 track	
pieces)	

	44	

Column	 Description	
#Average	x	absolute	
Displacement	

Average	displacement	of	the	larvae	along	the	x-axis	
in	 mm/s	 with	 ignoring	 the	 sign	 (based	 on	 track	
pieces)	

#Average	y	absolute	
Displacement	

Average	displacement	of	the	larvae	along	the	y-axis	
in	 mm/s	 with	 ignoring	 the	 sign	 (based	 on	 track	
pieces)	

#Average	x	Movement	 Average	displacement	of	the	larvae	along	the	x-axis	
in	mm/s	(based	on	whole	tracks)	

#Average	y	Movement	 Average	displacement	of	the	larvae	along	the	y-axis	
in	mm/s	(based	on	whole	tracks)	

#Average	positive	y	
Movement	

Average	 displacement	 of	 the	 upward	 swimming	
larvae	 along	 the	 y-axis	 in	 mm/s	 (based	 on	 whole	
tracks)	

#Average	negative	y	
Movement	

Average	displacement	of	 the	downward	swimming	
larvae	 along	 the	 y-axis	 in	 mm/s	 (based	 on	 whole	
tracks)	

#Average	absolute	y	
Movement	

Average	absolute	displacement	of	 the	 larvae	along	
the	y-axis	in	mm/s	(based	on	whole	tracks)	

#Average	Movement	 Average	displacement	of	the	larvae	along	the	x-	and	
y-axis	in	mm/s	(based	on	whole	tracks)	

#Average	positive	
Movement	

Average	 displacement	 of	 the	 upward	 swimming	
larvae	 along	 the	 x-	 and	 y-axis	 in	mm/s	 (based	 on	
whole	tracks)	

#Average	negative	
Movement	

Average	displacement	of	 the	downward	swimming	
larvae	 along	 the	 x-	 and	 y-axis	 in	mm/s	 (based	 on	
whole	tracks)	

#Average	absolute	
Movement	

Average	absolute	displacement	of	 the	 larvae	along	
the	x-	and	y-axis	in	mm/s	(based	on	whole	tracks)	

#Larvae	 Maximum	number	of	larvae	that	could	be	tracked	at	
the	same	time	

#Larvae	Upper	 Maximum	number	of	larvae	that	could	be	tracked	at	
the	same	time	in	the	upper	half	of	the	column	

#Larvae	Lower	 Maximum	number	of	larvae	that	could	be	tracked	at	
the	same	time	in	the	lower	half	of	the	column	

#Larvae	%	Upper	 Percentage	of	larvae	in	the	upper	half	of	the	column	

	 45	

Column	 Description	
#Larvae	%	Lower	 Percentage	of	larvae	in	the	lower	half	of	the	column	
#Upward	Speed	(mm	per	
sec)	

Average	 speed	 of	 larvae	 swimming	 upwards	 in	
mm/s	(based	on	whole	tracks)	

#Downward	Speed	(mm	
per	sec)	

Average	 speed	 of	 larvae	 swimming	 downwards	 in	
mm/s	(based	on	whole	tracks)	

#Absolute	Speed	(mm	per	
sec)	

Average	 speed	 of	 all	 larvae	 in	 mm/s	 (based	 on	
whole	tracks)	

#Single	Sum	Speed	(mm	
per	sec)	

Average	 speed	 of	 all	 larvae,	 downward	 swimming	
larvae	 weighted	 negatively,	 in	 mm/s	 (based	 on	
whole	tracks)	

#Sum	Speed	(mm	per	sec)	 Upward	Speed	–	Downward	Speed	(based	on	whole	
tracks)	

#Speed	(mm	per	sec)	 Average	speed	of	all	larvae	in	mm/s	(based	on	track	
pieces)	

#Mean	depth	(mm	from	
surface)	

Average	depth	of	all	the	larvae	from	the	surface	

#Mean	depth	(in	%)	 Average	 depth	 distribution	 of	 all	 the	 larvae	 from	
the	surface	in	percentage,	0	%	is	surface	and	100	%	
is	bottom	

#Mean	left/right	(mm	
from	middle)	

Average	deviation	of	all	larvae	from	the	midline	

#Mean	left/right	(in	%	
from	middle)	

Average	deviation	of	all	 larvae	 from	the	midline	 in	
percentage,	 0	%	 is	 midline,	 -50	%	 is	 left,	 50	%	 is	
right	

#Simple	X	straightness	 How	 parallel	 the	 larvae	 swim	 to	 the	 x-axis,	 the	
closer	the	value	is	to	one	the	more	parallel	are	the	
larvae	swimming	(based	on	whole	tracks)	

#Simple	Y	straightness	 How	 parallel	 the	 larvae	 swim	 to	 the	 y-axis,	 the	
closer	the	value	is	to	one	the	more	parallel	are	the	
larvae	swimming	(based	on	whole	tracks)	

#Single	X	straightness	 How	 parallel	 the	 larvae	 swim	 to	 the	 x-axis,	 the	
closer	the	value	is	to	one	the	more	parallel	are	the	
larvae	swimming	(based	on	track	pieces)	

	46	

Column	 Description	
#Single	Y	straightness	 How	 parallel	 the	 larvae	 swim	 to	 the	 y-axis,	 the	

closer	the	value	is	to	one	the	more	parallel	are	the	
larvae	swimming	(based	on	track	pieces)	

#Average	Angel	 The	 average	 angle	 to	 the	 x-axis	 of	 all	 swimming,	
larvae	 based	 on	 #Average	 x	 Displacement	 and	
#Average	y	Displacement	(based	on	whole	tracks)	

#Top	Vectors	 The	 number	 of	 vectors	 that	 point	 up	 and	 are	
parallel	to	the	y-axis	or	less	than	15°	off	(based	on	
whole	tracks).	

#Bottom	Vectors	 The	 number	 of	 vectors	 that	 point	 down	 and	 are	
parallel	to	the	y-axis	or	less	than	15°	off	(based	on	
whole	tracks).	

#Left	Vectors	 The	 number	 of	 vectors	 that	 point	 left	 and	 are	
parallel	to	the	x-axis	or	less	than	15°	off	(based	on	
whole	tracks).	

#Right	Vectors	 The	 number	 of	 vectors	 that	 point	 right	 and	 are	
parallel	to	the	x-axis	or	less	than	15°	off	(based	on	
whole	tracks).	

%Top	Vectors	 Percentage	of	vectors	that	point	up	and	are	parallel	
to	 the	y-axis	or	 less	 than	15°	off.	 If	 the	vectors	are	
pointing	 randomly	 then	30/360	≈	8	%	 is	 expected	
(based	on	whole	tracks).	

%Bottom	Vectors	 Percentage	 of	 vectors	 that	 point	 down	 and	 are	
parallel	 to	 the	 y-axis	 or	 less	 than	 15°	 off.	 If	 the	
vectors	 are	pointing	 randomly	 then	30/360	≈	8	%	
is	expected	(based	on	whole	tracks).	

%Left	Vectors	 Percentage	of	vectors	that	point	left	and	are	parallel	
to	 the	x-axis	or	 less	 than	15°	off.	 If	 the	vectors	are	
pointing	 randomly	 then	30/360	≈	8	%	 is	 expected	
(based	on	whole	tracks).	

%Right	Vectors	 Percentage	 of	 vectors	 that	 point	 right	 and	 are	
parallel	 to	 the	 x-axis	 or	 less	 than	 15°	 off.	 If	 the	
vectors	 are	pointing	 randomly	 then	30/360	≈	8	%	
is	expected	(based	on	whole	tracks).	

#Track	Pieces	 The	number	of	all	tracks	in	all	frames.	

	 47	

Column	 Description	
#Upward	track	pieces	 The	number	of	all	track	pieces	that	point	up	(based	

on	track	pieces).	
#Downward	track	pieces	 The	 number	 of	 all	 track	 pieces	 that	 point	 down	

(based	on	whole	tracks).	
#Leftward	track	pieces	 The	number	of	all	track	pieces	that	point	left	(based	

on	track	pieces).	
#Rightward	track	pieces	 The	 number	 of	 all	 track	 pieces	 that	 point	 right	

(based	on	whole	tracks).	
#Top	track	pieces	 The	number	of	all	track	pieces	that	point	up	and	are	

parallel	to	the	y-axis	or	less	than	15°	off	(based	on	
whole	tracks).	

#Bottom	track	pieces	 The	number	of	all	track	pieces	that	point	down	and	
are	parallel	to	the	y-axis	or	less	than	15°	off	(based	
on	whole	tracks).	

#Left	track	pieces	 The	 number	 of	 all	 track	 pieces	 that	 point	 left	 and	
are	parallel	to	the	y-axis	or	less	than	15°	off	(based	
on	whole	tracks).	

#Right	track	pieces	 The	number	of	all	track	pieces	that	point	right	and	
are	parallel	to	the	y-axis	or	less	than	15°	off	(based	
on	whole	tracks).	

%Upward	track	pieces	 Percentage	of	all	 track	pieces	 that	point	up	(based	
on	track	pieces).	

%Downward	track	pieces	 Percentage	 of	 all	 track	 pieces	 that	 point	 down	
(based	on	whole	tracks).	

%Leftward	track	pieces	 Percentage	of	all	track	pieces	that	point	left	(based	
on	track	pieces).	

%Rightward	track	pieces	 Percentage	 of	 all	 track	 pieces	 that	 point	 right	
(based	on	whole	tracks).	

%Top	track	pieces	 Percentage	of	all	track	pieces	that	point	up	and	are	
parallel	to	the	y-axis	or	less	than	15°	off	(based	on	
whole	 tracks).	 If	 the	 track	 pieces	 are	 pointing	
randomly	then	30/360	≈	8	%	is	expected	(based	on	
track	pieces).	

	48	

Column	 Description	
%Bottom	track	pieces	 Percentage	of	all	 track	pieces	 that	point	down	and	

are	parallel	to	the	y-axis	or	less	than	15°	off	(based	
on	 whole	 tracks).	 If	 the	 track	 pieces	 are	 pointing	
randomly	then	30/360	≈	8	%	is	expected	(based	on	
track	pieces).	

%Left	track	pieces	 Percentage	of	all	track	pieces	that	point	left	and	are	
parallel	to	the	y-axis	or	less	than	15°	off	(based	on	
whole	 tracks).	 If	 the	 track	 pieces	 are	 pointing	
randomly	then	30/360	≈	8	%	is	expected	(based	on	
track	pieces).	

%Right	track	pieces	 Percentage	 of	 all	 track	 pieces	 that	 point	 right	 and	
are	parallel	to	the	y-axis	or	 less	than	15°	off.	 If	 the	
track	pieces	are	pointing	 randomly	 then	30/360	≈	
8	%	is	expected	(based	on	track	pieces).	

#Median	X	Displacement	 The	median	displacement	of	the	larvae	along	the	x-
axis	(based	on	track	pieces)	

#Median	Y	Displacement	 The	median	displacement	of	the	larvae	along	the	y-
axis	(based	on	track	pieces)	

2.6.4 Perl	script	mass	calling	
The	 Perl	 script	 TrackProcessor.pl	 can	 be	 called	 via	 the	 bash	 script	
TrackerCaller*.sh	 (Code	 6).	 The	 bash	 script	 only	 needs	 to	 be	 placed	 into	 the	
parent	directory	of	the	ImageJ	macro	output	files,	which	is	in	the	example	called	
Dest1*	 matching	 Dest1	 or	 any	 other	 Dest1	 appended	 by	 any	 characters.	
However,	there	should	be	only	be	one	directory	matching	Dest1*,	otherwise	the	
bash	script	breaks.	This	way,	the	ImageJ	macro	output	files	can	be	all	processed	
at	once.	The	 ImageJ	macro	can	create	easily	hundreds	of	 files,	which	should	be	
processed	with	 the	 same	 input	 parameters	 and	 should	 be	written	 to	 the	 same	
Results.txt	 file.	 Results.txt	 is	 deleted	 if	 it	 already	 exists	 when	 the	
TrackerCaller*.sh	 is	 started.	 Ideally,	 a	 TrackerCaller*.txt	 is	 created	 for	 each	
experiment	 with	 its	 own	 parameters	 for	 TrackProcessor.pl	 and	 its	 own	
subdirectory.	

Code	6:	Example	call	of	TrackProcessor.pl	via	TrackerCaller*.sh	

#!/bin/bash

SOURCE="${BASH_SOURCE[0]}"
while [-h "$SOURCE"]; do # resolve $SOURCE until the file is no
longer a symlink

	 49	

 DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"
 SOURCE="$(readlink "$SOURCE")"
 [[$SOURCE != /*]] && SOURCE="$DIR/$SOURCE" # if $SOURCE was a
relative symlink, we need to resolve it relative to the path where
the symlink file was located
done
DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"

SUBDIR=Dest1*

if [-a $DIR/$SUBDIR/Results.txt]
 then
 rm $DIR/$SUBDIR/Results.txt
fi

for i in $DIR/$SUBDIR/*.res;
do perl /File/Path/TrackProcessor.pl $i 15 135 19 12
 2;
done

	
The	 TrackerCaller*.sh	 files	 can	 be	 called	 from	 a	 SuperTrackerCaller.sh	 bash	
script.	This	allows	reanalyzing	the	tracks,	which	is	useful,	if	there	has	been	found	
a	bug	in	TrackProcessor.pl	or	another	way	to	analyze	the	tracks,	has	been	added	
to	 TrackProcessor.pl.	 SuperTrackerCaller.sh	 requires	 that	 all	 the	
TrackerCaller*.sh	are	in	subdirectories	of	SuperTrackerCaller.sh.	

Code	7:	Calling	TrackerCaller*.sh	via	SuperTrackerCaller.sh	

#!/bin/bash

SOURCE="${BASH_SOURCE[0]}"
while [-h "$SOURCE"]; do # resolve $SOURCE until the file is no
longer a symlink
 DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"
 SOURCE="$(readlink "$SOURCE")"
 [[$SOURCE != /*]] && SOURCE="$DIR/$SOURCE" # if $SOURCE was a
relative symlink, we need to resolve it relative to the path where
the symlink file was located
done
DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"

for i in $DIR/*;
do
 if [-d $i]
 then
 for j in $i/TrackerCaller*;
 do
 /bin/bash $j
 done
 fi

done

	
Since,	 extracting	 manually,	 the	 data	 from	 the	 Results.txt	 files,	 is	 laborious,	 I	
automatized	 it	 with	 the	 Perl	 script	 CSV_ColumnExtractor.pl	 (Code	 14).	

	50	

CSV_ColumnExtractor.pl	 takes	 three	 arguments,	 the	 input	 file	 that	 contains	 the	
data	to	be	extracted,	the	output	file	that	receives	the	data,	and	a	key	to	access	the	
data	 column	 to	 be	 extracted.	 CSV_ColumnExtractor.pl	 can	 also	 be	 called	 via	 a	
bash	 script,	 for	 instance	 CVSExtractorSpeed.sh	 (Code	 8),	 which	 is	 an	 example	
from	the	UV-side	column	experiments	(Figure	14).	
To	 make	 CSV_ColumnExtractor.pl	 and	 CVSExtractorSpeed.sh	 work	 optimally,	 I	
organized	the	file	structure	of	the	experiments	in	a	certain	way.	The	experiments	
were	 put	 into	 directories	 that	 contained	 the	 date	 of	 the	 experiments	 in	
yyyy-mm-dd	format.	This	way	the	directories	sort	by	date	 if	 they	are	sorted	by	
name.	
The	 date	 directories	 were	 filled	 with	 subdirectories,	 which	 were	 called	 for	
instance	 Dest0_3d_GGxGG_0_UV-Side.	 Here	 the	 first	 0	 was	 the	 number	 of	 the	
video	file	and	the	second	0	was	the	number	of	experiment	of	that	day,	which	in	
that	example	are	identical.	Then	3d_GGxGG	is	the	type	of	batch	that	was	used	in	
the	 experiment;	 here	 it	 was	 a	 3-day-old	 batch,	 derived	 from	 two	 wild	 type	
parents.	 The	 upper-case	 G	 represent	 a	wild	 type	 allele	 of	Go-opsin1,	 while	 the	
lower-case	 g	 represents	 a	 Go-opsinΔ8	 knockout	 allele.	 The	 UV-Side	 is	 the	
experiment	 type;	here	 it	was	 just	UV-light	 from	the	side	 followed	by	cyan	 light	
from	the	top.	I	also	tried	other	conditions	with	different	drugs,	 light	intensities,	
or	with	my	Go-opsin1Δ8/Δ8	 knockout	mutants.	 However,	 those	 conditions	were	
only	 exploratory	 and	 thus	 are	 not	 shown	 here.	 The	 subdirectories	 must	 be	
strictly	 named	 in	 this	 way	 so	 that	 the	 scripts	work.	 Such	 a	 strict	 naming	 also	
documents	the	data	analysis	better.	
CVSExtractorSpeed.sh	extracts	the	data	for	the	"#Speed	(mm	per	sec)"	columns	
of	Results.txt,	with	only	changing	two	lines	it	can	extract	any	other	data	field	of	
Results.txt.	Once	CVSExtractorSpeed.sh	generated	the	output	files,	their	contents	
were	 pasted	 into	 an	 Excel	 template	 to	 extract	 the	 values	 for	 instance	 in	 an	
interval	from	3.5	to	4	min	after	mixing	or	from	1.5	to	2	min	after	stimulus	onset.	
These	 values	 were	 then	 pasted	 into	 Prism	 (GraphPad	 Software)	 for	 statistical	
analysis	and	generating	figures.	

Code	8:	Extract	data	from	the	Speed	field	via	CVSExtractorSpeed.sh	

#!/bin/bash

#Encoding of this file must be UTF8, otherwise does not find file
names with µ's

SOURCE="${BASH_SOURCE[0]}"
while [-h "$SOURCE"]; do # resolve $SOURCE until the file is no
longer a symlink
 DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"
 SOURCE="$(readlink "$SOURCE")"

	 51	

 [[$SOURCE != /*]] && SOURCE="$DIR/$SOURCE" # if $SOURCE was a
relative symlink, we need to resolve it relative to the path where
the symlink file was located
done
DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"

KEY="#Speed (mm per sec)"
KEYNAME=Speed_
TYPE[0]=3d_ggxgg_
TYPE[1]=3d_GGxGG_
TYPE[2]=2d_GGxGG_
TYPE[3]=1d_GGxGG_
TYPE[4]=1.5d_GGxGG_

EXPERIMENT[0]=UV-Side
EXPERIMENT[1]=UV-Side_5µM-RGWamide-0min
EXPERIMENT[2]=UV-Side_5µM-RGWamide-30min
EXPERIMENT[3]=UV-Side_5µM-L-cis-Diltiazem-0min
EXPERIMENT[4]=UV-Side_5µM-L-cis-Diltiazem-30min
EXPERIMENT[5]=UV-Side_20µM-L-cis-Diltiazem-0min
EXPERIMENT[6]=UV-Side_20µM-L-cis-Diltiazem-30min
EXPERIMENT[7]=UV-Side_100µM-L-cis-Diltiazem-0min
EXPERIMENT[8]=UV-Side_10µM-Mecamylamide-0min
EXPERIMENT[9]=UV-Side_10µM-MLD-peptide-0min
EXPERIMENT[10]=UV-Side_10µM-MLD-peptide-30min
EXPERIMENT[11]=UV-Side_10µM-MLD-peptide-90min
EXPERIMENT[12]=UV-Side_5µM-Serotonin-0min
EXPERIMENT[13]=UV-Side_5µM-Serotonin-30min
EXPERIMENT[14]=UV-Side_Slide1
EXPERIMENT[15]=UV-Side_Slide2
EXPERIMENT[16]=UV-Side_Slide3
EXPERIMENT[17]=UV-Side_Slide4
EXPERIMENT[18]=UV-Side_Slide5
EXPERIMENT[19]=UV-Side_Slide6
EXPERIMENT[20]=UV-Side_Slide7
EXPERIMENT[21]=UV-Side_Slide8
EXPERIMENT[22]=UV-Side_Slide3_5µM-L-cis-Diltiatem-0min
EXPERIMENT[23]=UV-Side_Slide3_5µM-L-cis-Diltiatem-30min
EXPERIMENT[24]=UV-LongDark

DESTINATION=Dest
EXTENSION=.txt
OUTPUT=Output

DATE=$(date +"%Y-%m-%d_")

for e in ${EXPERIMENT[@]};
do
 for t in ${TYPE[@]};
 do
 for i in $DIR/*;
 do
 if [-d $i]
 then
 for j in $i/$DESTINATION*_$t*$e;
 do
 if [-e $j]
 then
 perl /File/Path/CSV_ColumnExtractor.pl
$j/Results.txt $DIR/$OUTPUT/$DATE$KEYNAMEte$EXTENSION "$KEY"

	52	

 fi
 done
 fi
 done
 done
done

2.6.5 Repairing	corrupted	avi-files	
IC	Capture	may	crash	sometimes	at	the	end	of	recording	session	so	that	it	does	
not	 finish	saving	 the	avi-files.	Such	avi-files	cannot	be	read	by	 ImageJ,	but	 they	
still	 contain	 the	data	 IC	Capture	was	writing	 to	 the	 file	while	 it	was	 recording.	
These	corrupted	avi-files	only	miss	a	header	and	some	other	details,	which	can	
be	copied	 from	a	non-corrupted	 file	of	 the	 same	or	 slightly	 smaller	 size	with	a	
hex-editor	like	Hex	Fiend.	
With	the	hex-editor,	the	start	of	the	file	needs	to	be	copied.	What	exactly	needs	to	
be	copied	is	in	the	corrupted	file	zero,	usually	the	first	33776	or	66048	bytes	(of	
up	to	a	20	gigabyte	file)	depending	when	IC	Capture	crashed.	Additionally,	bigger	
files	have	additional	blocks	to	be	copied.	These	blocks	start	with	the	bytes	D001	
(hexadecimal	notation).	They	are	 followed	by	additional	zeros.	The	blocks	may	
differ	 by	 the	 number	 of	 zeros.	 The	 longest	 blocks	 need	 attention;	 they	 are	
interrupted	 by	 non-zero	 bytes	 in	 the	 non-corrupted	 file.	 The	 non-zero	 bytes	
must	be	copied	into	the	corresponding	position	in	the	corrupted	file	to	fix	it.	

3 Results	

3.1 The	larvae	swam	down	to	UV	and	up	to	green	light	
The	 adult	 eyes	 of	 3-day-old	 Platynereis	 dumerilii	 larvae	 mediate	 phototaxis	
(Randel	 et	 al.,	 2014)	 and	 express	Go-opsin1	 (Figure	 2).	 Therefore,	 I	 wondered	
how	 Go-opsin1	 contributed	 to	 phototaxis.	 An	 opsin	 only	 covers	 a	 part	 of	 the	
spectrum	(Lamb,	1995).	Thus,	 I	checked	how	the	 larvae	responded	to	different	
wavelengths,	 so	 that	 I	 could	 hypothesize	 how	 Go-opsin1	 contributes	 to	
phototaxis.	Phototaxis	in	Platynereis	dumerilii	 larvae	was	studied	earlier	(Jékely	
et	al.,	2008;	Randel	et	al.,	2014),	but	 the	 larvae	were	exposed	 to	 light	 from	the	
side.	In	the	sea,	light	may	come	from	the	side,	if	for	instance,	one	side	is	shaded	
by	 rocks	 or	 sea	 grass,	 but	 without	 obstacles,	 direct	 light	 comes	 from	 the	 top.	
Therefore,	 I	 placed	 collimated	monochromatic	 stimulus	 light	 at	 the	 top	 of	 the	
column	setup	of	Conzelmann	et	al.	(2011).	In	that	column,	3-day-old	larvae	were	
stimulated	 for	 4.5	min	 with	 either	 UV-light	 (400	nm)	 or	 green	 light	 (520	nm).	

	 53	

The	 stimulus	 period	 was	 binned	 into	 30	s	 intervals	 and	 the	 last	 interval	 was	
analyzed.	
When	the	larvae	were	stimulated	with	UV-light,	the	larvae	were	swimming	down	
(Figure	 5A).	 And	 when	 they	 were	 stimulated	 with	 green	 light,	 they	 were	
swimming	up	(Figure	5B).	

	
Figure	5:	Platynereis	dumerilii	larvae	swam	down	or	up	depending	on	the	wavelength	
A:	 Left:	Platynereis	 dumerilii	 larvae	 swimming	 in	 a	 vertical	 column.	The	 larvae	were	 stimulated	with	UV-
light	 (400	nm)	 from	the	 top	 for	4.5	min.	The	 larvae	were	 tracked	 for	 the	 last	30	s	with	mTrack2.	And	 the	
tracks	were	encoded	for	down-swimming	larvae	from	blue	to	cyan,	and	for	up-swimming	larvae	from	red	to	
yellow.	Blue	and	red	were	used	for	the	early	frames	that	were	analyzed,	and	cyan	and	yellow	were	used	for	
the	late	frames.	The	ends	of	the	tracks	are	marked	with	red	dots.	Middle:	The	same	tracks	as	on	the	left,	but	
moved	to	a	common	origin	to	clarify	the	main	movement	direction	of	the	larvae.	Right:	The	tracks	from	the	
middle,	which	were	converted	to	vectors,	by	connecting	their	start	and	endpoints.	The	vector	in	red	is	the	
average	vector	of	all	the	grey	vectors.	
B:	Same	as	in	A,	except	that	the	larvae	were	stimulated	with	green	light	(520	nm).	
A	and	B:	More	than	300	larvae	were	tracked.	

520 nm400 nm

A B
D

e
p
th

 (
m

m
 f

ro
m

 s
u
rf

a
ce

)

D
e
p
th

 (
m

m
fr

o
m

 s
u
rf

a
ce

)

	54	

3.2 The	larvae	switched	repeatedly	the	direction	with	the	wavelength	
Since	3-day-old	Platynereis	dumerilii	 larvae	swam	down	with	UV-light	(400	nm)	
and	up	with	green	light	(520	nm),	I	wondered	how	robust	this	behavior	was	and	
whether	the	larvae	would	adapt.	
Therefore,	I	stimulated	the	larvae	six	times	in	a	row	with	UV	(380	nm)	and	green	
(520	nm)	 light.	 Before	 the	 larvae	 were	 stimulated,	 they	 were	 mixed	 in	 the	
column	 and	 left	 in	 the	 dark,	 so	 that	 they	 calmed	 down	 and	 were	 randomly	
distributed.	The	last	stimulus	was	followed	by	a	dark	period.	Each	stimulus	and	
dark	period	was	4.5	min	long.	Each	period	was	binned	into	intervals	of	30	s	and	
the	larvae	were	tracked	for	each	bin	with	mTrack2.	The	tracks	where	averaged	
as	shown	in	Figure	5.	
When	 the	 larvae	 had	 calmed	down,	 they	 neither	 swam	up	nor	 down,	 but	 they	
swam	 down	 with	 UV-light	 (380	nm)	 and	 up	 with	 green	 light	 (520	nm).	
Interestingly	after	the	last	green	stimulus,	the	larvae	were	still	swimming	up	for	
a	while	in	the	dark	(Figure	6A).	So,	this	behavior	is	robust	and	does	not	adapt.	

	
	

Figure	6:	Platynereis	dumerilii	larvae	swim	down	to	UV-light	and	up	to	visual	light	
3-day-old	 Platynereis	 dumerilii	 larvae	 were	 stimulated	 with	 different	 wavelengths	 of	 light.	 They	 were	
tracked	 and	 their	 average	 displacement	was	 calculated	 during	 the	 analysis	 period.	 Positive	 displacement	
indicates	 up-swimming	 and	negative	 displacement	 indicates	 down-swimming.	 The	wavelengths	 are	 color	
coded:	 UV	 wavelengths	 are	 colored	 grey,	 and	 the	 other	 wavelengths	 are	 colored	 as	 an	 average	 human	
observer	would	approximately	perceive	them.	
All	error	bars	are	SEM.	n	=	8.	
A:	 The	 larvae	 were	 alternatingly	 stimulated	 with	 light	 of	 380	nm	 and	 520	nm.	 The	 stimulus	 period	 was	
4.5	min,	and	was	binned	into	30	s	intervals.	The	last	six	intervals	were	averaged.	
B:	 The	 larvae	were	 stimulated	with	wavelength	 from	340	nm	 to	 680	nm.	 From	340	nm	 to	 400	nm,	 green	
light	(520	nm)	was	used	before	to	pull	up	the	larvae.	From	420	nm	to	680	nm,	UV-light	(400	nm)	was	used	
before	to	push	down	the	larvae.	Each	stimulus	period	was	3.5	min,	and	was	binned	into	30	s	intervals.	The	
last	four	intervals	were	averaged.	The	data	have	been	partially	published	(Gühmann	et	al.,	2015).	

A B

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

da
rk

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

	 55	

3.3 The	larvae	switched	swimming	direction	at	420	nm	
Since	3-day-old	Platynereis	dumerilii	larvae	swam	down	repeatedly	with	UV-light	
(380	nm),	and	up	with	green	light	(520	nm),	I	wondered	what	was	the	switching	
wavelength.	
Therefore,	 I	 stimulated	 the	 larvae	 with	 different	 wavelengths	 in	 20	nm	 steps	
from	 340	nm	 to	 680	nm.	 After	 each	 stimulus,	 the	 larvae	 were	 not	 randomly	
distributed,	but	depending	on	 the	wavelength	at	 the	bottom	or	 at	 the	 top.	The	
larvae	did	not	redistribute	even	after	a	while.	Larvae	that	are	at	the	top	or	at	the	
bottom	do	not	swim	up	or	down,	respectively.	Even	so,	they	would	if	they	could.	
Therefore,	 I	 had	 to	 redistribute	 them;	 however,	mixing	might	 have	 introduced	
artifacts	due	to	mechanical	stimulation.	
Therefore,	 I	 split	 the	 spectrum	 into	 two	 ranges:	 From	340	 nm	 to	 480	nm,	 and	
from	400	nm	to	680	nm.	The	two	ranges	overlapped,	so	that	the	switching	point	
could	 be	 identified	 in	 both	 ranges.	 In	 the	 range	 from	 340	 nm	 to	 480	nm,	 the	
larvae	were	pulled	up	after	green	light	(520	nm).	And	from	400	to	680	nm,	they	
were	pushed	down	after	UV-light	(400	nm).	Each	stimulus	was	3.5	min	long	and	
was	binned	into	intervals	of	30	s.	
The	 larvae	 swam	 down	 when	 they	 were	 exposed	 to	 light	 between	 340	 and	
400	nm,	they	switched	at	420	nm,	and	swam	up	from	440	nm	to	600	nm	(Figure	
6B).	
This	shows	that	3-day-old	Platynereis	dumerilii	larvae	possess	a	mechanism	that	
makes	 them	 swimming	 up	 or	 down	 depending	 on	 the	 wavelength.	 This	
mechanism	may	be	a	cellular	chromatic	antagonism.	

3.4 Generating	a	Platynereis	dumerilii	Go-opsin1	knockout	line	
Since	the	larvae	were	swimming	up	or	down	wavelength-specifically,	I	wondered	
how	 this	 switch	 worked.	 I	 hypothesized	 that	 up-swimming	 was	 positive	
phototaxis	 and	 down-swimming	 was	 negative	 phototaxis.	 Since	 phototaxis	 in	
3-day-old	 larvae	 is	 mediated	 by	 the	 adult	 eyes	 (Randel	 et	 al.,	 2014),	 I	
hypothesized	 that	 the	 adult	 eyes	 mediated	 the	 switch	 by	 a	 cellular	 chromatic	
antagonism	(Nilsson,	2009).	A	cellular	chromatic	antagonism	could	be	formed	by	
Go-opsin1	and	 the	 rhabdomeric	opsins.	Go-opsin1	and	 the	 rhabdomeric	opsins	
belong	 to	 different	 classes	 of	 opsins.	 A	 scallop	 Go-opsin	 is	 thought	 to	 be	
hyperpolarizing	(Kojima	et	al.,	1997)	and	rhabdomeric	opsins	are	depolarizing.	
Therefore,	 these	 opsins	 could	 antagonize	 each	 other	 in	 the	 same	 cell,	 like	 the	
lizard	parietopsin	and	pinopsin	(Su	et	al.,	2006).	

	56	

To	 test	 this,	 I	 tried	 first	 to	 knockdown	 Go-opsin1	 with	 three	 different	
morpholinos.	 The	morpholinos	 targeted	 the	 start	 site,	 and	 two	 different	 splice	
sites	of	Go-opsin1.	The	morpholinos	were	injected	into	fertilized	eggs,	and	three	
days	 later	 when	 the	 eggs	 had	 become	 larvae,	 the	 larvae	 were	 tested	 for	
phototaxis	defects.	The	splice	site	morpholinos	caused	mRNA	missplicing	(data	
not	shown)	and	so	worked,	but	only	few	larvae	survived	the	injections	and	those	
that	survive	seemed	to	be	sick.	
Therefore,	 I	 gave	up	on	 the	morpholinos,	 and	generated	a	Platynereis	dumerilii	
Go-opsin1	knockout	line	with	engineered	zinc-finger-nucleases	(ZFNs).	The	ZFNs	
should	not	target	splice	sites	and	single	nucleotide	polymorphisms;	therefore,	 I	
screened	Go-opsin1	 for	 them.	 The	 ZFNs	were	 generated	 by	 Sigma-Aldrich	 and	
targeted	the	first	Go-opsin1	exon,	which	encodes	the	N-terminus	before	the	first	
transmembrane	domain	 (Figure	7A).	The	ZFNs,	however,	 still	 targeted	a	 single	
nucleotide	 polymorphism;	 even	 so,	 Sigma-Aldrich	 tried	 several	 alternative	
designs.	Sigma-Aldrich	characterized	 the	ZFNs	 to	be	not	 “superior”	but	 to	have	
cleavage	activity	that	is	“useful	for	genome	editing	experiments”.	
The	ZFNs	were	 injected	as	mRNA	 into	 fertilized	Platynereis	dumerilii	wild	 type	
eggs.	The	injected	individuals	were	cultured	and	kept	until	they	became	mature	
worms.	 The	 sexual	 mature	 worms	were	 crossed	 to	 wild	 type	 worms,	 and	 the	
progeny	 was	 screened	 for	 inherited	 genetic	 lesions	 via	 PCR	 and	 subsequent	
sequencing.	
For	PCR,	I	tried	primers	that	targeted	pieces	of	genomic	DNA	longer	than	600	bp.	
The	 primers	 would	 have	 detected	 longer	 deletions;	 however,	 they	 did	 not	
amplify	DNA	from	every	DNA	sample	I	tested.	
Therefore,	I	sequenced	the	PCR	products	I	could	amplify,	and	found	upstream	of	
the	 start	 codon	 many	 single	 nucleotide	 polymorphisms	 that	 could	 have	
prevented	some	of	the	primers	to	bind	and	amplify	the	affected	alleles.	Another	
allele	had	a	300	bp	deletion	removing	the	binding	sites	of	a	subset	of	my	primers	
(data	not	shown).	This	does	not	seem	to	be	uncommon;	intron	2	of	the	vtn	locus	
has	a	2.5	kb	length	polymorphism	(Bannister	et	al.,	2014).	In	contrast,	exon	1	of	
Go-opsin1	was	more	conserved.	
Therefore,	 I	 used	 PCR	 primers	 covering	 258	bp	 of	 exon	1.	 I	 used	 a	 nested	
sequencing	 primer	 that	 was	 placed	 right	 before	 the	 Go-opsin1	 start	 codon	
(Figure	 7A)	 to	 avoid	 sequencing	 of	 unspecific	 PCR	 product.	 These	 primers	
amplified	DNA	from	all	the	samples	I	tested.	
After	 injection,	 I	 could	 culture	 around	 500	 larvae	 that	 survived	 the	 first	 days.	
However,	only	a	few	larvae	survived	and	became	adults.	These	adults	produced	

	 57	

51	 batches.	 This	 is	 an	 approximate	 survival	 rate	 of	 10	%,	 which	 agrees	 with	
earlier	reports	 (Backfisch	et	al.,	2014;	Hauenschild	and	Fischer,	1969;	Tosches,	
2013).	

Table	15:	Ratio	of	mutant	and	wild	type	Go-opsin1	genotypes	in	the	F1	and	F2	generation	

Genotype	 F1	obs	 F1	exp	 F2	obs1	 F2	obs2	 F2	exp	
Go-opsin1wt/wt	 56	 48	 20	 25	 24	
Go-opsin1wt/Δ8	 40	 48	 55	 55	 48	
Go-opsin1Δ8/Δ8	 -	 -	 21	 16	 24	
For	establishing	a	homozygous	Go-opsin1	knockout	line,	F1	and	F2	worms	were	genotyped	before	crossing,	
so	that	they	could	be	selected	by	genotype.	The	F1	population	was	sampled	once,	and	the	F2	population	was	
sampled	twice,	because	more	homozygous	worms	were	needed	for	crossing,	than	those	originally	identified.	
Each	sample	had	a	size	of	96	worms.	The	observed	genotype	frequencies	did	not	diverge	from	the	expected	
frequencies,	according	to	a	Chi-square	test	with	an	alpha	of	0.05.	

	

	
Figure	7:	Go-opsin1	ZFN	design	and	Go-opsin1	mutation	
A:	 Genomic	 region	 of	 Go-opsin1	 targeted	 by	 the	 ZFNs:	 Circles	 indicate	 the	 base	 pairs	 recognized	 by	 the	
individual	zinc-fingers.	The	cleavage	site	of	the	FokI	nuclease	is	indicated	by	triangles.	The	arrows	indicate	
the	sites	of	the	primers	I	used:	The	PCR	primers,	at	the	start	and	the	end	of	exon	1;	the	sequencing	primer,	
in	the	middle	before	the	start	codon.	The	double	arrows	give	the	sizes	of	the	different	pieces	of	exon	1.	Note	
that	the	PCR	product	is	a	little	bit	shorter	than	exon	1,	because	the	reverse	primer	is	placed	a	few	base	pairs	
before	the	end	of	exon	1.	
B:	8	bp	deletion	in	the	Go-opsin1Δ8	mutant	allele.	The	mutation	leads	to	a	frame-shift	and	a	premature	stop-
codon	in	Go-opsin1.	
This	figure	has	been	published,	before	(Gühmann	et	al.,	2015).	

CTACAATTCCACCTTCGACTTTATAACTTACGGTACCCATGTTGAAA

GATGTTAAGGTGGAAGCTGAAATATTGAATGCCATGGGTACAACTTT

FokI

FokI

Exon 1

ATG

A

 wt MEFNHTTEDSYNSTFDFITYGTHVEIYKRPDIQPRVY…

Go-ops-∆8 MEFNHTTEDSYNSTFDLRYPC-NLQET-YPAPGLYGH…

 wt CTACAATTCCACCTTCGACTTTATAACTTACGGTACCCATG

Go-ops-∆8 CTACAATTCCACCTTCGACTT--------ACGGTACCCATG

B

132 bp 53 bp 89 bp

EL

KK

	58	

Among	 the	 51	 batches,	 I	 found	 one	 batch	 that	 carried	 an	 8-base-pair	 deletion,	
leading	 to	 a	 frame-shift	 and	 a	 premature	 stop-codon	 in	 the	 Go-opsin1	 open	
reading	 frame	(Figure	7B).	Since	the	premature	stop-codon	 is	 in	 the	 first	of	six	
exons,	the	Go-opsin1	mRNA	is	subject	to	nonsense-mediated	decay,	and	therefore	
this	 is	 a	 Go-opsin1	 knockout	 allele,	 which	 I	 call	 Go-opsin1Δ8.	 I	 crossed	
heterozygous	Go-opsin1wt/Δ8	F1	carriers	to	generate	a	homozygous	Go-opsin1Δ8/Δ8	
knockout	 line.	 The	 Go-opsin1	 genotypes	 were	 distributed	 in	 the	 F1	 and	 F2	
generations	 as	 expected	 (Table	15).	This	means	 the	mutants	were	 as	 viable	 as	
the	wild	 type	worms	when	 they	 competed	 for	 space	 and	 food	with	 each	other	
under	 laboratory	 conditions.	 The	 mutants	 were	 also	 as	 fertile	 and	 showed	 a	
lunar	reproductive	cycle	as	wild	type	worms	(Figure	8).	
	

	
Figure	8:	Lunar	reproduction	cycle	of	wild	type	and	Go-opsin1	knockout	worms	
Number	of	mature	worms	per	day	during	 a	 three-month	period:	During	 the	 full-moon	phases,	 the	nights	
were	illuminated	with	10	W	light-bulb.	This	figure	has	been	published,	before	(Gühmann	et	al.,	2015).	

3.5 Go-opsin1	knockout	larvae	are	less	phototactic	to	cyan	light	
With	the	homozygous	Go-opsin1Δ8/Δ8	knockout	larvae,	I	could	test	how	Go-opsin1	
contributed	 to	 phototaxis,	 by	 comparing	 phototaxis	 of	 mutant	 and	 wild	 type	
larvae.	 I	 used	3-day-old	 larvae	 that	were	 kept	 at	 22°C	 from	 fertilization	 to	 the	
experiment.	 These	 larvae	 correspond	 to	 4.5-day-old	 larvae	 that	 were	 kept	 at	
18°C	 (Fischer	 et	 al.,	 2010).	 I	 stimulated	 these	 larvae	 the	 same	 way	 as	 before	
(Figure	6A).	In	brief,	the	larvae	were	stimulated	alternatingly	with	UV	(380	nm)	
and	green	(520	nm)	light	from	the	top	in	the	vertical	column	for	4.5	min	for	each	
stimulus.	
In	 general,	 the	 homozygous	 Go-opsin1Δ8/Δ8	 knockout	 larvae	 behaved	 like	 wild	
type	 larvae.	 They	 swam	 down	 when	 they	 were	 stimulated	 with	 UV-light	

03/22/2013 04/21/2013 05/21/2013
0

20

40

60

N
um

be
r o

f m
at

ur
e

w
or

m
s

Go-opsin1Δ8/Δ8

wild type

moon on moon on moon on

	 59	

(380	nm)	and	swam	up	with	green	light	(520	nm).	They	only	differed	during	the	
first	two	green	light	stimuli	(520	nm)	by	how	fast	they	were	swimming	up.	The	
heterozygous	Go-opsin1wt/Δ8	larvae	did	not	differ	from	the	wild	type	larvae	even	
so	they	behaved	more	like	the	homozygous	larvae	(Figure	9A).	
Since	the	Go-opsin1Δ8/Δ8	knockout	larvae	swam	down	to	UV-light	(380	nm)	as	the	
wild	 type	 larvae,	 the	down-swimming	 is	not	mediated	by	Go-opsin1.	However,	
Go-opsin1	may	contribute	to	the	up-swimming,	as	the	minor	defect	at	green	light	
(520	nm)	indicates.	The	defect	may	be	just	minor,	because	Go-opsin1	may	not	be	
maximally	 sensitive	 at	 520	nm,	 but	 maximally	 sensitive	 to	 some	 wavelength	
close	by.	 To	 check	 this,	 I	measured	 the	behavior	 of	 homozygous	Go-opsin1Δ8/Δ8	
knockout	 larvae	 across	 the	whole	 spectrum	 from	 340	nm	 to	 680	nm	 in	 20	nm	
steps	and	compared	them	to	heterozygous	and	wild	type	larvae	(Figure	9B).	
The	homozygous	knockout	larvae	were	less	swimming	up	in	the	blue-cyan-green	
part	of	the	spectrum	(440	nm	–	520	nm),	the	heterozygous	larvae,	however,	did	
not	 differ	 statistically	 from	 the	 homozygous	 mutant	 larvae	 or	 the	 wild	 type	
larvae,	 even	 so	 they	 behaved	 more	 like	 the	 wild	 type	 larvae.	 Therefore,	
Go-opsin1	contributes	to	the	up-swimming.	

	
Figure	9:	Go-opsin1Δ8/Δ8	knockout	larvae	are	less	sensitive	to	blue-cyan-green	light	
Homozygous	 Platynereis	 dumerilii	 Go-opsin1Δ8/Δ8	 knockout	 larvae	 were	 compared	 with	 heterozygous	
Go-opsin1wt/Δ8	 mutant	 and	wild	 type	 larvae.	 All	 larvae	 were	 three	 days	 old	 and	 kept	 at	 22°C,	 before	 the	
experiment.	 The	 larvae	were	 stimulated	with	 different	wavelength	 of	 light.	 They	were	 tracked	 and	 their	
average	 displacement	 was	 calculated	 during	 the	 analysis	 period.	 Positive	 displacement	 indicates	 up-
swimming	 and	 negative	 displacement	 indicates	 down-swimming.	 All	 error	 bars	 are	 SEM.	 Statistical	
significance	was	determined	with	a	2-way-ANOVA	with	Tukey’s	post	hoc	test.	P*	<	0.05,	P**	<	0.01,	P***	<	
0.001.	
A:	 The	 larvae	 were	 alternatingly	 stimulated	 with	 light	 of	 380	nm	 and	 520	nm.	 The	 stimulus	 period	 was	
4.5	min,	 and	was	 binned	 into	 30	s	 intervals.	 The	 last	 six	 intervals	were	 averaged.	Go-opsin1Δ8/Δ8,	 n	 =	 10;	
Go-opsin1wt/Δ8,	n	=	13;	Go-opsin1wt/wt,	n	=	14	
B:	 The	 larvae	were	 stimulated	with	wavelength	 from	340	nm	 to	 680	nm.	 From	340	nm	 to	 400	nm,	 green	
light	(520	nm)	was	used	before	to	pull	up	the	larvae.	From	420	nm	to	680	nm,	UV-light	(400	nm)	was	used	

A B

da
rk

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

** *

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

Go-opsin1 Δ8/Δ8

Go-opsin1 wt/Δ8

Go-opsin1 wt/wt

*
** *** **

	60	

before	to	push	down	the	larvae.	Each	stimulus	period	was	3.5	min,	and	was	binned	into	30	s	intervals.	The	
last	 four	 intervals	 were	 averaged.	 The	 data	 has	 been	 partially	 published	 (Gühmann	 et	 al.,	 2015).	
Go-opsin1Δ8/Δ8,	n	=	13;	Go-opsin1wt/Δ8,	n	=	13;	Go-opsin1wt/wt,	n	=	14.	

3.6 Go-opsin1	is	a	cyan	opsin	and	c-opsin1	is	a	UV	opsin	
The	Go-opsin1Δ8/Δ8	knockout	larvae	showed	that	Go-opsin1	does	not	mediate	the	
UV	 down-swimming,	 but	 instead	mediates	 the	 up-swimming	 in	 the	 blue-cyan-
green	range	of	the	spectrum	(460	nm	–	520	nm).	To	confirm	this,	I	wanted	to	get	
an	in	vitro	absorption	spectrum	of	Go-opsin1.	Additionally,	I	tried	to	get	spectra	
of	 r-opsin1,	 r-opsin3,	 r-opsin4,	 peropsin1,	 and	 c-opsin1,	 because	 these	 spectra	
could	tell	which	of	the	opsins	may	mediate	the	UV	down-swimming.	
	

	
Figure	10:	Absorption	spectra	of	Go-opsin1	and	c-opsin1	
Absorption	 spectra	 of	 Platynereis	 dumerilii	 Go-opsin1	 (A)	 and	 c-opsin1	 (B)	 pigments	 in	 the	 dark:	 The	
pigments	were	 reconstituted	with	11-cis-retinal	 from	opsins	 expressed	 in	COS1	 cells.	The	pigments	were	
purified	and	 their	absorption	was	measured	 in	a	 cuvette	across	 the	different	wavelengths	by	Huiyong	 Jia	
and	Shozo	Yokoyama.	The	Go-opsin1	spectrum	has	been	published,	before	(Gühmann	et	al.,	2015).	

	
First,	 I	 tried	 to	 record	with	 Phillip	 Bauknecht	 and	 Sarah-Lena	Offenburger	 the	
absorption	 spectra	 from	 purified	 photopigments.	 The	 idea	 was	 to	 express	 the	
opsins	 in	 HEK	 293	 cells,	 reconstitute	 them	 with	 11-cis-retinal	 to	 functional	
pigments,	 and	 then	 purify	 them	 so	 that	 their	 absorption	 spectrum	 could	 be	
measured.	 For	 that,	 I	 cloned	 the	 opsins	 into	 a	 pcDNA3.1+	 plasmid,	 except	
c-opsin1,	 which	 Phillip	 Bauknecht	 cloned.	 Then	 Phillip	 Bauknecht	 and	 Sarah-
Lena	 Offenburger	 tried	 to	 purify	 functional	 photopigments,	 however	
unsuccessfully.	 In	 general,	 obtaining	 functional	 photopigments	 from	 cultured	
cells	 is	 difficult,	 especially	 invertebrate	 photopigments	 (Knox	 et	 al.,	 2003).	

A B

300 400 500 600
0.0

0.1

0.2

0.3

0.4

Wavelength (nm)

A
bs

or
ba

nc
e 384 nm

300 400 500 600
0.00

0.05

0.10

0.15

0.20

Wavelength (nm)

A
bs

or
ba

nc
e

488 nm

	 61	

Therefore,	we	 gave	 this	 task	 to	 experts:	Huiyong	 Jia	 and	Shozo	Yokoyama.	We	
sent	them	the	cloned	opsins.	They	expressed	them	in	COS1	cells.	However,	they	
could	not	purify	functional	r-opsin1,	r-opsin3,	and	r-opsin4	pigments,	either.	But	
they	 could	purify	 functional	Go-opsin1,	 c-opsin1,	 and	peropsin1	pigments.	 The	
peropsin1	spectrum	shall	be	published	elsewhere.	
The	Go-opsin1	pigment	absorbed	in	the	blue-cyan-green	range	of	the	spectrum,	
with	 a	 λmax	 of	 488	nm	 (Figure	 10A),	 and	 the	 absorption	 covered	 a	 range	 from	
approximately	 440	nm	 to	 560	nm,	 which	 matches	 the	 behavior	 defect	 of	 the	
Go-opsin1Δ8/Δ8	knockout	larvae.	
The	c-opsin1	pigment	absorbed	in	the	UV	range	of	the	spectrum,	with	a	λmax	of	
384	nm	 (Figure	 10B).	 From	 the	 spectrum,	 c-opsin1	 may	 mediate	 a	
photoresponse	from	340	nm	to	420	nm,	which	matches	the	spectral	range	of	the	
UV	down-swimming	response.	

3.7 UV-response	and	phototaxis	can	be	separated	
The	 c-opsin1	 spectrum	 matched	 the	 UV	 down-swimming	 response.	 This	
indicates	that	the	UV-response	is	mediated	by	c-opsin1,	which	is	expressed	in	the	
ciliary	 photoreceptor	 cells.	 The	 ciliary	 photoreceptor	 cells	 are	 deep	 brain	
photoreceptor	 cells	 that	 are	 not	 shaded	 by	 any	 pigment.	 Therefore,	 the	 ciliary	
photoreceptor	 cells	 are	 non-directional	 photoreceptor	 cells	 and	 so	 the	 UV-
response	should	be	non-directional,	too.	This	is	already	an	idea,	Nico	K.	Michiels	
pointed	 out	 to	 me	 when	 I	 was	 visiting	 his	 lab	 before	 I	 saw	 the	 c-opsin1	
absorption	 spectrum.	 This	 non-directional	 UV-response	 is	 in	 contrast	 to	
phototaxis,	which	is	a	directional	light	response	and	is	mediated	by	the	pigment	
shaded	adult	eyes	in	3-day-old	Platynereis	dumerilii	larvae	(Randel	et	al.,	2014).	
Thus,	 the	UV-response	and	phototaxis	are	 two	different	 light	 responses	and	so	
should	be	experimentally	distinguishable	by	changing	the	direction	of	the	 light.	
Irrespective	of	 the	 light	direction,	UV-light	should	make	the	 larvae	swim	down,	
while	 phototaxis	 should	make	 the	 larvae	 swim	 to	 or	 away	 from	 the	 light.	 In	 a	
horizontal	 setup	 where	 the	 light	 comes	 from	 the	 side,	 any	 down-swimming	
component	should	disappear	if	the	larvae	are	already	at	the	bottom.	Therefore,	a	
horizontal	setup	should	also	allow	me	to	study	whether	Go-opsin1	contributes	to	
phototaxis	in	the	UV	range.	
In	a	horizontal	setup,	I	used	directional,	diffuse,	collimated	monochromatic	light	
of	 different	 wavelengths	 to	 stimulate	 3-day-old	 larvae	 swimming	 in	 a	 glass	
beaker.	3	 to	4-day-old	nectochaete	 larvae	can	show	both	positive	and	negative	
phototaxis	and	may	switch	during	an	experiment	in	a	horizontal	setup	(Randel	et	

	62	

al.,	 2014).	 Commonly,	 initially	 photopositive	 larvae	 turned	 photonegative	 after	
light	 exposure,	 but	 some	 batches	 stayed	 photopositive	 during	 the	 whole	
experiment	 (data	 not	 shown).	 Therefore,	 I	 could	 consistently	 test	 negative	
phototaxis	 on	 several	 batches	with	many	 larvae	 (50	 -	 500	 larvae).	 To	quantify	
the	 turning-efficiency	 of	 phototaxis,	 the	 larvae	 were	 first	 illuminated	 for	 30	s	
with	 white	 light	 from	 one	 side	 of	 the	 beaker	 to	 trigger	 negative	 phototaxis.	
Following	 this	 white	 light	 stimulus,	 I	 stimulated	 for	 30	s	 with	monochromatic	
light	from	the	other	side.	After	stimulus	onset,	the	larvae	turned	180	degrees	and	
their	displacement	along	 the	 light	vector	was	measured	 from	15	s	 to	30	s	after	
stimulus	onset.	
	

	
Figure	11:	Reduced	efficiency	of	phototaxis	in	Go-opsin1Δ8/Δ8	mutant	larvae	
Efficiency	of	negative	phototaxis	of	wild	type	and	Go-opsin1Δ8/Δ8	knockout	larvae	to	different	wavelengths	of	
light:	The	larvae	were	swimming	in	a	beaker	and	were	illuminated	from	one	side	for	30	s.	The	larvae	were	
tracked	and	their	horizontal	displacement	was	calculated	during	the	analysis	period.	Negative	values	mean	
the	 larvae	 were	 swimming	 away	 from	 the	 light.	 n	 =	 31	 batches	 for	 wild-type	 and	 n	 =	 25	 batches	 for	
Go-opsin1Δ8/Δ8	 mutant	 larvae.	 Each	 batch	 contained	 >50	 larvae.	 All	 error	 bars	 are	 SEM.	 Statistical	
significance	 was	 determined	 with	 pairwise	 two	 tailed	 unpaired	 t-tests.	 P*	 <	 0.05,	 P**	 <	 0.01.	 The	
significances	at	500	nm	and	520	nm	are	left	after	Sidak-Bonferroni	correction.	The	data	have	been	partially	
published,	before	(Gühmann	et	al.,	2015).	
	

The	wild	type	larvae	were	negatively	phototactic	between	360	nm	-	540	nm,	and	
showed	the	strongest	response	between	440	nm	-	460	nm	(Figure	11).	This	is	a	
broad	 spectral	 response	 and	 indicates	 that	 multiple	 opsins	 are	 involved.	 The	
Go-opsin1Δ8/Δ8	mutant	larvae	were	also	negatively	phototactic	and	were	sensitive	

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

5
2

0

5
4

0

5
6

0

5
8

0

6
0

0

6
2

0

6
4

0

6
6

0

6
8

0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Wavelength (nm)

H
o
ri
z
o

n
ta

l
D

is
p

la
c
e

m
e

n
t
(m

m
/s

)

**

**

*
*

Go-opsin1 Δ8/Δ8

Go-opsin1 wt/wt

	 63	

across	the	whole	spectrum,	like	the	wild-type	larvae.	However,	the	mutant	larvae	
showed	the	strongest	response	at	420	nm	and	their	phototaxis	was	significantly	
reduced	between	460	nm	-	520	nm	relative	to	wild	type	(Figure	11).	The	spectral	
range	of	reduced	phototaxis-performance	matches	the	in	vitro	absorption	of	the	
Go-opsin1	photopigment	(Figure	10A).	This	confirms	that	Go-opsin1	contributes	
to	 phototaxis	 and	 enhances	 the	 efficiency	 of	 phototaxis	 in	 the	 blue-cyan-green	
(460	nm	-	520	nm)	range	of	the	spectrum	and	shows	that	the	UV-response	is	an	
independent	behavior.	

3.8 Larvae	swim	towards	UV	and	green	light	from	the	bottom	
When	 the	 light	 came	 from	 the	 side,	 the	 larvae	 either	 swam	 towards	 the	 light	
(data	not	shown)	or	swam	away	(Figure	11).	They	did	not	switch	their	direction	
depending	 on	 the	 wavelength.	 Therefore,	 the	 UV	 down-swimming	 response	 is	
unlikely	phototaxis.	However,	 it	 could	 still	 be	negative	phototaxis	 restricted	 to	
the	vertical	axis.	
	

	
Figure	12:	Platynereis	dumerilii	larvae	swim	down	to	UV	and	Green	light	from	the	bottom	
Platynereis	dumerilii	larvae	vertical	swimming	in	response	to	UV	(395	nm)	or	green	(525	nm)	light	coming	
from	LEDs	at	the	bottom:	The	larvae	were	mixed	and	recorded	for	10	min.	After	5	min	darkness,	the	larvae	
were	exposed	to	the	light	for	5	min.	For	the	dark	control,	the	larvae’s	swimming	was	analyzed	in	an	interval	
from	4.5	to	5	min	after	mixing.	For	the	light	stimuli,	the	larvae’s	swimming	was	analyzed	in	an	interval	from	
1	 to	 1.5	min	 after	 stimulus	 onset.	 Negative	 values	 indicate	 down-swimming.	 Statistical	 differences	 are	
shown	 between	 dark	 control	 and	 the	 stimulus	 light.	 The	 statistical	 significance	 was	 determined	 with	 a	
2-way-ANOVA	and	Holm-Sidak	post	hoc	test.	P**	<	0.01.	All	error	bars	are	SEM.	For	UV	n	=	5,	for	green	n	=	6.	

	
Therefore,	 I	 tested	 how	 3-day-old	 Platynereis	 dumerilii	 larvae	 reacted	 to	 light	
that	 came	 from	 the	 bottom	 instead	 from	 the	 top.	 For	 that,	 I	 put	 three	 UV	

Dark Light from bottom
-0.8

-0.6

-0.4

-0.2

0.0

0.2

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

LED UV 395 nm (n=5)
LED Green 525 nm (n=6)

** **

	64	

(395	nm)	 or	 three	 green	 (525	nm)	 LEDs	 under	 the	 column	 that	 contained	 the	
larvae.	Before	the	experiment,	I	mixed	the	larvae	to	redistribute	them	and	waited	
5	min	so	that	they	could	calm	down.	Then	I	switched	on	the	LEDs	and	measured	
1.5	min	later,	for	0.5	min	the	vertical	displacement	of	the	larvae.	
Right	before	stimulus	onset,	the	larvae	had	calmed	down	and	did	not	move	up	or	
down	 anymore.	 1.5	min	 after	 switching	 on	 the	 LEDs,	 the	 larvae	 swam	 down	
towards	 the	 light	 irrespective	whether	 it	was	UV	 (395	nm)	 or	 green	 (525	nm)	
light	(Figure	12).	
Since	the	larvae	did	not	switch	their	direction	depending	on	the	wavelength	with	
light	 from	 the	 bottom,	 the	 UV	 down-swimming	 response	 cannot	 be	 negative	
phototaxis.	The	UV-response	depends	on	the	wavelength	but	not	on	the	direction	
of	the	light.	

3.9 Already	41-hour-old	larvae	show	the	UV-response	
The	 UV-response	 is	 a	 non-directional	 response,	 and	 its	 spectrum	 fits	 to	 the	
spectrum	of	c-opsin1.	Both	observations	 favor	 the	 idea	that	 the	UV-response	 is	
mediated	by	the	c-opsin1	expressing	non-directional	ciliary	photoreceptor	cells.	
The	 ciliary	 photoreceptor	 cells	 have	 already	 developed	 in	 2-day-old	 larvae	
(Arendt	et	al.,	2004)	before	the	adult	eyes	are	functional.	This	means	that	larvae	
younger	than	three	days	should	also	swim	down	when	they	are	exposed	to	UV-
light.	
Therefore,	I	recorded	41	and	53-hour-old	larvae	in	the	vertical	column	with	light	
from	the	top.	The	light	alternated	between	380	nm	(UV)	and	520	nm	(green)	and	
ranged	from	340	nm	to	680	nm	in	20	nm	steps:	The	same	protocols	as	I	used	for	
the	3-day-old	larvae	kept	at	18°C	(Figure	6)	and	22°C	(Figure	9).	The	larvae	kept	
at	22°C	correspondent	to	4.5-day-old	larvae	kept	at	18°C.	I	compared	those	four	
sets	of	larvae	(Figure	13).	
Already,	41-hour-old	larvae	swam	up	to	green	(520	nm)	light	and	swam	down	to	
UV	(380	nm)	 light	 (Figure	13A).	The	 larvae	responded	 in	all	age	groups	 to	UV-
light	 between	 340	nm	 and	 400	nm.	 However,	 the	 UV-response	 differed	 in	
strength	between	the	age	groups.	It	was	strongest	in	the	3-day-old	larvae	kept	at	
18°C	and	22°C	(Figure	13B),	weaker	in	the	41-hour-old	larvae,	but	remarkably,	
still	 stronger	 than	 in	 the	 53-hour-old	 larvae.	 This	 is	 remarkable,	 because	 the	
naïve	 expectation	 is	 that	 in	 such	 a	 developmental	 series,	 the	 response	 would	
follow	a	trend,	an	increasing	trend.	
Therefore,	 I	 looked	 at	 the	 variability	 of	 the	 UV-response	 with	 box	 plots,	 and	
indeed	 the	 41-hour-old	 larvae	 are	 highly	 variable	 (Figure	 13C),	more	 variable	

	 65	

than	 the	other	groups	of	 larvae	 (Figure	13C,	D),	 so	 that	by	 chance	 the	average	
may	be	biased	in	one	or	another	direction.	
The	 41-hour-old	 larvae	 were	 not	 so	 variable	 when	 they	 were	 swimming	 up	
(Figure	13C).	The	 two	youngest	age	groups	did	not	differ.	The	older	 the	 larvae	
became	 the	 more	 sensitive	 they	 became	 to	 longer	 wavelength	 and	 they	 were	
swimming	up	faster	to	blue-cyan-green	(460	nm	-	540	nm)	light	(Figure	13B).	
This	shows	that	the	UV-response	is	active	whether	phototaxis	is	mediated	by	the	
larval	 or	 the	 adult	 eyes,	 and	 that	 it	 originates	 before	 the	 adult	 eyes	 become	
active,	so	that	it	is	a	separate	response	system.	

	
Figure	13:	UV-response	and	phototaxis	to	light	from	top	across	different	larval	stages	
41	 and	 53-hour-old,	 3	 and	 4.5-day-old	 Platynereis	 dumerilii	 larvae	 were	 stimulated	 with	 different	
wavelength	of	light.	They	were	tracked	and	their	average	displacement	was	calculated	during	the	analysis	
period.	 Positive	 displacement	 indicates	 up-swimming	 and	 negative	 displacement	 indicates	 down-
swimming.	The	4.5-day-old	 larvae	 are	 in	 fact	 3-day-old	 larvae	kept	 at	 22°C	 instead	of	18°C.	These	 larvae	
corresponded	 developmentally	 to	 4.5-day-old	 larvae	 that	were	 kept	 at	 18°C	 (Fischer	 et	 al.,	 2010).	 These	
larvae	are	however	called	4.5-day-old	larvae	for	brevity.	The	data	for	the	3-day-old	larvae	and	the	4.5-day-
old	 larvae	have	been	already	displayed	 in	Figure	6	and	Figure	9.	And	are	shown	here	 for	comparison.	All	
error	bars	are	SEM.	Abbreviations:	hpf:	hours	post	fertilization,	dpf:	days	post	fertilization	

A B

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

41 hpf
53 hpf

C

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

da
rk

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

38
0

52
0

da
rk

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Wavelength (nm)

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

41 hpf
53 hpf
3 dpf
4.5 dpf

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Wavelength (nm)

3 dpf
4.5 dpf

D

	66	

A:	 The	 larvae	 were	 alternatingly	 stimulated	 with	 light	 of	 380	nm	 and	 520	nm.	 The	 stimulus	 period	 was	
4.5	min,	and	was	binned	 into	30	s	 intervals.	The	 last	six	bins	were	averaged.	The	4.5-day-old	 larvae	swim	
faster	 up	 or	 down	 when	 they	 react	 to	 light	 than	 the	 younger	 larvae.	 The	 difference	 is	 also	 statistically	
significant	 for	most	pairs	of	measurement	groups	with	p-values	below	0.05	or	0.01	according	to	a	2-way-
ANOVA	 with	 a	 Tukey’s	 post	 hoc	 test.	 However,	 the	 test	 details	 are	 not	 shown	 so	 that	 the	 figure	 is	 not	
cluttered,	but	the	test	details	are	given	in	section	11.5.	41	hpf:	n	=	12;	53	hpf:	n	=	4;	3	dpf:	n	=	13;	4.5	dpf:	n	=	
14.	
B:	 The	 larvae	were	 stimulated	with	wavelength	 from	340	nm	 to	 680	nm.	 From	340	nm	 to	 400	nm,	 green	
light	(520	nm)	was	used	before	to	pull	up	the	larvae.	From	420	nm	to	680	nm,	UV-light	(400	nm)	was	used	
before	to	push	down	the	larvae.	Each	stimulus	period	was	3.5	min,	and	was	binned	into	30	s	intervals.	The	
last	 four	 intervals	 were	 averaged.	 The	 younger	 larvae	 swim	 down	 to	 UV	 light	 (340	nm	–	 400	 nm)	more	
slowly	than	the	older	 larvae.	This	difference	 is	also	statistically	significant	 for	most	pairs	of	measurement	
groups	with	p-values	below	0.05	or	even	below	0.0001	according	 to	a	2-way-ANOVA	with	a	Tukey’s	post	
hoc	test.	The	41	and	53	hour	old	larvae	also	differ	for	360	nm	and	380	nm	with	p-values	below	0.05.	The	
older	larvae	swim	up	faster	to	visible	light	(460	nm	–	580	nm).	This	difference	is	also	statistically	significant	
for	most	of	the	pairs	of	measurement	groups,	with	p-values	below	0.05	or	0.01	according	to	a	2-way-ANOVA	
with	a	Tukey’s	post	hoc	test.	However,	the	test	details	are	not	shown	so	that	the	figure	is	not	cluttered,	but	
the	test	details	are	given	in	section	11.6.	41	hpf:	n	=	11;	53	hpf:	n	=	6;	3	dpf:	n	=	12;	4.5	dpf:	n	=	14.	
C:	Box	Plot	for	the	data	of	the	41-hour-old	and	53-hour-old	larvae	shown	in	B.	The	box	plot	highlights	the	
variability	in	the	UV	range,	that	cannot	be	displayed	with	bar	plots.	However,	only	two	data	sets	are	given	to	
avoid	that	the	figure	gets	to	crowded.	The	other	two	data	sets	are	shown	in	D.	The	whiskers	indicate	the	5th	
and	the	95th	percentile;	dots	indicate	the	means,	bars	within	the	boxes	indicate	the	sample	median.	41	hpf:	n	
=	11;	53	hpf:	n	=	6.	
D:	Box	Plot	 for	the	data	of	the	3	and	4.5-day-old	 larvae	shown	in	B.	The	whiskers	 indicate	the	5th	and	the	
95th	percentile;	dots	indicate	the	means,	bars	within	the	boxes	indicate	the	sample	median.	3	dpf:	n	=	13;	4.5	
dpf:	n	=	14.	

3.10 From	36	hours	on,	larvae	respond	to	diffuse	UV-light	
41-hour-old	larvae	already	showed	the	UV-response.	I	wondered	whether	there	
were	younger	larvae	without	the	UV-response.	However,	larvae	without	the	UV-
response	cannot	be	measured	this	way,	because	I	used	the	UV-response	to	pull	
them	down.	
Therefore,	I	stimulated	the	larvae	with	diffuse	non-directional	UV-light	(395	nm)	
from	 the	 side.	 The	 light	was	 emitted	 by	 LEDs.	 I	mixed	 the	 larvae	 to	 distribute	
them,	waited	so	that	they	could	calm	down,	stimulated	them	with	UV-light	from	
the	side,	and	then	with	cyan	light	(480	nm)	from	the	top	to	check	for	phototaxis.	
After	 the	 larvae	 calmed	down,	 they	 swam	down	 to	diffuse	UV-light,	 except	 the	
27-hour-old	 larvae.	 However,	 all	 larvae	 swam	 up	 when	 they	 were	 stimulated	
with	cyan	(480	nm)	light	from	the	top	(Figure	14).	
This	 shows	 that	 the	UV-response	 is	 indeed	non-directional	 and	not	 coupled	 to	
phototaxis,	 because	 phototaxis	 develops	 before	 the	 UV-response.	 And	 the	 UV-
response	 is	 the	same	whether	phototaxis	 is	mediated	by	the	 larval	or	the	adult	
eyes.	

	 67	

	
Figure	14:	UV-light	already	made	36-hour-old	larvae	swam	down	
Platynereis	 dumerilii	 larvae	 of	 different	 ages	 were	 exposed	 to	 different	 light	 conditions	 in	 the	 vertical	
column:	 First,	 the	 larvae	 were	 mixed	 and	 kept	 for	 4	min	 in	 the	 dark.	 Then,	 they	 were	 exposed	 to	 UV	
(395	nm)	light	from	the	site	for	4	min.	And	finally,	they	were	exposed	to	cyan	(480	nm)	light	from	the	top	
for	4	min.	For	the	dark	control,	the	larvae’s	swimming	was	analyzed	in	an	interval	from	3.5	to	4	min	after	
mixing.	 For	 the	UV	 (395	nm)	 and	 cyan	 (480	nm)	 light	 stimuli,	 the	 larvae’s	 swimming	was	 analyzed	 in	 an	
interval	 from	 1.5	 to	 2	min	 after	 stimulus	 onset.	 All	 error	 bars	 are	 SEM.	 Statistical	 differences	 are	 shown	
within	the	same	age	groups	between	dark	control	and	395	nm	(side),	and	between	dark	control	and	480	nm	
(top).	The	statistical	significance	was	determined	with	a	2-way-ANOVA	and	Holm-Sidak	post	hoc	test.	P*	<	
0.05,	P**	<	0.01,	P***	<	0.001.	Abbreviations:	hpf	–	hours	post	fertilization,	dpf	–	days	post	fertilization.	For	
27	hpf	n	=	12,	for	36	hpf	n	=	8,	for	2	dpf	n	=	9,	for	3	dpf	n	=	15.	

3.11 The	larvae	swim	down	to	diffuse	UV-light	in	a	narrow	spectrum	
The	 larvae	 swam	 down	 with	 UV-light	 irrespective	 of	 its	 direction.	 If	 the	 UV	
down-swimming	response	with	light	from	top	and	the	side	is	the	same,	then	the	
spectral	sensitivity	should	also	be	the	same.	
To	record	a	response	spectrum	with	diffuse	UV-light	from	the	side,	I	put	2-day-
old	 larvae	 into	 a	 cuvette	 of	 1	cm	x	 1	cm	x	 4.2	cm	 (L	x	W	x	H).	 I	 illuminated	 the	
larvae	 with	 a	 monochromator	 from	 one	 side	 and	 illuminated	 them	 from	 the	
other	side	with	the	same	light	reflected	by	a	mirror.	The	larvae	were	stimulated	
with	 light	 from	340	nm	 to	680	nm	 in	20	nm	steps.	Each	 step	 lasted	1	min.	The	
steps	were	 separated	by	1	min	of	darkness.	The	 larvae	were	 tracked	and	 their	
horizontal	displacement	was	analyzed	for	the	first	30	s	for	phototaxis,	and	their	
vertical	displacement	was	analyzed	for	the	last	45	s	for	the	UV-response.	
When	 I	put	2-day-old	 larvae	 into	 the	cuvette,	 they	distributed	equally	along	 its	
height.	However,	for	some	batches	the	larvae	accumulated	at	the	bottom,	so	that	

Dark 395 nm (side) 480 nm (top)
-0.4

-0.2

0.0

0.2

0.4
V

er
tic

al
 D

is
pl

ac
em

en
t (

m
m

/s
)

24 hpf
36 hpf
2 dpf
3 dpf

*

**

*

**

	68	

I	 could	 not	 record	 their	 behavior.	 This	 was	 regular	 for	 3-day-old	 larvae.	
Therefore,	I	only	measured	2-day-old	larvae.	
In	this	setup,	despite	the	mirror,	the	light	is	not	coming	equally	from	both	sides,	
therefore,	 the	 larvae	 swam	 initially	 to	 the	 light	 and	 thus	 showed	 phototaxis	
(Figure	15A).	The	phototaxis	response	spectrum	is	like	that	reported	by	Jékely	et	
al.	(2008).	It	just	extends	more	into	the	UV	range.	The	larvae	also	showed	the	UV-
response	(Figure	15B).	 It	had	the	same	spectrum	as	c-opsin1	(Figure	10B)	and	
matched	 the	 UV-response	 spectrum	 in	 the	 column	 (compare	 Figure	 15B	 and	
Figure	13B).	
So,	 the	UV-response	showed	up	 in	all	 the	different	setups,	 it	 is	non-directional,	
and	most	likely	it	is	mediated	by	c-opsin1	and	the	ciliary	photoreceptor	cells.	

	
Figure	15:	Separating	phototaxis	and	the	UV-response	by	direction	
2-day-old	Platynereis	dumerilii	larvae	where	stimulated	in	a	cuvette	with	light	of	different	wavelength.	Each	
stimulus	lasted	1	min.	The	light	was	provided	by	a	monochromator	from	one	side	and	reflected	by	a	mirror	
to	provide	light	from	the	other	side.	The	wavelengths	are	color	coded:	UV	wavelengths	are	colored	grey,	and	
the	other	wavelengths	are	colored	as	an	average	human	observer	would	approximately	perceive	them.	Each	
batch	contained	>	100	larvae.	All	error	bars	are	SEM.	
A:	 The	 horizontal	 displacement	 shows	 larval	 phototaxis	 to	 different	wavelength.	 For	 phototaxis,	 the	 first	
30	s	of	the	stimulus	interval	were	analyzed.	Positive	values	mean	swimming	to	the	light.	(n	=	9)	
B:	 The	 vertical	 displacement	 shows	 the	 larval	 UV-response.	 For	 the	 UV-response,	 the	 last	 45	s	 of	 the	
stimulus	interval	were	analyzed.	Negative	values	mean	swimming	down.	(n	=	20)	

3.12 Platynereis	dumerilii	larvae	have	a	ratio-chromatic	depth	gauge	
Go-opsin1	is	not	involved	in	a	cellular	antagonism.	Nevertheless,	the	larvae	swim	
up	 phototacticly	 and	 swim	 down	 to	 UV-light.	 Both	 behaviors	 still	 could	 work	
antagonistically	 and	 form	 a	 depth	 gauge,	 not	 on	 cellular	 level	 but	 on	 network	
level.	Alternatively,	the	UV-response’s	main	function	is	avoiding	UV-light;	then,	it	
should	override	phototaxis.	
Thus,	 I	 measured	 larvae	 in	 the	 vertical	 column,	 how	 they	 reacted	 to	 different	
ratios	of	UV	(380	nm)	and	cyan	(480	nm)	light	from	the	top.	I	programmed	the	

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Wavelength (nm)

Ve
rti

ca
l D

is
pl

ac
em

en
t (

m
m

/s
)

da
rk

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

da
rk

-0.05

0.00

0.05

0.10

Wavelength (nm)

H
or

iz
on

ta
l D

is
pl

ac
em

en
t (

nm
/s

)

A B

	 69	

monochromator	 so	 that	 it	 generated	 the	 ratios	 by	 alternating	 the	 two	
wavelengths.	 For	 instance,	 the	 monochromator	 gave	 UV	 (380	nm)	 light	 for	
450	ms	and	cyan	(480	nm)	light	for	50	ms	and	then	repeated	it	for	4	min.	This	is	
a	 ratio	of	90	%	UV-light	versus	10	%	cyan	 light.	The	monochromator	also	gave	
ratios	 of	 red	 (660	nm)	 and	 UV	 (380	nm)	 light.	 In	 the	 column,	 light	 of	 660	nm	
induced	phototaxis	only	weakly	or	not	at	all	(Figure	6,	Figure	9,	and	Figure	13),	
so	that	I	could	simulate	darkness;	even	so,	I	could	not	use	the	shutter	here.	
The	 larvae	 were	mixed	 and	 kept	 in	 darkness.	 Then	 they	were	 exposed	 to	 the	
ratios	 from	 100	%	 to	 10	%	 in	 10	%	 steps.	 Each	 ratio	 was	 followed	 by	 cyan	
(480	nm)	light	to	redistribute	the	larvae.	Each	step	lasted	4	min.	I	measured	2,	3,	
and	4-day-old	 larvae	 to	 determine	 the	UV/cyan	 and	UV/red	 ratios	 that	 do	 not	
make	the	larvae	swim	down	anymore	so	that	I	could	compare.	
All	 larvae	 stopped	 swimming	 down	 at	 a	 certain	 UV/cyan	 ratio.	 However,	 the	
UV/cyan	ratio	differed	from	the	UV/red	ratio.	The	larvae	swam	down	to	less	UV-
light	in	the	UV/red	than	in	the	UV/cyan	ratio	(Figure	16B	and	C).	This	may	also	
be	 true	 for	 the	 2-day-old	 larvae,	 however	 for	 them	 the	 ratios	 did	 not	 differ	
statistically	(Figure	16A).		
This	 means	 that	 phototaxis	 and	 the	 UV-response	 work	 antagonistically.	
However,	 for	 a	 ratio-chromatic	 depth	 gauge,	 the	 ratio	 must	 be	 the	 same	 at	
different	 intensities.	 Therefore,	 I	 repeated	 the	 UV/cyan	 ratio	 experiment	 with	
3-day-old	 larvae	 but	 I	 placed	 a	 neutral	 density	 filter	 (1	 OD)	 in	 front	 of	 the	
monochromator	 for	 lowering	 the	 intensity.	 At	 lower	 intensity,	 the	 larvae	were	
neither	 swimming	 down	 nor	 up	 at	 the	 same	 ratio	 as	 at	 high	 intensity	 (Figure	
16D).	The	ratio	was	40	%,	 the	 larvae	seem	to	vary	so	 that	 the	 true	 ratio	could	
also	be	closer	to	50	%.	
This	shows	that	Platynereis	dumerilii	larvae	have	a	ratio-chromatic	depth	gauge,	
which	is	independent	of	the	light	intensity.	It	may	still	be	developing	in	2-day-old	
trochophore	larvae,	but	it	is	fully	functional	in	3-day-old	nectochaete	larvae.	
	

	70	

	
Figure	16:	Platynereis	dumerilii	larvae	have	a	ratio-chromatic	depth	gauge	
2,	 3,	 and	 4-day-old	 Platynereis	 dumerilii	 larvae	 were	 stimulated	 with	 different	 ratios	 of	 UV/cyan	
(380	nm/480	nm)	and	UV/red	(380	nm/660	nm)	light	coming	from	the	top.	For	instance,	a	90	%	UV/cyan	
ratio	was	 generated	 by	 giving	 for	 450	ms	 UV-light	 and	 for	 50	ms	 cyan	 light.	 This	was	 then	 repeated	 for	
4	min.	Each	stimulus	lasted	4	min.	The	larvae	were	mixed	before	and	kept	in	the	dark	for	4	min.	The	larvae’s	
swimming	was	 analyzed	 in	 an	 interval	 from	3.5	 to	 4.0	min	 after	 stimulus	 onset.	Negative	 values	 indicate	
down-swimming.	All	error	bars	are	SEM.	
A-C:	 Statistical	 significance	 was	 determined	 with	 two	 tailed	 unpaired	 t-tests.	 P*	<	0.05,	 P**	<	0.01,	
P***	<	0.001.	
A:	2-day-old	larvae	exposed	to	UV/cyan	ratios	(n	=	6)	and	UV/red	ratios	(n	=	4).	
B:	 3-day-old	 larvae	 exposed	 to	 UV/cyan	 ratios	 (n	=	13)	 and	 UV/red	 ratios	 (n	=	8).	 All	 differences	 are	
significant	after	Sidak-Bonferroni	correction.	
C:	 4-day-old	 larvae	 exposed	 to	UV/cyan	 ratios	 (same	data	 as	 in	B,	 n	=	13)	 and	UV/red	 ratios	 (n	=	2).	The	
differences	at	40	%	and	30	%	are	significant	after	Sidak-Bonferroni	correction.	
D:	3-day-old	larvae	exposed	to	UV/cyan	ratios	at	full	intensity	(n	=	13)	and	at	a	lower	intensity,	which	was	
reduced	by	a	neutral	density	filter	of	OD	1	(n	=	12).	Statistical	significance	was	determined	with	two	tailed	
one	sample	t-tests.	The	hypothetical	mean	was	0.	P*	<	0.05,	P**	<	0.01,	P***	<	0.001.	For	50	%	the	larvae	at	
high	intensity	may	not	swim	down	anymore,	however	their	vertical	displacement	does	not	differ	from	those	
larvae	at	lower	intensity	(two	tailed	unpaired	t-tests,	a	=	0.05,	not	shown).	

A B

C D

da
rk

10
0 90 80 70 60 50 40 30 20 10

-0.6

-0.4

-0.2

0.0

0.2

Ratio in %

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

da
rk

10
0 90 80 70 60 50 40 30 20 10

-0.6

-0.4

-0.2

0.0

0.2

Ratio in %

V
er

tic
al

 D
is

pl
ac

em
en

t (
m

m
/s

)

*

*
**

** ***

da
rk

10
0 90 80 70 60 50 40 30 20 10

-0.6

-0.4

-0.2

0.0

0.2

Ratio in %

Ve
rti

ca
l D

is
pl

ac
em

en
t (

m
m

/s
)

*** *** *** ***

**

da
rk

10
0 90 80 70 60 50 40 30 20 10

-0.6

-0.4

-0.2

0.0

0.2

Ratio in %

Ve
rti

ca
l D

is
pl

ac
em

en
t (

m
m

/s
)

380/480 ratio
380/480 ratio OD 1
380/660 ratio

*** ***

**
**

** **

*** ***

*

	 71	

4 Discussion	
Animal	 opsins	 have	 been	 classified	 into	 four	 major	 groups:	 The	 rhabdomeric	
opsins,	the	ciliary	opsins,	the	xenopsins,	and	the	tetraopsins	(Cronin	and	Porter,	
2014;	Delroisse	et	al.,	2014;	Feuda	et	al.,	2012;	Feuda	et	al.,	2014;	Porter	et	al.,	
2012;	 Ramirez	 et	 al.,	 2016).	 Among	 the	 tetraopsins,	 the	 Go-opsins	 are	 poorly	
studied	because	they	are	lost	in	both	ecdysozoans	(Hering	and	Mayer,	2014)	and	
vertebrates	 (Porter	 et	 al.,	 2012),	 the	 groups	 that	 contain	 our	 classical	 model	
organisms.	However,	Platynereis	dumerilii	expresses	a	Go-opsin,	Go-opsin1,	in	the	
eyes	of	its	larva	(Figure	2).	Therefore,	I	could	study	a	Go-opsin	via	behavior	and	
zinc-finger-nuclease	 mediated	 knockout	 in	 Platynereis	 dumerilii	 nectochaete	
larvae.	
The	 larvae	 swam	 down	 to	 UV	 light	 (400	nm)	 and	 up	 to	 green	 (520	nm)	 light.	
Originally,	 I	 hypothesized	 that	 these	 behaviors	 were	 negative	 and	 positive	
phototaxis,	 respectively.	 I	 hypothesized	 that	 negative	phototaxis	was	mediated	
by	 Go-opsin1	 and	 positive	 phototaxis	 by	 the	 rhabdomeric	 opsins.	 Since	 these	
opsins	are	expressed	in	the	same	cells	and	rhabdomeric	opsins	depolarize,	while	
at	 least	 a	 scallop	 Go-opsin	 hyperpolarizes,	 I	 hypothesized	 that	 both	 kinds	 of	
opsins	 antagonized	 each	 other	 to	 form	 a	 ratio-chromatic	 depth	 gauge.	 Such	 a	
cellular	 depth	 gauge	 was	 proposed	 by	 Nilsson	 (2009,	 2013).	 Nilsson	 also	
proposed	 that	 the	 reason,	 why	 different	 classes	 of	 opsins	 that	 either	
hyperpolarize	 or	 depolarize	 exist,	 are	 chromatic	 antagonisms.	 Here,	 the	
chromatic	 antagonism	 would	 have	 switched	 the	 larvae	 between	 positive	 and	
negative	phototaxis.	
However,	 the	 phototaxis	 sign	 was	 neither	 switched	 by	 a	 cellular	 chromatic	
antagonism	 nor	 by	 Go-opsin1.	 Go-opsin1	 contributed	 instead	 with	 the	
rhabdomeric	opsins	 to	phototaxis.	And	 the	phototaxis	sign	was	switched	by	an	
unknown	 mechanism	 not	 depending	 on	 the	 wavelength.	 The	 wavelength,	
however,	made	the	larvae	swimming	down	not	by	phototaxis	but	by	a	fast,	non-
directional	 response	 to	 UV-light.	 This	 UV-response	 and	 phototaxis	 formed	 a	
depth	gauge,	not	on	cellular	level	but	on	network	level.	

4.1 Go-opsin1	contributes	with	other	opsins	to	phototaxis	
Here,	 I	characterized	the	first	Go-opsin	 in	vivo:	Go-opsin1	and	two	rhabdomeric	
opsins	are	co-expressed	in	the	adult	eyes	of	the	nectochaete	larva	of	Platynereis	
dumerilii.	 The	 adult	 eyes	 mediate	 phototaxis	 (Randel	 et	 al.,	 2014),	 thus	
phototaxis	 should	 be	 co-mediated	 by	 Go-opsin1.	 For	 Go-opsin1,	 I	 originally	
hypothesized	 that	 it	 formed	 with	 the	 rhabdomeric	 opsins	 on	 cellular	 level	 an	

	72	

antagonistic	chromatic	depth	gauge;	a	depth	gauge	as	theoretically	proposed	by	
Nilsson	 (2009,	 2013).	 Here,	 the	 rhabdomeric	 opsins	would	 have	 responded	 to	
visible	 light	 from	 the	 top	 and	 would	 have	 made	 the	 larvae	 swimming	 up	
phototactically.	 The	 larvae	 would	 have	 been	 made	 swimming	 down	 by	
Go-opsin1.	
However,	my	Go-opsin1	knockout	larvae	still	swam	down	to	UV-light	and	did	not	
differ	from	the	wild	type	larvae	except	at	340	nm.	If	this	was	an	opsin	phenotype	
then	adjacent	wavelengths	should	have	been	affected,	too,	because	opsins	cover	
wavelength	ranges	that	are	broader	than	20	nm	(Govardovskii	et	al.,	2000;	Lamb,	
1995),	 and	no	opsin	 is	 known	 that	 absorbs	maximally	below	340	nm,	but	only	
opsins	that	absorb	maximally	above	350	nm	(Govardovskii	et	al.,	2000;	Hunt	et	
al.,	2007;	Townson	et	al.,	1998).	Therefore,	this	cannot	be	a	specific	phenotype,	
and	it	does	not	fit	to	the	Go-opsin1	absorption	spectrum,	either.	
The	 Go-opsin1	 absorption	 spectrum	 ranges	 from	440	nm	 to	 560	nm,	 the	 same	
wavelengths	the	Go-opsin1	knockout	larvae	were	less	phototactic	to.	Phototaxis	
is	mediated	 in	nectochaete	 larvae	by	 the	adult	eye	 (Randel	et	al.,	2014),	which	
expresses	Go-opsin1.	Therefore,	I	conclude	that	Go-opsin1	mediates	phototaxis.	
Phototaxis	in	the	mutants	is	not	abolished,	only	diminished,	so	that	it	cannot	be	
mediated	 by	 Go-opsin1	 alone	 (Foster	 and	 Hankins,	 2002).	 At	 least	 two	 more	
opsins	are	expressed	in	the	adult	eye	(Randel	et	al.,	2013).	These	are,	however,	
rhabdomeric	 opsins.	 Rhabdomeric	 opsins	 depolarize	 while	 at	 least	 a	 scallop	
Go-opsin	 is	 thought	 to	 hyperpolarize	 (Kojima	 et	 al.,	 1997).	 In	 principle,	
Go-opsin1	and	the	rhabdomeric	opsins	could	still	form	a	chromatic	antagonism.	
Then	the	rhabdomeric	opsins	would	mediate	the	UV-response.	However,	the	UV-
response	is	non-directional,	and	thus	cannot	be	mediated	by	the	directional	light	
sensing	 adult	 eye.	 Additionally,	 the	 adult	 eye’s	 photoreceptor	 cells	 do	 not	
hyperpolarize	at	all,	but	both	UV	(405	nm)	and	cyan	(488	nm)	light	makes	them	
depolarize	 (Gühmann	 et	 al.,	 2015),	 so	 that	 the	 rhabdomeric	 opsins	 and	
Go-opsin1	depolarize	and	mediate	a	broad	phototaxis	response.	
The	phototaxis	response	is	so	broad	that	it	may	be	mediated	by	three	opsins,	but	
an	opsin	spectrum	template	(Govardovskii	et	al.,	2000)	suggests	even	four	or	five	
opsins.	 If	 three	 opsins	 are	 expressed	 in	 the	 adult	 eye,	 then	 even	more	 opsins	
could	 be	 expressed	 there.	 Candidate	 opsins	 are,	 which	 have	 been	 cloned	 and	
verified	 by	 phylogenetic	 reconstruction	 (Gühmann	 et	 al.,	 2015;	 Randel	 et	 al.,	
2013):	R-opsin2,	 r-opsin4,	 r-opsin5,	 and	Go-opsin2.	 I	 found	 eight	more	 putative	
opsin	 sequences	 in	 the	 Platynereis	 dumerilii	 whole	 body	 (Conzelmann	 et	 al.,	
2013a)	and	single	cell	(Achim	et	al.,	2015)	transcriptomes	(data	not	shown)	with	

	 73	

the	 help	 of	 Elisabeth	 A.	 Williams.	 I	 putatively	 identified	 these	 sequences	 as	
opsins	via	BLAST	(Altschul	et	al.,	1990).	Among	these	opsin	sequences	were	four	
more	 putative	 rhabdomeric	 opsins,	 which	 still	 must	 be	 confirmed	 by	
phylogenetic	 reconstruction.	 These	 are	 more	 opsins	 than	 needed	 for	 a	 broad	
phototaxis	response	with	four	or	five	opsins.	

4.1.1 Go-opsin1	and	the	circalunar	clock	
Go-opsin1	 has	 beside	 phototaxis	 also	 other	 functions,	 because	 it	 is	 not	 only	
expressed	in	the	adult	eyes,	but	also	in	the	larval	eyes	and	in	a	medio-lateral	cell.	
However,	 what	 these	 functions	 are,	 is	 unknown.	 One	 of	 the	 functions	may	 be	
entraining	the	circalunar	body	clock	to	the	moon	phase.	However,	the	clock	was	
not	affected	in	the	Go-opsin1Δ8/Δ8	knockout	worms.	They	became	epitokes,	when	
the	 nights	 were	 dark	 and	 did	 not	 became	 epitokes	 when	 the	 nights	 were	
illuminated.	 This	 is	 how	wild	 type	worms	 behave	 as	 reported	 by	 Zantke	 et	 al.	
(2013)	and	Hauenschild	(1955).	
However,	 Hauenschild	 (1956)	 also	 reported	 that	most	 epitokes	 came	 between	
16	and	20	days	after	the	start	of	the	short-day-period.	At	the	start	of	the	short-
day-period,	my	mutant	and	the	wild	type	worms	became	already	epitokes.	This	
differed,	because	my	worms	were	exposed	to	artificial	bright	light	at	day	and	dim	
light	 at	 night,	 during	 the	 moon	 phase,	 while	 Hauenschild’s	 worms	 received	
24	hours	 artificial	 dim	 light	 of	 the	 same	 intensity,	 which	 is	 a	 bigger	 relative	
contrast.	
This	 could	 help	 to	 better	 synchronize	 the	 spawning	 of	 mutant	 worms	 so	 that	
they	can	be	bred	better:	Mature	epitokes	die	after	spawning	or	within	24	hours,	
even	so	if	they	have	not	spawned	(Fischer	and	Dorresteijn,	2004;	Fischer	et	al.,	
2010).	My	epitokes	could	survive	longer	if	they	were	cooled	to	4°C	in	the	fridge.	
This	way,	I	could	gain	another	day	or	exceptionally	five	days,	but	still	this	did	not	
guarantee	 that	 the	 epitokes	would	 survive	 the	 night.	 To	 solve	 this	 problem	 of	
getting	 enough	 epitokes,	 I	 genotyped	 many	 worms,	 which	 is	 work	 and	 time	
intensive,	so	that	a	lot	could	be	gained	here	by	a	stronger	moon.	
Since	the	circalunar	clock	was	not	affected	in	the	Go-opsin1Δ8/Δ8	knockout	worms,	
Go-opsin1	 may	 not	 regulate	 it.	 However,	 the	 clock	 can	 be	 entrained	 by	
monochromatic	violet	(433	nm)	or	red	(629	nm)	light	(Hauenschild,	1956).	This	
is	a	broad	range,	broader	than	one	opsin	could	cover	(Lamb,	1995),	so	that	the	
circalunar	clock	is	entrained	by	many	opsins.	If	one	of	them	is	Go-opsin1,	then	I	
could	not	have	detected	an	effect,	because	I	used	white	light	covering	most	of	the	
visible	spectrum.	 If	 I	had	specifically	 looked	for	a	phenotype	by	providing	cyan	

	74	

(488	nm)	light	matching	the	absorption	maximum	of	Go-opsin1,	I	still	could	have	
missed	 a	 phenotype,	 because	 the	 other	 opsins	 may	 also	 be	 sensitive	 to	 cyan	
(488	nm)	light	and	so	mask	a	circalunar	clock	phenotype.	
The	 circalunar	 clock	 should	 be	 entrained	 by	 cells	 or	 an	 organ	 that	 expresses	
many	opsins.	The	organ	should	also	exist	in	the	adult,	since	the	circalunar	clock	
can	be	entrained	there	(Hauenschild,	1955,	1956).	Such	an	organ	is	the	adult	eye,	
which	expresses	at	least	two	rhabdomeric	opsins	(Backfisch	et	al.,	2013;	Randel	
et	 al.,	 2013).	However,	whether	 it	 expresses	 also	Go-opsin1	 or	 any	other	 opsin	
beyond	 the	 larval	 stage	 is	 unknown.	 At	 least	 five	 rhabdomeric	 opsins,	 two	
Go-opsins,	and	two	neuropsins	of	Platynereis	dumerilii,	which	are	published	and	
confirmed	by	 phylogenetic	 reconstruction	 (Gühmann	 et	 al.,	 2015),	 could	 be	 all	
expressed	in	the	adult	eyes,	as	well.	
However,	 if	 the	 adult	 eyes	 are	 removed,	 the	 circalunar	 clock	 can	 still	 be	
entrained	 so	 that	 the	adult	 eyes	do	not	 entrain	 it	 (Hauenschild,	1961),	 at	 least	
not	 alone.	 In	 principle,	 the	 circalunar	 clock	 could	 be	 entrained	 by	 any	
photoreceptor	cells	that	express	all	the	opsins	covering	a	broad	spectrum.	Such	
photoreceptor	cells	could	be	the	ones	of	the	notopodium,	even	so,	they	mediate	a	
photo-avoidance	response	(Backfisch	et	al.,	2013),	the	photoreceptor	cells	of	the	
larval	 eye,	 or	 the	 median	 Go-opsin1	 expressing	 cell.	 In	 principle,	 all	 these	
photoreceptor	cells	together	could	entrain	the	circalunar	clock.	In	the	mouse,	the	
circadian	clock	 is	also	entrained	by	more	 than	one	 type	of	photoreceptor	cells:	
The	melanopsin	expressing	retinal	ganglion	cells,	and	the	rods	and	cones	(Panda	
et	al.,	2003).	

4.1.2 What	is	the	G-protein	that	Go-opsin1	activates?	
In	the	adult	eye	of	the	Platynereis	dumerilii	 larva,	the	opsins	belong	to	different	
groups:	 The	 rhabdomeric	 opsins	 and	 the	 Go-opsins.	 The	 adult	 eye’s	
photoreceptor	 cells	 only	 depolarize	 whether	 they	 respond	 to	 UV	 (405	nm)	 or	
cyan	 (488	nm)	 light	 (Gühmann	 et	 al.,	 2015),	 so	 that	Go-opsin1	must	 activate	 a	
different	phototransduction	cascade	than	the	scallop	Go-opsin.	
Go-opsin1	may	depolarize	via	 a	Go-protein.	 For	 example,	 in	 the	parietal	 eye	of	
the	 lizard,	 parietopsin	 depolarizes	 via	 a	 Go-protein.	 The	 Go-protein	 inhibits	 a	
phosphodiesterase	 in	 a	 ciliary	 phototransduction	 cascade	 in	 ciliary	
photoreceptor	 cells	 (Su	 et	 al.,	 2006).	 However,	 in	 the	 adult	 eye	 of	 Platynereis	
dumerilii,	 the	 photoreceptor	 cells	 are	 rhabdomeric	 (Rhode,	 1992),	 and	 thus	
probably	 use	 a	 rhabdomeric	 phototransduction	 cascade,	 which	 is	 conserved	

	 75	

between	 vertebrates	 and	 insects	 (see	 section	 1.1.2),	 and	 likely	 in	 Platynereis	
dumerilii,	too.	
Therefore,	 if	Go-opsin1	activates	 a	Go-protein,	 the	Go-protein	may	activate	 the	
phospholipase	C	 of	 the	 rhabdomeric	 phototransduction	 cascade,	 either	 via	 its	
alpha	subunit	or	its	beta-gamma	complex.	For	instance,	the	beta-gamma	complex	
of	 Ggust	 (gustducin)	 activates	 a	 phospholipase	C	 in	mammalian	 taste	 receptor	
cells	(Margolskee,	2002).	Alternatively,	the	Go-protein	may	activate	a	completely	
different	 phototransduction	 cascade	 that	 depolarizes	 in	 parallel	 to	 the	
rhabdomeric	 phototransduction	 cascade.	 In	 fact,	 a	 G-protein	 coupled	 signal	
transduction	 cascade	 can	 be	 assembled	 in	 many	 ways	 (Hepler	 and	 Gilman,	
1992),	 but	 the	 simplest	 way	 for	 an	 opsin	 to	 depolarize	 in	 a	 rhabdomeric	
photoreceptor	cell	is	via	a	Gq-protein.	
For	 G-protein	 coupling,	 opsins	 have	 a	 tripeptide	 motif.	 The	 tripeptide	 motif	
between	rhabdomeric	and	ciliary	opsins	differ	greatly	(Arendt	et	al.,	2004).	The	
tripeptide	motif	of	cattle	rhodopsin	interacts	with	the	Gt-protein	alpha	subunit.	If	
one	of	its	peptides	is	mutated,	 it	still	 interacts	well.	However,	 if	all	three	amino	
acids	are	mutated,	 it	activates	the	Gt-protein	75%	less	(Marin	et	al.,	2000).	The	
tripeptide	motif	of	Go-opsin1	 is	between	 the	motifs	of	 rhabdomeric	and	ciliary	
opsins	 (Gühmann	 et	 al.,	 2015),	 so	 that	 Go-opsin1	 may	 indeed	 interact	 with	
another	 kind	 of	 G-protein	 in	 the	 Platynereis	 dumerilii	 adult	 eye	 than	 in	 the	
scallop	 eye.	 However,	 which	 G-protein	 is	 unknown,	 but	 most	 likely	 it	 is	 the	
Gq-protein.	

4.1.3 Other	opsins	that	may	couple	to	other	G-proteins	in	vivo	
Opsins	 couple	 in	 vitro	 to	different	G-proteins:	For	 instance,	human	melanopsin	
and	 rhodopsin	 couple	 to	 Gi/o-	 and	 Gq-proteins.	 However,	 these	 opsins	 may	
activate	 non-native	 G-proteins	 less	 efficiently	 (Bailes	 and	 Lucas,	 2013).	Mouse	
melanopsin	couples	to	a	Gt-protein	(Newman	et	al.,	2003),	too;	and	may	do	so	in	
a	 cone,	 as	 well.	 Among	 human	 cones,	 0.11	%	 to	 0.55	%	 express	 exclusively	
melanopsin.	Melanopsin	 cones	 are	 restricted	 to	 the	 peripheral	 retina	 (Dkhissi-
Benyabya	 et	 al.,	 2006).	 The	 peripheral	 retina	 becomes	 tetrasensitive	 at	 high	
photopic	 light	 levels	 while	 the	 fovea	 stays	 trisensitive.	 Trisensitive	 and	
tetrasensitive	means	that	the	sensitivity	of	the	retina	is	covered	by	three	or	four	
classes	 of	 photopigments,	 respectively	 (Horiguchi	 et	 al.,	 2013).	 The	
tetrasensitivity	 could	be	 achieved	by	 the	melanopsin	 cone,	 but	 the	melanopsin	
expressing	retinal	ganglion	cells	could	contribute,	too.	

	76	

The	 mouse	 blood	 vessels	 are	 relaxed	 light-dependently	 by	 melanopsin.	
Melanopsin	hyperpolarizes	the	vessel	cells	via	a	phosphodiesterase-6	and	cGMP	
(Sikka	et	al.,	2014),	so	that	melanopsin	may	not	couple	here	to	a	Gq-protein,	but	
to	another	G-protein	whose	identity	is,	however,	unknown.	
In	humans,	rhodopsin	and	the	cone	opsins	are	not	only	expressed	in	the	rods	and	
cones,	 but	 also	 in	 keratinocytes	 (Haltaufderhyde	 et	 al.,	 2015)	 and	melanocytes	
(Haltaufderhyde	 et	 al.,	 2015;	Wicks	 et	 al.,	 2011).	 In	melanocytes,	 rhodopsin	 is	
suspected	 to	 activate	 early	 melanin	 synthesis	 on	 UV-exposure	 (Wicks	 et	 al.,	
2011).	There,	rhodopsin	would	couple	to	a	Gq/11-protein	(Bellono	et	al.,	2014)	
that	 activates	 phospholipase	 C	 (Wicks	 et	 al.,	 2011)	 and	 eventually	 would	
depolarize	the	cell	by	opening	TRPA1	channels	(Bellono	and	Oancea,	2013).	This	
response	 needs	 retinal	 and	 is	 reduced	 if	 rhodopsin	 is	 knocked	 down,	 but	 its	
response	spectrum	of	320	nm	to	400	nm	does	not	match	to	rhodopsin	(Wicks	et	
al.,	2011),	which	peaks	at	500	nm	(Wald	and	Brown,	1958).	
Different	 peaks	 of	 in	 vitro	 absorption	 have	 been	 reported	 for	melanopsin.	 The	
peaks	 were	 between	 420	nm	 and	 480	nm,	 with	 480	nm	 fitting	 to	 the	 action	
spectrum	of	 the	melanopsin	 expressing	 retinal	 ganglion	 cells	 (Tu	 et	 al.,	 2005).	
The	different	peaks	seem	to	depend	on	the	cell	type	melanopsin	is	expressed	in	
(Shirzad-Wasei	 and	 DeGrip,	 2016).	 Therefore,	 a	 property	 of	 the	 melanocytes	
could	 influence	 the	 absorption	 of	 rhodopsin,	 but	 how	 phototransduction	 is	
affected	is	unclear,	it	may	be	even	initiated	unspecifically	by	UV-light	(Foster	and	
Hankins,	2002).	
If	 phototransduction	 is	 initiated	 unspecifically	 then	 it	 may	 be	 rather	
thermotransduction.	 Thermotransduction	 could	 be	 initiated	 by	UV-light,	which	
heats	up	the	melanocytes	more	than	visible	 light.	Thermotransduction	exists	 in	
human	and	mouse	spermatozoa.	In	the	spermatozoa,	thermotaxis	is	mediated	by	
rhodopsin.	 The	 spermatozoa	 also	 express	 the	 cone	 opsins,	 encephalopsin,	
neuropsin,	 and	melanopsin,	 which	may	 also	 contribute	 to	 thermotaxis	 (Perez-
Cerezales	 et	 al.,	 2015).	 In	 Drosophila	 melanogaster	 larvae,	 thermotaxis	 is	
mediated	 by	 dm-r-opsin1,	 which	 can	 be	 replaced	 by	 most	 of	 the	 other	 fly	
rhabdomeric	opsins,	 and	even	by	mouse	melanopsin	 (Shen	et	al.,	2011).	 In	 the	
Drosophila	melanogaster	larva,	thermotransduction	also	involves	a	Gq-protein,	a	
phospholipase	C,	and	a	TRPA1	channel	(Kwon	et	al.,	2008).	Interestingly,	TRPA1	
is	 also	 required	 for	 UV-activated	 melatonin	 synthesis	 in	 human	 melanocytes	
(Bellono	 and	 Oancea,	 2013).	 However,	 if	 the	melanocytes	 are	 thermosensitive	
then	they	should	also	react	to	blue	and	green	light,	because	it	would	heat	them	
up,	too.	But	this	light	does	not	affect	the	melanocytes	(Wicks	et	al.,	2011).	

	 77	

The	 melanocytes	 spectral	 response	 matches	 better	 to	 neuropsin.	 Neuropsin	
absorbs	 maximally	 at	 380	nm	 in	 humans	 and	 mice,	 couples	 to	 Gi-	 and	
Go-proteins	 (Kojima	 et	 al.,	 2011)	 and	 is	 also	 expressed	 in	 human	melanocytes	
(Haltaufderhyde	et	al.,	2015),	however	at	 least	 the	chicken	neuropsin	does	not	
couple	 to	 a	 Gq-protein	 (Yamashita	 et	 al.,	 2010).	 The	melanocytes	 also	 express	
neuropsin	(Haltaufderhyde	et	al.,	2015),	however,	due	to	expression	difficulties	
(Terakita	et	al.,	2004),	its	sensitivity	and	G-protein	coupling	is	unknown.	Even	if	
neuropsin	 initiated	 the	 response,	 why	 the	 response	 is	 reduced	 if	 rhodopsin	
expression	is	reduced	would	still	be	unclear.	
In	 human	 keratinocytes,	 rhodopsin	 is	 also	 suspected	 to	 regulate	 how	
differentiation	 markers	 are	 expressed.	 The	 expression	 changes	 systematically,	
when	rhodopsin	is	knocked	down	or	overexpressed,	and	a	Gi-protein	is	involved.	
But	the	expression	is	regulated	by	UV	and	violet	light	(350	nm	–	420	nm)	(Kim	et	
al.,	 2013),	which	does	not	match	 the	 absorption	 spectrum	of	 rhodopsin	 either.	
For	 the	 expression	 regulation,	 neuropsin	 and	 the	 SWS1	 cone	 opsin,	 which	 is	
maximally	sensitive	at	~425	nm	(Fasick	et	al.,	1999;	Merbs	and	Nathans,	1992;	
Oprian	et	al.,	1991),	would	fit	better.	
In	 the	cichlid	 fish	Oreochromis	niloticus,	 the	cone	opsins	SWS1,	RH2b,	and	LWS	
(short	wavelength	sensitive	1,	rhodopsin	like	2b,	and	long	wavelength	sensitive	
opsin)	 are	 coexpressed	 in	 dermal	 erythrophores	 (Chen	 et	 al.,	 2013).	 The	
erythrophores	contract	their	pigment	granules	on	UV/violet	(365	nm	–	440	nm)	
or	red	(beyond	600	nm)	light	exposure.	But	on	blue/yellow	(460	nm	–	580	nm)	
light,	 they	expand	the	granules	(Chen	et	al.,	2013;	Chen	et	al.,	2015;	Sato	et	al.,	
2004).	The	granules	are	contracted	below	440	nm	to	the	same	wavelengths	that	
SWS1	 absorbs.	 And	 they	 are	 expanded	 to	 the	 same	 wavelengths	 that	 RH2b	
absorbs.	 This	 suggests	 that	 SWS1	 and	 RH2b	 mediate	 the	 two	 responses,	
respectively	and	work	antagonistically	(Chen	et	al.,	2015).	LWS	may	mediate	the	
pigment	granule	contraction	above	600	nm	(Ban	et	al.,	2005).	The	erythrophores	
depolarize	 below	 440	nm	 (Chen	 et	 al.,	 2015).	 However,	 this	 seems	 to	 be	
unrelated	to	 the	contraction,	because	the	erythrophores	neither	depolarize	nor	
hyperpolarize	on	the	expansion	(Chen	et	al.,	2015)	or	contraction	above	600	nm.	
The	 contraction	 above	 600	nm	 is	 mediated	 by	 a	 Gi-protein	 that	 inhibits	 an	
adenylyl	cyclase.	The	adenylyl	cyclase	is	activated	by	a	Gs-protein	that	mediates	
the	 expansion.	 The	 adenylyl	 cyclase	 regulates	 the	 intracellular	 level	 of	 cAMP,	
which	 regulates	 the	 pigment	 granule	 expansion	 and	 contraction	 via	 a	
phosphokinase	 A	 (Ban	 et	 al.,	 2005).	 The	 Gs-protein	 may	 couple	 to	 the	 RH2b	
opsin	and	the	Gi-protein	to	the	SWS1	and	LWS	opsins.	

	78	

In	the	lizard	parietal	eye,	the	antagonistically	working	pinopsin	and	parietopsin	
are	 another	 example	 that	 an	 opsin	 changed	 its	 G-protein	 partner	 if	 not	 in	 the	
same	 animal	 but	 at	 least	 during	 evolution.	 The	 parietopsin	 couples	 to	 a	
Go-protein,	 depolarizes	 (Su	et	 al.,	 2006),	 and	 is	 a	 ciliary	opsin	 (Su	et	 al.,	 2006;	
Wada	et	al.,	2012).	However,	 the	proto	ciliary	opsin	most	 likely	hyperpolarized	
via	 a	 Gi-protein	 (Lamb,	 2013),	 therefore	 parietopsin	 must	 have	 changed	 its	
G-protein	 during	 evolution.	 Parietopsin	may	 have	 coupled	 initially	 to	 both	 the	
Gi-	and	the	Go-protein	and	was	later	optimized	to	activate	the	Go-protein,	only.	

4.1.4 Why	do	different	phototransduction	cascades	exist	for	opsins?	
Nilsson	 (2009,	 2013)	 speculated	 that	 opsins	 use	 different	 phototransduction	
cascades,	because	of	ancient	chromatic	antagonisms.	However,	the	antagonisms	
of	 the	 cichlid	 erythrophores	 and	 the	 lizard	 parietal	 eye	 only	 involve	 ciliary	
opsins,	and	thus	are	not	ancient.	Even	so,	Su	et	al.	(2006)	speculated	so.	Ancient	
chromatic	antagonisms	that	 involve	rhabdomeric	and	ciliary	opsins	have	so	 far	
not	been	found.	
Animal	 opsins,	 evolved	 in	 animals	 (Feuda	 et	 al.,	 2014),	 but	 G-protein	 coupled	
receptors	 predate	 animals	 (Krishnan	 and	 Schioth,	 2015)	 and	 are	 found	 across	
eukaryotes,	 the	 same	 is	 true	 for	 G-proteins.	 The	 G-proteins	 of	 animals	 have	
G-alpha	 subunits	 from	 five	 groups,	 which	 predate	 animals	 (de	Mendoza	 et	 al.,	
2014).	Therefore,	the	question	is	not	why	different	phototransduction	cascades	
exist	 for	 opsins,	 but	 why	 different	 signal	 transduction	 cascades	 exist	 for	
G-protein	coupled	receptors.	Additionally,	not	only	G-protein	coupled	receptors	
transduce	signals,	but	also	ionotropic	receptors	and	gap	junctions.	
These	 are	 many	 ways	 to	 deliver	 signals	 to	 a	 cell.	 The	 cell	 must	 integrate	 the	
signals	 and	 may	 have	 to	 react	 in	 opposite	 ways	 to	 them.	 For	 instance,	 rod	
photoreceptor	cells	do	not	only	hyperpolarize,	but	also	depolarize	while	they	are	
responding	 to	 synaptic	 input	 from	 horizontal	 cells	 activated	 by	 cones	 under	
bright	 light	 (Szikra	et	al.,	2014).	Here,	 an	opsin	 is	 just	another	component	 in	a	
very	modular	G-protein	signaling	system	(Birnbaumer,	2007;	de	Mendoza	et	al.,	
2014),	which	can	be	simply	modified	 in	 the	 lab	by	adding	an	opsin	and	maybe	
retinal	 to	make	a	cell	sensing	 light	(Cao	et	al.,	2012;	Lin	et	al.,	2008).	This	may	
not	only	happen	in	the	lab	but	also	in	nature	during	evolution.	
For	 instance,	 rhabdomeric	 and	 ciliary	 photoreceptor	 cells	 increase	 their	
membrane	area	by	stacking	the	membrane	via	microvilli	and	cilia,	respectively.	
Both	microvilli	and	cilia	are	older	than	opsins	and	animals.	Cilia	are	associated	in	
eukaryotes	 with	 cAMP	 and	 cGMP	 signaling,	 which	 is	 used	 by	 ciliary	

	 79	

photoreceptor	 cells	 (Oakley	 and	 Speiser,	 2015).	 Rhabdomeric	 photoreceptor	
cells	 may	 even	 be	 derived	 from	 mechanoreceptor	 cells,	 because	 their	 TRP	
channels	 are	 activated	 mechanically	 via	 membrane	 deformation	 (Christensen	
and	Corey,	2007;	Spassova	et	al.,	2006).	
Therefore,	 the	 mechanisms	 that	 diversify	 opsins	 are	 duplication	 and	 ectopic	
expression,	 which	 then	 becomes	 normal	 expression.	 An	 evolutionary	 recent	
example	may	be	melanopsin	in	a	cone	(Dkhissi-Benyabya	et	al.,	2006).	Not	only	
an	 opsin	 can	 be	 integrated	 into	 another	 cell	 type,	 but	 also	 whole	 functional	
modules	(Arendt	et	al.,	2016).	Ectopic	expression	does	not	only	diversify	opsin	
signaling	 but	 also	 function.	 Ectopic	 expression	 may	 have	 created	 ciliary	 and	
rhabdomeric	photoreceptor	cells	by	adding	an	opsin.	For	instance,	an	opsin	may	
have	turned	a	chemo	avoidance	response	into	a	light	avoidance	response.	
Initially,	an	opsin	does	not	need	to	activate	its	new	G-protein	efficiently;	it	only	
needs	 to	 activate	 it	 at	 all.	 Then	 the	 opsin	 could	 be	 optimized	 with	 other	
components	of	its	new	cell.	This	includes	increasing	the	binding	efficiency	of	the	
opsin	 to	 the	 G-protein	 and	 stacking	 the	 cell	 membranes,	 which	 increases	 the	
sensitivity	and	the	temporal	resolution	of	the	photoreceptor	cell,	so	that	the	cell	
can	mediate	 complex	 tasks	 like	 spatial	 vision,	which	 requires	 high	 integration	
time	and	sensitivity	(Nilsson,	2009,	2013).	For	high	sensitivity	and	fast	response,	
the	vertebrate	ciliary	photoreceptor	cells,	opsins	and	signal	transduction	cascade	
have	been	optimized	(Lamb,	2013).	
The	signal	transduction	cascades	of	different	G-protein	coupled	receptors	differ,	
and	 differ	 even	 between	 cell	 types	 (Birnbaumer,	 2007),	 because	 they	 serve	
different	functions.	And	opsins	were	just	plugged	into	one	or	another	of	the	cell	
types.	That	is	why	opsins	have	different	phototransduction	cascades.	

4.1.5 What	determines	the	phototransduction	cascade?	
Opsin	 research	 has	 focused	 on	 visual	 opsins	 and	 their	 photoreceptor	 cells,	
because	they	are	the	most	visual	and	most	interesting	to	the	human	researcher	
like	 Boll	 (1876)	who	 studied	 the	 purple	 frog	 retina.	 Opsins	 that	mediate	 non-
visual	 functions	 are	 mainly	 studied	 for	 a	 relative	 short	 time,	 starting	 with	
RGR-opsin	 (Jiang	 et	 al.,	 1993;	 Shen	 et	 al.,	 1994),	 and	 continuing	with	peropsin	
(Sun	 et	 al.,	 1997),	melanopsin	 (Provencio	 et	 al.,	 1998;	 Provencio	 et	 al.,	 2000),	
encephalopsin	 (Blackshaw	 and	 Snyder,	 1999),	 and	 neuropsin	 (Tarttelin	 et	 al.,	
2003).	 In	 humans,	 these	 opsins	 are	 accompanied	 by	 rhodopsin	 and	 the	 three	
cone-opsins.	This	 totals	 to	nine	human	opsins,	most	of	 them	non-visual	opsins.	
Since	 all	 cone	 opsins	 and	 rhodopsin	 are	 expressed	 in	 human	 spermatozoa	

	80	

(Perez-Cerezales	et	al.,	2015),	all	human	opsins	may	have	non-visual	 functions,	
too.	
Even	so,	five	of	nine	human	opsins	are	primarily	non-visual	opsins;	phylogenetic	
opsin	datasets	are	biased	to	visual	opsins	(Nickle	and	Robinson,	2007;	Plachetzki	
et	al.,	2010;	Porter	et	al.,	2012).	The	visual	opsins	are	expressed	in	photoreceptor	
cells	of	image	forming	eyes,	which	are	highly	specialized	and	optimized	systems	
(Lamb,	2013).	Such	systems	are	moved	from	optimum	by	relative	small	changes,	
so	that	visual	systems	can	be	reduced	to	base-types,	for	instance:	The	vertebrate	
eye,	the	protostome	eye,	the	parietal	eye	of	the	lizard,	which	seems	however	only	
be	a	variation	of	 the	vertebrate	eye,	 the	scallop	eye,	and	 the	cube	 jellyfish	eye,	
whose	 opsins	 couple	 to	 a	 Gs-protein	 and	 increase	 the	 intracellular	 cAMP	
concentration	(Koyanagi	et	al.,	2008;	Liegertova	et	al.,	2015),	however	it	cannot	
be	generalized	as	Shichida	and	Matsuyama	(2009)	did	that	all	cnidarian	opsins	
couple	 to	 a	 Gs-protein.	 In	 fact,	 cnidarian	 opsins	 exist	 that	 couple	 to	 other	
G-proteins	(Liegertova	et	al.,	2015;	Mason	et	al.,	2012).	
Something	 similar	 may	 be	 true	 for	 Go-opsins;	 they	 are	 only	 called	 Go-protein	
coupled	 opsins,	 because	 the	 first	 Go-opsin	 was	 found	 coexpressed	 with	 a	
Go-protein	 (Kojima	 et	 al.,	 1997).	 This	 was	 the	 reason	 to	 assume	 that	 all	
Go-opsins	are	Go-coupled	(Shichida	and	Matsuyama,	2009).	Go-opsins	in	scallop	
eyes	 and	 derived	 systems	 may	 indeed	 couple	 to	 Go-proteins,	 but	 in	 other	
systems	 they	may	 just	 integrate.	 For	 instance,	 in	 a	 rhabdomeric	photoreceptor	
cell,	 they	 may	 just	 couple	 to	 a	 Gq-protein.	 And	 melanopsin	 in	 a	 human	 cone	
(Dkhissi-Benyabya	et	al.,	2006)	may	just	couple	to	a	Gt-protein,	even	so	with	low	
efficiency	(Horiguchi	et	al.,	2013).	Therefore,	phylogeny	does	not	determine	the	
phototransduction	 cascade	 of	 an	 opsin	 (Porter	 et	 al.,	 2012),	 but	 the	 cell	 it	 is	
expressed	in.	

4.2 The	UV-response	forms	with	phototaxis	a	depth	gauge	
I	found	a	ratio-chromatic	depth	gauge,	which	is	formed	by	phototaxis	and	a	UV-
response.	The	UV-response	was	 fast;	 the	 larvae	could	already	swim	down	after	
0.5	s	 of	 UV-light	 (data	 not	 shown).	 The	 UV-light	 could	 come	 from	 the	 top,	 the	
bottom,	or	diffusely	from	the	side;	and	the	larvae	swam	down.	This	contradicts	
my	original	hypothesis	that	the	UV-response	was	negative	phototaxis.	Instead	of	
phototaxis,	the	UV-response	is	a	non-directional	light	response	or	a	UV-induced	
gravitaxis.	
Platynereis	dumerilii	differs	here	from	Daphnia	magna.	Daphnia	magna	swims	up	
to	 visible	 light	 (420	nm	 –	 600	nm)	 and	 swims	 down	 to	 UV-light	 (260	nm	 –	

	 81	

380	nm).	 However,	 if	 UV-light	 (350	nm)	 comes	 from	 one	 side,	Daphnia	magna	
swims	away,	but	does	neither	swim	up	nor	down.	And	so,	Daphnia	magna	avoids	
UV-light	 by	 negative	 phototaxis	 (Storz	 and	 Paul,	 1998).	 Other	 species,	 like	
medical	 leeches	(Jellies,	2014)	or	sea	urchins	avoid	UV-light	by	phototaxis,	 too,	
and	 may	 even	 cover	 themselves	 with	 shells	 (Sharp	 and	 Gray,	 1962).	 In	
planktonic	species,	UV-avoidance	is	usually	attributed	to	phototaxis	(Leech	and	
Jonsen,	2002),	even	so	UV-avoidance	is	studied	as	outcome,	for	instance	whether	
planktonic	 organisms	 avoid	UV-exposed	 areas	 (Donahue	 and	 Schindler,	 1998),	
how	UV-transparency	 influences	 them	 in	 lakes	 (Kessler	 et	 al.,	 2008),	 or	which	
depth	they	chose	after	UV-exposure	(Leach	et	al.,	2015;	Rhode	et	al.,	2001).	For	
the	depth	distribution,	UV-phototaxis	is	just	assumed	and	a	fast	non-directional	
light	 response	 is	 not	 considered.	 To	my	 knowledge,	 a	 fast	 non-directional	 UV-
response	has	not	been	described	in	zooplankton,	which	is	probably	why	Nico	K.	
Michiels	had	to	point	this	out	to	me	while	I	was	visiting	his	lab.	
Both	 Platynereis	 dumerilii	 late	 trochophore	 and	 nectochaete	 larvae	 avoid	 UV-
light;	even	so	the	trochophores	use	 the	 larval	eyes	(Jékely	et	al.,	2008)	and	the	
nectochaetes	 the	 adult	 eyes	 (Randel	 et	 al.,	 2014)	 for	 phototaxis.	 Phototaxis	 is	
already	shown	by	the	early	trochophore	larvae	(Jékely	et	al.,	2008),	earlier	than	
the	UV-response.	Thus,	the	UV-response	is	separated	developmentally	from	the	
eyes	 and	 their	 directional	 photoreceptor	 cells.	 The	 UV-response	 should	 be	
mediated	by	photoreceptor	cells	that	are	not	shaded	by	pigment,	so	that	they	can	
detect	light	from	all	sides.	They	should	also	integrate	light	over	a	short	period,	so	
that	 the	 larvae	 can	 response	 quickly.	 For	 that,	 the	 photoreceptor	 cells	 need	
stacked	membranes	(Nilsson,	2009,	2013).	
These	characters	 fit	 to	 the	ciliary	photoreceptor	cells.	They	exist	already	 in	 the	
metatrochophore	 larva,	 are	 not	 shaded	 by	 pigment,	 have	 stacked	membranes,	
and	express	c-opsin1	 (Arendt	et	al.,	2004).	C-opsin1	absorbed	 light	of	 the	same	
wavelengths	 as	 the	 larvae	 were	 swimming	 down	 to.	 The	 down-swimming	
response	 spectrum	 fits	 to	 an	opsin	 template	of	100	nm	width	 (Govardovskii	 et	
al.,	 2000;	 Lamb,	 1995),	 so	 that	 the	UV-response	may	 be	mediated	 by	 c-opsin1	
alone.	
To	check	this,	I	searched	the	single	transcriptome	data	of	Achim	et	al.	(2015)	for	
cells	expressing	c-opsin1	and	other	opsins	with	the	help	of	Elizabeth	A.	Williams.	
I	 found	 ten	 known	opsin	 sequences	 (Gühmann	 et	 al.,	 2015)	 and	 eight	 putative	
opsin	sequences.	Among	these	opsins,	c-opsin1	was	expressed	in	four	cells:	Two	
cells	 expressed	 c-opsin1	 only,	 and	 two	 cells	 coexpressed	 peropsin1,	 which	
absorbs	 maximally	 at	 500	nm	 (data	 not	 shown).	 An	 amphioxus	 peropsin	

	82	

preferentially	 binds	 all-trans-retinal	 and	 isomerizes	 it	 to	 11-cis-retinal.	 Thus,	
peropsins	 are	 thought	 to	 be	 photoisomerases.	 Peropsins	may	 also	 signal	 via	 a	
G-protein	(Koyanagi	et	al.,	2002),	but	which	G-protein	they	activate	is	unknown.	
The	 Platynereis	 dumerilii	 peropsin1	 has	 been	 reclassified	 as	 a	
retinochrome/RGR-opsin	 (Ramirez	 et	 al.,	 2016).	 RGR-opsins	 work	 as	
photoisomerases	and	are	claimed	not	to	bind	any	G-protein	(Nagata	et	al.,	2010;	
Terakita,	 2005),	 because	 they	have	 an	NAxxY	motif	 instead	of	 an	NPxxY	motif.	
The	NPxxY	motif	is	highly	conserved	among	G-protein	coupled	receptors.	If	it	is	
mutated	 in	 the	 rat	 m3	 muscarinic	 receptor	 to	 NAxxY,	 the	 receptor	 can	 be	
activated	less	efficiently	(Wess	et	al.,	1993).	However,	the	human	MT2	melatonin	
receptor	signals	via	a	G-protein	and	has	an	NAxxY	motif	natively.	If	that	motif	is	
mutated	 to	 NPxxY,	 the	 receptor	 cannot	 be	 activated,	 but	 the	 receptor	 can	 be	
rescued	partially	if	it	is	mutated	to	NVxxY	(Mazna	et	al.,	2008).	The	NVxxY	motif	
is	 present	 in	 peropsin1	 and	 therefore	 it	 remains	 to	 be	 seen	 whether	 it	 and	
RGR-opsins	 in	general	 signal	via	G-proteins.	 Independently,	whether	peropsin1	
signals,	it	maximally	absorbs	light	at	500	nm	(data	not	shown),	which	does	not	fit	
to	 the	UV-response.	 Therefore,	 the	UV-response	 is	 not	mediated	by	peropsin1,	
but	probably	by	c-opsin1	alone.	
The	 UV-response	 is	 not	 a	 UV-avoidance	 response	 alone,	 because	 it	 did	 not	
override	 phototaxis.	 Instead,	 phototaxis	 and	 the	 UV-response	 worked	 against	
each	 other	 and	 canceled	 out	 each	 other	 at	 a	 certain	 ratio.	 The	 ratio	 did	 not	
change	when	 I	dimmed	the	 light.	However,	when	 I	 replaced	 the	cyan	(480	nm)	
light	by	red	light	(660	nm)	in	the	ratio,	the	larvae	swam	down	to	less	intense	UV-
light	(380	nm).	The	intensity	of	the	UV-light	did	not	change,	but	because	red	light	
hardly	induced	phototaxis	compared	to	cyan	light,	the	perceived	ratio	of	UV-light	
vs.	 visible	 light	 did	 change.	 Therefore,	 the	 UV-response	 and	 phototaxis	 form	 a	
depth	 gauge.	 It	 could	 help	 the	 larvae	 to	 avoid	UV-light,	 however	 this	 does	 not	
seem	 to	be	 the	main	 function,	 because	otherwise,	 the	 absolute	 intensity	 of	 the	
UV-light	would	matter,	and	the	UV-response	would	override	phototaxis.	
However,	the	depth	gauge	could	have	started	evolutionary	as	UV-avoidance.	UV-
avoidance	 may	 have	 worked	 with	 a	 long	 integration	 time	 (Nilsson,	 2009),	
because	it	had	not	to	compete	with	phototaxis.	Then	phototaxis	was	added	to	the	
system.	For	instance,	by	adding	extra	synaptic	input	to	the	ciliated	motor	cells	or	
to	 interneurons,	 so	 that	 the	 input	 can	 be	 integrated	 there.	 However,	 we	 can	
expect,	that	initially,	UV-avoidance	and	phototaxis	were	not	integrated	perfectly,	
so	 that	 they	 would	 work	 against	 each	 other	 and	 form	 a	 depth	 gauge,	
automatically.	 Then	 UV-avoidance	 could	 have	 evolved	 to	 override	 phototaxis.	

	 83	

However,	avoiding	UV-light	was	not	 the	main	 function	and	so	 the	UV-response	
did	not	evolve	to	override	phototaxis.	But	phototaxis	became	more	sensitive	and	
faster	 so	 that	 the	 UV-response	 became	 also	 more	 sensitive	 and	 faster	 to	 still	
compete	with	phototaxis.	
In	principle,	the	depth	gauge	and	UV-avoidance	may	not	be	the	only	functions	of	
the	ciliary	photoreceptor	cells,	 they	may,	as	speculated	by	Arendt	et	al.	 (2004),	
entrain	 the	 circadian	 clock.	 They	may	 do	 it	 together	with	 other	 photoreceptor	
cells.	 This	 would	 be	 like	 the	 vertebrate	 rods	 and	 cones,	 which	 resemble	
molecularly	the	ciliary	photoreceptor	cells.	They	also	mediate	vision	and	entrain	
the	 circadian	 clock	 together	 with	 the	 melanopsin	 expressing	 retinal	 ganglion	
cells	(Panda	et	al.,	2003).	

4.2.1 The	function	of	the	depth	gauge	
The	 depth	 gauge	may	 still	 help	 the	 larvae	 to	 avoid	UV-light.	 But	 then,	 the	UV-
response	must	be	already	triggered	at	harmless	levels	of	UV-light,	so	that	the	UV-
response	 can	 out-compete	 phototaxis	 at	 harmful	 levels.	 The	 depth	 gauge	with	
the	UV-response	allows	the	larvae	to	swim	horizontally	to	or	away	from	the	light	
and	at	 the	 same	 time	allows	 them	 to	 swim	down.	 If	 the	 larvae	are	 in	 the	open	
ocean,	positive	phototaxis	drives	them	to	the	top	while	the	UV-response	brings	
them	down.	The	UV-response	and	phototaxis	work	antagonistically	 so	 that	 the	
larvae	reach	a	certain	depth,	at	which	they	are	transported	to	shallow	water.	 If	
the	water	is	shallower	than	the	depth,	the	larvae	reach	the	ground	and	may	have	
found	 a	 good	 settling	 place.	 There,	 the	 larvae	 may	 switch	 from	 positive	 to	
negative	 phototaxis,	 like	 the	 larvae	 of	 the	 hydroid	Clava	multicornis	 (Williams,	
1965)	 and	 the	 sinistral	 spiral	 tubeworm	Spirorbis	 borealis	 (Williams,	1964)	do	
when	they	settle	on	their	favorite	brown	alga.	
Other	 settlement	 cues,	 for	 instance	 for	 barnacle	 larvae,	 are	 pits,	 grooves,	 and	
holes,	which	are	sensed	mechanically	(Crisp	and	Barnes,	1954;	Knight-Jones	and	
Crisp,	1953).	Many	more	different	settlement	cues	are	described	(Hadfield,	2011;	
Pawlik,	 1986,	 1992;	 Rittschof	 et	 al.,	 1998;	 Woodin,	 1991),	 which	 in	 principle	
could	all	switch	Platynereis	dumerilii	larvae	to	negative	phototaxis.	With	negative	
phototaxis,	 the	 larvae	know	precisely	were	 the	 light	 is	 coming	 from	(Randel	et	
al.,	2014)	and	can	swim	 into	 the	shade	of	sea	grass	or	rock	cracks,	where	 they	
can	hide	from	predators	and	UV-light.	Therefore,	the	larvae	use	the	depth	gauge	
to	 find	 the	 right	 depth	 for	 settling	 and	 avoiding	 UV-light	 may	 be	 just	 a	 side	
function	if	it	is	a	function	at	all.	

	84	

The	UV-response	is	not	shown	by	early	trochophore	larvae.	They	swim	up	to	the	
surface	 phototacticly;	 even	 so,	 they	 are	 as	 transparent	 and	 pigmented	 as	 the	
nectochaete	 larvae	 and	 so	 are	harmed	by	UV-light	 as	much	as	 the	nectochaete	
larvae.	 However,	 the	 larvae	 may	 repair	 UV-induced	 DNA-damage	 efficiently	
(Zagarese	and	Williamson,	1994)	and	thus	would	not	need	to	avoid	UV-light.	
The	larvae	may	settle	in	shallow	water,	where	the	adults	live	(see	section	1.2.1).	
But	 they	 could	 also	 settle	 deeper	 or	 higher	 and	 later	 migrate	 to	 their	 final	
habitat,	 since	 the	adult	worms	are	mobile	and	can	build	a	new	tube	elsewhere	
(lab	observation;	Ricevuto	et	 al.,	 2014).	The	metatrochophore	and	nectochaete	
larvae	 react	 phototacticly	 to	 many	 wavelengths	 that	 occur	 in	 shallow	 water.	
Therefore,	 shallow	 water	 might	 be	 their	 habitat,	 because	 the	 sensitivity	
hypothesis	 predicts	 that	 the	 sensitivity	 of	 an	 animal	 reflects	 the	 spectral	
distribution	of	light	in	its	environment	(Cohen	and	Forward,	2002;	Munz,	1958).	
For	 larvae,	 however,	 that	 may	 differ	 and	 their	 spectral	 sensitivity	 reflects	 the	
spectral	distribution	of	the	light	in	the	adult	habitat	(Forward	and	Cronin,	1979),	
which	the	larvae	should	eventually	reach	to	settle	there	(Pawlik,	1992).	To	reach	
the	 habitat,	 the	 larvae	 use	 the	 depth	 gauge;	 and	with	 phototaxis,	 they	 select	 a	
specific	site.	

4.2.2 Why	a	UV	down-swimming	response	instead	of	negative	phototaxis?	
Platynereis	 dumerilii	 larvae	 use	 positive	 phototaxis	 with	 the	 UV-response	 as	 a	
depth	 gauge.	 However,	 the	 water	 flea	 Daphnia	 magna	 regulates	 its	 depth	 by	
switching	between	positive	and	negative	phototaxis:	They	are	photopositive	for	
visible	light	above	420	nm	and	photonegative	for	UV-light	below	380	nm	(Storz	
and	Paul,	1998).	 In	principle,	Platynereis	dumerilii	 larvae	could	do	the	same.	So	
why	does	Platynereis	dumerilii	use	the	UV-response	with	positive	phototaxis	as	
depth	gauge?	What	is	the	advantage?	
Daphnia	 lives	 in	 the	 open	water	 column	 for	 its	whole	 life	 (Ebert,	 2005),	while	
Platynereis	dumerilii	larvae	leave	the	open	water	column	and	settle	at	the	bottom	
of	 the	 sea.	 In	 these	 two	 taxa,	 UV	 induced	 down-swimming	 has	 different	
functions:	Daphnia	uses	 it	 to	 avoid	 UV-light	 (Storz	 and	 Paul,	 1998)	 and	 visual	
predators	(Ebert,	2005);	Platynereis	dumerilii	may	use	it	to	find	the	right	settling	
depth.	
Daphnia	magna	 needs	 only	 to	 avoid	UV-light	 or	 visual	 predators.	 Therefore,	 it	
just	needs	to	swim	down	by	negative	phototaxis	until	the	UV-light	falls	below	a	
certain	 threshold.	 Then,	Daphnia	magna	 can	 switch	 to	 positive	 phototaxis	 and	
swim	up	again.	Practically,	positive	and	negative	phototaxis	will	balance	at	 the	

	 85	

switching	 point	 so	 that	 Daphnia	 magna	 stays	 at	 a	 certain	 depth.	 Negative	
phototaxis	may	drive	Daphnia	magna	into	hiding	places.	But	once	the	UV-light	is	
gone,	 Daphnia	 magna	 may	 leave	 by	 positive	 phototaxis	 and	 enter	 the	 water	
column,	 again.	 This	 behavior	 is	 useful	 for	 diel-vertical	 migration,	 as	 Daphnia	
shows	(Ebert,	2005).	
Platynereis	dumerilii	larvae,	however,	should	settle	once	they	found	a	good	place,	
which	may	be	a	hiding	place	in	a	rock	crack	or	under	sea	grass,	where	shading	
may	 reduce	UV-light	 exposure.	 In	principle,	 this	may	be	 fine,	 as	 light	of	 all	 the	
other	wavelengths	is	dimmed	there	too,	and	so	the	depth	gauge	still	indicates	the	
same	depth.	However,	a	pure	phototaxis	depth	gauge	would	have	two	functions:	
Bring	 down	 the	 larvae	 to	 their	 depth	 and	 push	 them	 into	 a	 hiding	 place.	
However,	if	a	larva	rejects	a	place,	it	must	leave	and	is	trapped	there	if	it	does	not	
switch	from	negative	to	positive	phototaxis,	which	however	brings	the	larva	back	
to	the	surface.	
Already	a	few	centimeters	above	the	bottom,	the	larvae	encounter	currents	that	
are	 faster	 than	 they	 could	 swim	 (Woodin,	 1991)	 and	 that	 differ	 in	 speed	 at	
microscale	 (Koehl	 and	Hadfield,	 2010;	Koehl	 and	Reidenbach,	 2007),	 so	 that	 a	
larva	 that	 swims	 up	 a	 few	 centimeters	 is	moved	 several	meters	 away.	 This	 is	
inefficient,	 because	 good	 and	 bad	 habitat	 patches	 are	 small	 and	 adjacent	
(Woodin,	1991).	A	patch’s	quality	may	be	indicated	by	an	odor.	An	odor	may	be	
poisonous	 (Walters	 et	 al.,	 1996)	 or	 indicate	 a	 competitor	 for	 space	 and	 food	
(Pawlik,	1992;	Woodin,	1991;	Woodin	et	al.,	1997).	Odors	come	in	small	plumes	
and	 not	 in	 concentration	 gradients	 (Koehl	 and	 Hadfield,	 2010;	 Koehl	 and	
Reidenbach,	2007).	Thus,	a	better	place	may	be	just	a	few	centimeters	away.	
Therefore,	 the	 larvae	 should	 stay	 on	 the	 bottom	 and	 swim	 a	 few	 centimeters	
further	 to	 find	 a	 better	 place.	 They	 can	do	 this	with	 the	depth	 gauge:	The	UV-
response	keeps	 them	at	 the	bottom;	and	with	phototaxis,	 they	 can	 leave	a	bad	
place	and	swim	to	a	good	settlement	place.	

4.3 Outlook	and	evolutionary	context	of	ciliary	and	Go-opsins	
I	 found	that	Platynereis	dumerilii	 larvae	show	positive	gravitaxis	when	they	are	
illuminated	 with	 non-directional	 UV-light.	 The	 spectrum	 of	 this	 UV-response	
matched	 the	 absorption	 spectrum	 of	 c-opsin1,	 and	 the	 other	 characters	 of	 the	
UV-response	 matched	 to	 the	 ciliary	 photoreceptor	 cells,	 so	 that	 most	 likely	
c-opsin1	 mediates	 the	 UV-response.	 However,	 the	 UV-response	 could	 still	 be	
mediated	 by	 another	 opsin	 in	 other	 cells.	 To	 be	 sure,	 c-opsin1	 should	 be	
removed	 from	 the	 larvae.	 Since,	 c-opsin1	 seems	 to	 be	 the	 only	 relevant	 opsin	

	86	

expressed	by	the	ciliary	photoreceptor	cells,	I	expect	that	the	larvae	do	not	swim	
down	anymore	to	UV-light	if	c-opsin1	is	eliminated.	
C-opsin1	can	be	eliminated	by	knocking	it	out	with	zinc-finger-nucleases	(ZFNs),	
transcription	 activator-like	 effector	 nucleases	 (TALENs),	 or	 the	 CRISPR-Cas9	
system	 (clustered	 regularly	 interspaced	 short	 palindromic	 repeat;	
Chandrasegaran	and	Carroll,	2015).	Alternatively,	c-opsin1	can	be	knocked	down	
with	morpholinos.	However,	morpholinos	were	not	useful	in	my	hands,	because	
for	my	experiments,	 I	 needed	more	 larvae	 than	 I	 could	 realistically	 inject	with	
the	morpholinos.	Additionally,	even	uninjected	larvae	tended	to	settle	instead	of	
swimming	phototacticly	in	the	cuvette.	This	may	not	be	too	surprising,	since	also	
the	 larvae	 of	 some	 barnacle	 species	 settle	 in	 grooves,	 which	 they	 sense	
mechanically	 (Crisp	 and	 Barnes,	 1954;	 Knight-Jones	 and	 Crisp,	 1953).	 These	
grooves	 may	 range	 for	 some	 species	 from	 1	 to	 10	 mm	 (Lemire	 and	 Bourget,	
1996),	 which	 is	 similar	 to	 the	 containers	 I	 used.	 Additionally,	 the	 larvae	 may	
have	been	damaged	by	the	injection	and	so	do	not	show	their	natural	behavior.	
Therefore,	I	do	not	recommend	using	morpholinos	for	behavior	experiments	that	
require	many	 larvae.	For	experiments,	however,	 that	only	require	a	 few	larvae,	
morpholinos	 are	 useful	 (Conzelmann	 et	 al.,	 2013b).	 Morpholinos	 can	 also	 be	
used	 in	 calcium	 imaging	 experiments,	 since	 they	 also	 require	 just	 a	 few	 larvae	
(Gühmann	et	al.,	2015;	Randel	et	al.,	2014;	Tosches,	2013;	Tosches	et	al.,	2014;	
Verasztó	 et	 al.,	 2017;	Williams	 et	 al.,	 2015).	 In	 calcium	 imaging	 experiments,	 I	
expect	that	c-opsin1	morpholinos	abolish	UV-light	induced	calcium	signals	from	
the	ciliary	photoreceptor	cells.	
For	 experiments	 that	 require	many	 larvae,	 I	 recommend	 gene-knockout,	 since	
only	a	knockout	line	can	produce	many	healthy	larvae.	With	a	knockout	line,	the	
adults	can	also	be	checked	for	a	phenotype,	because	a	knockout	does	not	rely	on	
morpholinos	that	dilute	out	during	development.	For	c-opsin1	knockout	larvae,	I	
expect	that	they	do	not	show	the	UV-response,	because	c-opsin1	is	the	only	opsin	
expressed	 in	 the	 ciliary	 photoreceptor	 cells	 with	 a	 matching	 absorption	
spectrum.	
Interesting	 will	 be	 the	 depth,	 to	 which	 the	 depth	 gauge	 brings	 the	 larvae	 in	
nature;	however,	this	can	only	be	shown	by	experiments	in	the	field	or	in	a	deep	
swimming	pool.	Probably,	the	depth	will	differ	between	wild	type	larvae	and	my	
Go-opsin1	 knockout	 larvae.	 The	 depth-gauge	 and	 so	 the	 UV-response	 may	 be	
widespread	 across	 polychaete	 larvae,	 because	 the	 larvae	 of	 many	 polychaetes	
have	 ciliary	 photoreceptor	 cells	 (Arendt	 et	 al.,	 2004;	 Hausen,	 2007;	 Purschke,	
2005).	

	 87	

The	depth	gauge	between	species	may	only	differ	in	the	target	depth.	The	depth	
gauge	may	be	 tuned	by	 the	opsins	expressed	by	 the	ciliary	photoreceptor	cells	
and	the	eyes.	If,	for	instance,	the	eyes	only	express	one	type	of	opsin	that	senses	
maximally	cyan	 light	 (e.g.	480	nm),	 then	 the	 fraction	of	 the	spectrum	sensed	 is	
smaller	and	the	UV-light	in	the	ratio	increases,	so	that	the	depth	gauge	would	be	
tuned	to	deeper	water.	The	depth	gauge	could	be	tuned	by	other	factors	too,	like	
the	 relative	 opsin	 expression	 between	 the	 eyes	 and	 the	 ciliary	 photoreceptor	
cells.	The	ciliary	photoreceptor	cells	could	also	be	differently	connected	with	the	
eyes,	so	that	the	relative	input	from	both	components	is	altered.	Such	differences	
could	 be	 reflected	 in	 the	morphology	 of	 the	 ciliary	 photoreceptor	 cells,	 which	
differs	between	species	(Purschke,	2005).	
Since,	the	ciliary	photoreceptor	cells	are	common	among	polychaete	larvae,	the	
UV-response	and	the	depth	gauge	could	be	ancestral	features	of	polychaetes.	In	
fact,	such	a	depth	gauge	is	useful	for	all	marine	larvae	of	species	with	a	pelagic-
benthic	live	cycle,	as	they	all	need	to	descent	from	the	open	water	column	to	the	
bottom	of	 the	sea,	and	all	have	 the	problem	with	phototaxis	 to	 select	a	 certain	
site.	
Since,	 the	 ciliary	 photoreceptor	 cells	 resemble	 molecularly	 the	 vertebrate	
photoreceptor	 cells	 of	 the	 retina	 and	 the	 pineal	 organs	 (Tosches,	 2013),	 the	
urbilaterian,	the	last	common	ancestor	of	all	bilateral	symmetrical	animals,	may	
have	had	already	ciliary	photoreceptor	cells.	Whether	they	already	had	the	UV-
avoidance	 function,	 depends	 on	 the	 life	 style	 of	 the	 urbilaterian.	 If	 the	
urbilaterian	 had	 a	 pelagic-benthic	 life-style	 with	 a	 larva,	 which	 is	 commonly	
assumed	 (Budd	 and	 Jensen,	 2000),	 then	 such	 a	 depth	 gauge	would	 have	 been	
useful.	If	the	urbilaterian	were	holobenthic	then	the	depth	gauge	would	not	have	
been	useful,	because	the	urbilaterian	would	have	been	on	the	bottom	of	the	sea	
anyway.	 If	 the	 urbilaterian	were	 holopelagic	 then	 the	 depth	 gauge	 could	 have	
kept	it	at	a	certain	depth	during	the	day	and	could	have	served	as	a	mechanism	
for	diel	vertical	migration.	
Phototaxis	 in	 Platynereis	 dumerilii	 is	 also	 mediated	 by	 Go-opsin1.	 Go-opsin1	
seems	to	have	been	recruited	by	the	rhabdomeric	photoreceptor	cells.	Therefore,	
the	 ancestral	 state	 of	 Go-opsins	 is	 hard	 to	 determine.	 Go-opsins	 may	 be	
associated	with	a	certain	cell	type	that	is	not	a	rhabdomeric	photoreceptor	cell.	
Go-opsins	may	thus	preferentially	couple	to	a	certain	type	of	G-proteins.	Or	they	
may	be	very	promiscuous	and	found	in	many	different	cell	types	so	that	it	will	be	
hard	to	reconstruct	what	was	their	ancestral	function.	However,	to	answer	these	

	88	

questions,	 more	 Go-opsins	 must	 be	 characterized	 by	 their	 expression,	 their	
G-protein	binding	partner,	and	their	function.	

4.4 Beyond	phototaxis	and	opsins	
Opsins	and	phototaxis	are	not	 the	only	 things	 to	 study	 in	Platynereis	dumerilii:	
Two	questions	occurred	in	the	discussion.	One	is:	How	do	the	larvae	know	where	
is	down?	This	question	is	about	sensing	gravity.	Gravity	can	influence	unicellular	
organisms	and	planktonic	larvae	by	some	passive	mechanisms.	But	how	it	works	
exactly	 in	 the	 trochophore	 and	 nectochaete	 larva	 of	 Platynereis	 dumerilii	 is	
unknown;	 especially	 whether	 passive	 mechanisms	 are	 enough	 or	 whether	
gravity	 is	 also	 sensed	 and	 the	 body	 is	 actively	 steered	 towards	 the	 desired	
direction.	
The	 other	 question	 is:	 What	 switches	 the	 sign	 of	 phototaxis	 in	 the	 larvae?	 I	
observed	 that	nectochaete	 larvae	of	Platynereis	dumerilii	 could	be	positively	or	
negatively	 phototactic.	 What	 switches	 the	 sign	 and	 how	 the	 nervous	 system	
controls	 the	 switch,	 is	unknown.	The	 larvae	 seem	 to	 react	on	mechanical	 cues,	
but	other	cues	are	possible	for	instance	the	sign	of	phototaxis	can	be	switched	by	
chemical	cues	in	some	hydroid	larvae.	Here	the	cues	are	linked	to	settlement,	so	
that	in	principle	all	kinds	of	settlement	cues	could	switch	the	sign	of	phototaxis.	

4.4.1 What	switches	the	sign	of	phototaxis	in	the	larvae?	
What	 exactly	 makes	 Platynereis	 dumerilii	 nectochaete	 larvae	 switch	 from	
positive	 to	negative	phototaxis,	 is	unknown.	The	nauplius	 larva	of	 the	barnacle	
Balanus	 perforatus	 switches	 between	 negative	 and	 positive	 phototaxis	
depending	on	wavelength,	light	intensity,	temperature,	and	oxygen,	salt	and	ion	
concentrations	 (Ewald,	1912).	Also,	 the	 larva	of	 the	polychaete	Pseudopolydora	
pulchra	 switches	 from	 negative	 to	 positive	 phototaxis	 when	 the	 salinity	 is	
increased	 above	 that	 of	 natural	 seawater	 (Ranade,	 1957).	And	 the	 larva	 of	 the	
crab	Rhithropanopeus	harrisi	switches	between	positive	and	negative	phototaxis	
depending	on	the	light	intensity	(Forward,	1974).	
I	also	tested	nectochaete	larvae	in	a	high	intensity	horizontal	setup	(Gühmann	et	
al.,	2015),	weather	they	were	switched	between	positive	and	negative	phototaxis	
by	 temperature.	Most	of	 the	 larvae	were	negatively	phototactic	 at	20	°C,	10	°C,	
and	 4	°C	 (data	 not	 shown).	 In	 the	 same	 setup,	 I	 also	 dimmed	 the	 light	 with	
neutral	density	 filters	 from	OD	0	 to	OD	4	 the	 larvae	did	not	 change	 the	 sign	of	
phototaxis	 at	 any	wavelength	 I	 tested	 (data	 not	 shown).	 Instead,	 I	 had	 in	 that	
setup	batches	of	larvae	that	were	either	positively	or	negatively	phototactic.	And	
in	 the	 setup	 with	 the	 beaker,	 some	 batches	 were	 positively	 phototactic,	 but	

	 89	

switched	 during	 the	 experiment.	 The	 larvae	 did	 not	 switch	 depending	 on	 the	
wavelength,	but	to	my	impression	after	prolonged	contact	with	the	bottom	of	the	
beaker.	
In	 the	 beaker,	 there	were	 three	 kinds	 of	 nectochaete	 larvae:	 Larvae	 that	were	
negatively	 phototactic	 from	 the	 beginning,	 larvae	 that	 became	 negatively	
phototactic	during	the	experiment,	and	those	that	stayed	positively	phototactic.	
The	larvae	that	were	negatively	phototactic	swam	very	closely	above	the	bottom	
of	the	beaker.	The	larvae	that	were	initially	positively	phototactic	were	initially	
swimming	 in	 the	 full	 water	 column	 of	 the	 beaker,	 but	 during	 the	 experiment,	
they	swam	down	induced	by	UV-light	and	when	they	were	swimming	for	a	while	
at	 the	 bottom,	 they	 became	 negatively	 phototactic.	 The	 larvae	 that	 stayed	
positively	 phototactic	 did	 not	 move	 to	 the	 bottom,	 but	 stayed	 in	 the	 water	
column.	
In	the	horizontal	column,	nectochaete	larvae	were	always	positively	phototactic;	
they	 only	 swam	 down	when	 they	were	 exposed	 to	 UV-light	 or	when	 the	 light	
came	 from	 the	 bottom.	 However,	 when	 I	 put	 them	 into	 a	 vertical	 cuvette	
(10	mm	x	 10	mm	x	 40	mm),	 these	 larvae	went	 down	 to	 the	 bottom	 and	 stayed	
there.	 I	could	only	push	them	up	via	negative	phototaxis	when	a	diode	emitted	
light	 from	 the	 bottom	 (data	 not	 shown).	 Weather	 they	 are	 positively	 or	
negatively	 phototactic	 seems	 to	 depend	 on	 the	 size	 of	 the	 container	 and	 how	
close	they	are	to	the	bottom.	They	seem	to	need	to	contact	 the	bottom	and	the	
sides	of	the	container	to	switch	the	sign	of	phototaxis.	
Thus,	 the	 switch	 could	 be	 triggered	 by	 a	 mechanical	 stimulus.	 In	 principle,	
mechanical	 stimuli	 can	 be	 settlement	 cues,	 larvae	 can	 sense	 different	 surface	
textures	 (Price,	 2010):	 The	 mussel	 Mytilus	 edulis	 prefers	 to	 settle	 on	 rough	
surfaces	 (Petraitis,	 1990).	 The	 barnacle	Chthamalus	 anisopoma	 prefers	 granite	
over	basalt.	However,	if	the	granite	is	cut	and	has	a	smooth	artificial	surface,	it	is	
not	 attractive	 anymore	 (Raimondi,	 1990).	 The	 barnacle	 species	 Balanus	
balanoides,	Balanus	crenatus,	and	Elminius	modestus	prefer	 to	settle	 in	grooves,	
which	they	sense	mechanically	(Crisp	and	Barnes,	1954;	Knight-Jones	and	Crisp,	
1953).	The	preferred	groove	diameters	range	from	1	to	10	mm	for	some	species	
(Lemire	and	Bourget,	1996).	This	is	like	the	cuvette	(10	mm	x	10	mm	x	42	mm)	I	
used	 to	 determine	 the	 spectrum	 of	 the	 UV-response.	 The	 cuvette	 resembles	 a	
10	mm	 diameter	 hole	 with	 a	 depth	 of	 42	mm,	 in	 which	 Platynereis	 dumerilii	
nectochaete	larvae	seem	to	settle	readily.	These	nectochaete	larvae	also	settle	at	
the	bevel	of	100	ml	glass	beakers.	The	 larvae	prefer	 the	bevel	at	 the	rim,	while	

	90	

the	 center	of	 the	beaker	 is	 empty	 (personal	 observation).	Here	 the	 larvae	may	
also	sense	the	bevel,	mechanically.	
A	mechanical	 stimulus	 could	be	 created	by	wall	 drag	 (Winet,	 1973).	Wall	 drag	
arises	when	a	fluid	moves	relatively	to	a	surface	and	the	fluid	does	not	slip	from	
the	 surface	 so	 that	 a	 boundary	 layer	 forms	 between	 the	 surface	 and	 the	 free-
stream	flow.	The	flow	within	the	boundary	layer	is	laminar;	this	means	it	is	free	
of	turbulences.	Wall	drag	arises	either	if	an	object	moves	along	a	wall	or	if	a	wall	
moves	past	an	object.	Wall	drag	influences	an	object	up	to	a	distance	Y,	which	can	
be	calculated	with	this	formula:		
	

Y	>	20ν/U	
	
U	 is	the	velocity	of	the	wall	or	the	object,	and	ν	 is	the	kinematic	viscosity	of	the	
fluid,	 which	 is	 1x10-6m-2s-1	 for	 water	 (Loudon	 et	 al.,	 1994).	 The	 velocity	 for	
Platynereis	dumerilii	metatrochophore	larvae	was	around	1.4	mm/s;	and	was	for	
nectochaete	 larvae	 swimming	 up	 1.1	mm/s	 (data	 not	 shown).	 These	 velocities	
yield	 roughly	14	mm	and	18	mm	for	Y,	 respectively.	This	means	 the	 larvae	can	
feel	 a	 wall	 or	 a	 bottom	 without	 touching	 it	 in	 the	 vertical	 cuvette	 (10	mm	x	
10	mm	x	 42	mm),	 the	 horizontal	 cuvette	 (20	mm	x	 9	mm	x	 5	mm),	 the	 column	
(32	mm	x	 10	mm	x	 160	mm),	 and	 the	 100	ml	 glass	 beaker	 (48	mm	 diameter,	
42	mm	water-height	or	filled	with	65	ml).	The	larvae	may	feel	the	different	flows	
caused	by	wall	drag	mechanically	via	their	cilia	(Khayyeri	et	al.,	2015)	or	chaetae	
(Loudon	 et	 al.,	 1994;	Merz	 and	Woodin,	 2006;	Woodin	 et	 al.,	 2003).	 Since	 the	
larvae	were	positively	phototactic	in	the	vertical	column,	they	may	only	switch	to	
negative	 phototaxis	 when	 they	 feel	 the	 bottom.	 In	 practice,	 a	 container	 that	
avoids	wall	 drag	 and	meets	 all	 the	 experimental	 constraints	 is	 difficult	 to	 find	
(Mann	et	al.,	1991).	The	container	must	be	illuminated	so	that	the	larvae	cannot	
only	be	stimulated,	but	also	be	recorded	by	a	camera	that	needs	the	larvae	also	in	
its	focus	and	field	of	view.	This	rather	favors	small	containers.	
Besides	 mechanical	 cues,	 also	 chemical	 cues	 could	 make	 the	 larvae	 switch	 to	
negative	 phototaxis.	 However,	 the	 cuvettes	 and	 the	 beakers	 consist	 of	 glass,	
which	is	chemically	inert.	And	so,	should	not	release	any	chemicals.	The	cuvettes	
where	 just	 rinsed	 after	 each	 use	 and	 so	 could	 have	 contained	 chemicals	 or	
bacteria	 that	were	 introduced	 by	 the	 larvae	 from	 the	 experiment	 before.	 Also,	
the	glass	beakers,	even	so,	they	were	autoclaved,	may	have	contained	chemicals	
and	 bacteria.	 The	 glass	 beakers	 did	 not	 only	 house	 the	 larvae	 during	 the	
experiments,	 but	 also	 during	 their	whole	 life	 from	 fertilization	 on,	when	 their	

	 91	

parents	 released	 eggs	 and	 sperm	 there,	 including	 their	 bacteria.	 So,	 even	 if	
everything	were	 sterile	 until	 then,	 the	 bacteria	 contaminated	 the	 beakers,	 and	
might	 have	 produced	 settlement	 cues.	 This	 cannot	 be	 fixed	 by	 changing	 the	
beakers,	since	the	bacteria	and	the	substances	are	in	the	water,	too.	
Substances	 can	 indeed	 serve	 as	 settlement	 cues	 and	 change	 the	 sign	 of	
phototaxis.	 Positive	 phototaxis	 is	 shown	 by	 the	 larvae	 of	 the	 hydroid	 Clava	
multicornis,	when	they	are	crawling	over	 inert	surfaces.	However,	 they	become	
photonegative,	 when	 they	 are	 crawling	 over	 the	 surface	 of	 the	 brown	 alga	
Ascophyllum	 nodosum,	 their	 natural	 settling	 substrate	 (Williams,	 1965).	 The	
sinistral	spiral	tubeworm	Spirorbis	borealis	settles	on	another	brown	alga:	Fucus	
serratus.	It	also	settles	on	surfaces	that	are	coated	with	a	Fucus	serratus	extract.	
However,	 it	 does	 not	 react	 to	 the	 extract	 if	 the	 extract	 is	 just	 dissolved	 in	 the	
seawater.	 But	 when	 it	 contacts	 the	 extract	 on	 a	 surface,	 it	 also	 becomes	
photonegative	(Williams,	1964).	
Not	 all	 larvae	 have	 to	 contact	 their	 substrate:	 The	 larvae	 of	 the	 nudibranch	
mollusc	Phestilla	sibogae	settle	and	metamorphose	when	they	sense	substances	
dissolved	in	the	water	from	corals	of	the	genus	Porites,	which	the	adults	prey	on	
(Hadfield	 and	 Pennington,	 1990).	 In	 other	 species,	 substances	 also	 from	
conspecific	adults	like	chemicals,	pheromones,	and	peptides	may	indicate	a	good	
settlement	site	or	even	chemicals	from	predators	if	these	indicate	a	good	habitat	
(Pawlik,	 1992;	Rittschof	 et	 al.,	 1998;	Rodriguez	 et	 al.,	 1993).	Another	 chemical	
cue	 are	 unsaturated	 free	 fatty	 acids,	which	 are	 found	 in	 the	 tubes	 of	 the	 reef-
building	 tubeworm	 Phragmatopoma	 californica.	 When	 its	 larvae	 contact	 these	
fatty	 acids	 in	 the	 tubes,	 they	 settle	 and	 metamorphose	 (Pawlik,	 1986).	 Other	
settlement	cues	are	physical	factors:	Beside	light,	contour,	and	texture,	these	are	
gravity,	 pressure,	 temperature,	 salinity	 (Pawlik,	 1992),	 and	 vibrations	 from	
waves	(Rittschof	et	al.,	1998).	
Also,	 bacterial	 biofilms	 can	 be	 used	 as	 cues,	 the	 biofilm	 compositions	 differ	
between	subtidal	and	intertidal	zones,	and	depending	on	the	preferences,	a	larva	
may	accept	or	 reject	a	biofilm	 from	one	of	 these	zones	 (Hadfield,	2011).	Other	
negative	 settlement	 cues	 exist:	 Larvae	 and	 juveniles	 of	 infaunal	 species	 avoid	
sediments	 that	 are	 contaminated	 by	 bromophenols	 secreted	 by	 capitellid	
polychaetes	 (Woodin,	 1991;	 Woodin	 et	 al.,	 1997).	 Many	 other	 species	 avoid	
settling	 near	 competitive	 species,	 too,	 so	 that	 probably	 many	 chemical	
substances	exist	including	metabolites	that	indicate	competitors	(Pawlik,	1992)	
or	 even	 predators	 (Welch	 et	 al.,	 1997).	 Odors	 of	 visual	 predators	 activate	

	92	

negative	 phototaxis	 in	 diel-vertically	 migrating	 brine	 shrimp	 (Artemia	
franciscana)	nauplii	(McKelvey	and	Forward,	1995).	
These	settlement	cues	may	vary	between	species	and	the	 list	here	presented	is	
not	exhaustive.	Among	these	cues	are	pits,	grooves,	and	holes,	which	can	be	felt	
mechanically,	 even	 without	 touch.	 And	 settlement	 cues	 exist	 that	 can	 induce	
negative	 phototaxis.	 Therefore,	 negative	 phototaxis	 may	 be	 induced	 in	
Platynereis	dumerilii	 larvae,	because	 they	 feel	 to	be	 in	a	small	 compartment.	 In	
principle,	the	larvae	could	become	photonegative	on	any	positive	settlement	cue,	
so	that	they	swim	to	the	substrate,	the	site	where	the	light	does	not	come	from.	
And	 the	 larvae	 could	 become	photopositive	 on	 any	 negative	 settlement	 cue	 so	
that	they	swim	to	the	light	and	away	from	the	rejected	substrate.	

4.4.2 How	do	the	larvae	know	where	is	down?	
Platynereis	dumerilii	metatrochophore	and	nectochaete	larvae	swim	down	when	
they	 are	 exposed	 to	 UV-light.	 How	 do	 they	 know	 where	 is	 down?	 The	 UV-
response	 here	 is	 a	 UV-induced	 positive	 gravitaxis.	 How	 gravitaxis	 works	 in	
Platynereis	dumerilii	 larvae,	 is	unknown.	As	 far	as	we	know,	the	 larvae	have	no	
statocysts	or	statoliths.	This	is	also	true	for	many	other	planktonic	larvae	(Chan,	
2012),	 even	 so	 exceptions	 exists,	 for	 instance	 the	 tadpole	 larva	 of	 Ciona	
intestinalis	has	a	pigment	cell	 that	works	as	a	 statocyte	 (Tsuda	et	al.,	2003).	 In	
general,	 invertebrate	 larvae	 (Chan,	 2012)	 and	 unicellular	 microorganisms	 are	
denser	 than	their	surrounding	medium	but	still	 swim	up	preferentially	 (Häder,	
1999).	 Small	 organisms	 can	 use	 gravity-buoyancy,	 drag-gravity,	 propulsion-
gravity,	or	the	special	statocyst	to	find	the	direction	of	gravity.	
The	special	statocysts	is	relevant	for	unicellular	organisms	(Häder,	1997)	like	the	
giant	ciliate	Bursaria	truncatella	where	the	cell	mass	presses	onto	the	bottom	cell	
membrane	 and	 stretch-activates	 ion	 channels,	 there	 (Krause	 and	 Braucker,	
2009).	
Propulsion-gravity	predicts	that	negative	gravitaxis	(up-swimming)	arises	 from	
spiral	swimming	(axial	gyration)	if	the	body	is	propelled	anterior	of	the	center	of	
mass.	Spiral	swimming	is	shown	by	many	marine	larvae	(Chia	et	al.,	1984;	Winet	
and	Jahn,	1974)	including	Platynereis	dumerilii	(Jékely	et	al.,	2008).	
Gravity-buoyancy	is	caused	by	unequal	density	distribution	within	a	body.	If	the	
tail	 is	denser	 than	 the	head,	 the	 tail	 is	 less	buoyant	and	sinks	 faster	 so	 that	an	
animal	sinks	with	the	tail	first	to	the	bottom	(Mogami	et	al.,	2001).	This	way	the	
animal	has	only	to	swim	forward	to	swim	up.	The	density	in	nectochaete	larvae	
is	unequally	distributed,	because	they	have	lipid	droplets	(Chia	et	al.,	1984).	

	 93	

Drag-gravity	is	caused	by	asymmetry	between	head	and	tail	in	a	uniform-dense	
body.	 The	 thicker	 end	 of	 a	 body	 sinks	 faster	 than	 the	 thinner	 end,	 so	 that	 the	
body	sinks	with	the	thicker	end	down	(Mogami	et	al.,	2001).	One	end	of	the	body	
can	 become	 thinner	 by	 adding	 protruding	 cilia	 to	 the	 apical	 tuft	 as	 in	 some	
trochophore	larvae	or	adding	setae	like	in	nectochaete	larvae	(Chia	et	al.,	1984).	
It	can	be	tested	whether	an	organism	uses	gravity-buoyancy	or	drag-gravity	by	
comparing	its	behavior	in	hypo-	and	hyper-dense	medium.	If	the	organism	turns	
up	with	 the	 same	 side	while	 it	 is	 sinking	 in	 hyper-dense	 and	 floating	 in	 hypo-
dense	medium,	then	it	uses	gravity-buoyancy	otherwise	it	uses	drag-gravity.	The	
organism	 can	 also	 be	 paralyzed;	 however,	 it	 should	 not	 change	 its	 shape,	
otherwise	 extra	 drag	 could	 be	 added.	 For	 instance,	 cells	 of	 Paramecium	
caudatum	 and	 the	 gastrulae	 of	 the	 sea	 urchin	 Hemicentrotus	 pulcherrimus	
orientate	up	while	sinking	in	hypo-dense	medium,	but	orientate	down	while	they	
are	 floating	 in	 hyper-dense	 medium.	 However,	 Hemicentrotus	 pulcherrimus	
pluteus	 larvae	orient	up	while	 they	are	sinking	or	 floating	 in	hypo-	and	hyper-
dense	medium,	respectively.	Therefore,	Hemicentrotus	pulcherrimus	 changes	 its	
orientation	mode	during	its	development	from	drag-gravity	to	gravity-buoyancy	
(Mogami	et	al.,	2001).	
Hemicentrotus	pulcherrimus	pluteus	larvae	do	not	only	orient	passively,	but	also	
seem	to	sense	their	orientation	as	they	swim	with	equal	speed	in	all	directions,	
and	 so	 would	 adjust	 their	 speed	 depending	 on	 gravity	 (Mogami	 et	 al.,	 1988).	
However,	 there	 could	 still	 be	 a	 passive	 mechanism	 behind	 it.	 In	 comparison,	
Platynereis	dumerilii	trochophore	and	metatrochophore	larvae	are	as	fast	as	they	
swim	up	phototacticly	 to	cyan	(480	nm)	 light	or	swim	down	to	non-directional	
UV	 (395	nm)	 light,	 but	 nectochaete	 larvae	 are	 slower	 if	 they	 swim	 up	 to	 cyan	
light	 than	 if	 they	 swim	 down	 to	 UV-light	 (data	 not	 shown).	 Living	
metatrochophore	 larvae	 orient	 up	 while	 they	 are	 sinking	 (Conzelmann	 et	 al.,	
2011),	 possibly	 because	 the	 head	 is	more	 buoyant	 since	 it	 contains	 lipid	 yolk	
droplets,	which	are	anterior	of	the	prototroch.	The	prototroch	itself	lies	anterior	
of	the	midline	and	consists	of	the	cilia	that	propel	the	body	(Fischer	et	al.,	2010).	
Therefore,	 gravity-buoyancy	 could	 orient	 the	 larvae	 passively	 upward;	 also,	
propulsion-gravity	 if	 all	 the	 cilia	 are	 beating	 equally.	 However,	 these	
mechanisms	 make	 the	 larvae	 swimming	 up	 but	 not	 swimming	 down.	 For	
swimming	down	the	 larvae	need	to	turn	and	then	stay	on	track.	To	turn	down,	
the	 larvae	 could	 slow	down	 (or	 speed	up)	 the	beating	of	 some	cilia	 as	 they	do	
when	they	are	steering	towards	the	light	(Jékely	et	al.,	2008).	There	may	be	even	

	94	

a	way	to	activate	the	cilia	in	a	way	that	the	larvae	may	swim	down	automatically,	
so	that	the	larvae	do	not	even	need	to	know	where	down	is	to	swim	down.	
However,	 if	no	such	ciliary	activity	pattern	exists	then	the	 larvae	need	to	know	
how	much	they	are	tilted	compared	to	where	is	down.	The	tilt	could	be	indicated	
by	 buoyancy.	 Buoyancy	 rotates	 the	 larvae	 until	 they	 are	 pointing	 upwards,	
unless	 the	 larvae	 steer	 into	 the	 opposite	 direction.	 The	 rotation	 creates	 a	 flow	
around	 the	 body.	 The	 flow	 has	 a	 direction,	 which	 could	 be	 measured	 by	
mechano-sensitive	cilia	on	the	body	surface.	If	the	surface	is	without	flow	caused	
by	buoyancy,	 then	the	 larvae	can	steer	 in	any	direction	they	want	to	get	down.	
They	 need	 only	 to	 keep	 the	 direction	 against	 the	 buoyancy	 rotation	 until	 they	
turned	by	more	than	180°.	Then,	they	start	to	rotate	into	the	other	direction	and	
must	steer	against	it.	This	predicts	that	the	larvae	can	sink	head	up	in	a	straight	
line,	 but	 cannot	 swim	down	 in	 a	 straight	 line	with	head	down	without	 further	
cues.	 In	 fact,	 larvae	 can	 be	made	 swimming	 down	 by	 treating	 them	with	MIP	
(myoinhibitory	peptide).	These	larvae	do	not	swim	down	in	a	straight	line	but	in	
a	zigzag	line	(Conzelmann	et	al.,	2013b).	
Therefore,	 gravity-buoyancy	 is	 a	 plausible	 mechanism	 to	 let	 the	 larvae	 know	
where	is	up	and	thus	also	where	is	down.	

4.5 Conclusion	
Here,	I	found	a	new	type	of	light	induced	behavior,	which	is	as	fast	as	phototaxis.	
It	is	a	positive	geotaxis	induced	by	UV-light	coming	from	all	sides.	The	light	may	
be	 detected	 by	 c-opsin1	 expressed	 by	 the	 ciliary	 photoreceptor	 cells.	 The	
positive	 gravitaxis	works	 against	positive	phototaxis	 and	both	 form	 this	way	a	
ratio-chromatic	 depth	 gauge,	 which	 could	 be	 common	 among	 invertebrate	
larvae.	The	depth	gauge	helps	the	larvae	to	find	the	right	depth	for	settling	on	a	
global	 level,	while	positive	and	negative	phototaxis	helps	 the	 larvae	 to	 select	 a	
local	settlement	site,	which	gives	some	shelter.	
Phototaxis	 is	mediated	by	Go-opsin1	and	other	 rhabdomeric	opsins.	Go-opsin1	
seems	to	couple	to	a	Gq-protein	in	the	rhabdomeric	photoreceptor	cells.	This	is	
surprising	 from	 a	 textbook	 point	 of	 view,	 but	 many	 examples	 exist	 where	
phototransduction	cascades	may	differ	and	that	depends	rather	on	the	host	cell	
then	 phylogeny.	 Since	 Go-opsins	 seem	 to	 bind	 only	 in	 one	 example	 to	 a	
Go-protein,	 it	 remains	 to	 be	 seen	whether	Go-opsins	 indeed	deserve	 the	name	
Go-opsins.	

	 95	

5 Contributions	
My	 previous	 publication	 (Gühmann	 et	 al.,	 2015)	 contributed	 to	 this	 thesis,	 I	
included	all	my	contributions	I	regarded	as	relevant	from	it.	And	I	cite	it	for	the	
things	 I	did	not	 include	here	or	others	have	 contributed.	Except	 I	 included	 the	
contribution	 I	 regard	 as	 important,	 which	 was	 the	 Go-opsin	 spectrum,	
contributed	 by	 Huiyong	 Jia	 and	 Shozo	 Yokoyama,	 who	 also	 contributed	 the	
c-opsin1	spectrum.	

6 List	of	Figures	
Figure	1:	The	different	bilaterian	phototransduction	cascades	9	
Figure	2:	Opsin	expression	in	the	eyes	of	the	nectochaete	larva	of	Platynereis	

dumerilii	...	18	
Figure	3:	Sequencing	chromatogram	illustrates	the	genotyping	method	26	
Figure	4:	Mutant	Crossing	schemes	..	28	
Figure	5:	Platynereis	dumerilii	larvae	swam	down	or	up	depending	on	the	

wavelength	...	53	
Figure	6:	Platynereis	dumerilii	larvae	swim	down	to	UV-light	and	up	to	visual	

light	..	54	
Figure	7:	Go-opsin1	ZFN	design	and	Go-opsin1	mutation	..	57	
Figure	8:	Lunar	reproduction	cycle	of	wild	type	and	Go-opsin1	knockout	

worms	...	58	
Figure	9:	Go-opsin1Δ8/Δ8	knockout	larvae	are	less	sensitive	to	blue-cyan-green	

light	..	59	
Figure	10:	Absorption	spectra	of	Go-opsin1	and	c-opsin1	...	60	
Figure	11:	Reduced	efficiency	of	phototaxis	in	Go-opsin1Δ8/Δ8	mutant	larvae	62	
Figure	12:	Platynereis	dumerilii	larvae	swim	down	to	UV	and	Green	light	from	

the	bottom	..	63	
Figure	13:	UV-response	and	phototaxis	to	light	from	top	across	different	larval	

stages	..	65	
Figure	14:	UV-light	already	made	36-hour-old	larvae	swam	down	67	
Figure	15:	Separating	phototaxis	and	the	UV-response	by	direction	68	
Figure	16:	Platynereis	dumerilii	larvae	have	a	ratio-chromatic	depth	gauge	70	
	

	96	

7 List	of	Tables	
Table	1:	The	Go-opsin1	morpholinos	I	injected	...	24	
Table	2:	Sample	collection	and	tissue	lysis	for	genotyping	..	27	
Table	3:	Go-opsin	PCR	reaction	for	genotyping	...	27	
Table	4	Go-opsin1	PCR	cycling	conditions	for	genotyping	..	27	
Table	5:	Horizontal	protocol:	340	nm	to	680	nm	(duration:	00:19)	31	
Table	6:	Vertical	protocol	1:	380	nm	520	nm	switching	(duration:	01:05)	32	
Table	7:	Vertical	protocol	2:	340	nm	to	480	nm	alternating	with	520	nm	

(duration:	01:05)	...	32	
Table	8:	Vertical	protocol	3:	420	nm	to	680	nm	alternating	with	400	nm	

(duration:	01:50)	...	33	
Table	9:	Vertical	protocol	5:	395	nm	from	side	and	480	nm	from	top	

(duration:	00:12)	...	33	
Table	10:	Vertical	protocol	6:	380	nm	:	480	nm	ratiometric	alternating	with	

480	nm	(duration:	1:20)	...	34	
Table	11:	Vertical	protocol	7:	380	nm	:	480	nm	ratiometric	alternating	with	

480	nm	(duration:	1:20)	...	35	
Table	12:	Vertical	cuvette	protocol:	340	nm	to	680	nm	(duration:	00:39)	37	
Table	13:	Input	parameters	of	TrackProcessor.pl	..	42	
Table	14:	Column	fields	in	the	output	file	Results.txt	...	43	
Table	15:	Ratio	of	mutant	and	wild	type	Go-opsin1	genotypes	in	the	F1	and	F2	

generation	...	57	
	

8 List	of	Program	Codes	
Code	1:	Protocol	file	for	the	380/480	nm	ratio	for	BlackBox	..	36	
Code	2:	Modified	showDialog	method	of	the	AVI_Reader	class	of	ImageJ	39	
Code	3:	The	modified	part	of	readMovieData	method	of	the	AVI_Reader	class	

of	ImageJ	..	40	
Code	4:	Modified	ImageStack	constructor	of	ImageJ	..	40	
Code	5:	The	first	part	of	the	modified	apply	method	of	the	LutApplier	class	of	

ImageJ	...	40	
Code	6:	Example	call	of	TrackProcessor.pl	via	TrackerCaller*.sh	48	
Code	7:	Calling	TrackerCaller*.sh	via	SuperTrackerCaller.sh	49	
Code	8:	Extract	data	from	the	Speed	field	via	CVSExtractorSpeed.sh	50	
Code	9:	The	ImageJ	macro	file	Horizontal-Track-Extractor.ijm	117	

	 97	

Code	10:	The	ImageJ	macro	file	Vertical-Track-Extractor.ijm	120	
Code	11:	The	ImageJ	macro	file	Vertical-Cuvette-Track-Extractor.ijm	124	
Code	12:	The	Perl	file	TrackProcessor.pl	..	128	
Code	13:	The	Perl	file	MTrack.pm	..	160	
Code	14:	The	Perl	file	CSV_ColumnExtractor.pl	...	165	
Code	15:	Modified	Transmitter.java	of	BlackBox	..	168	
	

9 List	of	Abbreviations	
AE		...	adult	eye	
AMP	...	adenosine	monophosphate	
BLAST	..	basic	local	alignment	search	tool	
cAMP	...	cyclic	AMP	
cDNA	..	complementary	DNA	
cGMP	...	cyclic	GMP	
CNG	...	cyclic	nucleotide-gated	(cation	channel)	
c-opsin	..	ciliary	opsin	
CRISPR	...	clustered	regularly	interspaced	short	palindromic	repeat	
DAG	...	diacylglycerol	
DNA	..	deoxyribonucleic	acid	
dpf	...	days	post	fertilization	
EST	...	expressed	sequence	tag	
GMP	..	guanine	monophosphate	
GPCR	...	G-protein	coupled	receptor	
G-protein	..	guanine-nucleotide-binding-protein	
hpf	...	hours	post	fertilization	
InsP3	...	inositol-1,4,5-trisphosphate	
LE		...	larval	eye	
LED	...	light-emitting	diode	
LWS	..	long	wavelength	sensitive	(opsin)	
mRNA	...	messenger	RNA	
MWS	...	middle	wavelength	sensitive	(opsin)	
NMD	...	nonsense	mediated	decay	
OD	..	optical	density	
PCR	..	polymerase	chain	reaction	
PDE	...	phosphodiesterase	
PIP2	..	phosphatidylinositol-4,5-bisphosphate	
PLC	..	phospholipase	C	
RGR-opsin	...	retinal	G-protein-coupled	receptor	
RH2b	...	rhodopsin	like	2b	
RNA	...	ribonucleic	acid	
r-opsin	..	rhabdomeric	opsin	

	98	

RPE	...	retinal	pigment	epithelium	
SWS1	...	short	wavelength	sensitive	1	(opsin)	
TALEN	..	activator-like	effector	nuclease	
TRP	..	transient	receptor	potential	(channel)	
TRPA1	..	TRP	(channel)	A1	
TRPC	..	Canonical	TRP	(channel)	
TRPL	...	TRP	like	(channel)	
UV	...	ultraviolet	
ZFN	..	zinc-finger-nuclease	

	

10 Literature	
Achim,	K.,	Pettit,	J.B.,	Saraiva,	L.R.,	Gavriouchkina,	D.,	Larsson,	T.,	Arendt,	D.,	and	

Marioni,	J.C.	(2015).	High-throughput	spatial	mapping	of	single-cell	RNA-
seq	data	to	tissue	of	origin.	Nature	Biotechnology	33,	503-U215.	

Aliani,	S.,	and	Meloni,	R.	(1999).	Dispersal	strategies	of	benthic	species	and	water	
current	 variability	 in	 the	 Corsica	 Channel	 (Western	Mediterranean).	 Sci	
Mar	63,	137-145.	

Altschul,	 S.F.,	 Gish,	 W.,	 Miller,	 W.,	 Myers,	 E.W.,	 and	 Lipman,	 D.J.	 (1990).	 Basic	
Local	Alignment	Search	Tool.	Journal	of	Molecular	Biology	215,	403-410.	

Amora,	 T.L.,	 Ramos,	 L.S.,	 Galan,	 J.F.,	 and	 Birge,	 R.R.	 (2008).	 Spectral	 tuning	 of	
deep	red	cone	pigments.	Biochemistry-Us	47,	4614-4620.	

Arendt,	D.,	Musser,	J.M.,	Baker,	C.V.,	Bergman,	A.,	Cepko,	C.,	Erwin,	D.H.,	Pavlicev,	
M.,	 Schlosser,	 G.,	 Widder,	 S.,	 Laubichler,	 M.D.,	 and	Wagner,	 G.P.	 (2016).	
The	origin	and	evolution	of	cell	types.	Nat	Rev	Genet	17,	744-757.	

Arendt,	D.,	Technau,	U.,	and	Wittbrodt,	J.	(2001).	Evolution	of	the	bilaterian	larval	
foregut.	Nature	409,	81-85.	

Arendt,	 D.,	 Tessmar-Raible,	 K.,	 Snyman,	 H.,	 Dorresteijn,	 A.W.,	 and	Wittbrodt,	 J.	
(2004).	 Ciliary	 photoreceptors	 with	 a	 vertebrate-type	 opsin	 in	 an	
invertebrate	brain.	Science	(New	York,	N.Y.)	306,	869-871.	

Arendt,	D.,	and	Wittbrodt,	J.	(2001).	Reconstructing	the	eyes	of	Urbilateria.	Philos	
T	Roy	Soc	B	356,	1545-1563.	

Arshavsky,	 V.Y.,	 Lamb,	 T.D.,	 and	 Pugh,	 E.N.	 (2002).	 G	 proteins	 and	
phototransduction.	Annu	Rev	Physiol	64,	153-187.	

Asadulina,	A.,	Conzelmann,	M.,	Williams,	E.A.,	Panzera,	A.,	and	Jékely,	G.	(2015).	
Object-based	 representation	 and	 analysis	 of	 light	 and	 electron	
microscopic	volume	data	using	Blender.	Bmc	Bioinformatics	16.	

Asadulina,	A.,	 Panzera,	A.,	 Verasztó,	 C.,	 Liebig,	 C.,	 and	 Jékely,	G.	 (2012).	Whole-
body	gene	expression	pattern	registration	in	Platynereis	larvae.	Evodevo	
3.	

Asenjo,	A.B.,	Rim,	J.,	and	Oprian,	D.D.	(1994).	Molecular	Determinants	of	Human	
Red/Green	Color	Discrimination.	Neuron	12,	1131-1138.	

Audouin,	 J.V.,	 and	 Milne-Edwards,	 H.	 (1834).	 Néréide	 de	 Dumeril.	 Nereis	
Dumerilii.	 Recherches	 pour	 servir	 a	 l'histoire	 naturelle	 du	 littoral	 de	 la	
France,	 ou,	 Recueil	 de	 mémoires	 sur	 l'anatomie,	 la	 physiologie,	 la	

	 99	

classification	 et	 les	 moeurs	 des	 animaux	 des	 nos	 côtes	 :	 ouvrage	
accompagné	de	planches	faites	d'après	nature	2,	196-199.	

Backfisch,	B.,	Kozin,	V.V.,	Kirchmaier,	S.,	Tessmar-Raible,	K.,	and	Raible,	F.	(2014).	
Tools	 for	 gene-regulatory	 analyses	 in	 the	 marine	 annelid	 Platynereis	
dumerilii.	Plos	One	9,	e93076.	

Backfisch,	 B.,	 Veedin	 Rajan,	 V.B.,	 Fischer,	 R.M.,	 Lohs,	 C.,	 Arboleda,	 E.,	 Tessmar-
Raible,	K.,	and	Raible,	F.	(2013).	Stable	transgenesis	in	the	marine	annelid	
Platynereis	 dumerilii	 sheds	 new	 light	 on	 photoreceptor	 evolution.	 Proc	
Natl	Acad	Sci	U	S	A	110,	193-198.	

Bailes,	 H.J.,	 and	 Lucas,	 R.J.	 (2013).	 Human	 melanopsin	 forms	 a	 pigment	
maximally	sensitive	to	blue	light	(λmax	≈	479	nm)	supporting	activation	
of	G(q/11)	and	G(i/o)	signalling	cascades.	Proc	Biol	Sci	280,	20122987.	

Ball,	S.,	Goodwin,	T.W.,	and	Morton,	R.A.	(1946).	Retinene1-vitamin	A	aldehyde.	
Biochem	J	40,	lix.	

Ball,	 S.,	 Goodwin,	 T.W.,	 and	Morton,	 R.A.	 (1948).	 Studies	 on	 vitamin	 A:	 5.	 The	
preparation	of	retinene(1)-vitamin	A	aldehyde.	Biochem	J	42,	516-523.	

Ban,	E.,	Kasai,	A.,	Sato,	M.,	Yokozeki,	A.,	Hisatomi,	O.,	and	Oshima,	N.	(2005).	The	
signaling	 pathway	 in	 photoresponses	 that	 may	 be	 mediated	 by	 visual	
pigments	in	erythrophores	of	Nile	tilapia.	Pigm	Cell	Res	18,	360-369.	

Bannister,	S.,	Antonova,	O.,	Polo,	A.,	Lohs,	C.,	Hallay,	N.,	Valinciute,	A.,	Raible,	F.,	
and	 Tessmar-Raible,	 K.	 (2014).	 TALENs	 mediate	 efficient	 and	 heritable	
mutation	 of	 endogenous	 genes	 in	 the	 marine	 annelid	 Platynereis	
dumerilii.	Genetics	197,	77-89.	

Barber,	V.C.,	Evans,	E.M.,	and	Land,	M.F.	(1967).	The	fine	structure	of	the	eye	of	
the	mollusc	Pecten	maximus.	Z	Zellforsch	Mikrosk	Anat	76,	25-312.	

Bass,	B.L.	(2002).	RNA	editing	by	adenosine	deaminases	that	act	on	RNA.	Annual	
review	of	biochemistry	71,	817-846.	

Bauknecht,	P.	(2013).	Heterologous	Expression	and	Spectral	Characterization	of	
Platynereis	 dumerilii	 Opsins.	 (Tübingen,	 Eberhard	 Karls	 University,	
Tübingen).	

Bedford,	A.P.,	and	Moore,	P.G.	(1984).	Macrofaunal	Involvement	in	the	Sublittoral	
Decay	 of	 Kelp	 Debris	 -	 the	 Detritivore	 Community	 and	 Species	
Interactions.	Estuar	Coast	Shelf	S	18,	97-111.	

Bedford,	A.P.,	and	Moore,	P.G.	(1985).	Macrofaunal	Involvement	in	the	Sublittoral	
Decay	of	Kelp	Debris	-	the	Polychaete	Platynereis-Dumerilii	(Audouin	and	
Milne-Edwards)	(Annelida,	Polychaeta).	Estuar	Coast	Shelf	S	20,	117-134.	

Bellan,	G.	(1980).	Relationship	of	Pollution	to	Rocky	Substratum	Polychaetes	on	
the	French	Mediterranean	Coast.	Mar	Pollut	Bull	11,	318-321.	

Bellono,	 N.W.,	 Najera,	 J.A.,	 and	 Oancea,	 E.	 (2014).	 UV	 light	 activates	 a	 G	
alpha(q/11)-coupled	phototransduction	pathway	in	human	melanocytes.	
Journal	of	General	Physiology	143,	203-214.	

Bellono,	 N.W.,	 and	 Oancea,	 E.	 (2013).	 UV	 light	 phototransduction	 depolarizes	
human	melanocytes.	Channels	7,	243-248.	

Berson,	 D.M.,	 Dunn,	 F.A.,	 and	 Takao,	 M.	 (2002).	 Phototransduction	 by	 retinal	
ganglion	cells	 that	 set	 the	 circadian	clock.	 Science	 (New	York,	N.Y.)	 295,	
1070-1073.	

Birnbaumer,	 L.	 (2007).	 Expansion	 of	 signal	 transduction	 by	 G	 proteins	 -	 The	
second	 15	 years	 or	 so:	 From	 3	 to	 16	 alpha	 subunits	 plus	 beta	 gamma	
dimers.	Bba-Biomembranes	1768,	772-793.	

	100	

Blackshaw,	 S.,	 and	 Snyder,	 S.H.	 (1997).	 Parapinopsin,	 a	 novel	 catfish	 opsin	
localized	 to	 the	 parapineal	 organ,	 defines	 a	 new	 gene	 family.	 Journal	 of	
Neuroscience	17,	8083-8092.	

Blackshaw,	 S.,	 and	 Snyder,	 S.H.	 (1999).	 Encephalopsin:	 A	 novel	 mammalian	
extraretinal	 opsin	 discretely	 localized	 in	 the	 brain.	 Journal	 of	
Neuroscience	19,	3681-3690.	

Boll,	 F.	 (1876).	 Zur	 Anatomie	 und	 Physiologie	 der	 Retina.	 Monatsberichte	 der	
Königlich	Preußischen	Akademie	der	Wissenschaften	 zu	Berlin	 aus	dem	
Jahre	1876,	783-787.	

Boll,	F.	(1877).	Zur	Anatomie	und	Physiologie	der	Retina.	Aus	dem	Laboratorium	
für	 vergleichende	Anatomie	und	Physiologie	 zu	Rom,	Achte	Mittheilung.	
Archiv	für	Anatomie	und	Physiologie,	Physiologische	Abtheilung,	4-35.	

Bownds,	D.	(1967).	Site	of	attachment	of	retinal	in	rhodopsin.	Nature	216,	1178-
1181.	

Brown,	P.K.,	and	Wald,	G.	(1956).	The	neo-b	isomer	of	vitamin	A	and	retinene.	J	
Biol	Chem	222,	865-877.	

Budd,	G.E.,	and	Jensen,	S.	(2000).	A	critical	reappraisal	of	the	fossil	record	of	the	
bilaterian	phyla.	Biol	Rev	75,	253-295.	

Cao,	 P.X.,	 Sun,	 W.Y.,	 Kramp,	 K.,	 Zheng,	 M.H.,	 Salom,	 D.,	 Jastrzebska,	 B.,	 Jin,	 H.,	
Palczewski,	 K.,	 and	 Feng,	 Z.Y.	 (2012).	 Light-sensitive	 coupling	 of	
rhodopsin	 and	 melanopsin	 to	 G(i/o)	 and	 G(q)	 signal	 transduction	 in	
Caenorhabditis	elegans.	Faseb	J	26,	480-491.	

Chan,	 K.Y.K.	 (2012).	 Biomechanics	 of	 Larval	 Morphology	 Affect	 Swimming:	
Insights	 from	 the	 Sand	 Dollars	 Dendraster	 excentricus.	 Integrative	 and	
Comparative	Biology	52,	458-469.	

Chandrasegaran,	 S.,	 and	Carroll,	D.	 (2015).	Origins	of	Programmable	Nucleases	
for	Genome	Engineering.	J	Mol	Biol.	

Chen,	S.C.,	Robertson,	R.M.,	and	Hawryshyn,	C.W.	(2013).	Possible	Involvement	of	
Cone	 Opsins	 in	 Distinct	 Photoresponses	 of	 Intrinsically	 Photosensitive	
Dermal	Chromatophores	in	Tilapia	Oreochromis	niloticus.	Plos	One	8.	

Chen,	 S.C.,	 Xiao,	 C.F.,	 Troje,	N.F.,	 Robertson,	R.M.,	 and	Hawryshyn,	 C.W.	 (2015).	
Functional	 characterisation	 of	 the	 chromatically	 antagonistic	
photosensitive	 mechanism	 of	 erythrophores	 in	 the	 tilapia	 Oreochromis	
niloticus.	J	Exp	Biol	218,	748-756.	

Chew,	K.S.,	Schmidt,	T.M.,	Rupp,	A.C.,	Kofuji,	P.,	and	Trimarchi,	J.M.	(2014).	Loss	of	
G(q11)	Genes	Does	Not	Abolish	Melanopsin	Phototransduction.	Plos	One	
9.	

Chia,	 F.S.,	 Bucklandnicks,	 J.,	 and	 Young,	 C.M.	 (1984).	 Locomotion	 of	 Marine	
Invertebrate	Larvae	-	a	Review.	Can	J	Zool	62,	1205-1222.	

Choe,	H.W.,	Kim,	Y.J.,	Park,	J.H.,	Morizumi,	T.,	Pai,	E.F.,	Krauss,	N.,	Hofmann,	K.P.,	
Scheerer,	P.,	and	Ernst,	O.P.	(2011).	Crystal	structure	of	metarhodopsin	II.	
Nature	471,	651-655.	

Christensen,	 A.P.,	 and	 Corey,	 D.P.	 (2007).	 TRP	 channels	 in	 mechanosensation:	
direct	or	indirect	activation?	Nat	Rev	Neurosci	8,	510-521.	

Clark,	R.B.,	 and	Milne,	A.	 (1955).	The	Sublittoral	Fauna	of	2	Sandy	Bays	on	 the	
Isle	of	Cumbrae,	Firth	of	Clyde.	J	Mar	Biol	Assoc	Uk	34,	161-180.	

Cohen,	J.H.,	and	Forward,	R.B.	(2002).	Spectral	sensitivity	of	vertically	migrating	
marine	copepods.	Biol	Bull	203,	307-314.	

Collins,	F.D.	(1953).	Rhodopsin	and	indicator	yellow.	Nature	171,	469-471.	

	 101	

Conzelmann,	 M.,	 Offenburger,	 S.L.,	 Asadulina,	 A.,	 Keller,	 T.,	 Munch,	 T.A.,	 and	
Jékely,	G.	(2011).	Neuropeptides	regulate	swimming	depth	of	Platynereis	
larvae.	Proc	Natl	Acad	Sci	U	S	A	108,	E1174-1183.	

Conzelmann,	M.,	Williams,	E.A.,	Krug,	K.,	Franz-Wachtel,	M.,	Macek,	B.,	and	Jékely,	
G.	 (2013a).	 The	 neuropeptide	 complement	 of	 the	 marine	 annelid	
Platynereis	dumerilii.	Bmc	Genomics	14.	

Conzelmann,	M.,	Williams,	E.A.,	Tunaru,	S.,	Randel,	N.,	Shahidi,	R.,	Asadulina,	A.,	
Berger,	J.,	Offermanns,	S.,	and	Jékely,	G.	(2013b).	Conserved	MIP	receptor-
ligand	pair	regulates	Platynereis	larval	settlement.	Proc	Natl	Acad	Sci	U	S	
A	110,	8224-8229.	

Cornwall,	 M.C.,	 and	 Gorman,	 A.L.	 (1983).	 The	 cation	 selectivity	 and	 voltage	
dependence	of	the	light-activated	potassium	conductance	in	scallop	distal	
photoreceptor.	J	Physiol	340,	287-305.	

Cram,	 A.,	 and	 Evans,	 S.M.	 (1980).	 Stability	 and	 Lability	 in	 the	 Evolution	 of	
Behavior	in	Nereid	Polychaetes.	Anim	Behav	28,	483-490.	

Crisp,	D.J.,	and	Barnes,	H.	(1954).	The	Orientation	and	Distribution	of	Barnacles	
at	 Settlement	with	Particular	Reference	 to	 Surface	Contour.	 J	Anim	Ecol	
23,	142-162.	

Cronin,	 T.W.,	 and	 Porter,	 M.L.	 (2014).	 The	 Evolution	 of	 Invertebrate	
Photopigments	and	Photoreceptors.	In	Evolution	of	Visual	and	Non-visual	
Pigments,	pp.	105-135.	

Dakin,	 W.J.	 (1928).	 The	 eyes	 of	 Pecten,	 Spondylus,	 Amussium	 and	 allied	
Lamellibranchs,	with	a	short	discussion	on	their	Evolution.	P	R	Soc	Lond	
B-Conta	103,	355-365.	

Daly,	J.M.	(1973).	Behavioral	and	Secretory	Activity	during	Tube	Construction	by	
Patynereis-Dumerilii	Aud	and	M	Edw	[Polychaeta	-	Nereidae].	 J	Mar	Biol	
Assoc	Uk	53,	521-529.	

Davies,	W.I.L.,	 Zheng,	 L.,	 Hughes,	 S.,	 Tamai,	 T.K.,	 Turton,	M.,	 Halford,	 S.,	 Foster,	
R.G.,	 Whitmore,	 D.,	 and	 Hankins,	 M.W.	 (2011).	 Functional	 diversity	 of	
melanopsins	and	their	global	expression	in	the	teleost	retina.	Cell	Mol	Life	
Sci	68,	4115-4132.	

de	Mendoza,	A.,	Sebe-Pedros,	A.,	and	Ruiz-Trillo,	 I.	(2014).	The	Evolution	of	the	
GPCR	Signaling	System	in	Eukaryotes:	Modularity,	Conservation,	and	the	
Transition	to	Metazoan	Multicellularity.	Genome	Biology	and	Evolution	6,	
606-619.	

Delroisse,	 J.,	 Ullrich-Luter,	 E.,	 Ortega-Martinez,	 O.,	 Dupont,	 S.,	 Arnone,	 M.I.,	
Mallefet,	J.,	and	Flammang,	P.	(2014).	High	opsin	diversity	in	a	non-visual	
infaunal	brittle	star.	BMC	Genomics	15,	1035.	

Dkhissi-Benyabya,	 O.,	 Rieux,	 C.,	 Hut,	 R.A.,	 and	 Cooper,	 H.M.	 (2006).	
Immunohistochemical	 evidence	 of	 a	 melanopsin	 cone	 in	 human	 retina.	
Invest	Ophth	Vis	Sci	47,	1636-1641.	

Donahue,	 W.F.,	 and	 Schindler,	 D.W.	 (1998).	 Diel	 emigration	 and	 colonization	
responses	of	blackfly	larvae	(Diptera	:	Simuliidae)	to	ultraviolet	radiation.	
Freshwater	Biol	40,	357-365.	

Dorresteijn,	 A.W.C.	 (1990).	 Quantitative-Analysis	 of	 Cellular-Differentiation	
during	Early	Embryogenesis	of	Platynereis-Dumerilii.	Roux	Arch	Dev	Biol	
199,	14-30.	

	102	

Dorresteijn,	A.W.C.,	Ogrady,	B.,	Fischer,	A.,	Porchethennere,	E.,	and	Boillymarer,	
Y.	 (1993).	 Molecular	 Specification	 of	 Cell-Lines	 in	 the	 Embryo	 of	
Platynereis	(Annelida).	Roux	Arch	Dev	Biol	202,	260-269.	

Doyon,	Y.,	McCammon,	J.M.,	Miller,	J.C.,	Faraji,	F.,	Ngo,	C.,	Katibah,	G.E.,	Amora,	R.,	
Hocking,	 T.D.,	 Zhang,	 L.,	 Rebar,	 E.J.,	 Gregory,	 P.D.,	 Urnov,	 F.D.,	 and	
Amacher,	 S.L.	 (2008).	 Heritable	 targeted	 gene	 disruption	 in	 zebrafish	
using	designed	zinc-finger	nucleases.	Nat	Biotechnol	26,	702-708.	

Dray,	N.,	Tessmar-Raible,	K.,	Le	Gouar,	M.,	Vibert,	L.,	Christodoulou,	F.,	Schipany,	
K.,	Guillou,	A.,	Zantke,	J.,	Snyman,	H.,	Behague,	J.,	Vervoort,	M.,	Arendt,	D.,	
and	 Balavoine,	 G.	 (2010).	 Hedgehog	 Signaling	 Regulates	 Segment	
Formation	in	the	Annelid	Platynereis.	Science	(New	York,	N.Y.)	329,	339-
342.	

Ebert,	D.	(2005).	Introduction	to	Daphnia	Biology.In	Ecology,	Epidemiology,	and	
Evolution	 of	 Parasitism	 in	 Daphnia	 [Internet],	 D.	 Ebert,	 ed.	 (Bethesda	
(MD),	 National	 Library	 of	 Medicine	 (US),	 National	 Center	 for	
Biotechnology).	

Eisen,	J.S.,	and	Smith,	J.C.	(2008).	Controlling	morpholino	experiments:	don't	stop	
making	antisense.	Development	135,	1735-1743.	

Ewald,	 A.,	 and	 Kühne,	 W.	 (1878).	 Untersuchungen	 über	 den	 Sehpurpur.	
Untersuchungen	 aus	 dem	 Physiologischen	 Institute	 der	 Universität	
Heidelberg	1,	139-218.	

Ewald,	W.F.	(1912).	On	artificial	modification	of	light	reactions	and	the	influence	
of	electrolytes	on	phototaxis.	J	Exp	Zool	13,	591-612.	

Fasick,	 J.I.,	 Lee,	N.,	 and	Oprian,	D.D.	 (1999).	 Spectral	 tuning	 in	 the	 human	blue	
cone	pigment.	Biochemistry-Us	38,	11593-11596.	

Fauchald,	 K.,	 and	 Jumars,	 P.A.	 (1992).	 Diet	 of	 Worms	 -	 a	 Citation-Classic	
Commentary	on	the	Diet	of	Worms	-	a	Study	of	Polychaete	Feeding	Guilds	
by	Fauchald,K.,	and	Jumars,P.A.	Cc/Agr	Biol	Environ,	8-8.	

Fauvel,	 P.	 (1914).	 Annélides	 polychètes	 non-pélagiques	 provenant	 des	
campagnes	de	l'Hirondelle	et	de	la	Princesse-Alice	(1885-1910).	Résultats	
des	campagnes	scientifiques	accompliés	par	le	Prince	Albert	I	46,	193.	

Feuda,	R.,	Hamilton,	S.C.,	McInerney,	 J.O.,	and	Pisani,	D.	 (2012).	Metazoan	opsin	
evolution	reveals	a	simple	route	to	animal	vision.	Proc	Natl	Acad	Sci	U	S	A	
109,	18868-18872.	

Feuda,	 R.,	 Marletaz,	 F.,	 Bentley,	 M.A.,	 and	 Holland,	 P.W.	 (2016).	 Conservation,	
Duplication,	 and	 Divergence	 of	 Five	 Opsin	 Genes	 in	 Insect	 Evolution.	
Genome	Biol	Evol	8,	579-587.	

Feuda,	 R.,	 Rota-Stabelli,	 O.,	 Oakley,	 T.H.,	 and	 Pisani,	 D.	 (2014).	 The	 comb	 jelly	
opsins	and	the	origins	of	animal	phototransduction.	Genome	Biol	Evol	6,	
1964-1971.	

Filipek,	 S.,	 Stenkamp,	 R.E.,	 Teller,	 D.C.,	 and	 Palczewski,	 K.	 (2003).	 G	 protein-
coupled	receptor	rhodopsin:	A	prospectus.	Annu	Rev	Physiol	65,	851-879.	

Fine,	M.L.	(1970).	Faunal	Variation	on	Pelagic	Sargassum.	Mar	Biol	7,	112-&.	
Fischer,	 A.,	 and	 Dorresteijn,	 A.	 (2004).	 The	 polychaete	 Platynereis	 dumerilli	

(Annelida):	a	laboratory	animal	with	spiralian	cleavage,	lifelong	segment	
proliferation	 and	 a	 mixed	 benthic/pelagic	 life	 cycle.	 Bioessays	 26,	 314-
325.	

	 103	

Fischer,	A.H.,	and	Arendt,	D.	(2013).	Mesoteloblast-like	mesodermal	stem	cells	in	
the	 polychaete	 annelid	 Platynereis	 dumerilii	 (Nereididae).	 J	 Exp	 Zool	 B	
Mol	Dev	Evol	320,	94-104.	

Fischer,	 A.H.,	 Henrich,	 T.,	 and	 Arendt,	 D.	 (2010).	 The	 normal	 development	 of	
Platynereis	dumerilii	(Nereididae,	Annelida).	Front	Zool	7,	31.	

Forward,	 R.B.	 (1974).	 Negative	 Phototaxis	 in	 Crustacean	 Larvae	 -	 Possible	
Functional	Significance.	J	Exp	Mar	Biol	Ecol	16,	11-17.	

Forward,	R.B.,	and	Cronin,	T.W.	(1979).	Spectral	Sensitivity	of	Larvae	from	Inter-
Tidal	Crustaceans.	J	Comp	Physiol	133,	311-315.	

Foster,	R.G.,	and	Hankins,	M.W.	(2002).	Non-rod,	non-cone	photoreception	in	the	
vertebrates.	Prog	Retin	Eye	Res	21,	507-527.	

Gambi,	M.C.,	 Lorenti,	M.,	Russo,	G.F.,	 Scipione,	M.B.,	 and	Zupo,	V.	 (1992).	Depth	
and	 Seasonal	 Distribution	 of	 Some	 Groups	 of	 the	 Vagile	 Fauna	 of	 the	
Posidonia-Oceanica	Leaf	Stratum	-	Structural	and	Trophic	Analyses.	Pszni	
Mar	Ecol	13,	17-39.	

Giangrande,	A.	(1988).	Polychaete	Zonation	and	Its	Relation	to	Algal	Distribution	
down	a	Vertical	Cliff	in	the	Western	Mediterranean	(Italy)	-	a	Structural-
Analysis.	J	Exp	Mar	Biol	Ecol	120,	263-276.	

Giangrande,	A.,	Delos,	A.L.,	Fraschetti,	S.,	Musco,	L.,	Licciano,	M.,	and	Terlizzi,	A.	
(2003).	Polychaete	assemblages	along	a	rocky	shore	on	the	South	Adriatic	
coast	(Mediterranean	Sea):	patterns	of	spatial	distribution.	Mar	Biol	143,	
1109-1116.	

Giménez,	 F.,	 and	 Marín,	 A.	 (1991).	 Los	 Anelidos	 poliquetos	 de	 una	 solfatara	
submarina	en	el	Golfo	de	Napoles.	Anales	de	Biología	17,	143-151.	

Gomez,	 M.,	 and	 Nasi,	 E.	 (1995).	 Activation	 of	 light-dependent	 K+	 channels	 in	
ciliary	 invertebrate	photoreceptors	 involves	cGMP	but	not	 the	 IP3/Ca2+	
cascade.	Neuron	15,	607-618.	

Gomez,	M.P.,	and	Nasi,	E.	(1997).	Antagonists	of	the	cGMP-gated	conductance	of	
vertebrate	rods	block	the	photocurrent	in	scallop	ciliary	photoreceptors.	J	
Physiol	500	(Pt	2),	367-378.	

Gomez,	 M.P.,	 and	 Nasi,	 E.	 (2000).	 Light	 transduction	 in	 invertebrate	
hyperpolarizing	photoreceptors:	 possible	 involvement	 of	 a	Go-regulated	
guanylate	cyclase.	The	Journal	of	neuroscience	:	the	official	journal	of	the	
Society	for	Neuroscience	20,	5254-5263.	

Gorman,	 A.L.,	 and	 McReynolds,	 J.S.	 (1978).	 Ionic	 effects	 on	 the	 membrane	
potential	 of	 hyperpolarizing	 photoreceptors	 in	 scallop	 retina.	 J	 Physiol	
275,	345-355.	

Govardovskii,	V.I.,	Fyhrquist,	N.,	Reuter,	T.,	Kuzmin,	D.G.,	and	Donner,	K.	(2000).	
In	search	of	the	visual	pigment	template.	Visual	Neurosci	17,	509-528.	

Gühmann,	 M.,	 Jia,	 H.,	 Randel,	 N.,	 Verasztó,	 C.,	 Bezares-Calderón,	 L.A.,	 Michiels,	
N.K.,	Yokoyama,	S.,	and	Jékely,	G.	(2015).	Spectral	Tuning	of	Phototaxis	by	
a	Go-Opsin	 in	 the	Rhabdomeric	Eyes	 of	 Platynereis.	 Curr	Biol	 25,	 2265-
2271.	

Häder,	 D.P.	 (1997).	 Oben	 oder	 unten	 -	 Schwerkraftperzeption	 bei	 dem	
einzelligen	Flagellaten	Euglena	gracilis.	Mikrokosmos	86,	351-356.	

Häder,	 D.P.	 (1999).	 Gravitaxis	 in	 unicellular	 microorganisms.	 Adv	 Space	 Res-
Series	24,	843-850.	

	104	

Hadfield,	M.G.	 (2011).	Biofilms	 and	Marine	 Invertebrate	Larvae:	What	Bacteria	
Produce	That	Larvae	Use	to	Choose	Settlement	Sites.	Annu	Rev	Mar	Sci	3,	
453-+.	

Hadfield,	 M.G.,	 and	 Pennington,	 J.T.	 (1990).	 Nature	 of	 the	 Metamorphic	 Signal	
and	 Its	 Internal	 Transduction	 in	 Larvae	 of	 the	 Nudibranch	 Phestilla-
Sibogae.	B	Mar	Sci	46,	455-464.	

Halford,	S.,	Freedman,	M.S.,	Bellingham,	J.,	Inglis,	S.L.,	Poopalasundaram,	S.,	Soni,	
B.G.,	 Foster,	 R.G.,	 and	 Hunt,	 D.M.	 (2001).	 Characterization	 of	 a	 novel	
human	 opsin	 gene	 with	 wide	 tissue	 expression	 and	 identification	 of	
embedded	and	 flanking	genes	on	chromosome	1q43.	Genomics	 72,	 203-
208.	

Haltaufderhyde,	K.,	Ozdeslik,	R.N.,	Wicks,	N.L.,	Najera,	J.A.,	and	Oancea,	E.	(2015).	
Opsin	 Expression	 in	 Human	 Epidermal	 Skin.	 Photochemistry	 and	
Photobiology	91,	117-123.	

Hannibal,	 J.,	Hindersson,	P.,	Knudsen,	S.M.,	Georg,	B.,	and	Fahrenkrug,	 J.	 (2002).	
The	 photopigment	 melanopsin	 is	 exclusively	 present	 in	 pituitary	
adenylate	cyclase-activating	polypeptide-containing	retinal	ganglion	cells	
of	the	retinohypothalamic	tract.	Journal	of	Neuroscience	22.	

Hanswillemenke,	A.,	Kuzdere,	T.,	Vogel,	P.,	Jékely,	G.,	and	Stafforst,	T.	(2015).	Site-
Directed	 RNA	 Editing	 in	 Vivo	 Can	 Be	 Triggered	 by	 the	 Light-Driven	
Assembly	of	an	Artificial	Riboprotein.	J	Am	Chem	Soc	137,	15875-15881.	

Hardie,	 R.C.	 (2012).	 Phototransduction	 mechanisms	 in	 Drosophila	 microvillar	
photoreceptors.	WIREs	Membr	Transp	Signal	1,	162–187.	

Hardie,	 R.C.,	 and	 Franze,	 K.	 (2012).	 Photomechanical	 responses	 in	 Drosophila	
photoreceptors.	Science	(New	York,	N.Y.)	338,	260-263.	

Hardie,	R.C.,	and	Juusola,	M.	(2015).	Phototransduction	in	Drosophila.	Curr	Opin	
Neurobiol	34,	37-45.	

Hargrave,	 P.A.	 (2001).	 Rhodopsin	 structure,	 function,	 and	 topography	 -	 The	
Friedenwald	Lecture.	Invest	Ophth	Vis	Sci	42,	3-9.	

Hargrave,	P.A.,	Mcdowell,	J.H.,	Curtis,	D.R.,	Wang,	J.K.,	Juszczak,	E.,	Fong,	S.L.,	Rao,	
J.K.M.,	and	Argos,	P.	(1983).	The	Structure	of	Bovine	Rhodopsin.	Biophys	
Struct	Mech	9,	235-244.	

Hattar,	S.,	Liao,	H.W.,	Takao,	M.,	Berson,	D.M.,	and	Yau,	K.W.	(2002).	Melanopsin-
containing	 retinal.	 ganglion	 cells:	Architecture,	projections,	 and	 intrinsic	
photosensitivity.	Science	(New	York,	N.Y.)	295,	1065-1070.	

Hauenschild,	 C.	 (1955).	 Photoperiodizität	 als	 Ursache	 des	 von	 der	Mondphase	
abhängigen	 Metamorphose-Rhythmus	 bei	 dem	 Polychaeten	 Platynereis	
Dumerilii.	Z	Naturforsch	Pt	B	10,	658-662.	

Hauenschild,	C.	(1956).	Neue	experimentelle	Untersuchungen	zum	Problem	der	
Lunarperiodizität.	Naturwissenschaften	43,	361-363.	

Hauenschild,	 C.	 (1961).	 Die	 Schwarmperiodizität	 von	 Platynereis	 Dumerilii	 im	
DD/LD-Belichtungszyklus	und	nach	Augenausschaltung.	Z	Naturforsch	Pt	
B	B	16,	753-756.	

Hauenschild,	 C.,	 and	 Fischer,	 A.	 (1969).	 Platynereis	 dumerilii:	 Mikroskopische	
Anatomie,	Fortpflanzung,	Entwicklung	(Stuttgart:	Gustav	Fischer	Verlag).	

Hausen,	H.	(2007).	Ultrastructure	of	presumptive	light	sensitive	ciliary	organs	in	
larvae	 of	 Poecilochaetidae,	 Trochochaetidae,	 Spionidae,	 Magelonidae	
(Annelida)	 and	 its	 phylogenetic	 significance.	 Zoomorphology	 126,	 185-
201.	

	 105	

Hay,	 M.E.,	 Renaud,	 P.E.,	 and	 Fenical,	 W.	 (1988).	 Large	 Mobile	 Versus	 Small	
Sedentary	 Herbivores	 and	 Their	 Resistance	 to	 Seaweed	 Chemical	
Defenses.	Oecologia	75,	246-252.	

Hepler,	 J.R.,	 and	 Gilman,	 A.G.	 (1992).	 G-Proteins.	 Trends	 Biochem	 Sci	 17,	 383-
387.	

Hering,	 L.,	 and	 Mayer,	 G.	 (2014).	 Analysis	 of	 the	 opsin	 repertoire	 in	 the	
tardigrade	 Hypsibius	 dujardini	 provides	 insights	 into	 the	 evolution	 of	
opsin	genes	in	panarthropoda.	Genome	Biol	Evol	6,	2380-2391.	

Hofmann,	 L.,	 and	 Palczewski,	 K.	 (2015).	 The	 G	 protein-coupled	 receptor	
rhodopsin:	a	historical	perspective.	Methods	in	molecular	biology	(Clifton,	
N.J.)	1271,	3-18.	

Horiguchi,	 H.,	 Winawer,	 J.,	 Dougherty,	 R.F.,	 and	 Wandell,	 B.A.	 (2013).	 Human	
trichromacy	revisited.	P	Natl	Acad	Sci	USA	110,	E260-E269.	

Hubbard,	R.,	and	Wald,	G.	 (1951).	The	mechanism	of	rhodopsin	synthesis.	Proc	
Natl	Acad	Sci	U	S	A	37,	69-79.	

Huffard,	 C.L.,	 von	 Thun,	 S.,	 Sherman,	 A.D.,	 Sealey,	 K.,	 and	 Smith,	 K.L.	 (2014).	
Pelagic	 Sargassum	 community	 change	 over	 a	 40-year	 period:	 temporal	
and	spatial	variability.	Mar	Biol	161,	2735-2751.	

Hughes,	S.,	Jagannath,	A.,	Hickey,	D.,	Gatti,	S.,	Wood,	M.,	Peirson,	S.N.,	Foster,	R.G.,	
and	Hankins,	M.W.	(2015).	Using	siRNA	to	define	 functional	 interactions	
between	melanopsin	and	multiple	G	Protein	partners.	Cell	Mol	Life	Sci	72,	
165-179.	

Hunt,	D.M.,	Carvalho,	L.S.,	Cowing,	J.A.,	Parry,	J.W.L.,	Wilkie,	S.E.,	Davies,	W.L.,	and	
Bowmaker,	 J.K.	 (2007).	 Spectral	 tuning	 of	 shortwave-sensitive	 visual	
pigments	in	vertebrates.	Photochemistry	and	Photobiology	83,	303-310.	

Hutchinson,	T.H.,	 Jha,	A.N.,	 and	Dixon,	D.R.	 (1995).	The	Polychaete	Platynereis-
Dumerilii	(Audouin	and	Milne-Edwards)	-	a	New	Species	for	Assessing	the	
Hazardous	 Potential	 of	 Chemicals	 in	 the	 Marine-Environment.	 Ecotox	
Environ	Safe	31,	271-281.	

Ipucha,	M.a.C.,	 Santos,	 C.G.,	 Lana,	 P.d.C.,	 and	 Sbalqueiro,	 I.J.	 (2007).	 Cytogenetic	
characterization	of	seven	South	American	species	of	nereididae	(annelida:	
polychaeta):	Implications	for	the	karyotypic	evolution.	BAG	18,	27-38.	

Jacobs,	R.P.W.M.,	 and	Pierson,	E.S.	 (1979).	 Zostera-Marina	Spathes	as	 a	Habitat	
for	Platynereis-Dumerilii	(Audouin	and	Milne-Edwards,	1834).	Aquat	Bot	
6,	403-406.	

Jékely,	G.	(2009).	Evolution	of	phototaxis.	Philos	T	R	Soc	B	364,	2795-2808.	
Jékely,	 G.,	 and	Arendt,	D.	 (2007).	 Cellular	 resolution	 expression	 profiling	 using	

confocal	 detection	 of	 NBT/BCIP	 precipitate	 by	 reflection	 microscopy.	
Biotechniques	42,	751-755.	

Jékely,	G.,	Colombelli,	J.,	Hausen,	H.,	Guy,	K.,	Stelzer,	E.,	Nédélec,	F.,	and	Arendt,	D.	
(2008).	 Mechanism	 of	 phototaxis	 in	 marine	 zooplankton.	 Nature	 456,	
395-399.	

Jellies,	 J.	 (2014).	Detection	and	selective	avoidance	of	near	ultraviolet	radiation	
by	an	aquatic	annelid:	the	medicinal	leech.	J	Exp	Biol	217,	974-985.	

Jha,	A.N.,	Hutchinson,	T.H.,	Mackay,	J.M.,	Elliott,	B.M.,	Pascoe,	P.L.,	and	Dixon,	D.R.	
(1995).	 The	 Chromosomes	 of	 Platynereis-Dumerilii	 (Polychaeta,	
Nereidae).	J	Mar	Biol	Assoc	Uk	75,	551-562.	

Jiang,	M.,	Pandey,	S.,	 and	Fong,	H.K.W.	 (1993).	An	Opsin	Homolog	 in	 the	Retina	
and	Pigment-Epithelium.	Invest	Ophth	Vis	Sci	34,	3669-3678.	

	106	

Keplinger,	S.	(2010).	Influence	of	the	adult	eyes	on	circadian	and	lunar	rhythms	
in	Platynereis	dumerilii.	(Vienna,	Universität	Wien).	

Kessler,	 K.,	 Lockwood,	 R.S.,	 Williamson,	 C.E.,	 and	 Saros,	 J.E.	 (2008).	 Vertical	
distribution	 of	 zooplankton	 in	 subalpine	 and	 alpine	 lakes:	 Ultraviolet	
radiation,	 fish	 predation,	 and	 the	 transparency-gradient	 hypothesis.	
Limnol	Oceanogr	53,	2374-2382.	

Khayyeri,	H.,	Barreto,	S.,	and	Lacroix,	D.	(2015).	Primary	cilia	mechanics	affects	
cell	mechanosensation:	A	computational	study.	J	Theor	Biol	379,	38-46.	

Kim,	H.J.,	Son,	E.D.,	Jung,	J.Y.,	Choi,	H.,	Lee,	T.R.,	and	Shin,	D.W.	(2013).	Violet	Light	
Down-Regulates	 the	 Expression	 of	 Specific	 Differentiation	 Markers	
through	Rhodopsin	in	Normal	Human	Epidermal	Keratinocytes.	Plos	One	
8.	

Knight-Jones,	 E.W.,	 and	 Crisp,	 D.J.	 (1953).	 Gregariousness	 in	 Barnacles	 in	
Relation	to	the	Fouling	of	Ships	and	to	Anti-Fouling	Research.	Nature	171,	
1109-1110.	

Knox,	B.E.,	Salcedo,	E.,	Mathiesz,	K.,	Schaefer,	J.,	Chou,	W.H.,	Chadwell,	L.V.,	Smith,	
W.C.,	 Britt,	 S.G.,	 and	 Barlow,	 R.B.	 (2003).	 Heterologous	 expression	 of	
limulus	rhodopsin.	J	Biol	Chem	278,	40493-40502.	

Koehl,	 M.A.R.,	 and	 Hadfield,	 M.G.	 (2010).	 Hydrodynamics	 of	 Larval	 Settlement	
from	 a	 Larva's	 Point	 of	 View.	 Integrative	 and	 Comparative	 Biology	 50,	
539-551.	

Koehl,	 M.A.R.,	 and	 Reidenbach,	 M.A.	 (2007).	 Swimming	 by	 microscopic	
organisms	in	ambient	water	flow.	Exp	Fluids	43,	755-768.	

Kojima,	D.,	Mori,	S.,	Torii,	M.,	Wada,	A.,	Morishita,	R.,	and	Fukada,	Y.	(2011).	UV-
Sensitive	Photoreceptor	Protein	OPN5	in	Humans	and	Mice.	Plos	One	6.	

Kojima,	D.,	 Terakita,	 A.,	 Ishikawa,	 T.,	 Tsukahara,	 Y.,	Maeda,	 A.,	 and	 Shichida,	 Y.	
(1997).	A	novel	Go-mediated	phototransduction	cascade	in	scallop	visual	
cells.	J	Biol	Chem	272,	22979-22982.	

Korringa,	P.	(1947).	Relations	between	the	Moon	and	Periodicity	in	the	Breeding	
of	Marine	Animals.	Ecol	Monogr	17,	347-381.	

Koyanagi,	 M.,	 Takada,	 E.,	 Nagata,	 T.,	 Tsukamoto,	 H.,	 and	 Terakita,	 A.	 (2013).	
Homologs	 of	 vertebrate	 Opn3	 potentially	 serve	 as	 a	 light	 sensor	 in	
nonphotoreceptive	tissue.	P	Natl	Acad	Sci	USA	110,	4998-5003.	

Koyanagi,	M.,	Takano,	K.,	Tsukamoto,	H.,	Ohtsu,	K.,	Tokunaga,	F.,	and	Terakita,	A.	
(2008).	Jellyfish	vision	starts	with	cAMP	signaling	mediated	by	opsin-G(s)	
cascade.	P	Natl	Acad	Sci	USA	105,	15576-15580.	

Koyanagi,	 M.,	 Terakita,	 A.,	 Kubokawa,	 K.,	 and	 Shichida,	 Y.	 (2002).	 Amphioxus	
homologs	of	Go-coupled	 rhodopsin	 and	peropsin	having	11-cis-	 and	 all-
trans-retinals	as	their	chromophores.	FEBS	Lett	531,	525-528.	

Kozak,	M.	 (1987).	 An	 analysis	 of	 5'-noncoding	 sequences	 from	 699	 vertebrate	
messenger	RNAs.	Nucleic	acids	research	15,	8125-8148.	

Krause,	 M.,	 and	 Braucker,	 R.	 (2009).	 Gravitaxis	 of	 Bursaria	 truncatella:	
Electrophysiological	and	behavioural	analyses	of	a	large	ciliate	cell.	Eur	J	
Protistol	45,	98-111.	

Krishnan,	A.,	and	Schioth,	H.B.	(2015).	The	role	of	G	protein-coupled	receptors	in	
the	 early	 evolution	of	neurotransmission	and	 the	nervous	 system.	 J	Exp	
Biol	218,	562-571.	

Kühne,	 W.	 (1878).	 Ueber	 den	 Sehpurpur.	 Untersuchungen	 aus	 dem	
Physiologischen	Institute	der	Universität	Heidelberg	1,	15-104.	

	 107	

Küpfer,	M.	(1915).	Entwicklungsgeschichtliche	und	neuro-histologische	Beiträge	
zur	 Kenntnis	 der	 Sehorgane	 am	 Mantelrande	 der	 Pecten-Arten	 :	 mit	
anschliessen	 vergleichend-anatomischen	 Betrachtungen	 /	 von	 Max	
Küpfer	(Jena:	Gustav	Fischer).	

Kwon,	Y.,	Shim,	H.S.,	Wang,	X.Y.,	and	Montell,	C.	(2008).	Control	of	 thermotactic	
behavior	 via	 coupling	 of	 a	 TRP	 channel	 to	 a	 phospholipase	 C	 signaling	
cascade.	Nat	Neurosci	11,	871-873.	

Lagman,	 D.,	 Sundstrom,	 G.,	 Daza,	 D.O.,	 Abalo,	 X.M.,	 and	 Larhammar,	 D.	 (2012).	
Expansion	 of	 transducin	 subunit	 gene	 families	 in	 early	 vertebrate	
tetraploidizations.	Genomics	100,	203-211.	

Lamb,	T.D.	 (1995).	Photoreceptor	Spectral	Sensitivities	 -	Common	Shape	 in	 the	
Long-Wavelength	Region.	Vision	Res	35,	3083-3091.	

Lamb,	 T.D.	 (2013).	 Evolution	 of	 phototransduction,	 vertebrate	 photoreceptors	
and	retina.	Prog	Retin	Eye	Res	36,	52-119.	

Leach,	T.H.,	Williamson,	C.E.,	Theodore,	N.,	Fischer,	J.M.,	and	Olson,	M.H.	(2015).	
The	 role	 of	 ultraviolet	 radiation	 in	 the	 diel	 vertical	 migration	 of	
zooplankton:	 an	 experimental	 test	 of	 the	 transparency-regulator	
hypothesis.	J	Plankton	Res	37,	886-896.	

Leech,	 D.M.,	 and	 Jonsen,	 S.	 (2002).	 Behavioral	 responses–UVR	 avoidance	 and	
Vision.	In	UV	Effects	in	Aquatic	Organisms	and	Ecosystems,	E.W.	Helbling,	
ed.,	pp.	455-481.	

Lejeune,	 F.,	 and	 Maquat,	 L.E.	 (2005).	 Mechanistic	 links	 between	 nonsense-
mediated	mRNA	decay	and	pre-mRNA	splicing	 in	mammalian	cells.	Curr	
Opin	Cell	Biol	17,	309-315.	

Lemire,	 M.,	 and	 Bourget,	 E.	 (1996).	 Substratum	 heterogeneity	 and	 complexity	
influence	 micro-habitat	 selection	 of	 Balanus	 sp	 and	 Tubularia	 crocea	
larvae.	Mar	Ecol	Prog	Ser	135,	77-87.	

Lewis,	 F.G.,	 and	 Stoner,	 A.W.	 (1981).	 An	 Examination	 of	Methods	 for	 Sampling	
Macrobenthos	in	Seagrass	Meadows.	B	Mar	Sci	31,	116-124.	

Liegertova,	M.,	 Pergner,	 J.,	 Kozmikova,	 I.,	 Fabian,	 P.,	 Pombinho,	A.R.,	 Strnad,	H.,	
Paces,	J.,	Vlcek,	C.,	Bartunek,	P.,	and	Kozmik,	Z.	(2015).	Cubozoan	genome	
illuminates	 functional	 diversification	 of	 opsins	 and	 photoreceptor	
evolution	(vol	5,	11885,	2015).	Sci	Rep-Uk	5.	

Lin,	B.,	Koizumi,	A.,	Tanaka,	N.,	Panda,	S.,	and	Masland,	R.H.	(2008).	Restoration	
of	 visual	 function	 in	 retinal	 degeneration	mice	 by	 ectopic	 expression	 of	
melanopsin.	P	Natl	Acad	Sci	USA	105,	16009-16014.	

Loudon,	C.,	Best,	B.A.,	 and	Koehl,	M.A.R.	 (1994).	When	Does	Motion	Relative	 to	
Neighboring	Surfaces	Alter	 the	Flow-through	Arrays	of	Hairs.	 J	 Exp	Biol	
193,	233-254.	

Lucas,	R.J.,	Douglas,	R.H.,	 and	Foster,	R.G.	 (2001).	Characterization	of	 an	ocular	
photopigment	 capable	 of	 driving	 pupillary	 constriction	 in	 mice.	 Nat	
Neurosci	4,	621-626.	

Lucas,	R.J.,	Hattar,	S.,	Takao,	M.,	Berson,	D.M.,	Foster,	R.G.,	and	Yau,	K.W.	(2003).	
Diminished	 pupillary	 light	 reflex	 at	 high	 irradiances	 in	 melanopsin-
knockout	mice.	Science	(New	York,	N.Y.)	299,	245-247.	

Lucey,	 N.M.,	 Lombardi,	 C.,	 DeMarchi,	 L.,	 Schulze,	 A.,	 Gambi,	M.C.,	 and	 Calosi,	 P.	
(2015).	To	brood	or	not	to	brood:	Are	marine	invertebrates	that	protect	
their	offspring	more	resilient	to	ocean	acidification?	Sci	Rep-Uk	5.	

	108	

Luo,	D.G.,	Xue,	T.,	 and	Yau,	K.W.	 (2008).	How	vision	begins:	An	odyssey.	P	Natl	
Acad	Sci	USA	105,	9855-9862.	

Lythgoe,	 J.N.	 (1988).	 Light	 and	 Vision	 in	 the	 Aquatic	 Environment.	 In	 Sensory	
Biology	of	Aquatic	Animals,	R.R.	Fay,	A.N.	Popper,	and	W.N.	Tavolga,	eds.	
(Springer-Verlag),	pp.	57-82.	

Mann,	 R.,	 Campos,	 B.M.,	 and	 Luckenbach,	 M.W.	 (1991).	 Swimming	 Rate	 and	
Responses	of	Larvae	of	3	Mactrid	Bivalves	to	Salinity	Discontinuities.	Mar	
Ecol	Prog	Ser	68,	257-269.	

Margolskee,	 R.F.	 (2002).	 Molecular	 mechanisms	 of	 bitter	 and	 sweet	 taste	
transduction.	Journal	of	Biological	Chemistry	277,	1-4.	

Marin,	 E.P.,	 Krishna,	 K.G.,	 Zvyaga,	 T.A.,	 Isele,	 J.,	 Siebert,	 F.,	 and	 Sakmar,	 T.P.	
(2000).	The	amino	terminus	of	the	fourth	cytoplasmic	loop	of	rhodopsin	
modulates	 rhodopsin-transducin	 interaction.	 Journal	 of	 Biological	
Chemistry	275,	1930-1936.	

Mason,	B.,	Schmale,	M.,	Gibbs,	P.,	Miller,	M.W.,	Wang,	Q.,	Levay,	K.,	Shestopalov,	V.,	
and	 Slepak,	 V.Z.	 (2012).	 Evidence	 for	 Multiple	 Phototransduction	
Pathways	in	a	Reef-Building	Coral.	Plos	One	7.	

Mazna,	P.,	Grycova,	L.,	Balik,	A.,	Zemkova,	H.,	Friedlova,	E.,	Obsilova,	V.,	Obsil,	T.,	
and	Teisinger,	J.	(2008).	The	role	of	proline	residues	in	the	structure	and	
function	of	human	MT2	melatonin	receptor.	J	Pineal	Res	45,	361-372.	

McKelvey,	 L.M.,	 and	 Forward,	 R.B.	 (1995).	 Activation	 of	 brine	 shrimp	 nauplii	
photoresponses	involved	in	diel	vertical	migration	by	chemical	cues	from	
visual	and	non-visual	planktivores.	J	Plankton	Res	17,	2191-2206.	

McReynolds,	 J.S.,	 and	 Gorman,	 A.L.	 (1970a).	 Membrane	 conductances	 and	
spectral	sensitivities	of	Pecten	photoreceptors.	J	Gen	Physiol	56,	392-406.	

McReynolds,	J.S.,	and	Gorman,	A.L.	(1970b).	Photoreceptor	potentials	of	opposite	
polarity	in	the	eye	of	the	scallop,	Pecten	irradians.	J	Gen	Physiol	56,	376-
391.	

Menzel,	 R.	 (1979).	 Spectral	 sensitivity	 and	 color	 vision	 in	 invertebrates.	 In	
Handbook	of	Sensory	Physiology:	Vision	in	Invertebrates,	H.	Autrum,	ed.	
(Berlin,	Heidelberg,	New	York:	Springer-Verlag),	pp.	503–580.	

Merbs,	S.L.,	and	Nathans,	J.	(1992).	Absorption	spectra	of	human	cone	pigments.	
Nature	356,	433-435.	

Merz,	 R.A.,	 and	Woodin,	 S.A.	 (2006).	 Polychaete	 chaetae:	 Function,	 fossils,	 and	
phylogeny.	Integrative	and	Comparative	Biology	46,	481-496.	

Miller,	D.J.,	and	Ball,	E.E.	(2009).	The	gene	complement	of	the	ancestral	bilaterian	
-	was	Urbilateria	a	monster?	J	Biol	8,	89.	

Milne,	 I.,	Bayer,	M.,	Cardle,	L.,	 Shaw,	P.,	Stephen,	G.,	Wright,	F.,	 and	Marshall,	D.	
(2009).	 Tablet--next	 generation	 sequence	 assembly	 visualization.	
Bioinformatics	26,	401-402.	

Mogami,	 Y.,	 Ishii,	 J.,	 and	 Baba,	 S.A.	 (2001).	 Theoretical	 and	 experimental	
dissection	 of	 gravity-dependent	 mechanical	 orientation	 in	 gravitactic	
microorganisms.	Biol	Bull	201,	26-33.	

Mogami,	 Y.,	 Oobayashi,	 C.,	 Yamaguchi,	 T.,	 Ogiso,	 Y.,	 and	 Baba,	 S.A.	 (1988).	
Negative	 Geotaxis	 in	 Sea-Urchin	 Larvae	 -	 a	 Possible	 Role	 of	
Mechanoreception	in	the	Late	Stages	of	Development.	J	Exp	Biol	137,	141-
156.	

Montell,	C.	 (1999).	Visual	 transduction	 in	Drosophila.	Annu	Rev	Cell	Dev	Bi	 15,	
231-268.	

	 109	

Montell,	C.	(2012).	Drosophila	visual	transduction.	Trends	Neurosci	35,	356-363.	
Morton,	R.A.,	and	Goodwin,	T.W.	(1944).	Preparation	of	retinene	in	vitro.	Nature	

153,	405-406.	
Munz,	 F.W.	 (1958).	 The	 Photosensitive	 Retinal	 Pigments	 of	 Fishes	 from	

Relatively	Turbid	Coastal	Waters.	 Journal	of	General	Physiology	42,	445-
459.	

Murakami,	 M.,	 and	 Kouyama,	 T.	 (2008).	 Crystal	 structure	 of	 squid	 rhodopsin.	
Nature	453,	363-U333.	

Musco,	 L.,	 Terlizzi,	 A.,	 Licciano,	 M.,	 and	 Giangrande,	 A.	 (2009).	 Taxonomic	
structure	 and	 the	 effectiveness	 of	 surrogates	 in	 environmental	
monitoring:	a	lesson	from	polychaetes.	Mar	Ecol	Prog	Ser	383,	199-210.	

Nagata,	 T.,	 Koyanagi,	 M.,	 and	 Terakita,	 A.	 (2010).	 Molecular	 Evolution	 and	
Functional	Diversity	of	Opsin-Based	Photopigments		

Newman,	L.A.,	Walker,	M.T.,	Brown,	R.L.,	Cronin,	T.W.,	and	Robinson,	P.R.	(2003).	
Melanopsin	 forms	 a	 functional	 short-wavelength	 photopigment.	
Biochemistry-Us	42,	12734-12738.	

Nickle,	B.,	and	Robinson,	P.R.	(2007).	The	opsins	of	the	vertebrate	retina:	insights	
from	 structural,	 biochemical,	 and	 evolutionary	 studies.	 Cell	Mol	 Life	 Sci	
64,	2917-2932.	

Nilsson,	D.E.	(2009).	The	evolution	of	eyes	and	visually	guided	behaviour.	Philos	
T	R	Soc	B	364,	2833-2847.	

Nilsson,	D.E.	(2013).	Eye	evolution	and	its	functional	basis.	Vis	Neurosci	30,	5-20.	
Nishikura,	 K.	 (2010).	 Functions	 and	 Regulation	 of	 RNA	 Editing	 by	 ADAR	

Deaminases.	Annual	Review	of	Biochemistry,	Vol	79	79,	321-349.	
Oakley,	T.H.,	and	Speiser,	D.I.	(2015).	How	Complexity	Originates:	The	Evolution	

of	Animal	Eyes.	Annu	Rev	Ecol	Evol	S	46,	237-+.	
Offenburger,	 S.L.	 (2011).	 Examiniation	 of	 the	 Larval	 Phototactic	 Response	 of	

Platynereis	dumerilii.	(Tübingen,	Eberhard	Karls	Univertity,	Tübingen).	
Oka,	 Y.,	 Saraiva,	 L.R.,	 Kwan,	 Y.Y.,	 and	 Korsching,	 S.I.	 (2009).	 The	 fifth	 class	 of	

Galpha	proteins.	Proc	Natl	Acad	Sci	U	S	A	106,	1484-1489.	
Okano,	 T.,	 Yoshizawa,	 T.,	 and	 Fukada,	 Y.	 (1994).	 Pinopsin	 Is	 a	 Chicken	 Pineal	

Photoreceptive	Molecule.	Nature	372,	94-97.	
Oprian,	 D.D.,	 Asenjo,	 A.B.,	 Lee,	 N.,	 and	 Pelletier,	 S.L.	 (1991).	 Design,	 chemical	

synthesis,	 and	 expression	 of	 genes	 for	 the	 three	 human	 color	 vision	
pigments.	Biochemistry-Us	30,	11367-11372.	

Oroshnik,	W.	 (1956).	 The	 synthesis	 and	 configuration	 of	 neo-b	 vitamin	 A	 and	
neoretinene	b.	J	Am	Chem	Soc	78,	2651-2652.	

Oroshnik,	 W.,	 Brown,	 P.K.,	 Hubbard,	 R.,	 and	 Wald,	 G.	 (1956).	 HINDERED	 CIS	
ISOMERS	OF	VITAMIN	A	AND	RETINENE:	THE	STRUCTURE	OF	THE	NEO-
b	ISOMER.	Proc	Natl	Acad	Sci	U	S	A	42,	578-580.	

Palczewski,	K.,	Kumasaka,	T.,	Hori,	T.,	Behnke,	C.A.,	Motoshima,	H.,	Fox,	B.A.,	Le	
Trong,	 I.,	 Teller,	 D.C.,	 Okada,	 T.,	 Stenkamp,	 R.E.,	 Yamamoto,	 M.,	 and	
Miyano,	M.	 (2000).	 Crystal	 structure	 of	 rhodopsin:	 A	 G	 protein-coupled	
receptor.	Science	(New	York,	N.Y.)	289,	739-745.	

Panda,	S.,	Provencio,	I.,	Tu,	D.C.,	Pires,	S.S.,	Rollag,	M.D.,	Castrucci,	A.M.,	Pletcher,	
M.T.,	Sato,	T.K.,	Wiltshire,	T.,	Andahazy,	M.,	Kay,	S.A.,	Van	Gelder,	R.N.,	and	
Hogenesch,	 J.B.	 (2003).	 Melanopsin	 is	 required	 for	 non-image-forming	
photic	responses	in	blind	mice.	Science	(New	York,	N.Y.)	301,	525-527.	

	110	

Passamaneck,	 Y.J.,	 Furchheim,	 N.,	 Hejnol,	 A.,	 Martindale,	 M.Q.,	 and	 Luter,	 C.	
(2011).	Ciliary	photoreceptors	in	the	cerebral	eyes	of	a	protostome	larva.	
Evodevo	2.	

Passamaneck,	 Y.J.,	 and	 Martindale,	 M.Q.	 (2013).	 Evidence	 for	 a	
phototransduction	cascade	 in	an	early	brachiopod	embryo.	 Integr	Comp	
Biol	53,	17-26.	

Pawlik,	J.R.	(1986).	Chemical	Induction	of	Larval	Settlement	and	Metamorphosis	
in	 the	 Reef-Building	 Tube	 Worm	 Phragmatopoma-Californica	
(Sabellariidae,	Polychaeta).	Mar	Biol	91,	59-68.	

Pawlik,	 J.R.	 (1992).	 Chemical	 Ecology	 of	 the	 Settlement	 of	 Benthic	 Marine-
Invertebrates.	Oceanogr	Mar	Biol	30,	273-335.	

Perez-Cerezales,	S.,	Boryshpolets,	S.,	Afanzar,	O.,	Brandis,	A.,	Nevo,	R.,	Kiss,	V.,	and	
Eisenbach,	 M.	 (2015).	 Involvement	 of	 opsins	 in	 mammalian	 sperm	
thermotaxis.	Sci	Rep-Uk	5.	

Petraitis,	 P.S.	 (1990).	 Direct	 and	 Indirect	 Effects	 of	 Predation,	 Herbivory	 and	
Surface	Rugosity	on	Mussel	Recruitment.	Oecologia	83,	405-413.	

Pitt,	 G.A.,	 Collins,	 F.D.,	Morton,	 R.A.,	 and	 Stok,	 P.	 (1955).	 Studies	 on	 rhodopsin.	
VIII.	 Retinylidenemethylamine,	 an	 indicator	 yellow	 analogue.	 Biochem	 J	
59,	122-128.	

Plachetzki,	 D.C.,	 Fong,	 C.R.,	 and	 Oakley,	 T.H.	 (2010).	 The	 evolution	 of	
phototransduction	 from	an	 ancestral	 cyclic	 nucleotide	 gated	pathway.	 P	
Roy	Soc	B-Biol	Sci	277,	1963-1969.	

Porter,	 M.L.,	 Blasic,	 J.R.,	 Bok,	 M.J.,	 Cameron,	 E.G.,	 Pringle,	 T.,	 Cronin,	 T.W.,	 and	
Robinson,	P.R.	 (2012).	 Shedding	new	 light	 on	opsin	 evolution.	Proc	Biol	
Sci	279,	3-14.	

Price,	N.	 (2010).	Habitat	selection,	 facilitation,	and	biotic	settlement	cues	affect	
distribution	 and	 performance	 of	 coral	 recruits	 in	 French	 Polynesia.	
Oecologia	163,	747-758.	

Provencio,	 I.,	 Jiang,	 G.S.,	 De	 Grip,	 W.J.,	 Hayes,	 W.P.,	 and	 Rollag,	 M.D.	 (1998).	
Melanopsin:	 An	 opsin	 in	melanophores,	 brain,	 and	 eye.	 P	 Natl	 Acad	 Sci	
USA	95,	340-345.	

Provencio,	 I.,	 Rodriguez,	 I.R.,	 Jiang,	 G.S.,	 Hayes,	W.P.,	 Moreira,	 E.F.,	 and	 Rollag,	
M.D.	 (2000).	 A	 novel	 human	 opsin	 in	 the	 inner	 retina.	 Journal	 of	
Neuroscience	20,	600-605.	

Prud'homme,	B.,	de	Rosa,	R.,	Arendt,	D.,	Julien,	J.F.,	Pajaziti,	R.,	Dorresteijn,	A.W.C.,	
Adoutte,	 A.,	 Wittbrodt,	 J.,	 and	 Balavoine,	 G.	 (2003).	 Arthropod-like	
expression	patterns	of	engrailed	and	wingless	 in	 the	annelid	Platynereis	
dumerilii	suggest	a	role	in	segment	formation.	Current	Biology	13,	1876-
1881.	

Purschke,	G.	(2005).	Sense	organs	in	polychaetes	(Annelida).	Hydrobiologia	535,	
53-78.	

Quick,	 K.,	 Zhao,	 J.,	 Eijkelkamp,	 N.,	 Linley,	 J.E.,	 Rugiero,	 F.,	 Cox,	 J.J.,	 Raouf,	 R.,	
Gringhuis,	M.,	Sexton,	J.E.,	Abramowitz,	J.,	Taylor,	R.,	Forge,	A.,	Ashmore,	J.,	
Kirkwood,	 N.,	 Kros,	 C.J.,	 Richardson,	 G.P.,	 Freichel,	 M.,	 Flockerzi,	 V.,	
Birnbaumer,	L.,	and	Wood,	J.N.	(2012).	TRPC3	and	TRPC6	are	essential	for	
normal	mechanotransduction	in	subsets	of	sensory	neurons	and	cochlear	
hair	cells.	Open	Biol	2.	

Raible,	F.,	Tessmar-Raible,	K.,	Osoegawa,	K.,	Wincker,	P.,	 Jubin,	C.,	Balavoine,	G.,	
Ferrier,	D.,	Benes,	V.,	de	Jong,	P.,	Weissenbach,	J.,	Bork,	P.,	and	Arendt,	D.	

	 111	

(2005).	 Vertebrate-type	 intron-rich	 genes	 in	 the	 marine	 annelid	
Platynereis	dumerilii.	Science	(New	York,	N.Y.)	310,	1325-1326.	

Raimondi,	 P.T.	 (1990).	 Patterns,	 Mechanisms,	 Consequences	 of	 Variability	 in	
Settlement	 and	 Recruitment	 of	 an	 Intertidal	 Barnacle.	 Ecol	 Monogr	 60,	
283-309.	

Ramanathan,	 N.,	 Simakov,	 O.,	 Merten,	 C.A.,	 and	 Arendt,	 D.	 (2015).	 Quantifying	
Preferences	 and	 Responsiveness	 of	 Marine	 Zooplankton	 to	 Changing	
Environmental	Conditions	using	Microfluidics.	Plos	One	10.	

Ramirez,	M.D.,	 Pairett,	 A.N.,	 Pankey,	M.S.,	 Serb,	 J.M.,	 Speiser,	 D.I.,	 Swafford,	 A.J.,	
and	Oakley,	T.H.	(2016).	The	last	common	ancestor	of	bilaterian	animals	
possessed	at	least	7	opsins.	biorXiv.	

Ranade,	M.R.	 (1957).	Reversal	of	Phototaxis	 in	 the	Larvae	of	Polydora-Pulchra,	
Carazzi	(Polychaeta,	Spionidae).	Nature	179,	151-152.	

Randel,	 N.,	 Asadulina,	 A.,	 Bezares-Calderón,	 L.A.,	 Verasztó,	 C.,	 Williams,	 E.A.,	
Conzelmann,	M.,	Shahidi,	R.,	and	Jékely,	G.	(2014).	Neuronal	connectome	
of	a	sensory-motor	circuit	for	visual	navigation.	Elife	3.	

Randel,	 N.,	 Bezares-Calderón,	 L.A.,	 Gühmann,	 M.,	 Shahidi,	 R.,	 and	 Jékely,	 G.	
(2013).	 Expression	 dynamics	 and	 protein	 localization	 of	 rhabdomeric	
opsins	in	Platynereis	larvae.	Integr	Comp	Biol	53,	7-16.	

Randel,	 N.,	 Shahidi,	 R.,	 Verasztó,	 C.,	 Bezares-Calderón,	 L.A.,	 Schmidt,	 S.,	 and	
Jékely,	 G.	 (2015).	 Inter-individual	 stereotypy	 of	 the	 Platynereis	 larval	
visual	connectome.	Elife	4,	e08069.	

Read,	G.	(2015).	Nereis	dumerilii	Audouin	&	Milne	Edwards,	1834.	By:	Read,	G.;	
Fauchald,	K.	 (Ed.)	 (2015)	World	Polychaeta	database.	Accessed	through:	
World	 Register	 of	 Marine	 Species	 at	
http://www.marinespecies.org/aphia.php?p=taxdetails&id=339282	 on	
2017-02-09.	

Rebscher,	N.,	Zelada-Gonzalez,	F.,	Banisch,	T.U.,	Raible,	F.,	and	Arendt,	D.	(2007).	
Vasa	unveils	a	common	origin	of	germ	cells	and	of	somatic	stem	cells	from	
the	 posterior	 growth	 zone	 in	 the	 polychaete	 Platynereis	 dumerilii.	 Dev	
Biol	306,	599-611.	

Reuter,	T.E.,	White,	R.H.,	and	Wald,	G.	(1971).	Rhodopsin	and	porphyropsin	fields	
in	the	adult	bullfrog	retina.	J	Gen	Physiol	58,	351-371.	

Rhode,	 B.	 (1992).	 Development	 and	 Differentiation	 of	 the	 Eye	 in	 Platynereis-
Dumerilii	(Annelida,	Polychaeta).	J	Morphol	212,	71-85.	

Rhode,	 S.C.,	 Pawlowski,	 M.,	 and	 Tollrian,	 R.	 (2001).	 The	 impact	 of	 ultraviolet	
radiation	 on	 the	 vertical	 distribution	 of	 zooplankton	 of	 the	 genus	
Daphnia.	Nature	412,	69-72.	

Ricevuto,	E.,	Kroeker,	K.J.,	Ferrigno,	F.,	Micheli,	F.,	and	Gambi,	M.C.	(2014).	Spatio-
temporal	 variability	 of	 polychaete	 colonization	 at	 volcanic	 CO2	 vents	
indicates	high	tolerance	to	ocean	acidification.	Mar	Biol	161,	2909-2919.	

Rittschof,	D.,	Forward,	R.B.,	Cannon,	G.,	Welch,	J.M.,	McClary,	M.,	Holm,	E.R.,	Clare,	
A.S.,	Conova,	S.,	McKelvey,	L.M.,	Bryan,	P.,	and	Van	Dover,	C.L.	(1998).	Cues	
and	 context:	 Larval	 responses	 to	 physical	 and	 chemical	 cues.	 Biofouling	
12,	31-44.	

Rodriguez,	 S.R.,	 Ojeda,	 F.P.,	 and	 Inestrosa,	 N.C.	 (1993).	 Settlement	 of	 Benthic	
Marine-Invertebrates.	Mar	Ecol	Prog	Ser	97,	193-207.	

	112	

Sakai,	 K.,	 Imamoto,	 Y.,	 Su,	 C.Y.,	 Tsukamoto,	 H.,	 Yamashita,	 T.,	 Terakita,	 A.,	 Yau,	
K.W.,	 and	 Shichida,	 Y.	 (2012).	 Photochemical	 Nature	 of	 Parietopsin.	
Biochemistry-Us	51,	1933-1941.	

Sakai,	K.,	Yamashita,	T.,	Imamoto,	Y.,	and	Shichida,	Y.	(2015).	Diversity	of	Active	
States	in	TMT	Opsins.	Plos	One	10.	

Sato,	K.,	 Yamashita,	 T.,	Ohuchi,	H.,	 and	 Shichida,	 Y.	 (2011).	Vertebrate	Ancient-
Long	 Opsin	 Has	 Molecular	 Properties	 Intermediate	 between	 Those	 of	
Vertebrate	and	Invertebrate	Visual	Pigments.	Biochemistry-Us	50,	10484-
10490.	

Sato,	M.,	 Ishikura,	 R.,	 and	 Oshima,	 N.	 (2004).	 Direct	 effects	 of	 visible	 and	 UVA	
light	on	pigment	migration	in	erythrophores	of	Nile	tilapia.	Pigm	Cell	Res	
17,	519-524.	

Sexton,	J.E.,	Desmonds,	T.,	Quick,	K.,	Taylor,	R.,	Abramowitz,	J.,	Forge,	A.,	Kros,	C.J.,	
Birnbaumer,	L.,	and	Wood,	J.N.	(2016).	The	contribution	of	TRPC1,	TRPC3,	
TRPC5	and	TRPC6	to	touch	and	hearing.	Neurosci	Lett	610,	36-42.	

Shahidi,	 R.,	Williams,	 E.A.,	 Conzelmann,	M.,	 Asadulina,	A.,	 Verasztó,	 C.,	 Jasek,	 S.,	
Bezares-Calderón,	 L.A.,	 and	 Jékely,	 G.	 (2015).	 A	 serial	 multiplex	
immunogold	 labeling	 method	 for	 identifying	 peptidergic	 neurons	 in	
connectomes.	Elife	4.	

Shanks,	 A.L.	 (2009).	 Pelagic	 Larval	 Duration	 and	 Dispersal	 Distance	 Revisited.	
Biol	Bull	216,	373-385.	

Sharp,	D.T.,	and	Gray,	I.E.	(1962).	Studies	on	Factors	Affecting	Local-Distribution	
of	 Two	 Sea-Urchins,	 Arbacia-Punctulata	 and	 Lytechinus-Variegatus.	
Ecology	43,	309-&.	

Shen,	D.W.,	Jiang,	M.S.,	Hao,	W.S.,	Tao,	L.,	Salazar,	M.,	and	Fong,	H.K.W.	(1994).	A	
Human	 Opsin-Related	 Gene	 That	 Encodes	 a	 Retinaldehyde-Binding	
Protein.	Biochemistry-Us	33,	13117-13125.	

Shen,	W.L.,	 Kwon,	 Y.,	 Adegbola,	 A.A.,	 Luo,	 J.J.,	 Chess,	 A.,	 and	Montell,	 C.	 (2011).	
Function	 of	 Rhodopsin	 in	 Temperature	 Discrimination	 in	 Drosophila.	
Science	(New	York,	N.Y.)	331,	1333-1336.	

Shichida,	 Y.,	 and	 Matsuyama,	 T.	 (2009).	 Evolution	 of	 opsins	 and	
phototransduction.	Philos	T	R	Soc	B	364,	2881-2895.	

Shirzad-Wasei,	 N.,	 and	 DeGrip,	 W.J.	 (2016).	 Heterologous	 expression	 of	
melanopsin:	Present,	problems	and	prospects.	Prog	Retin	Eye	Res	52,	1-
21.	

Sikka,	G.,	Hussmann,	G.P.,	Pandey,	D.,	Cao,	S.Y.,	Hori,	D.,	Park,	J.T.,	Steppan,	J.,	Kim,	
J.H.,	 Barodka,	 V.,	 Myers,	 A.C.,	 Santhanam,	 L.,	 Nyhan,	 D.,	 Halushka,	 M.K.,	
Koehler,	 R.C.,	 Snyder,	 S.H.,	 Shimoda,	 L.A.,	 and	 Berkowitz,	 D.E.	 (2014).	
Melanopsin	mediates	 light-dependent	 relaxation	 in	blood	vessels.	P	Natl	
Acad	Sci	USA	111,	17977-17982.	

Simakov,	 O.,	 Larsson,	 T.A.,	 and	 Arendt,	 D.	 (2013).	 Linking	 micro-	 and	 macro-
evolution	 at	 the	 cell	 type	 level:	 a	 view	 from	 the	 lophotrochozoan	
Platynereis	dumerilii.	Brief	Funct	Genomics	12,	430-439.	

Solessio,	E.,	and	Engbretson,	G.A.	(1993).	Antagonistic	Chromatic	Mechanisms	in	
Photoreceptors	of	the	Parietal	Eye	of	Lizards.	Nature	364,	442-445.	

Soni,	 B.G.,	 and	 Foster,	 R.G.	 (1997).	 A	 novel	 and	 ancient	 vertebrate	 opsin.	 Febs	
Letters	406,	279-283.	

	 113	

Spassova,	 M.A.,	 Hewavitharana,	 T.,	 Xu,	 W.,	 Soboloff,	 J.,	 and	 Gill,	 D.L.	 (2006).	 A	
common	mechanism	underlies	stretch	activation	and	receptor	activation	
of	TRPC6	channels.	P	Natl	Acad	Sci	USA	103,	16586-16591.	

Storz,	 U.C.,	 and	 Paul,	 R.J.	 (1998).	 Phototaxis	 in	 waterfleas	 (Daphnia	magna)	 is	
differently	influenced	by	visible	and	UV	light.	J	Comp	Physiol	A	183.	

Su,	C.Y.,	Luo,	D.G.,	Terakita,	A.,	Shichida,	Y.,	Liao,	H.W.,	Kazmi,	M.A.,	Sakmar,	T.P.,	
and	 Yau,	 K.W.	 (2006).	 Parietal-eye	 phototransduction	 components	 and	
their	 potential	 evolutionary	 implications.	 Science	 (New	 York,	 N.Y.)	 311,	
1617-1621.	

Suga,	H.,	Schmid,	V.,	and	Gehring,	W.J.	(2008).	Evolution	and	functional	diversity	
of	jellyfish	opsins.	Current	Biology	18,	51-55.	

Sun,	 H.,	 Gilbert,	 D.J.,	 Copeland,	 N.G.,	 Jenkins,	 N.A.,	 and	 Nathans,	 J.	 (1997).	
Peropsin,	 a	 novel	 visual	 pigment-like	 protein	 located	 in	 the	 apical	
microvilli	of	the	retinal	pigment	epithelium.	P	Natl	Acad	Sci	USA	94,	9893-
9898.	

Surugiu,	 V.,	 and	 Feunteun,	 M.	 (2008).	 The	 structure	 and	 distribution	 of	
polychaete	populations	influenced	by	sewage	from	the	Romanian	Coast	of	
the	 Black	 Sea.	 Analele	 Ştiinţifice	 ale	 Universităţii	 „Al.	 I.	 Cuza”	 Iaşi,	 s.	
Biologie	animală	LIV.	

Szikra,	T.,	Trenholm,	S.,	Drinnenberg,	A.,	Juttner,	J.,	Raics,	Z.,	Farrow,	K.,	Biel,	M.,	
Awatramani,	 G.,	 Clark,	 D.A.,	 Sahel,	 J.A.,	 da	 Silveira,	 R.A.,	 and	 Roska,	 B.	
(2014).	Rods	in	daylight	act	as	relay	cells	 for	cone-driven	horizontal	cell	
mediated	surround	inhibition.	Nat	Neurosci	17,	1728-1735.	

Tarttelin,	E.E.,	Bellingham,	J.,	Hankins,	M.W.,	Foster,	R.G.,	and	Lucas,	R.J.	(2003).	
Neuropsin	 (Opn5):	 a	novel	opsin	 identified	 in	mammalian	neural	 tissue.	
Febs	Letters	554,	410-416.	

Terakita,	A.	(2005).	The	opsins.	Genome	Biol	6,	213.	
Terakita,	A.,	Koyanagi,	M.,	Tsukamoto,	H.,	Yamashita,	T.,	Miyata,	T.,	and	Shichida,	

Y.	 (2004).	 Counterion	 displacement	 in	 the	 molecular	 evolution	 of	 the	
rhodopsin	family	(vol	11,	pg	284,	2004).	Nat	Struct	Mol	Biol	11,	384-384.	

Tessmar-Raible,	 K.,	 and	 Arendt,	 D.	 (2003).	 Emerging	 systems:	 between	
vertebrates	and	arthropods,	the	Lophotrochozoa.	Curr	Opin	Genet	Dev	13,	
331-340.	

Tessmar-Raible,	K.,	Raible,	F.,	Christodoulou,	F.,	Guy,	K.,	Rembold,	M.,	Hausen,	H.,	
and	 Arendt,	 D.	 (2007).	 Conserved	 sensory-neurosecretory	 cell	 types	 in	
annelid	and	fish	forebrain:	Insights	into	hypothalamus	evolution.	Cell	129,	
1389-1400.	

Tessmar-Raible,	K.,	Steinmetz,	P.R.,	Snyman,	H.,	Hassel,	M.,	and	Arendt,	D.	(2005).	
Fluorescent	 two-color	whole	mount	 in	 situ	 hybridization	 in	 Platynereis	
dumerilii	 (Polychaeta,	 Annelida),	 an	 emerging	 marine	 molecular	 model	
for	evolution	and	development.	Biotechniques	39,	460,	462,	464.	

Thorson,	G.	(1964).	Light	as	an	ecological	factor	in	the	dispersal	and	settlement	
of	larvae	of	marine	bottom	invertebrates.	Ophelia	1,	167-208.	

Tomer,	 R.,	 Denes,	 A.S.,	 Tessmar-Raible,	 K.,	 and	 Arendt,	 D.	 (2010).	 Profiling	 by	
Image	Registration	Reveals	Common	Origin	of	Annelid	Mushroom	Bodies	
and	Vertebrate	Pallium.	Cell	142,	800-809.	

Tosches,	M.A.	(2013).	Development	and	function	of	brain	photoreceptors	in	the	
annelid	 Platynereis	 dumerilii.In	 Combined	 Faculties	 for	 the	 Natural	
Sciences	and	for	Mathematics	(Ruperto-Carola	University	of	Heidelberg).	

	114	

Tosches,	 M.A.,	 Bucher,	 D.,	 Vopalensky,	 P.,	 and	 Arendt,	 D.	 (2014).	 Melatonin	
Signaling	Controls	Circadian	Swimming	Behavior	in	Marine	Zooplankton.	
Cell	159,	46-57.	

Townson,	S.M.,	Chang,	B.S.,	Salcedo,	E.,	Chadwell,	L.V.,	Pierce,	N.E.,	and	Britt,	S.G.	
(1998).	 Honeybee	 blue-	 and	 ultraviolet-sensitive	 opsins:	 cloning,	
heterologous	 expression	 in	 Drosophila,	 and	 physiological	
characterization.	The	 Journal	of	neuroscience	 :	 the	official	 journal	of	 the	
Society	for	Neuroscience	18,	2412-2422.	

Tsuda,	 M.,	 Sakurai,	 D.,	 and	 Goda,	 M.	 (2003).	 Direct	 evidence	 for	 the	 role	 of	
pigment	cells	 in	 the	brain	of	ascidian	 larvae	by	 laser	ablation.	 J	Exp	Biol	
206,	1409-1417.	

Tsukamoto,	 H.,	 Terakita,	 A.,	 and	 Shichida,	 Y.	 (2005).	 A	 rhodopsin	 exhibiting	
binding	ability	 to	agonist	all-trans-retinal.	Proc	Natl	Acad	Sci	U	S	A	 102,	
6303-6308.	

Tu,	 D.C.,	 Zhang,	 D.Y.,	 Demas,	 J.,	 Slutsky,	 E.B.,	 Provencio,	 I.,	 Holy,	 T.E.,	 and	 Van	
Gelder,	R.N.	(2005).	Physiologic	diversity	and	development	of	intrinsically	
photosensitive	retinal	ganglion	cells.	Neuron	48,	987-999.	

Valero-Gracia,	A.,	Petrone,	L.,	Oliveri,	P.,	Nilsson,	D.-E.,	and	Arnone,	M.I.	 (2016).	
Non-directional	 photoreceptors	 in	 the	 pluteus	 of	 Strongylocentrotus	
purpuratus.	Frontiers	in	Ecology	and	Evolution	4.	

Vasudevan,	S.,	Peltz,	S.W.,	and	Wilusz,	C.J.	(2002).	Non-stop	decay	-	a	new	mRNA	
surveillance	pathway.	Bioessays	24,	785-788.	

Veedin-Rajan,	 V.B.,	 Fischer,	 R.M.,	 Raible,	 F.,	 and	 Tessmar-Raible,	 K.	 (2013).	
Conditional	 and	Specific	Cell	Ablation	 in	 the	Marine	Annelid	Platynereis	
dumerilii.	Plos	One	8.	

Velarde,	 R.A.,	 Sauer,	 C.D.,	 Walden,	 K.K.O.,	 Fahrbach,	 S.E.,	 and	 Robertson,	 H.M.	
(2005).	 Pteropsin:	 A	 vertebrate-like	 non-visual	 opsin	 expressed	 in	 the	
honey	bee	brain.	Insect	Biochem	Molec	35,	1367-1377.	

Verasztó,	C.,	Ueda,	N.,	Bezares-Calderón,	L.A.,	Panzera,	A.,	Williams,	E.A.,	Shahidi,	
R.,	 and	 Jékely,	 G.	 (2017).	 Ciliomotor	 circuitry	 underlying	 whole-body	
coordination	of	ciliary	activity	in	the	Platynereis	larva.	bioRxiv.	

Vigh,	B.,	Manzano,	M.J.,	Zadori,	A.,	Frank,	C.L.,	Lukats,	A.,	Rohlich,	P.,	Szel,	A.,	and	
David,	 C.	 (2002).	 Nonvisual	 photoreceptors	 of	 the	 deep	 brain,	 pineal	
organs	and	retina.	Histol	Histopathol	17,	555-590.	

Visscher,	 J.P.	 (1927).	Nature	and	extent	of	 fouling	of	ships'	bottoms.	Bulletin	of	
the	Bureau	of	Fisheries	43,	193-252.	

Vopalensky,	 P.,	 Pergner,	 J.,	 Liegertova,	 M.,	 Benito-Gutierrez,	 E.,	 Arendt,	 D.,	 and	
Kozmik,	 Z.	 (2012).	 Molecular	 analysis	 of	 the	 amphioxus	 frontal	 eye	
unravels	 the	 evolutionary	 origin	 of	 the	 retina	 and	 pigment	 cells	 of	 the	
vertebrate	eye.	P	Natl	Acad	Sci	USA	109,	15383-15388.	

Wada,	 S.,	 Kawano-Yamashita,	 E.,	 Koyanagi,	 M.,	 and	 Terakita,	 A.	 (2012).	
Expression	of	UV-Sensitive	Parapinopsin	in	the	Iguana	Parietal	Eyes	and	
Its	Implication	in	UV-Sensitivity	in	Vertebrate	Pineal-Related	Organs.	Plos	
One	7.	

Wald,	G.	 (1934).	Carotenoids	and	the	vitamin	A	cycle	 in	vision.	Nature	134,	65-
65.	

Wald,	G.	(1935).	Pigments	of	the	bull	frog	retina.	Nature	136,	832-833.	
Wald,	G.	 (1937).	Visual	purple	 system	 in	 fresh-water	 fishes.	Nature	 139,	 1017-

1018.	

	 115	

Wald,	 G.	 (1968).	Molecular	 basis	 of	 visual	 excitation.	 Science	 (New	 York,	 N.Y.)	
162,	230-239.	

Wald,	G.,	and	Brown,	P.K.	(1958).	Human	Rhodopsin.	Am	J	Ophthalmol	45,	286-
286.	

Wald,	 G.,	 Brown,	 P.K.,	 Hubbard,	 R.,	 and	 Oroshnik,	 W.	 (1955).	 Hindered	 Cis	
Isomers	 of	 Vitamin	 a	 and	Retinene:	 The	 Structure	 of	 the	Neo-B	 Isomer.	
Proc	Natl	Acad	Sci	U	S	A	41,	438-451.	

Wald,	G.,	 and	Rayport,	 S.	 (1977).	Vision	 in	Annelid	Worms.	Science	 (New	York,	
N.Y.)	196,	1434-1439.	

Walters,	 L.J.,	 Hadfield,	 M.G.,	 and	 Smith,	 C.M.	 (1996).	 Waterborne	 chemical	
compounds	 in	 tropical	macroalgae:	Positive	and	negative	cues	 for	 larval	
settlement.	Mar	Biol	126,	383-393.	

Welch,	 J.M.,	 Rittschof,	 D.,	 Bullock,	 T.M.,	 and	 Forward,	 R.B.	 (1997).	 Effects	 of	
chemical	 cues	 on	 settlement	 behavior	 of	 blue	 crab	 Callinectes	 sapidus	
postlarvae.	Mar	Ecol	Prog	Ser	154,	143-153.	

Wess,	J.,	Nanavati,	S.,	Vogel,	Z.,	and	Maggio,	R.	(1993).	Functional-Role	of	Proline	
and	 Tryptophan	 Residues	 Highly	 Conserved	 among	 G-Protein-Coupled	
Receptors	Studied	by	Mutational	Analysis	of	the	M3-Muscarinic-Receptor.	
Embo	J	12,	331-338.	

Wicks,	 N.L.,	 Chan,	 J.W.,	 Najera,	 J.A.,	 Ciriello,	 J.M.,	 and	 Oancea,	 E.	 (2011).	 UVA	
Phototransduction	 Drives	 Early	 Melanin	 Synthesis	 in	 Human	
Melanocytes.	Current	Biology	21,	1906-1911.	

Wilkie,	T.M.,	Gilbert,	D.J.,	Olsen,	A.S.,	Chen,	X.N.,	Amatruda,	T.T.,	Korenberg,	 J.R.,	
Trask,	B.J.,	Dejong,	P.,	Reed,	R.R.,	Simon,	M.I.,	Jenkins,	N.A.,	and	Copeland,	
N.G.	 (1992).	 Evolution	 of	 the	 Mammalian	 G-Protein	 Alpha-Subunit	
Multigene	Family.	Nat	Genet	1,	85-91.	

Wilkie,	T.M.,	and	Yokoyama,	S.	(1994).	Evolution	of	the	G-Protein	Alpha-Subunit	
Multigene	Family.	Soc	Gen	Phy	49,	249-270.	

Williams,	 E.A.,	 Conzelmann,	 M.,	 and	 Jékely,	 G.	 (2015).	 Myoinhibitory	 peptide	
regulates	feeding	in	the	marine	annelid	Platynereis.	Frontiers	in	Zoology	
12.	

Williams,	G.B.	(1964).	The	Effect	of	Extracts	of	Fucus	Serratus	in	Promoting	the	
Settlement	of	Larvae	of	Spirorbis	Borealis	[Polychaeta].	 J	Mar	Biol	Assoc	
Uk	44,	397-414.	

Williams,	 G.B.	 (1965).	Observations	 on	 the	 behaviour	 of	 the	 planulae	 larvae	 of	
Clava	squamata.	J	Mar	Biol	Assoc	Uk	45,	257-273.	

Winet,	H.	(1973).	Wall	drag	on	free-moving	ciliated	micro-organisms.	J	Exp	Biol	
59,	753-766.	

Winet,	 H.,	 and	 Jahn,	 T.L.	 (1974).	 Geotaxis	 in	 protozoa	 I.	 A	 propulsion-gravity	
model	for	Tetrahymena	(Ciliata).	J	Theor	Biol	46,	449-465.	

Woodin,	S.A.	(1991).	Recruitment	of	Infauna	-	Positive	or	Negative	Cues.	Am	Zool	
31,	797-807.	

Woodin,	S.A.,	Lindsay,	S.M.,	and	Lincoln,	D.E.	(1997).	Biogenic	bromophenols	as	
negative	recruitment	cues.	Mar	Ecol	Prog	Ser	157,	303-306.	

Woodin,	 S.A.,	 Merz,	 R.A.,	 Thomas,	 F.M.,	 Edwards,	 D.R.,	 and	 Garcia,	 I.L.	 (2003).	
Chaetae	 and	 mechanical	 function:	 tools	 no	 Metazoan	 class	 should	 be	
without.	Hydrobiologia	496,	253-258.	

Xue,	T.,	Do,	M.T.,	Riccio,	A.,	Jiang,	Z.,	Hsieh,	J.,	Wang,	H.C.,	Merbs,	S.L.,	Welsbie,	D.S.,	
Yoshioka,	 T.,	Weissgerber,	 P.,	 Stolz,	 S.,	 Flockerzi,	 V.,	 Freichel,	M.,	 Simon,	

	116	

M.I.,	 Clapham,	 D.E.,	 and	 Yau,	 K.W.	 (2011).	 Melanopsin	 signalling	 in	
mammalian	iris	and	retina.	Nature	479,	67-73.	

Yamashita,	 T.,	 Ohuchi,	 H.,	 Tomonari,	 S.,	 Ikeda,	 K.,	 Sakai,	 K.,	 and	 Shichida,	 Y.	
(2010).	 Opn5	 is	 a	 UV-sensitive	 bistable	 pigment	 that	 couples	 with	 Gi	
subtype	of	G	protein.	P	Natl	Acad	Sci	USA	107,	22084-22089.	

Yau,	K.W.,	and	Hardie,	R.C.	(2009).	Phototransduction	Motifs	and	Variations.	Cell	
139,	246-264.	

Yokoyama,	 S.	 (2000).	 Phylogenetic	 analysis	 and	 experimental	 approaches	 to	
study	color	vision	in	vertebrates.	Method	Enzymol	315,	312-325.	

Yokoyama,	S.,	Radlwimmer,	F.B.,	 and	Blow,	N.S.	 (2000).	Ultraviolet	pigments	 in	
birds	evolved	from	violet	pigments	by	a	single	amino	acid	change.	P	Natl	
Acad	Sci	USA	97,	7366-7371.	

Zagarese,	 H.E.,	 and	 Williamson,	 C.E.	 (1994).	 Modeling	 the	 Impacts	 of	 UV-B	
Radiation	 on	 Ecological	 Interactions	 in	 Freshwater	 and	 Marine	
Ecosystems.	 In	 Stratospheric	 Ozone	 Depletion/UV-B	 Radiation	 in	 the	
Biosphere,	 R.H.	 Biggs,	 and	 M.E.B.	 Joyner,	 eds.	 (Springer	 Berlin	
Heidelberg),	pp.	315-328.	

Zantke,	 J.,	 Bannister,	 S.,	Rajan,	V.B.V.,	Raible,	 F.,	 and	Tessmar-Raible,	K.	 (2014).	
Genetic	and	Genomic	Tools	for	the	Marine	Annelid	Platynereis	dumerilii.	
Genetics	197,	19-31.	

Zantke,	 J.,	 Ishikawa-Fujiwara,	 T.,	 Arboleda,	 E.,	 Lohs,	 C.,	 Schipany,	 K.,	 Hallay,	 N.,	
Straw,	 A.D.,	 Todo,	 T.,	 and	 Tessmar-Raible,	 K.	 (2013).	 Circadian	 and	
Circalunar	Clock	Interactions	in	a	Marine	Annelid.	Cell	Rep	5,	99-113.	

Zeeck,	 E.,	 Harder,	 T.,	 and	 Beckmann,	 M.	 (1998).	 Uric	 acid:	 The	 sperm-release	
pheromone	of	 the	marine	polychaete	Platynereis	 dumerilii.	 J	 Chem	Ecol	
24,	13-22.	

Zelada-González,	Y.F.	(2004).	Germline	development	in	Platynereis	dumerilii	and	
its	connection	to	

embryonic	 patterning.In	 Combined	 Faculties	 for	 Natural	 Sciences	 and	 for	
Mathematics	(Heidelberg,	Germany,	Ruperto-Carola	University).	

Zerbino,	D.R.,	 and	Birney,	 E.	 (2008).	 Velvet:	 algorithms	 for	 de	 novo	 short	 read	
assembly	using	de	Bruijn	graphs.	Genome	Res	18,	821-829.	

Zuker,	C.S.	 (1996).	The	biology	of	vision	 in	Drosophila.	P	Natl	Acad	Sci	USA	93,	
571-576.	

	

	 117	

11 Appendix	
The	files	in	the	appendix	are	available	at:		
https://github.com/JekelyLab/PhDThesis_Martin_Guehmann.	

11.1 The	ImageJ	macros	for	larva	tracking	

Code	9:	The	ImageJ	macro	file	Horizontal-Track-Extractor.ijm	

///
// This file is best viewed with a monospaced font. //
///

///
// ImageJ macro to extract the tracks and the //
// distribution of the larvae from the raw videos. //
///

///
// Asks the user where the input video files are, and //
// into which directory the output files should go. //
// The user can give the input directory first and //
// then the output directory. Or the user can give a //
// text file that contains on each line an input //
// directory and an output directory separated by a //
// space, for batch processing. //
///
macro "Extract Tracks"
{
 if(getBoolean("Choose an input and output directory otherwise
give a text file containing a list of input and output directories"))
 {
 inputDir = getDirectory("Choose the input directory (where the
files are)");
 outputDir = getDirectory("Choose the output directory (where
the files should go)");
 extractTracks(inputDir, outputDir);
 }
 else
 {
 fileList = File.openDialog("Open a text file containing a list
of input and output directories");
 lines = split(File.openAsString(fileList), "\n");
 for(i = 0; i < lines.length; i++)
 {
 dirs = split(lines[i], " ");
 extractTracks(dirs[1], dirs[0]);
 }
 }
}

///
// Extracts the tracks from the videos that are all in //
// the folder inputDir via mTrack2. All files in the //
// folder inputDir must be video files that ImageJ can //
// read. Otherwise this macro aborts with an error //
// message. And will not analyze more videos. //

	118	

///
function extractTracks(inputDir, outputDir)
{
 // These three parameters can be adjusted
 // depending on video length and frame rate
 numFramesToProcess = 50; // Cut the video into pieces
of 50 frames
 startFrame = 1;
 lastFrame = numFramesToProcess;

 print (inputDir);
 print (outputDir);

 // Do not show all the calculation steps on the
 // ImageJ user interface, this saves time and memory.
 setBatchMode(true);

 // Get all the files in the input directory.
 list=getFileList(inputDir);
 Array.sort(list);
 print(list.length);

 for (k=0; k<list.length; k++)
 {
 print(list[k]);
 open(inputDir + list[k]);
 imageTitle = getTitle();
 imageTitle = replace(imageTitle, " ", "_"); // Replace spaces
by underscores to avoid problems with file writing

 run("8-bit");
 rename("video");

 // Cut the video into smaller parts and give each part an
index.
 // Start with 100 to avoid problems with file sorting
 m=100;
 while (nSlices > 1)
 {
 // Process the first n frames of the video so that
different points in time can be checked.
 nSlices
 run("Duplicate...", "title=stack duplicate range=" +
startFrame + "-" + lastFrame);
 selectWindow("stack");
 processImage();
 selectWindow("stack");
 threshold();

 createDistributionImage(m);
 trackParticles2(m);
 close();

 // Delete the first n frames of the video so that the
next n frames can be processed.
 selectWindow("video");
 if(nSlices > numFramesToProcess)
 {
 run("Slice Remover", "first=1 last=" +
numFramesToProcess + " increment=1");
 }

	 119	

 else
 {
 run("Slice Remover", "first=1 last=" + (nSlices-1)
+ " increment=1");
 }
 selectWindow("video");

 m++;
 }
 close();

 }

 setBatchMode(false);
}

///
// Creates an image of the distribution of the larvae //
// and saves it to a file in the text image format. //
///
function createDistributionImage(laneNumber)
{
 selectWindow("stack");
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 selectWindow("AVG_stack");

 outputFilename = imageTitle + "_lane_" + laneNumber
+"_vertical"+".text_image";
 fullPathResults = outputDir + outputFilename;
 saveAs("Text image", fullPathResults);
 close();
}

///
// Removes the background so that the moving larvae //
// are left as dot in the video that can be tracked. //
// These thing can be adjusted according to the //
// contrast in the video. //
///
function processImage()
{
 // Adjust the contrast
 run("Brightness/Contrast...");
 run("Enhance Contrast", "saturated=0.5");
 run("Apply LUT", "stack");
 run("Invert", "stack");

 // Subtract the average projection (Remove background)
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 imageCalculator("Subtract stack", "stack","AVG_stack");
 selectWindow("AVG_stack");
 close();
 selectWindow("stack");

 // Apply some filters
 run("Unsharp Mask...", "radius=20 mask=0.90 stack");
 run("Invert", "stack");

 run("Despeckle", "stack");

	120	

}

///
// Thresholds an 8 bit grayscale image, and converts //
// all pixel above the threshold to 255 (i.e. white). //
// Otherwise it converts all values to 0 (i.e. black). //
///
function threshold()
{
 setThreshold(0, 180);
 run("Convert to Mask", " ");
}

///
// Tracks the larvae with mTrack2, and writes the //
// output to a file, with .res extension. //
///
function trackParticles2(laneNumber)
{
 run("Clear Results");
 outputFilename = imageTitle + "_lane_" + laneNumber + ".res";
 fullPathResults = outputDir + outputFilename;
 run("MTrack2 ", "minimum=1 maximum=200 maximum_=3 minimum_=10
display save save=" + fullPathResults);

 run("Clear Results");
}

Code	10:	The	ImageJ	macro	file	Vertical-Track-Extractor.ijm	

///
// This file is best viewed with a monospaced font. //
///

///
// ImageJ macro to extract the tracks and the //
// distribution of the larvae from the raw videos. //
///

///
// Asks the user where the input video files are, and //
// into which directory the output files should go. //
// The user can give the input directory first and //
// then the output directory. Or the user can give a //
// text file that contains on each line an input //
// directory and an output directory separated by a //
// space, for batch processing. //
///
macro "Extract Tracks"
{
 if(getBoolean("Choose an input and output directory otherwise
give a text file containing a list of input and output directories"))
 {
 inputDir = getDirectory("Choose the input directory (where the
files are)");
 outputDir = getDirectory("Choose the output directory (where
the files should go)");
 extractTracks(inputDir, outputDir);
 }
 else

	 121	

 {
 fileList = File.openDialog("Open a text file containing a list
of input and output directories");
 lines = split(File.openAsString(fileList), "\n");
 for(i = 0; i < lines.length; i++)
 {
 dirs = split(lines[i], " ");
 extractTracks(dirs[1], dirs[0]);
 }
 }
}

///
// Extracts the tracks from the videos that are all in //
// the folder inputDir via mTrack2. All files in the //
// folder inputDir must be video files that ImageJ can //
// read. Otherwise this macro aborts with an error //
// message. And will not analyze more videos. //
///
function extractTracks(inputDir, outputDir)
{
 // These three parameters can be adjusted
 // depending on video length and frame rate
 numFramesToProcess = 452; // 30s with 15fps
 startFrame = 12;
 lastFrame = numFramesToProcess - 15;

 print (inputDir);
 print (outputDir);

 // Do not show all the calculation steps on the
 // ImageJ user interface, this saves time and memory.
 setBatchMode(true);

 // Get all the files in the input directory.
 list=getFileList(inputDir);
 Array.sort(list);
 print(list.length);

 // Track the number of files that have been read
 files = 0;

 for (k=0; k<list.length; k++)
 {
 print(list[k]);
 open(inputDir + list[k]);
 imageTitle = getTitle();
 imageTitle = replace(imageTitle, " ", "_"); // Replace spaces
by underscores to avoid problems with file writing

 // Remove the first n frames, to synchronize with the
phototaxis protocol start.
 // Has to be adjusted for each video.
 // Can be done for several input files individually.
 // This is needed to synchronize the start of the AxioVision
 // protocol and the start of the video, which was started a few
 // seconds before the start of the protocol.
 // For now all set to 0.
 if(files == 0)
 {
 run("Slice Remover", "first=1 last=0 increment=1");

	122	

 }
 else if(files == 1)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 2)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 3)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 4)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }

 files++;

 run("8-bit");
 rename("video");

 // Cut the video into smaller parts and give each part an
index.
 // Start with 100 to avoid problems with file sorting
 m=100;
 while (nSlices > 1)
 {
 // Process the first n frames of the video so that
different points in time can be checked.
 nSlices
 run("Duplicate...", "title=stack duplicate range=" +
startFrame + "-" + lastFrame);
 selectWindow("stack");
 processImage();
 selectWindow("stack");
 threshold();

 createDistributionImage(m);
 trackParticles2(m);
 close();

 // Delete the first n frames of the video so that the
next n frames can be processed.
 selectWindow("video");
 if(nSlices > numFramesToProcess)
 {
 run("Slice Remover", "first=1 last=" +
numFramesToProcess + " increment=1");
 }
 else
 {
 run("Slice Remover", "first=1 last=" + (nSlices-1)
+ " increment=1");
 }
 selectWindow("video");

	 123	

 m++;
 }
 close();

 }

 setBatchMode(false);
 print("End");
}

///
// Creates an image of the distribution of the larvae //
// and saves it to a file in the text image format. //
///
function createDistributionImage(laneNumber)
{
 selectWindow("stack");
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 selectWindow("AVG_stack");

 outputFilename = imageTitle + "_lane_" + laneNumber
+"_vertical"+".text_image";
 fullPathResults = outputDir + outputFilename;
 saveAs("Text image", fullPathResults);
 close();
}

///
// Removes the background so that the moving larvae //
// are left as dot in the video that can be tracked. //
// These thing can be adjusted according to the //
// contrast in the video. //
///
function processImage()
{
 // Subtract the average projection (Remove background)
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 imageCalculator("Subtract stack", "stack","AVG_stack");
 selectWindow("AVG_stack");
 close();
 selectWindow("stack");

 // Apply some filters
 run("Unsharp Mask...", "radius=20 mask=0.90 stack");
 run("Invert", "stack");

 // Adjust the contrast
 run("Brightness/Contrast...");
 run("Enhance Contrast", "saturated=0.5");
 run("Apply LUT", "stack");
}

///
// Thresholds an 8 bit grayscale image, and converts //
// all pixel above the threshold to 255 (i.e. white). //
// Otherwise it converts all values to 0 (i.e. black). //
///
function threshold()

	124	

{
 setThreshold(0, 200);
 run("Convert to Mask", " ");
}

///
// Tracks the larvae with mTrack2, and writes the //
// output to a file, with .res extension. //
///
function trackParticles2(laneNumber)
{
 run("Clear Results");
 outputFilename = imageTitle + "_lane_" + laneNumber + ".res";
 fullPathResults = outputDir + outputFilename;
 run("MTrack2 ", "minimum=2 maximum=100 maximum_=3 minimum_=50
display save save=" + fullPathResults);

 run("Clear Results");
}

Code	11:	The	ImageJ	macro	file	Vertical-Cuvette-Track-Extractor.ijm	

///
// This file is best viewed with a monospaced font. //
///

///
// ImageJ macro to extract the tracks and the //
// distribution of the larvae from the raw videos. //
///

///
// Asks the user where the input video files are, and //
// into which directory the output files should go. //
// The user can give the input directory first and //
// then the output directory. Or the user can give a //
// text file that contains on each line an input //
// directory and an output directory seperated by a //
// space, for batch processing. //
///
macro "Extract Tracks"
{
 if(getBoolean("Choose an input and output directory otherwise
give a text file containing a list of input and output directories"))
 {
 inputDir = getDirectory("Choose the input directory (where the
files are)");
 outputDir = getDirectory("Choose the output directory (where
the files should go)");
 extractTracks(inputDir, outputDir);
 }
 else
 {
 fileList = File.openDialog("Open a text file containing a list
of input and output directories");
 lines = split(File.openAsString(fileList), "\n");
 for(i = 0; i < lines.length; i++)
 {
 dirs = split(lines[i], " ");
 extractTracks(dirs[0], dirs[1]);

	 125	

 }
 }
}

///
// Extracts the tracks from the videos that are all in //
// the folder inputDir via mTrack2. All files in the //
// folder inputDir must be video files that ImageJ can //
// read. Otherwise this macro aborts with an error //
// message. And will not analyse more videos. //
///
function extractTracks(inputDir, outputDir)
{
 // These three parameters can be adjusted
 // depending on video length and frame rate
 numFramesToProcess = 240; // 15s with 16fps
 startFrame = 1;
 lastFrame = numFramesToProcess;

 print (inputDir);
 print (outputDir);

 // Do not show all the calculation steps on the
 // ImageJ user interface, this saves time and memory.
 setBatchMode(true);

 // Get all the files in the input directory.
 list=getFileList(inputDir);
 Array.sort(list);
 print(list.length);

 // Track the number of files that have been read
 files = 0;

 for (k=0; k<list.length; k++)
 {
 print(list[k]);
 open(inputDir + list[k]);
 imageTitle = getTitle();
 imageTitle = replace(imageTitle, " ", "_"); // Replace spaces
by underscores to avoid problems with file writing

 // Remove the first n frames, to synchronize with the
phototaxis protocol start.
 // Has to be adjusted for each video.
 // Can be done for several input files individually.
 // This is needed to synchronize the start of the AxioVision
 // protocol and the start of the video, which was started a few
 // seconds before the start of the protocol.
 // For now all set to 0.
 if(files == 0)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 1)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 2)
 {
 run("Slice Remover", "first=1 last=0 increment=1");

	126	

 }
 else if(files == 3)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else if(files == 4)
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }
 else
 {
 run("Slice Remover", "first=1 last=0 increment=1");
 }

 files++;

 run("8-bit");
 rename("video");

 // Cut the video into smaller parts and give each part an
index.
 // Start with 100 to aviod problems with file sorting
 m=100;
 while (nSlices > 1)
 {
 // Process the first n frames of the video so that
different points in time can be checked.
 nSlices
 run("Duplicate...", "title=stack duplicate range=" +
startFrame + "-" + lastFrame);
 selectWindow("stack");
 processImage();
 selectWindow("stack");
 threshold();

 createDistributionImage(m);
 trackParticles2(m);
 close();

 // Delete the first n frames of the video so that the
next n frames can be processed.
 selectWindow("video");
 if(nSlices > numFramesToProcess)
 {
 run("Slice Remover", "first=1 last=" +
numFramesToProcess + " increment=1");
 }
 else
 {
 run("Slice Remover", "first=1 last=" + (nSlices-1)
+ " increment=1");
 }
 selectWindow("video");

 m++;
 }
 close();

 }

 setBatchMode(false);

	 127	

 print ("End");
}

///
// Creates an image of the distribution of the larvae //
// and saves it to a file in the text image format. //
///
function createDistributionImage(laneNumber)
{
 selectWindow("stack");
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 selectWindow("AVG_stack");

 outputFilename= imageTitle + "_lane_" + laneNumber
+"_vertical"+".text_image";
 fullPathResults = outputDir + outputFilename;
 saveAs("Text image", fullPathResults);
 close();
}

///
// Removes the background so that the moving larvae //
// are left as dot in the video that can be tracked. //
// These thing can be adjusted according to the //
// contrast in the video. //
///
function processImage()
{
 // Subtract the average projection (Remove background)
 run("Z Project...", "start=1 stop=-1 projection=[Average
Intensity]");
 imageCalculator("Subtract stack", "stack","AVG_stack");
 selectWindow("AVG_stack");
 close();
 selectWindow("stack");

 // Apply some filters
 run("Invert", "stack");

 // Adjust the contrast
 run("Max...", "value=253 stack");
 run("Enhance Contrast", "saturated=0.35");
 run("Apply LUT", "stack");
 run("Remove Outliers...", "radius=4 threshold=0 which=Dark
stack");
}

///
// Thresholds an 8 bit grayscale image, and converts //
// all pixel above the threshold to 255 (i.e. white). //
// Otherwise it converts all values to 0 (i.e. black). //
///
function threshold()
{
 setThreshold(0, 230);
 run("Convert to Mask", " ");
}

///
// Tracks the larvae with mTrack2, and writes the //

	128	

// output to a file, with .res extension. //
///
function trackParticles2(laneNumber)
{
 run("Clear Results");
 outputFilename = imageTitle + "_lane_" + laneNumber + ".res";
 fullPathResults = outputDir + outputFilename;
 run("MTrack2 ", "minimum=3 maximum=100 maximum_=15 minimum_=15
display save save=" + fullPathResults);

 run("Clear Results");
}

11.2 The	Perl	files	for	track	analysis	
Code	12:	The	Perl	file	TrackProcessor.pl	

#!/usr/bin/perl -w

This script takes as input two files from the ImageJ #
macro. The first file contains the coordinates for #
each track: x, y, and time encoded as frame number. #
The second file contains the vertical distribution #
of the larvae in text-image format. #
The second file is implicitly given by the name of #
the first file, which is appended by #
_vertical.text_image.txt to form the name of the #
second file. #
This script takes additional input parameters, see #
below or start the script with insufficient input #
parameters. #
This script generates several output file. One is a #
larval distribution image as png file. It also #
generates a track plot of the single tracks, which #
is useful for debugging and trouble shooting, for #
more details see below where the code generates the #
image. #
Another file contains the summary of various #
measurements, like the average displacement of the #
larvae across the vertical axis. This file can be #
appended when more measurements come in. #

use strict;
use warnings;

Get the directory of this script:
use FindBin qw($Bin);
use lib $FindBin::Bin;
FindBin::again(); # Just to be sure that it hasn't been called in
another script before

use Statistics::Descriptive;
use Math::BigFloat;
use Math::Trig;
use MTrack;
use File::Basename;

use Storable qw<dclone>;

	 129	

NormalizeToCount divides a value by count, which #
should be positive. Returns zero if count is not #
bigger zero. #

sub NormalizeToCount
{
 my $value = $_[0];
 my $count = $_[1];

 if($count > 0)
 {
 return $value / $count;
 }
 else
 {
 return 0;
 }
}

Determine the best distance between the single #
ticks, so that the plots are the most readable and #
scalable. #

sub BestTick
{
 my $largest = $_[0];
 my $mostticks = $_[1];
 my $minimum = $largest / $mostticks;
 my $magnitude = 10 ** floor(log($minimum) / log(10));
 my $residual = $minimum / $magnitude;

 if ($residual > 5) { return 10 * $magnitude;}
 elsif ($residual > 2) { return 5 * $magnitude;}
 elsif ($residual > 1) { return 2 * $magnitude;}
 else { return $magnitude;}
}

Min, Max, and Round functions #

sub max ($$) { $_[$_[0] < $_[1]] }
sub min ($$) { $_[$_[0] > $_[1]] }

Perl doesn't have round, so let's implement it
sub round
{
 my($number) = shift;
 return int($number + .5 * ($number <=> 0));
}

use POSIX qw(ceil floor);
use GD::Simple;

Deal with script input #

my $usage = "usage: perl program.pl infile.res fps
column_width_in_px air_at_top_in_px not_visible_bottom_in_px
(mTrackVersion), (column_width_in_mm), (display_left_right),

	130	

(printFramesMode), (printFramesBackground), (particleSize),
(trackImageStyle) \n\n"
 . "perl: Start perl\n"
 . "program.pl: This script\n"
 . "infile.res: mTrack output file: Do not
use files containing spaces, unless you escape the spaces\n"
 . "fps: The frame rate the video was
recorded with\n"
 . "column_width_in_px: The width of the view field
on screen in pixels\n"
 . "air_at_top_in_px: Number of pixels that should
be removed from the top\n"
 . "not_visible_bottom_in_px: Number of pixels that should
be cut from the bottom\n"
 . "mTrackVersion: The version of mTrack that
was used to generate the tracks, default value 2\n"
 . " Use 2 for mTrack2, and any
other value for mTrack3.\n"
 . "column_width_in_mm: The width of the view field
on screen in mm, default value 31 mm\n"
 . " If not default value is used,
isMTrack3 must be specified.\n"
 . "display_left_right: If 0 distinguishes upward and
downward tracks by color,\n"
 . " Otherwise distinguishes
leftward and rightward tracks by color.\n"
 . " Default value is 0.\n"
 . "printFramesMode: If bigger 0, it generates for
each frame points and track images.\n"
 . " If 1 it encodes the tracks
and dots by time.\n"
 . " If 2 it encodes the tracks
and dots by angel.\n"
 . " If bigger 2, it encodes the
tracks and dots by up and down, and time.\n"
 . " Default value is 0.\n"
 . "printFramesBackground: If printFramesMode bigger 0,
it makes the background white.\n"
 . " If it is 1 it makes the
background black. Otherwise does not create frames.\n"
 . " Default value is 0.\n"
 . "particleSize: If printFramesMode bigger 0,
it specifies the size of the particles to be printed.\n"
 . " The default size is 10.\n"
 . "trackImageStyle: Defines how the images for
the tracks are layouted:\n"
 . " 0 is debug style and
default,\n"
 . " 1 is presentation style,\n"
 . " otherwise is thesis style.\n"
 . "\n";

Check that everything is okay, sometimes tabs, spaces, and newlines
make trouble. The number of arguments could hint about this.
print scalar(@ARGV), "\n";

die $usage unless (@ARGV > 4 and @ARGV < 13);

my $infile = $ARGV[0];
print $infile, "\n";

	 131	

my $mTrackVersion = (@ARGV > 5) ? $ARGV[5] : 2;
print "mTrack version used: ", $mTrackVersion, "\n";

Variable parameters fetched from the script arguments:
my $frame_rate = $ARGV[1];
my $columnWidth_in_px = $ARGV[2];
my $columnWidth_in_mm = (@ARGV > 6) ? $ARGV[6] : 31;
my $mm_per_pixel =
$columnWidth_in_mm/$columnWidth_in_px;
my $pixels_air = $ARGV[3];
my $pixels_bottom = $ARGV[4];
my $is_left_right = (@ARGV > 7) ? $ARGV[7] != 0 :
0;
my $printFramesMode = (@ARGV > 8) ? $ARGV[8] : 0;
my $printFramesBackground = (@ARGV > 9) ? $ARGV[9] : 0;
my $particleSize = (@ARGV > 10) ? $ARGV[10] :
10;
my $trackImageStyle = (@ARGV > 11) ? $ARGV[11] : 0;

Print input parameters on screen, to display that everything is
right.
print "Frame Rate: ", $frame_rate,
 "\nColumn Width in pixel: ", $columnWidth_in_px,
 "\nColumn Width in mm: ", $columnWidth_in_mm,
 "\nmm per pixel: ", $mm_per_pixel,
 "\nPixels air: ", $pixels_air,
 "\nPixels bottom: ", $pixels_bottom,
 "\nIs left right: ", $is_left_right,
 "\nPrint Frame Mode: ", $printFramesMode,
 "\nPrint Frame Background: ", $printFramesBackground,
 "\nParticle Size: ", $particleSize,
 "\nTrack Image Style: ", $trackImageStyle,
 "\n";

Initialize variables #

my $delta = 0;
my @Array_of_Scalar_Products = ();
my @Array_of_All_Track_Scalar_Products = ();
my $size = 0;
my $sum_cosine_tracks = 0;
my $avg_cosine_tracks = 0;
my @All_X_Moves = ();
my @All_Y_Moves = ();
my $avg_Y_move_tracks = 0;
my $sum_Y_move_tracks = 0;
my @positions = ();
my $pos_move_counter = 0;
my $neg_move_counter = 0;
my $Total_Y_Pos_Move = 0;
my $Total_Y_Neg_Move = 0;
my $Total_Y_Abs_Move = 0;
my $Total_Y_Move = 0;
my $Total_X_Move = 0;
my $Total_Move = 0;
my $Total_Pos_Move = 0;
my $Total_Neg_Move = 0;
my $Total_Abs_Move = 0;
my $Total_Plot_X_Move = 0;

	132	

my $Total_Plot_Y_Move = 0;
my @full_vector_angles = ();
my @trackStart = ();
my @averageDistances = ();
my @average_X_Moves = ();
my @average_X_Moves_Counter = ();
my @average_Y_Moves = ();
my @average_Y_Moves_Counter = ();
my @average_distances = ();
my @average_distances_Counter = ();
my $median_X_Moves = 0;
my $median_Y_Moves = 0;
my $Total_Single_X_Move = 0;
my $Total_Single_X_Move_Counter = 0;
my $Total_Single_X_Pos_Move = 0;
my $Total_Single_X_Pos_Move_Counter = 0;
my $Total_Single_X_Neg_Move = 0;
my $Total_Single_X_Neg_Move_Counter = 0;
my $Total_Single_X_Abs_Move = 0;
my $Total_Single_X_Abs_Move_Counter = 0;
my $Total_Single_X_Straightness = 0;
my $Total_Single_Y_Move = 0;
my $Total_Single_Y_Move_Counter = 0;
my $Total_Single_Y_Pos_Move = 0;
my $Total_Single_Y_Pos_Move_Counter = 0;
my $Total_Single_Y_Neg_Move = 0;
my $Total_Single_Y_Neg_Move_Counter = 0;
my $Total_Single_Y_Abs_Move = 0;
my $Total_Single_Y_Abs_Move_Counter = 0;
my $Total_Single_Y_Straightness = 0;
my $Total_Single_Distance = 0;
my $Total_Single_Distance_Counter = 0;
my $all_track_pieces = 0;
my $upward_track_pieces = 0;
my $downward_track_pieces = 0;
my $rightward_track_pieces = 0;
my $leftward_track_pieces = 0;
my $top_track_pieces = 0;
my $bottom_track_pieces = 0;
my $right_track_pieces = 0;
my $left_track_pieces = 0;

Create Results file if there is none. #

Get input file name without suffix
my($filename, $path, $suffix) = fileparse($infile, qr/\.[^.]*/);
my $basefile = File::Spec->catfile($path, $filename);

Put the output result file into the same folder as the input files
my $ResultsFile = File::Spec->catfile($path, "Results.txt");

Create the results file if it does not exist and write a header to
it
if(! -e $ResultsFile)
{
 open (RESULTS, ">$ResultsFile") or die "Error: ", print
"\nCannot open file!\n$ResultsFile! \n";
 print RESULTS "File Name",
 "\t#Vectors",

	 133	

 "\t#upward Vectors",
 "\t#downward Vectors",
 "\t#leftward Vectors",
 "\t#rightward Vectors",
 "\t%upward Vectors",
 "\t%downward Vectors",
 "\t%leftward Vectors",
 "\t%rightward Vectors",
 "\t#Average x Displacement", # Horizontal
displacement
 "\t#Average y Displacement", # Vertical
displacement
 "\t#Average x positive Displacement",
 "\t#Average y positive Displacement",
 "\t#Average x negative Displacement",
 "\t#Average y negative Displacement",
 "\t#Average x absolute Displacement",
 "\t#Average y absolute Displacement",
 "\t#Average x Movement",
 "\t#Average y Movement",
 "\t#Average positive y Movement",
 "\t#Average negative y Movement",
 "\t#Average absolute y Movement",
 "\t#Average Movement",
 "\t#Average positive Movement",
 "\t#Average negative Movement",
 "\t#Average absolute Movement",
 "\t#Larvae", # Number of larvae
 "\t#Larvae Upper",
 "\t#Larvae Lower",
 "\t#Larvae % Upper",
 "\t#Larvae % Lower",
 "\t#Upward Speed (mm per sec)",
 "\t#Downward Speed (mm per sec)",
 "\t#Absolute Speed (mm per sec)",
 "\t#Single Sum Speed (mm per sec)",
 "\t#Sum Speed (mm per sec)",
 "\t#Speed (mm per sec)", # Speed of the larvae
 "\t#Median depth (mm from surface)",# Median
depth
 "\t#Median depth (in %)",# Median depth
percentage from top to bottom
 "\t#Median left/right (mm from middle)",
 "\t#Median left/right (in % from middle)",
 "\t#Simple X straightness",
 "\t#Simple Y straightness",
 "\t#Single X straightness",
 "\t#Single Y straightness",
 "\t#Average Angel",
 "\t#Top Vectors",
 "\t#Bottom Vectors",
 "\t#Left Vectors",
 "\t#Right Vectors",
 "\t%Top Vectors",
 "\t%Bottom Vectors",
 "\t%Left Vectors",
 "\t%Right Vectors",

 "\t#Track Pieces",
 "\t#Upward track pieces",
 "\t#Downward track pieces",

	134	

 "\t#Leftward track pieces",
 "\t#Rightward track pieces",
 "\t#Top track pieces",
 "\t#Bottom track pieces",
 "\t#Left track pieces",
 "\t#Right track pieces",

 "\t%Upward track pieces",
 "\t%Downward track pieces",
 "\t%Leftward track pieces",
 "\t%Rightward track pieces",
 "\t%Top track pieces",
 "\t%Bottom track pieces",
 "\t%Left track pieces",
 "\t%Right track pieces",

 "\t#Median X Movement",
 "\t#Median Y Movement",

 "\n";

 close RESULTS;
}

Calculate the vertical and horizontal distributions. #

open (RESULTS_IN, "<$basefile"."_vertical.text_image.txt") or die
"Error: ", print "\nCannot open file!\n$! \n";

Open and run through, to get the number of lines
while (<RESULTS_IN>) {}

my $no_of_lines = $.; # Get the number of lines
my $lineNumber = 0;
my @vertical_distribution = ();
my @horizontal_distribution = ();
my $sum_of_all_vertical_values = 0;
my $column_width = 0;

Open the text-image from mTrack output
close RESULTS_IN;
open (RESULTS_IN, "<$basefile"."_vertical.text_image.txt") or die
"Error: ", print "\nCannot open file!\n$! \n";

Calculate normalized distribution from the text-image
while (defined (my $line = <RESULTS_IN>)) # Sums up the pixel
values in the text_image file for each line separately
{
 my $sum=0;
 my @pixel_values = split (/\t/, $line);

 if($column_width == 0){ $column_width = scalar(@pixel_values);
}

 if
 (
 $lineNumber >= $pixels_air
 && $lineNumber <= $no_of_lines - $pixels_bottom
)
 {

	 135	

 my $i = 0;
 foreach (@pixel_values)
 {
 $sum += $_;
 $horizontal_distribution[$i] += $_;
 $i++;
 }

 $sum_of_all_vertical_values+=$sum;
 }

 $lineNumber++;

 push (@vertical_distribution, $sum);
}

Normalize the vertical distribution
foreach (@vertical_distribution)
{
 # $_ is a reference
 if($sum_of_all_vertical_values > 0)
 {
 $_=$_/$sum_of_all_vertical_values;
 }
}

Normalize the horizontal distribution
foreach (@horizontal_distribution)
{
 # The sum of all vertical values is identical to the sum of all
horizontal values
 if($sum_of_all_vertical_values > 0)
 {
 $_=$_/$sum_of_all_vertical_values;
 }
}

Read in tracks and distances from mTrack output #

Read in all the tracks from the mTRack output file.
my @tracks = MTrack::ReadTracks($infile, $mTrackVersion);

Figure out the length of the longest track in the dataset
my $track_length = 0;

for(my $t = 0; $t < scalar(@tracks); $t++)
{
 if($track_length < $#{$tracks[$t]}+1)
 {
 $track_length = $#{$tracks[$t]}+1;
 }
}

Invalidate all the parts of the tracks that reach #
beyond the cutoff pixel values at the top and the #
bottom of the column. Split the tracks if necessary. #

for(my $t = scalar(@tracks)-1; $t >= 0; $t--)

	136	

{
 my $frameCounter = 0;
 my $continiousCounter = 0;
 my $continuity = 0;
 for(my $f = $#{$tracks[$t]}; $f >= 0; $f--)
 {
 # Save this into a local variable,
 # and use that for the testing. Otherwise
 # we run out of memory with big data sets.
 # Bug in perl.
 my $pos = $tracks[$t][$f];
 if
 (
 $pos->{isValid}
 &&
 (
 $pos->{y} < $pixels_air
 || $pos->{y} > $no_of_lines - $pixels_bottom
)
)
 {
 $pos->{isValid} = 0;
 }

 if($pos->{isValid})
 {
 $frameCounter++;
 $continiousCounter++;
 }
 elsif(!$pos->{isValid} && $continiousCounter == 1)
 {
 my $pos2 = $tracks[$t][$f+1];
 $pos2->{isValid} = 0;
 $continiousCounter = 0;
 $frameCounter--;
 }
 elsif(!$pos->{isValid})
 {
 $continuity = max($continuity, $continiousCounter);
 $continiousCounter = 0;
 }
 }

 $continuity = max($continuity, $continiousCounter);

 if($frameCounter <= 1)
 {
 splice @tracks, $t, 1;
 next;
 }

 if($continuity < $frameCounter)
 {
 # Copy subarray, including its elements and not only the
references to those elements
 my @tracks_copy = @{dclone($tracks[$t])};

 $frameCounter = 0;
 $continiousCounter = 0;

 for(my $f = $#{$tracks[$t]}; $f >= 0; $f--)

	 137	

 {
 my $pos = $tracks[$t][$f];
 my $pos_copy = $tracks_copy[$f];

 if($pos->{isValid})
 {
 $frameCounter++;
 $continiousCounter++;

 if($frameCounter == $continiousCounter)
 {
 $pos_copy->{isValid} = 0;
 }
 else
 {
 $pos->{isValid} = 0;
 }
 }
 else
 {
 $continiousCounter = 0;
 }
 }
 unshift(@tracks, \@tracks_copy); # Insert at the beginning
 $t++; # Correct index, after insert
 }
}

Exit if we have no tracks, but record the current input file in the
results file.
if(scalar(@tracks) == 0)
{
 open (RESULTS, ">>$ResultsFile") or die "Error: ", print
"\nCannot open file!\n$! \n";

 # Write the data to the results file.
 print RESULTS $infile, "\n";
 close RESULTS;

 print "Exit: No tracks found\n";
 exit;
}

Create an image. It contains: #
- The larval tracks in the column #
- The tracks are colored depending on time #
- Red to yellow for upward tracks #
- Blue to cyan for downward tracks #
- The start and end points are connected by #
vectors #
- The larval tracks aligned to a common origin #
- The larval vectors aligned to a common origin and #
an average vector #
- The tracks broken into frame by frame pieces #
multiplied by 10, with the end points plotted #
around a common origin. #
- The y component multiplied by 10 of the tracks #
broken into frame by frame pieces plotted in #
reference to a time axis. #

	138	

- Average of the tracks broken into frame by frame #
pieces over time per frame and multiplied by 10. #
- Culminated average multiplied by 10of the tracks #
broken into frame by frame pieces over time. #
- Collect movement information for quantification. #

my $no_of_tracks = scalar(@tracks);

Scale the output image size according to the original video
dimensions, so that everything has space on it
my $img;
if($trackImageStyle == 0 || $trackImageStyle == 1)
{
 # For standart styles
 $img = GD::Simple->new(max($column_width*5 +50, $track_length +
50 + $column_width), $lineNumber*2 + 50, 1);
}
else
{
 # Use for thesis
 $img = GD::Simple->new($column_width*3.2 + 50, $lineNumber, 1);
}

Scale the elements on the picture relatively to each other
my $averageOffset = ({x => 0.5*$column_width+10, y =>
$lineNumber*1.8});
my $speedOffset = ({x => 0.5*$column_width+10, y =>
$lineNumber*1.5});
my $scaleOffset = ({x => 1.0*$column_width+10, y => 0});

my $centerOffset;
my $vectorOffset;

if($trackImageStyle == 0)
{
 # Use for debugging and trouble shooting:
 $centerOffset = ({x => 2.0*$column_width+20, y =>
$lineNumber+25});
 $vectorOffset = ({x => 3.5*$column_width+30, y =>
$lineNumber+25});
}
elsif($trackImageStyle == 1)
{
 # Use for presentations:
 $centerOffset = ({x => 2.7*$column_width+20, y =>
$lineNumber/2+25});
 $vectorOffset = ({x => 4.4*$column_width+30, y =>
$lineNumber/2+25});
}
else
{
 # Use for thesis:
 $centerOffset = ({x => 1.9*$column_width+20, y =>
$lineNumber/2+25});
 $vectorOffset = ({x => 2.8*$column_width+30, y =>
$lineNumber/2+25});
}

print "Number of tracks: ", $no_of_tracks, "\n";
print "Track length: ", $track_length, "\n";

	 139	

Print the axes crossing at the center of the tracks starting from a
common origin
$img->bgcolor(0,0,0);
$img->fgcolor(0,0,0);
$img->penSize(1);
$img->moveTo($speedOffset->{x}, $speedOffset->{y}+200);
$img->lineTo($speedOffset->{x}, $speedOffset->{y}-200);
$img->moveTo($speedOffset->{x}-200, $speedOffset->{y});
$img->lineTo($speedOffset->{x}+200, $speedOffset->{y});

$img->moveTo($averageOffset->{x}*2, $averageOffset->{y});
$img->lineTo(max($column_width*4 +50, $track_length + 50 +
$column_width), $averageOffset->{y});

Draw temporal axes with ticks and labels after every 30 seconds
for(my $i = 0; $i < $track_length; $i += $frame_rate * 30)
{
 $img->moveTo($averageOffset->{x}*2 + $i, $averageOffset-
>{y}+200);
 $img->lineTo($averageOffset->{x}*2 + $i, $averageOffset-
>{y}-200);
 $img->moveTo($speedOffset->{x}*2 + $i, $speedOffset-
>{y}+200);
 $img->lineTo($speedOffset->{x}*2 + $i, $speedOffset->{y}-
200);
 $img->moveTo($speedOffset->{x}*2 + $i +10, $speedOffset-
>{y}+200);
 $img->string($i . " frame");
 $img->moveTo($speedOffset->{x}*2 + $i +10, $speedOffset-
>{y}+180);
 $img->string($i/$frame_rate . "\'");
 $img->moveTo($speedOffset->{x}*2 + $i +10, $speedOffset-
>{y}+160);
 $img->string($i/$frame_rate/60 . "\'\'");
}

Set the size before, saves expansive resizing
$averageDistances[scalar(@tracks)-1] = 0;
 $trackStart[scalar(@tracks)-1] = 0;

$average_X_Moves [$track_length-1] = 0;
$average_X_Moves_Counter [$track_length-1] = 0;
$average_Y_Moves [$track_length-1] = 0;
$average_Y_Moves_Counter [$track_length-1] = 0;
$average_distances [$track_length-1] = 0;
$average_distances_Counter[$track_length-1] = 0;

Init values
for(my $f = 0; $f < $track_length; $f++)
{
 $average_X_Moves [$f] = 0;
 $average_X_Moves_Counter [$f] = 0;
 $average_Y_Moves [$f] = 0;
 $average_Y_Moves_Counter [$f] = 0;
 $average_distances [$f] = 0;
 $average_distances_Counter[$f] = 0;
}

Draw the tracks and the vectors

	140	

for(my $t = 0; $t < scalar(@tracks); $t++)
{
 my $lastPos = ({x => 0, y => 0});
 my $initPos = ({x => 0, y => 0});
 my $gotFirstFrame = 0;
 my $distanceCounter = 0;
 $averageDistances[$t] = 0;

 for(my $f = 0; $f < $#{$tracks[$t]}+1; $f++)
 {
 # Put this into a local variable, so that perl does not freak
out at big data sets.
 my $pos = $tracks[$t][$f];
 # Get the start frame of the current track
 if($pos->{isValid} && !$gotFirstFrame)
 {
 $trackStart[$t] = $f;

 $gotFirstFrame = 1;
 $lastPos = ({x => $pos->{x}, y => $pos->{y} -
$pixels_air});
 $initPos = ({x => $pos->{x}, y => $pos->{y} -
$pixels_air});

 # Go to next loop iteration
 next;
 }

 # Last frame with track reached, so leave the inner loop
 if(!$pos->{isValid} && $gotFirstFrame)
 {
 # Leave loop
 last;
 }

 # Paint the tracks in the column and from a common origin
 if($gotFirstFrame)
 {
 my $thisPos = ({x => $pos->{x}, y => $pos->{y} -
$pixels_air});

 my $x = $thisPos->{x} - $lastPos->{x};
 my $y = $thisPos->{y} - $lastPos->{y};

 my $gamma = atan2(-$y, $x);
 $all_track_pieces++;

 # Score the number of up and down, and right and left
track pieces from the angles
 if($gamma < 7*pi/12 && $gamma > 5*pi/12)
 {
 $top_track_pieces++;
 }
 if($gamma > -7*pi/12 && $gamma < -5*pi/12)
 {
 $bottom_track_pieces++;
 }
 if(abs($gamma) - pi/2 < 7*pi/12 && abs($gamma) - pi/2 >
5*pi/12)
 {
 $left_track_pieces++;

	 141	

 }
 if(abs($gamma) - pi/2 > -7*pi/12 && abs($gamma) - pi/2 <
-5*pi/12)
 {
 $right_track_pieces++;
 }

 # Score the number of upward and downward pointing track
pieces from the vector angles
 if($gamma > 0)
 {
 $upward_track_pieces++;
 }
 else
 {
 $downward_track_pieces++;
 }

 # Correct way to turn the angle:
 # If $_ >= 0: $_ - pi/2
 # If $_ < 0: -($_ + pi/2)
 # But the result is the same
 if(abs($gamma) - pi/2 > 0)
 {
 $leftward_track_pieces++;
 }
 else
 {
 $rightward_track_pieces++;
 }

 my $distance = sqrt($x**2 + $y**2);

 # Average the distances the larvae traveled
 $averageDistances[$t] += $distance;
 $distanceCounter++;

 # Average the x component the larvae traveled
 $average_X_Moves[$f] += $x;
 $average_X_Moves_Counter[$f]++;
 # Average the y component the larvae traveled
 $average_Y_Moves[$f] += $y;
 $average_Y_Moves_Counter[$f]++;
 # Average the distances the larvae traveled
 $average_distances[$f] += $distance;
 $average_distances_Counter[$f]++;
 push (@All_X_Moves, $x);
 push (@All_Y_Moves, $y);

 if($x >= 0)
 {
 $Total_Single_X_Pos_Move += $x;
 $Total_Single_X_Pos_Move_Counter++;
 }
 else
 {
 $Total_Single_X_Neg_Move += $x;
 $Total_Single_X_Neg_Move_Counter++;
 }

	142	

 # Up is positive, but the y-axis is reversed on screen.
So change sign.
 if($y <= 0)
 {
 $Total_Single_Y_Pos_Move -= $y;
 $Total_Single_Y_Pos_Move_Counter++;
 }
 else
 {
 $Total_Single_Y_Neg_Move -= $y;
 $Total_Single_Y_Neg_Move_Counter++;
 }

 $Total_Single_X_Abs_Move += abs($x);
 $Total_Single_X_Abs_Move_Counter++;
 $Total_Single_Y_Abs_Move += abs($y);
 $Total_Single_Y_Abs_Move_Counter++;

 $Total_Single_X_Straightness += NormalizeToCount($x,
$distance);
 $Total_Single_Y_Straightness -= NormalizeToCount($y,
$distance);
 $Total_Single_Distance += $distance;
 $Total_Single_Distance_Counter++;

 # This disturbs the vector plotting with some tracks
 # But this seems to be a problem of the GD::Simple
library
 # Color tracks pointing upwards from red to yellow
depending on time
 # Color tracks pointing downwards from blue to cyan
depending on time
 my $red;
 my $green;
 my $blue;

 if($is_left_right)
 {
 $red = ($x >= 0) ? 255 : 0;
 $green = round($f*(255/($track_length)));
 $blue = ($x < 0) ? 255 : 0;
 }
 else
 {
 $red = ($y <= 0) ? 255 : 0;
 $green = round($f*(255/($track_length)));
 $blue = ($y > 0) ? 255 : 0;
 }

 $img->penSize(2);
 $img->fgcolor($red, $green, $blue);
 $img->bgcolor($red, $green, $blue);

 # Draw the frame by frame vector ends from a common
origin multiplied by 10
 $img->moveTo($speedOffset->{x} + $x*10, $speedOffset->{y}
+ $y*10);
 $img->ellipse(2,2);
 # Draw the frame by frame vector ends over time
multiplied by 10

	 143	

 $img->moveTo($speedOffset->{x}*2 + $f, $speedOffset->{y}
+ $y*10);
 $img->ellipse(2,2);

 # Draw the tracks in the column, multiply by 10 for
debugging
 $img->moveTo($lastPos->{x}, $lastPos->{y});
 $img->lineTo($thisPos->{x}, $thisPos->{y});
 # $img->moveTo($lastPos->{x}*10, $lastPos->{y}*10);
 # $img->lineTo($thisPos->{x}*10, $thisPos->{y}*10);

 # Prepare to draw the tracks starting from a common point
 $thisPos->{x} -= $initPos->{x};
 $thisPos->{y} -= $initPos->{y};
 $lastPos->{x} -= $initPos->{x};
 $lastPos->{y} -= $initPos->{y};

 # Multiply by 10 for debugging
 # $thisPos->{x} *= 10;
 # $thisPos->{y} *= 10;
 # $lastPos->{x} *= 10;
 # $lastPos->{y} *= 10;

 $thisPos->{x} += $centerOffset->{x};
 $thisPos->{y} += $centerOffset->{y};
 $lastPos->{x} += $centerOffset->{x};
 $lastPos->{y} += $centerOffset->{y};

 # Draw the tracks starting from a common point
 $img->moveTo($lastPos->{x}, $lastPos->{y});
 $img->lineTo($thisPos->{x}, $thisPos->{y});

 $lastPos = ({x => $pos->{x}, y => $pos->{y} -
$pixels_air});
 }
 }

 $averageDistances[$t] /= $distanceCounter;

 # Note y coordinate 0 is on top of the screen, and next pixel
line down is 1
 if($lastPos->{y} - $initPos->{y} > 0)
 {
 $averageDistances[$t] = -$averageDistances[$t];
 }

 # Plot the vectors in the column
 $img->penSize(1);
 $img->bgcolor('gray'); # British spelling!!!
 $img->fgcolor('gray'); # British spelling!!!
 $img->moveTo($initPos->{x}, $initPos->{y}); #we move to the
beginning of each track
 $img->lineTo($lastPos->{x}, $lastPos->{y}); #draw a line to the
end of each track

 my $X_move = $lastPos->{x};
 my $Y_move = $lastPos->{y};
 $X_move -= $initPos->{x};
 $Y_move -= $initPos->{y};

 # Plot the vectors starting from a common origin

	144	

 $img->moveTo($vectorOffset->{x}, $vectorOffset->{y});
 $img->lineTo($vectorOffset->{x} + $X_move, $vectorOffset->{y} +
$Y_move);

 $Total_Plot_X_Move += $X_move;
 $Total_Plot_Y_Move += $Y_move; # See note below

 $X_move /= $distanceCounter;
 $Y_move /= $distanceCounter;

 # Calculate the angle of the vector with respect to a
horizontal (0,-1) line
 # Take the negative of $Y_move, since bigger y values mean on a
screen go down, while in geometry mean go up
 my $gamma = atan2(-$Y_move, $X_move) - atan2(0,1); # atan2(0,1)
actually 0
 push (@full_vector_angles, $gamma);
 #here we calculate the total movement
 $Total_X_Move += $X_move;
 $Total_Y_Move -= $Y_move; # See note below
 $Total_Y_Abs_Move += abs($Y_move);

 my $move = sqrt($X_move**2 + $Y_move**2);
 $Total_Abs_Move += $move;

 # Collect movement information
 # Note the line of pixels at the top has y value 0, next line
below has 1, so the signs must be revered
 if($Y_move <= 0)
 {
 $Total_Move += $move;
 $Total_Pos_Move += $move;
 $Total_Y_Pos_Move -= $Y_move;
 $pos_move_counter++;
 }
 else
 {
 $Total_Move -= $move;
 $Total_Neg_Move -= $move;
 $Total_Y_Neg_Move -= $Y_move;
 $neg_move_counter++;
 }

 # Print a red dot at the end of the current track
 $img->bgcolor(255,0,0);
 $img->fgcolor(255,0,0);
 $img->moveTo($lastPos->{x}, $lastPos->{y});
 $img->ellipse(4,4);

 # Print a red dot at the end of the current track starting from
a common point
 $lastPos->{x} -= $initPos->{x};
 $lastPos->{y} -= $initPos->{y};
 $lastPos->{x} += $centerOffset->{x};
 $lastPos->{y} += $centerOffset->{y};

 $img->moveTo($lastPos->{x}, $lastPos->{y});
 $img->ellipse(4,4);
}

	 145	

#here we print the axes crossing at the center of the tracks starting
from a common point
$img->bgcolor(0,0,0);
$img->fgcolor(0,0,0);
$img->penSize(1);
$img->moveTo($centerOffset->{x}, $centerOffset->{y}+200);
$img->lineTo($centerOffset->{x}, $centerOffset->{y}-200);

if($trackImageStyle == 0 || $trackImageStyle == 1)
{
 # Use for debugging or presentation
 $img->moveTo($centerOffset->{x}-200, $centerOffset->{y});
 $img->lineTo($centerOffset->{x}+200, $centerOffset->{y});
}
else
{
 # Use for thesis
 $img->moveTo($centerOffset->{x}-50, $centerOffset->{y});
 $img->lineTo($centerOffset->{x}+50, $centerOffset->{y});
}

Draw the bottom of the column
$img->penSize(1);
$img->bgcolor('gray'); # British spelling!!!
$img->fgcolor('gray'); # British spelling!!!
$img->moveTo(0 , $no_of_lines - $pixels_bottom);
$img->lineTo($column_width, $no_of_lines - $pixels_bottom);

Plot the average movement vector
$img->penSize(3);
$img->bgcolor('red');
$img->fgcolor('red');
$img->moveTo($vectorOffset->{x},$vectorOffset->{y});

if($no_of_tracks == 0){ $no_of_tracks = 1;}
$img->lineTo($vectorOffset->{x} + $Total_Plot_X_Move / $no_of_tracks,
$vectorOffset->{y} + $Total_Plot_Y_Move / $no_of_tracks);

Calculate the number of ticks needed
my $numLabels = 10;
my $depth_mm = $lineNumber * $mm_per_pixel;
my $tick_interval = BestTick($depth_mm, $numLabels);
my $max_tick = floor($depth_mm / $tick_interval);
my $pixels_per_tick = $tick_interval/$mm_per_pixel;

Draw the axes
$img->penSize(3);
$img->bgcolor('black');
$img->fgcolor('black');
$img->moveTo($scaleOffset->{x},$scaleOffset->{y});
$img->lineTo($scaleOffset->{x},$lineNumber);

$img->penSize(3);
$img->font('Arial Bold');
$img->fontsize(16);

Draw the ticks
for(my $i = 0; $i <= $max_tick; $i++)
{
 my $ypos = $scaleOffset->{y} + $pixels_per_tick*$i;

	146	

 $img->moveTo($scaleOffset->{x}+5, $ypos);
 $img->lineTo($scaleOffset->{x}, $ypos);
 $img->moveTo($scaleOffset->{x}+10,$ypos + (($i==0)?14:8));
 $img->string($i*$tick_interval);
}

Draw averages by frame and cumulative average by frame, and save
file final average for later use.
for(my $f = 0; $f < $track_length; $f++)
{
 $Total_Single_X_Move += $average_X_Moves[$f];
 $Total_Single_X_Move_Counter += $average_X_Moves_Counter[$f];
 $Total_Single_Y_Move -= $average_Y_Moves[$f]; # 0 on y-
axis is on top, so reverse sign
 $Total_Single_Y_Move_Counter += $average_Y_Moves_Counter[$f];

 my $y = $average_Y_Moves[$f];
 if($average_Y_Moves_Counter[$f] > 0)
 {
 $y /= $average_Y_Moves_Counter[$f];
 }
 else
 {
 $y = 0;
 }

 my $red = ($y <= 0) ? 255 : 0;
 my $green = round($f*(255/($track_length)));
 my $blue = ($y > 0) ? 255 : 0;

 $img->penSize(2);
 $img->fgcolor($red, $green, $blue);
 $img->bgcolor($red, $green, $blue);

 $img->moveTo($averageOffset->{x}*2 + $f, $averageOffset->{y} +
$y*10);
 $img->ellipse(2,2);

 $y = -$Total_Single_Y_Move;
 if($Total_Single_Y_Move_Counter > 0)
 {
 $y /= $Total_Single_Y_Move_Counter;
 }
 else
 {
 $y = 0;
 }

 $red = ($y <= 0) ? 255 : 0;
 $green = round($f*(255/($track_length)));
 $blue = ($y > 0) ? 255 : 0;

 $img->penSize(2);
 $img->fgcolor($red, $green, $blue);
 $img->bgcolor($red, $green, $blue);

 $img->moveTo($averageOffset->{x}*2 + $f, $averageOffset-
>{y}+150 + $y*10);
 $img->ellipse(2,2);

	 147	

 $average_X_Moves [$f] = NormalizeToCount(
$average_X_Moves[$f], $average_X_Moves_Counter[$f]);
 $average_Y_Moves [$f] = NormalizeToCount(-
$average_Y_Moves[$f], $average_Y_Moves_Counter[$f]);
 $average_distances[$f] = NormalizeToCount(
$average_distances[$f], $average_distances_Counter[$f]);
}

my $stats = Statistics::Descriptive::Full->new();
$stats->add_data(@All_X_Moves);
$median_X_Moves = $stats->median();
$stats = Statistics::Descriptive::Full->new();
$stats->add_data(@All_Y_Moves);
$median_Y_Moves = $stats->median();

$Total_Single_X_Move = NormalizeToCount($Total_Single_X_Move,
$Total_Single_X_Move_Counter);
$Total_Single_Y_Move = NormalizeToCount($Total_Single_Y_Move,
$Total_Single_Y_Move_Counter);
$Total_Single_X_Pos_Move =
NormalizeToCount($Total_Single_X_Pos_Move,
$Total_Single_X_Pos_Move_Counter);
$Total_Single_Y_Pos_Move =
NormalizeToCount($Total_Single_Y_Pos_Move,
$Total_Single_Y_Pos_Move_Counter);
$Total_Single_X_Neg_Move =
NormalizeToCount($Total_Single_X_Neg_Move,
$Total_Single_X_Neg_Move_Counter);
$Total_Single_Y_Neg_Move =
NormalizeToCount($Total_Single_Y_Neg_Move,
$Total_Single_Y_Neg_Move_Counter);
$Total_Single_X_Abs_Move =
NormalizeToCount($Total_Single_X_Abs_Move,
$Total_Single_X_Abs_Move_Counter);
$Total_Single_Y_Abs_Move =
NormalizeToCount($Total_Single_Y_Abs_Move,
$Total_Single_Y_Abs_Move_Counter);
$Total_Single_Distance =
NormalizeToCount($Total_Single_Distance,
$Total_Single_Distance_Counter);
$Total_Single_X_Straightness =
NormalizeToCount($Total_Single_X_Straightness,
$Total_Single_Distance_Counter);
$Total_Single_Y_Straightness =
NormalizeToCount($Total_Single_Y_Straightness,
$Total_Single_Distance_Counter);

Write the image data just created to a file
open (IMAGE_OUT, ">$basefile"."_tracks.png") or die "Error: ", print
"\nCannot open file!\n$! \n";
print IMAGE_OUT $img->png;
close IMAGE_OUT;

Count the upward and downward pointing vectors and #
write the results to a file. #

my $upward_vectors = 0;
my $downward_vectors = 0;
my $rightward_vectors = 0;
my $leftward_vectors = 0;

	148	

my $top_vectors = 0;
my $bottom_vectors = 0;
my $right_vectors = 0;
my $left_vectors = 0;

foreach (@full_vector_angles)
{
 if($_ < 7*pi/12 && $_ > 5*pi/12)
 {
 $top_vectors++;
 }
 if($_ > -7*pi/12 && $_ < -5*pi/12)
 {
 $bottom_vectors++;
 }
 if(abs($_) - pi/2 < 7*pi/12 && abs($_) - pi/2 > 5*pi/12)
 {
 $left_vectors++;
 }
 if(abs($_) - pi/2 > -7*pi/12 && abs($_) - pi/2 < -5*pi/12)
 {
 $right_vectors++;
 }

 # Score the number of upward and downward pointing vectors from
the vector angles
 if($_ > 0)
 {
 $upward_vectors++;
 }
 else
 {
 $downward_vectors++;
 }

 # Correct way to turn the angle:
 # If $_ >= 0: $_ - pi/2
 # If $_ < 0: -($_ + pi/2)
 # But the result is the same
 if(abs($_) - pi/2 > 0)
 {
 $leftward_vectors++;
 }
 else
 {
 $rightward_vectors++;
 }
}

Find the depth corresponding to the median of the #
distribution #

my $density_till_mean=0;
my $mean_depth_counter=0;
for (my $i=0; $i<$no_of_lines; $i++)
{
 $density_till_mean+=$vertical_distribution[$i];
 $mean_depth_counter++;
 if ($density_till_mean>=0.5)
 {

	 149	

 last;
 }
}

Find the center corresponding to the median of the #
distribution #

$density_till_mean=0;
my $mean_left_right_counter=0;
for (my $i=0; $i < scalar(@horizontal_distribution); $i++)
{
 $density_till_mean+=$horizontal_distribution[$i];
 $mean_left_right_counter++;
 if ($density_till_mean>=0.5)
 {
 last;
 }
}

Create an image of the larval depth distribution #
with a median distribution bar. The image is scaled #
according to the original dimensions of the input #
video. The distribution image is mainly useful for #
debugging. #

my $depthScaleOffset = ({x => 50, y => 50});

Crate a drawing object
$img = GD::Simple->new(325, $depthScaleOffset->{y}*2 + $lineNumber);

Draw the distribution
$img->penSize(3);
$img->bgcolor('red');
$img->fgcolor('red');

my $y_offset = $depthScaleOffset->{y} - $pixels_air;
my $counter = 0;

Go trough the image line by line and draw
foreach (@vertical_distribution)
{
 $counter++;
 unless ($_==0)
 {
 $img->moveTo($depthScaleOffset->{x} , $y_offset +
$counter);
 $img->lineTo($depthScaleOffset->{x}+$_*10000, $y_offset +
$counter);
 }
}

Draw the line corresponding to the median depth
$img->penSize(3);
$img->bgcolor('black');
$img->fgcolor('black');
$img->moveTo($depthScaleOffset->{x}+ 70,$y_offset +
$mean_depth_counter);
$img->lineTo($depthScaleOffset->{x}+150,$y_offset +
$mean_depth_counter);

	150	

Draw the bottom of the column
$img->penSize(1);
$img->bgcolor('gray'); # British spelling!
$img->fgcolor('gray'); # British spelling!
$img->moveTo($depthScaleOffset->{x} , $y_offset + $no_of_lines -
$pixels_bottom);
$img->lineTo($depthScaleOffset->{x} + 200, $y_offset + $no_of_lines -
$pixels_bottom);

Draw of the axes
$img->penSize(3);
$img->bgcolor('black');
$img->fgcolor('black');
$img->moveTo($depthScaleOffset->{x},$depthScaleOffset->{y});
$img->lineTo($depthScaleOffset->{x},$depthScaleOffset-
>{y}+$lineNumber);
$img->moveTo($depthScaleOffset->{x},$depthScaleOffset-
>{y}+$lineNumber);
$img->lineTo($depthScaleOffset->{x}+200,$depthScaleOffset-
>{y}+$lineNumber);

Draw the ticks
$img->font('Arial Bold');
$img->fontsize(30);
for(my $i = 0; $i <= $max_tick; $i++)
{
 my $ypos = $depthScaleOffset->{y} + $pixels_per_tick*$i;
 $img->moveTo($depthScaleOffset->{x}-5, $ypos);
 $img->lineTo($depthScaleOffset->{x}, $ypos);
 $img->moveTo($depthScaleOffset->{x}-49,$ypos+14);# +
(($i==0)?14:8));
 $img->string($i*$tick_interval);
}

$img->moveTo($depthScaleOffset->{x}+100,$depthScaleOffset-
>{x}+$lineNumber);
$img->lineTo($depthScaleOffset->{x}+100,$depthScaleOffset-
>{x}+5+$lineNumber);
$img->moveTo($depthScaleOffset->{x}+200,$depthScaleOffset-
>{x}+$lineNumber);
$img->lineTo($depthScaleOffset->{x}+200,$depthScaleOffset-
>{x}+5+$lineNumber);

Draw the x-axis labels, not scalable
$img->font('Arial Bold');
$img->fontsize(20);
$img->moveTo($depthScaleOffset->{x}-8,$depthScaleOffset-
>{y}+27+$lineNumber);
$img->string("0");
$img->moveTo($depthScaleOffset->{x}-8+80,$depthScaleOffset-
>{y}+27+$lineNumber);
$img->string("0.01");
$img->moveTo($depthScaleOffset->{x}-8+180,$depthScaleOffset-
>{y}+27+$lineNumber);
$img->string("0.02");

Write the image data to a file
open (IMAGE_OUT, ">$basefile"."_distr".".png") or die "Error: ",
print "\nCannot open file!\n$! \n";
print IMAGE_OUT $img->png;

	 151	

close IMAGE_OUT;

if($printFramesMode > 0)
{
 open (RESULTS_FRAMES, ">$basefile"."_displacement.txt") or die
"Error: ", print "\nCannot open file!\n$! \n";

 $img = GD::Simple->new($column_width, $lineNumber, 1);
 $img->penSize(3);

 my $img_points = GD::Simple->new($column_width, $lineNumber,
1);
 $img_points->penSize(3);

 if($printFramesBackground)
 {
 $img->bgcolor('black');
 $img->fgcolor('black');
 }
 else
 {
 $img->bgcolor('white');
 $img->fgcolor('white');
 }

 $img->rectangle(0, 0, $column_width, $lineNumber);

 for(my $f = 0; $f < $track_length; $f++)
 {
 if($printFramesBackground)
 {
 $img_points->bgcolor('black');
 $img_points->fgcolor('black');
 }
 else
 {
 $img_points->bgcolor('white');
 $img_points->fgcolor('white');
 }

 $img_points->rectangle(0, 0, $column_width, $lineNumber);

 for(my $t = 0; $t < scalar(@tracks); $t++)
 {
 my $pos = $tracks[$t][$f];
 if($pos->{isValid})
 {
 my $x = $pos->{x};
 my $y = $pos->{y};

 if($particleSize < 5)
 {
 # $x = round($x);
 # $y = round($y);
 }

 my $red = 0;
 my $green = 0;
 my $blue = 0;

 # Temporal encoding

	152	

 if($printFramesMode == 1)
 {
 my $numOpts = 5;
 my $denom = $track_length/$numOpts;
 my $variableValue = round(($f %
$denom)*(255/$denom));

 if($f < $denom)
 {
 $red = 255;
 $green = $variableValue;
 $blue = 0;
 }
 elsif($f < 2*$denom)
 {
 $red = 255 - $variableValue;
 $green = 255;
 $blue = 0;
 }
 elsif($f < 3*$denom)
 {
 $red = 0;
 $green = 255;
 $blue = $variableValue;
 }
 elsif($f < 4*$denom)
 {
 $red = 0;
 $green = 255 - $variableValue;
 $blue = 255;
 }
 elsif($f < 5*$denom)
 {
 $red = $variableValue;
 $green = 0;
 $blue = 255;
 }

 #if($f < $denom)
 #{
 # $red = 0;
 # $green = 255 - $variableValue;
 # $blue = 255;
 #}
 #elsif($f < 2*$denom)
 #{
 # $red = $variableValue;
 # $green = 0;
 # $blue = 255;
 #}
 #elsif($f < 3*$denom)
 #{
 # $red = 255;
 # $green = 0;
 # $blue = 255 - $variableValue;
 #}
 #elsif($f < 4*$denom)
 #{
 # $red = 255;
 # $green = $variableValue;
 # $blue = 0;

	 153	

 #}
 #elsif($f < 5*$denom)
 #{
 # $red = 255 - $variableValue;
 # $green = 255;
 # $blue = 0;
 #}
 }
 # Angular encoding
 elsif($printFramesMode == 2)
 {
 my $x1 = 0;
 my $y1 = 0;

 if($f > 0)
 {
 my $lastPos = $tracks[$t][$f-1];
 if($lastPos->{isValid})
 {
 $x1 = $lastPos->{x};
 $y1 = $lastPos->{y};
 }
 }

 my $gamma = 0;
 if($is_left_right == 0)
 {
 $gamma = round((atan2(($y-$y1), $x-$x1)
+ pi) * 1000000000);
 }
 else
 {
 $gamma = round((atan2(-($y-$y1), $x-
$x1) + pi) * 1000000000)
 }
 # my $gamma = round((atan2(-($y-$y1), $x-$x1) +
pi) * 1000000000); # Integerize
 # my $gamma = round((atan2(($y-$y1), $x-$x1) +
pi) * 1000000000); # Integerize
 my $numOpts = 6;
 my $denom = round(2*pi / $numOpts *
1000000000); # Integerize
 my $variableValue = round(($gamma %
$denom)*(255/$denom));

 # print $f, "\t";
 # print $x-$x1, "\t";
 # print $y-$y1, "\t";
 # print $gamma, "\t";
 # print $numOpts, "\t";
 # print $denom, "\t";
 # print $variableValue, "\n";

 if($gamma < $denom)
 {
 $red = 255;
 $green = $variableValue;
 $blue = 0;
 }
 elsif($gamma < 2*$denom)
 {

	154	

 $red = 255 - $variableValue;
 $green = 255;
 $blue = 0;
 }
 elsif($gamma < 3*$denom)
 {
 $red = 0;
 $green = 255;
 $blue = $variableValue;
 }
 elsif($gamma < 4*$denom)
 {
 $red = 0;
 $green = 255 - $variableValue;
 $blue = 255;
 }
 elsif($gamma < 5*$denom)
 {
 $red = $variableValue;
 $green = 0;
 $blue = 255;
 }
 elsif($gamma < 6*$denom)
 {
 $red = 255;
 $green = 0;
 $blue = 255 - $variableValue;
 }
 }
 # Temporal up and down encoding
 elsif($printFramesMode > 2)
 {
 my $x1 = 0;
 my $y1 = 0;

 if($f > 0)
 {
 my $lastPos = $tracks[$t][$f-1];
 if($lastPos->{isValid})
 {
 $x1 = $lastPos->{x};
 $y1 = $lastPos->{y};
 }
 }

 if($is_left_right)
 {
 $red = ($x-$x1 >= 0) ? 255 : 0;
 $green =
round($f*(255/($track_length)));
 $blue = ($x-$x1 < 0) ? 255 : 0;
 }
 else
 {
 $red = ($y-$y1 <= 0) ? 255 : 0;
 $green =
round($f*(255/($track_length)));
 $blue = ($y-$y1 > 0) ? 255 : 0;
 }
 }
 # Crate a drawing object

	 155	

 $img->moveTo($x, $y);

 $img->fgcolor($red, $green, $blue);
 $img->bgcolor($red, $green, $blue);

 $img->ellipse($particleSize, $particleSize);

 $img_points->moveTo($x, $y);

 $img_points->fgcolor($red, $green, $blue);
 $img_points->bgcolor($red, $green, $blue);

 $img_points->ellipse($particleSize, $particleSize);

 # Write the image data just created to a file
 }
 }

 if($printFramesBackground < 2)
 {
 open (IMAGE_OUT, ">$basefile"."_tracks_$f.png") or die
"Error: ", print "\nCannot open file!\n$! \n";
 print IMAGE_OUT $img->png;
 close IMAGE_OUT;

 open (IMAGE_OUT, ">$basefile"."_track_points_$f.png") or
die "Error: ", print "\nCannot open file!\n$! \n";
 print IMAGE_OUT $img_points->png;
 close IMAGE_OUT;
 }

 print RESULTS_FRAMES $f, "\t",
 $average_X_Moves[$f] * $mm_per_pixel *
$frame_rate, "\t",
 $average_Y_Moves[$f] * $mm_per_pixel *
$frame_rate, "\t",
 $average_distances[$f] * $mm_per_pixel *
$frame_rate, "\n";
 }
 close RESULTS_FRAMES;
}

Estimate the number of larvae in the column. The #
maximum number of tracks in any frame gives the #
minimum number of larvae in the column. #

my $number_of_larvae_in_column = 0;

for(my $f = 0; $f < $track_length; $f++)
{
 my $validCounter = 0;
 for(my $t = 0; $t < scalar(@tracks); $t++)
 {
 # That's now really ridiculous, do you really need
 # to use up all the memory for dereferencing?
 my $pos = $tracks[$t][$f];
 if
 (
 $pos->{isValid}
)

	156	

 {
 $validCounter++;
 }
 }

 if($validCounter > $number_of_larvae_in_column)
 {
 $number_of_larvae_in_column = $validCounter;
 }
}

Calculate the number of larvae in the upper half of #
the column and the lower half, write the results to #
a file. #

Calculate the larvae in the upper half of the chamber, using the
$no_of_lines/2 and the number of larvae as estimated by the short
tracks
my $larvae_in_upper_half=0;
for (my $i=$pixels_air; $i < round(($no_of_lines - $pixels_bottom -
$pixels_air)/2 + $pixels_air); $i++)
{
 $larvae_in_upper_half+=$vertical_distribution[$i];
}

my $larvae_in_upper_half_percent = $larvae_in_upper_half;
$larvae_in_upper_half=round($larvae_in_upper_half*$number_of_larvae_i
n_column);

Calculate the larvae in the upper lower of the chamber, using the
$no_of_lines/2 and the number of larvae as estimated by the short
tracks
my $larvae_in_lower_half=0;
for (my $i=round(($no_of_lines - $pixels_bottom - $pixels_air)/2 +
$pixels_air); $i<$no_of_lines - $pixels_bottom; $i++)
{
 $larvae_in_lower_half+=$vertical_distribution[$i];
}

my $larvae_in_lower_half_percent = $larvae_in_lower_half;
$larvae_in_lower_half=round($larvae_in_lower_half*$number_of_larvae_i
n_column);

Calculate means for later saving to a results file. #

my $positiveDistance = 0;
my $negativeDistance = 0;
my $absoluteDistance = 0;
my $sumDistance = 0;
my $posCounter = 0;
my $negCounter = 0;
my $absCounter = 0;

for(my $t = 0; $t < scalar(@tracks); $t++)
{
 if($averageDistances[$t] >= 0)
 {
 $positiveDistance += $averageDistances[$t];

	 157	

 $posCounter++;
 }
 else
 {
 $negativeDistance += $averageDistances[$t];
 $negCounter++;
 }

 $absoluteDistance += abs($averageDistances[$t]);
 $sumDistance += $averageDistances[$t];
 $absCounter++;
}

if($posCounter > 0) { $positiveDistance /= $posCounter; }
if($negCounter > 0) { $negativeDistance /= $negCounter; }
if($absCounter > 0) { $absoluteDistance /= $absCounter; }
if($absCounter > 0) { $sumDistance /= $absCounter; }
if($pos_move_counter > 0) { $Total_Y_Pos_Move /= $pos_move_counter;
$Total_Pos_Move /= $pos_move_counter;}
if($neg_move_counter > 0) { $Total_Y_Neg_Move /= $neg_move_counter;
$Total_Neg_Move /= $neg_move_counter;}
if($no_of_tracks > 0)
{
 $Total_Move /= $no_of_tracks;
 $Total_Abs_Move /= $no_of_tracks;
 $Total_X_Move /= $no_of_tracks;
 $Total_Y_Move /= $no_of_tracks;
 $Total_Y_Abs_Move /= $no_of_tracks;
}

Write the data to the results file; data from #
different calls of this script can go to the same #
results file #

We made sure that the file exists
open (RESULTS, ">>$ResultsFile") or die "Error: ", print "\nCannot
open file!\n$! \n";
print "Column width: ", $column_width, "\n";

my $numOfVectors = scalar(@full_vector_angles);
if($numOfVectors == 0){ $numOfVectors = 1;}
if($all_track_pieces == 0){ $all_track_pieces = 1;}

Write the data to the results file.
print RESULTS $infile,
File Name
 "\t", scalar(@full_vector_angles),
#Vectors
 "\t", $upward_vectors,
#upward Vectors
 "\t", $downward_vectors,
#downward Vectors
 "\t", $leftward_vectors,
#leftward Vectors
 "\t", $rightward_vectors,
#rightward Vectors
 "\t", $upward_vectors / $numOfVectors,
%upward Vectors

	158	

 "\t", $downward_vectors / $numOfVectors,
%downward Vectors
 "\t", $leftward_vectors / $numOfVectors,
%leftward Vectors
 "\t", $rightward_vectors / $numOfVectors,
%rightward Vectors
 "\t", $Total_Single_X_Move * $mm_per_pixel *
$frame_rate, # #Average x
Displacement
 "\t", $Total_Single_Y_Move * $mm_per_pixel *
$frame_rate, # #Average y
Displacement
 "\t", $Total_Single_X_Pos_Move * $mm_per_pixel *
$frame_rate, # #Average x positive
Displacement
 "\t", $Total_Single_Y_Pos_Move * $mm_per_pixel *
$frame_rate, # #Average y positive
Displacement
 "\t", $Total_Single_X_Neg_Move * $mm_per_pixel *
$frame_rate, # #Average x negative
Displacement
 "\t", $Total_Single_Y_Neg_Move * $mm_per_pixel *
$frame_rate, # #Average y negative
Displacement
 "\t", $Total_Single_X_Abs_Move * $mm_per_pixel *
$frame_rate, # #Average x absolute
Displacement
 "\t", $Total_Single_Y_Abs_Move * $mm_per_pixel *
$frame_rate, # #Average y absolute
Displacement
 "\t", $Total_X_Move * $mm_per_pixel * $frame_rate,
#Average x Movement
 "\t", $Total_Y_Move * $mm_per_pixel * $frame_rate,
#Average y Movement
 "\t", $Total_Y_Pos_Move * $mm_per_pixel * $frame_rate,
#Average positive y Movement
 "\t", $Total_Y_Neg_Move * $mm_per_pixel * $frame_rate,
#Average negative y Movement
 "\t", $Total_Y_Abs_Move * $mm_per_pixel * $frame_rate,
#Average absolute y Movement
 "\t", $Total_Move * $mm_per_pixel * $frame_rate,
#Average Movement
 "\t", $Total_Pos_Move * $mm_per_pixel * $frame_rate,
#Average positive Movement
 "\t", $Total_Neg_Move * $mm_per_pixel * $frame_rate,
#Average negative Movement
 "\t", $Total_Abs_Move * $mm_per_pixel * $frame_rate,
#Average absolute Movement
 "\t", $number_of_larvae_in_column,
#Larvae
 "\t", $larvae_in_upper_half,
#Larvae Upper
 "\t", $larvae_in_lower_half,
#Larvae Lower
 "\t", $larvae_in_upper_half_percent,
#Larvae % Upper
 "\t", $larvae_in_lower_half_percent,
#Larvae % Lower
 "\t", $positiveDistance * $mm_per_pixel * $frame_rate,
#Upward Speed (mm per sec)

	 159	

 "\t", $negativeDistance * $mm_per_pixel * $frame_rate,
#Downward Speed (mm per sec)
 "\t", $absoluteDistance * $mm_per_pixel * $frame_rate,
#Absolute Speed (mm per sec)
 "\t", $sumDistance * $mm_per_pixel * $frame_rate,
#Single Sum Speed (mm per sec)
 "\t", ($positiveDistance + $negativeDistance) *
$mm_per_pixel * $frame_rate, # #Sum Speed (mm per sec)
 "\t", $Total_Single_Distance * $mm_per_pixel *
$frame_rate, # #Speed (mm per sec)
 "\t", ($mean_depth_counter - $pixels_air) *
$mm_per_pixel, # #Median depth (mm
from surface)
 "\t", ($mean_depth_counter - $pixels_air) /
($no_of_lines - $pixels_bottom - $pixels_air), # #Median depth (in %)
 "\t", $mean_left_right_counter - ($column_width/2) *
$mm_per_pixel, # #Median left/right (mm from
middle)
 "\t", ($mean_left_right_counter - ($column_width/2)) /
$column_width, # #Median left/right (in % from
middle)
 "\t", $Total_Single_X_Move / $Total_Single_Distance,
#Simple X straightness
 "\t", $Total_Single_Y_Move / $Total_Single_Distance,
#Simple Y straightness
 "\t", $Total_Single_X_Straightness,
#Single X straightness
 "\t", $Total_Single_Y_Straightness,
#Single Y straightness
 "\t", atan2($Total_Single_X_Move,
$Total_Single_Y_Move), # #Average
Angel
 "\t", $top_vectors,
#Top Vectors
 "\t", $bottom_vectors,
#Bottom Vectors
 "\t", $left_vectors,
#Left Vectors
 "\t", $right_vectors,
#Right Vectors
 "\t", $top_vectors / $numOfVectors,
%Top Vectors
 "\t", $bottom_vectors / $numOfVectors,
%Bottom Vectors
 "\t", $left_vectors / $numOfVectors,
%Left Vectors
 "\t", $right_vectors / $numOfVectors,
%Right Vectors

 "\t", $all_track_pieces,
#Track Pieces
 "\t", $upward_track_pieces,
#Upward track pieces
 "\t", $downward_track_pieces,
#Downward track pieces
 "\t", $rightward_track_pieces,
#Leftward track pieces
 "\t", $leftward_track_pieces,
#Rightward track pieces
 "\t", $top_track_pieces,
#Top track pieces

	160	

 "\t", $bottom_track_pieces,
#Bottom track pieces
 "\t", $left_track_pieces,
#Left track pieces
 "\t", $right_track_pieces,
#Right track pieces

 "\t", $upward_track_pieces / $all_track_pieces,
%Upward track pieces
 "\t", $downward_track_pieces / $all_track_pieces,
%Downward track pieces
 "\t", $rightward_track_pieces / $all_track_pieces,
%Leftward track pieces
 "\t", $leftward_track_pieces / $all_track_pieces,
%Rightward track pieces
 "\t", $top_track_pieces / $all_track_pieces,
%Top track pieces
 "\t", $bottom_track_pieces / $all_track_pieces,
%Bottom track pieces
 "\t", $left_track_pieces / $all_track_pieces,
%Left track pieces
 "\t", $right_track_pieces / $all_track_pieces,
%Right track pieces

 "\t", $median_X_Moves * $mm_per_pixel * $frame_rate,
#Median X Movement
 "\t", $median_Y_Moves * $mm_per_pixel * $frame_rate,
#Median Y Movement

 "\n";
close RESULTS;

Code	13:	The	Perl	file	MTrack.pm	

MTrack.pm: Perl module file to parse the output of #
mTrack2 or mTrack3. #

package MTrack;

use strict;
use warnings;

use File::Basename;
use File::Spec;

ReadTracks reads tracks from an mTrack output file. #
infile is the file that it reads the tracks from. #
mTrackVersion gives the version of mTrack with that #
the output file was created with. #
If mTrackVersion equals 3 then mTrack3 is assumed. #
Otherwise mTrack2 is assumed. #
Returns an array of tracks. Each track is an array #
of positions. Each position contains x and y #
coordinates and an isValid flag indicating whether #
the position is a real position or just a #
placeholder. #

sub ReadTracks

	 161	

{
 my $infile = shift;
 my $mTrackVersion = shift;

 if($mTrackVersion == 3)
 {
 return MTrack::ReadTracks3($infile);
 }
 else
 {
 return MTrack::ReadTracks2($infile);
 }
}

ReadDistances reads the distances for each track #
from mTrack output. #
infile is the file that it reads the distances from. #
mTrackVersion gives the version of mTrack with that #
the output file was created with. #
If mTrackVersion equals 3 then mTrack3 is assumed. #
Otherwise mTrack2 is assumed. #

sub ReadDistances
{
 my $infile = shift;
 my $mTrackVersion = shift;

 if($mTrackVersion == 3)
 {
 return MTrack::ReadDistances3($infile);
 }
 else
 {
 return MTrack::ReadDistances2($infile);
 }
}

ReadTracks2 reads tracks from an mTrack2 output #
file. #
infile is the file that it reads the tracks from. #
Returns an array of tracks. Each track is an array #
of positions. Each position contains x and y #
coordinates and an isValid flag indicating whether #
the position is a real position or just a #
placeholder. #

sub ReadTracks2
{
 my $infile = shift;

 open (TRACKS_IN, "<$infile") or die "Error: ", print "\nCannot
open file!\n$! \n";

 my @tracks = ();
 my $blockCounter = 0;

 # We fill the data into an array of arrays
 while (defined (my $line = <TRACKS_IN>))
 {

	162	

 # We exclude the first line that starts with "Frame" and the
lines with the track lengths
 unless ($line =~ m/^Track/ or $line =~ m/^Frame/ or $line =~
m/\:/)
 {
 my @tmp = split('\t', $line);

 for (my $i=1; $i < scalar(@tmp); $i+= 3)
 {
 my $valid = ($tmp[$i] ne " ") ? 1 : 0;
 my $position = ({x => $tmp[$i], y => $tmp[$i+1],
isValid => $valid});
 my $j = (($i - 1) / 3) + $blockCounter;

 $tracks[$j][$tmp[0]-1] = $position;
 }
 }

 # A new block starts
 if($line =~ m/^Track/)
 {
 $blockCounter = scalar(@tracks);
 }

 # Stop looking for data if we encounter the distance traveled
section:
 if($line =~ m/Nr of Frames$/)
 {
 last;
 }
 }

 close TRACK_IN;

 return @tracks;
}

ReadTracks2 reads tracks from an mTrack3 output #
file. #
infile is the file that it reads the tracks from. #
Returns an array of tracks. Each track is an array #
of positions. Each position contains x and y #
coordinates and an isValid flag indicating whether #
the position is a real position or just a #
placeholder. #

sub ReadTracks3
{
 my $infile = shift;

 open (TRACKS_IN, "<$infile") or die die "Error: ", print
"\nCannot open file!\n$! \n";
 my @tracks = ();
 my $blockCounter = 0;

 # We fill the data into an array of arrays
 while (defined (my $line = <TRACKS_IN>))
 {
 # We exclude the first line that starts with "Frame" and the
lines with the track lengths

	 163	

 unless ($line =~ m/^ \tTrack/ or $line =~ m/^Frame/ or $line =~
m/\:/)
 {
 my @tmp = split('\t', $line);

 my $position = ({x => $tmp[3], y => $tmp[5], isValid =>
1});
 $tracks[$tmp[1]-1][$tmp[2]-1] = $position;
 }
 }

 close TRACK_IN;

 return @tracks;
}

ReadDistances2 reads the distances for each track #
from mTrack output. #
infile is the file that it reads the distances from. #

sub ReadDistances2
{
 my $saveDistances = 0;
 my $infile = shift;

 open (TRACKS_IN, "<$infile") or die "Error: ", print "\nCannot
open file!\n$! \n";

 # For debugging the distances can be saved to a file
 if($saveDistances){ open (DISTANCE_PER_LENGTH,
">$infile"."_distance_per_length.txt") or die "Error: ", print
"\nCannot open file!\n$! \n";}

 my @distance_per_length = ();
 my $hasStarted = 0;

 # We check the number of track blocks, the track lengths and
number of tracks by looking at the second number in the last line
"Tracks"
 while (defined (my $line = <TRACKS_IN>))
 {
 if
 (
 $line =~ /\:/ # These are the lines with the track
lengths, but only if you do not directly save the output to a file.
 || $hasStarted # The above issue is fixed with that
)
 {
 my @length = split (/\t/, $line);
 my $length = $length[1];
 my $distance_travelled = $length[2];

 if($length != 0.0)
 {
 my $distance_per_length =
$distance_travelled/$length; # Calculate the distance/length
parameter for each track
 push (@distance_per_length, $distance_per_length);
 if($saveDistances){ print DISTANCE_PER_LENGTH
$distance_per_length, "\n";}

	164	

 }
 else
 {
 # For debugging the distances can be saved to a
file
 if($distance_travelled >= 0)
 {
 if($saveDistances){ print DISTANCE_PER_LENGTH
Math::BigFloat->binf(), "\n";}
 }
 else
 {
 if($saveDistances){ print DISTANCE_PER_LENGTH
Math::BigFloat->binf('-'), "\n";}
 }
 }
 }
 else
 {
 # Scan the file until we reach the distance traveled
section and then we parse the distances
 if($hasStarted == 0 && $line =~ m/Track/ && $line =~
m/Length/ && $line =~ m/Distance traveled/)
 {
 $hasStarted = 1;
 }
 }
 }

 close TRACKS_IN;
 if($saveDistances){ close DISTANCE_PER_LENGTH;}

 return @distance_per_length;
}

ReadDistances2 reads the distances for each track #
from mTrack output. #
infile is the file that it reads the distances from. #

sub ReadDistances3
{
 my $saveDistances = 0;
 my $infile = shift;

 my($filename, $path, $suffix) = fileparse($infile,
qr/\.[^.]*/);

 my $prefixed_infile = File::Spec->catfile($path, "Summary_" .
$filename . $suffix);
 my $distance_file = File::Spec->catfile($path, $filename .
"_distance_per_length.txt");

 open (TRACKS_IN, "<$prefixed_infile") or die "Error: ", print
"\nCannot open file!\n$! \n", $prefixed_infile, "\n";

 # For debugging the distances can be saved to a file
 if($saveDistances){ open (DISTANCE_PER_LENGTH,
">$distance_file") or die "Error: ", print "\nCannot open file!\n$!
\n", $distance_file, "\n";}

	 165	

 my @distance_per_length = ();

 # We check the number of track blocks, the track lengths and
number of tracks by looking at the second number in the last line
"Tracks"
 while (defined (my $line = <TRACKS_IN>))
 {
 unless ($line =~ m/Track/)
 {
 my @length = split (/\t/, $line);
 my $length = $length[2];
 my $distance_travelled = $length[3];

 if($length != 0.0)
 {
 my $distance_per_length =
$distance_travelled/$length; # Calculate the distance/length
parameter for each track
 push (@distance_per_length, $distance_per_length);
 if($saveDistances){ print DISTANCE_PER_LENGTH
$distance_per_length, "\n";}
 }
 else
 {
 # For debugging, the distances can be saved to a
file
 if($distance_travelled >= 0)
 {
 if($saveDistances){ print DISTANCE_PER_LENGTH
Math::BigFloat->binf(), "\n";}
 }
 else
 {
 if($saveDistances){ print DISTANCE_PER_LENGTH
Math::BigFloat->binf('-'), "\n";}
 }
 }
 }
 }

 close TRACKS_IN;
 if($saveDistances){ close DISTANCE_PER_LENGTH;}

 return @distance_per_length;
}

1; # Return that everything is fine

Code	14:	The	Perl	file	CSV_ColumnExtractor.pl	

#!/usr/bin/perl -w

This script extracts data columns identified by #
their title from a tab delimetered list. #
It takes three arguments: The input file that #
contains the data to be extracted, the output file #
that receives the data, and a key to access the data #
column to be extracted. #

	166	

use strict;
use warnings;

use Text::CSV;
use Carp;
use File::Basename;
use File::Spec;

Min and Max functions #

sub max ($$) { $_[$_[0] < $_[1]] }
sub min ($$) { $_[$_[0] > $_[1]] }

#set command line arguments
my ($infi, $outfile, $idcol) = @ARGV;

Get date, larval age, and genotype from input file
$infi =~ m/([0-9]{4}-[0-9]{2}-[0-9]{2}).*((\d+(\.{1}\d+){1})[A-Za-
z]+_[A-Za-z0-9\-_]+_[0-9]+)/;
my $title = "";

if(defined $1)
{
 $title = $1 . "_" . $2;
}
else
{
 # For some reason I cannot make it match a float and an integer
at the same time.
 $infi =~ m/([0-9]{4}-[0-9]{2}-[0-9]{2}).*([0-9]+[A-Za-z]+_[A-
Za-z0-9\-_]+_[0-9]+)/;
 $title = $1 . "_" . $2;
}

print "Add ", $idcol, " of ", $title, " to ", $outfile, "\n";

Read in data from whatever seperated values format, use tab as
seperator
my $csv = Text::CSV->new({
 sep_char => "\t"
});

open(my $fh, "<:encoding(UTF-8)", $infi) or die "Can't open $infi:
$!";

Get column names
$csv->column_names($csv->getline($fh));

my @column = ();

while(my $hr = $csv->getline_hr($fh))
{
 # Read data by certain column ID
 push(@column, $hr->{$idcol})
}

close $fh;

	 167	

if(-e $outfile)
{
 my @outtable = ();

 open($fh, "<:encoding(UTF-8)", $outfile) or die "Can't open
$outfile: $!";
 while (<$fh>)
 {
 $_ =~ s/[\r\n]+//g; # Clean line endings
 push(@outtable, $_);
 }
 close $fh;

 open($fh, ">:encoding(UTF-8)", $outfile) or die "Can't open
$outfile: $!";
 print $fh $outtable[0], "\t", $title, "\n";
 for(my $i = 0; $i < max(scalar(@column), scalar(@outtable)-1);
$i++)
 {
 if(defined($column[$i]))
 {
 if(defined($outtable[$i+1]))
 {
 print $fh $outtable[$i+1], "\t", $column[$i], "\n";
 }
 else
 {
 my $countTabs = ($outtable[0] =~ tr/\t//);
 print $fh "\t" x $countTabs, "\t", $column[$i],
"\n";
 }
 }
 elsif(defined($outtable[$i+1]))
 {
 print $fh $outtable[$i+1], "\t\n";
 }
 }
 close $fh;
}
else
{
 open($fh, ">:encoding(UTF-8)", $outfile) or die "Can't open
$outfile: $!";
 print $fh $title, "\n";
 for(my $i = 0; $i < scalar(@column); $i++)
 {
 if(defined($column[$i]))
 {
 print $fh $column[$i], "\n";
 }
 else
 {
 print $fh "\n";
 }
 }
 close $fh;
}

	168	

11.3 Controlling	the	monochromator	via	the	serial	port	

Code	15:	Modified	Transmitter.java	of	BlackBox	

/*
 * @(#)Transmitter.java 1.12 98/06/25 SMI
 *
 * Author: Tom Corson
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license
 * to use, modify and redistribute this software in source and binary
 * code form, provided that i) this copyright notice and license
appear
 * on all copies of the software; and ii) Licensee does not utilize
the
 * software in a manner which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind.
 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN
AND
 * ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
 * LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE
 * SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS
 * BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
 * HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
 * OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line
control
 * of aircraft, air traffic, aircraft navigation or aircraft
 * communications; or in the design, construction, operation or
 * maintenance of any nuclear facility. Licensee represents and
 * warrants that it will not use or redistribute the Software for
such
 * purposes.
 */

import java.lang.Thread;

import java.io.IOException;

import java.awt.Panel;
import java.awt.Label;
import java.awt.TextArea;
import java.awt.Checkbox;
import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.FlowLayout;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.TextListener;
import java.awt.event.TextEvent;
import java.awt.event.ItemListener;

	 169	

import java.awt.event.ItemEvent;
import java.nio.file.Files;
import java.io.BufferedReader;
import java.awt.Button;

import javax.swing.JFileChooser;
import javax.swing.Timer;
import javax.comm.SerialPort;

public class Transmitter extends Panel implements TextListener,
ItemListener, ActionListener, Runnable
{
 private Panel p;
 private Panel p1;
 private Panel p2;
 private Panel useProtocolPanel;
 private Panel timerPanel;
 private Label timerLabel;
 private TextArea text;
 private Checkbox auto;
 private Checkbox sendBreak;
 private Checkbox useProtocolBox;
 private Button runProtocolButton;
 private ByteStatistics counter;
 private SerialPortDisplay owner;
 private Thread thr;
 private Color onColor;
 private Color offColor;
 private boolean first;
 private boolean modemMode;
 private Timer timer;
 private int counterValue;
 static String testString =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ\nabcdefghijklmnopqrstuvwxyz\n1234567890\n
";

 public Transmitter(SerialPortDisplay owner,
 int rows,
 int cols)
 {
 super(new BorderLayout());

 this.first = true;
 this.modemMode = false;

 this.owner = owner;

 p = new Panel(new FlowLayout());

 p1 = new Panel(new BorderLayout());
 p1.add("West", new Label("Auto Transmit"));
 auto = new Checkbox();
 auto.addItemListener(this);
 p1.add("East", auto);
 p.add(p1);

 p2 = new Panel(new BorderLayout());
 p2.add("West", new Label("Send Break"));
 sendBreak = new Checkbox();
 sendBreak.addItemListener(this);
 p2.add("East", sendBreak);

	170	

 p.add(p2);

 useProtocolPanel = new Panel(new BorderLayout());
 useProtocolPanel.add("West", new Label("Use Protocol"));
 useProtocolBox = new Checkbox();
 useProtocolBox.addItemListener(this);
 useProtocolPanel.add("East", useProtocolBox);
 p.add(useProtocolPanel);

 timerPanel = new Panel(new BorderLayout());
 timerLabel = new Label("Next: 0");
 timerPanel.add("West", timerLabel);
 p.add(timerPanel);

 runProtocolButton = new Button();
 runProtocolButton.setLabel("Run Protocol");
 runProtocolButton.addActionListener(this);
 p.add(runProtocolButton);

 this.add("North", p);

 this.text = new TextArea(rows, cols);
 this.text.append("Type here");
 this.text.addTextListener(this);
 this.add("Center", text);

 this.counter = new ByteStatistics("Bytes Sent", 10,
 owner.port, false);
 this.add("South", this.counter);

 this.thr = null;

 this.onColor = Color.green;
 this.offColor = Color.black;

 this.timer = new Timer(1000, this);
 }

 public Transmitter(SerialPortDisplay owner,
 int rows,
 int cols,
 boolean modemMode)
 {
 this(owner, rows, cols);

 this.modemMode = modemMode;
 }

 public void setPort(SerialPort port)
 {
 this.counter.setPort(port);
 }

 public void showValues()
 {
 this.counter.showValues();
 }

 public void clearValues()
 {
 this.counter.clearValues();

	 171	

 }

 public void setBitsPerCharacter(int val)
 {
 this.counter.setBitsPerCharacter(val);
 }

 /*
 * Handler for transmit text area events
 */

 public void textValueChanged(TextEvent ev)
 {
 if(this.useProtocolBox.getState())
 {
 return;
 }

 if (first && (this.text.getCaretPosition() > 0))
 {
 first = false;

 this.text.replaceRange("",
 0,
 this.text.getCaretPosition()
 - 1);
 }

 if (!first && this.text.getText().endsWith("\n"))
 {
 this.sendData();
 }

 }

 public void run()
 {
 this.sendData();
 }

 public void sendString(String str)
 {
 int count;

 count = str.length();

 if (count > 0)
 {
 try
 {
 owner.out.write(str.getBytes());

 counter.incrementValue((long) count);

 owner.ctlSigs.BE = false;

 owner.ctlSigs.showErrorValues();
 }

 catch (IOException ex)
 {

	172	

 if (owner.open)
 {
 System.out.println(owner.port.getName()
 + ": Cannot write to output
stream");

 this.auto.setState(false);
 }
 }
 }
 }

 private void sendData()
 {
 if (this.owner.open && this.auto.getState())
 {
 while (this.owner.open && this.auto.getState())
 {
 sendString(testString);
 }
 }

 else
 {
 String str = this.text.getText();

 sendString(str);

 this.text.setText("");
 }
 }

 /*
 * Handler for checkbox events
 */

 public void itemStateChanged(ItemEvent ev)
 {
 if (this.auto.getState() && (thr == null) && this.owner.open)
 {
 startTransmit();
 }
 else
 {
 stopTransmit();
 }

 if (this.sendBreak.getState())
 {
 if (this.owner.open)
 {
 this.sendBreak.setForeground(this.onColor);

 /*
 * Send a 1000 millisecond break.
 */

 owner.port.sendBreak(1000);
 }

 this.sendBreak.setState(false);

	 173	

 this.sendBreak.setForeground(this.offColor);
 }

 if(this.useProtocolBox.getState())
 {
 //Create a file chooser
 final JFileChooser fc = new JFileChooser();

 //In response to a button click:
 int returnVal = fc.showOpenDialog(this);

 if(returnVal == JFileChooser.APPROVE_OPTION)
 {
 this.text.setEnabled(false);

 try (BufferedReader reader =
Files.newBufferedReader(fc.getSelectedFile().toPath()))
 {
 String line = null;
 StringBuilder builder = new StringBuilder();
 while ((line = reader.readLine()) != null)
 {
 builder.append(line);
 builder.append('\n');
 }
 first = false;
 this.text.setText(builder.toString());
 }
 catch (IOException x)
 {
 System.err.format("IOException: %s%n", x);
 }
 }
 else
 {
 this.useProtocolBox.setState(false);
 }
 }
 else
 {
 this.text.setEnabled(true);
 }
 }

 private void startTransmit()
 {
 if (thr == null);
 {
 this.auto.setForeground(this.onColor);
 counter.resetRate();

 thr = new Thread(this, "Xmt " + owner.port.getName());

 thr.start();
 }
 }

 public void stopTransmit()
 {
 thr = null;

	174	

 this.auto.setState(false);
 this.auto.setForeground(this.offColor);
 }

 public void actionPerformed(ActionEvent e)
 {
 if(this.useProtocolBox.getState())
 {
 if(e.getActionCommand() == runProtocolButton.getLabel())
 {
 if(runProtocolButton.getLabel() == "Run Protocol")
 {
 this.timer.start();
 this.runProtocolButton.setLabel("Stop
Protocol");

 this.processNextProtocolItem();
 }
 else
 {
 this.stopTimer();
 }
 }
 else
 {
 counterValue--;
 timerLabel.setText("Next: " +
String.valueOf(this.counterValue));

 if(counterValue < 1)
 {
 if(this.text.getText().trim().isEmpty())
 {
 this.stopTimer();
 }
 else
 {
 this.processNextProtocolItem();
 }
 }
 }
 }
 }

 private void processNextProtocolItem()
 {
 while(!this.text.getText().isEmpty())
 {
 String[] lines = this.text.getText().split("\n", 2);
 String[] instructions = lines[0].split(" Wait ");
 this.text.setText(lines[1]);

 this.sendString(instructions[0] + "\n");

 if(instructions.length > 1)
 {
 this.counterValue =
Integer.parseInt(instructions[1]);
 this.timerLabel.setText("Next: " +
String.valueOf(this.counterValue));

	 175	

 break;
 }
 else
 {
 this.counterValue = 1;
 this.timerLabel.setText("Next: " +
String.valueOf(this.counterValue));
 }
 }
 }
 private void stopTimer()
 {
 this.timer.stop();

 this.counterValue = 0;
 this.timerLabel.setText("Next: " +
String.valueOf(this.counterValue));
 this.text.setText("");
 this.runProtocolButton.setLabel("Run Protocol");
 this.useProtocolBox.setState(false);
 this.text.setEnabled(true);
 }
}

11.4 Opsins	translated	with	annotated	introns	
>Pdu-Go-opsin1 translated with introns annotated
0 MEFNHTTEDSYNSTFDFITYGTHVEIYKRPDIQPRVYMVIGVYLTIA 1
2
GIISTVGNSVVIGVVVKNKELRKQGHNILLLNLAICDLGFTFVGYPLTASSAFAQRW
LFGHLGCVIYGFCCTVLALTDINILMALSIYRYIVICKPHI 1
2
RHILHRRTVAAAMVTSCWVYSLLWGVAALVGWNRYTNEAFGTSCSIDWTARGASDLS
YTILMIFFCYISHIIVMTFCYYK 0
0 IKQRSSLMLSRLRNHHKFSAEDAVLINNIRNEKRLTV 0
0
MTMVMVGGFILVWSPYAWVAVWKIVVPDGVPDWLTTFPTMFAKATPMLNPLIYVSTN
RKFRREARGMLRRWCCCFSAKVDDIVASAIRNRQA 2
1 SPKEKRVYFVNMTKEGIYTGKRRVSLPTIETIF 0

	

	176	

>Pdu-Go-opsin2 translated with introns annotated:
0 MTTESHGPPDVVALGRTGYIVAGTYLCVI 1
2
ATVATLGNSLVVVTFVRNSSTRKKCHNILLLNLAIADLGISFFGYPLVTVSTLSGRW
MSR 0
0 DYGCKIYAFCTFFFSLVSLNTLVFLSIYRYVIVCRPSY 1
2
KHHLNKRVTTWSIISSWIYGFFWAILPFFGWSHYTYEKFGTSCTIDWVDQSLSAITY
DVTVIVTCFLIHVAIMIFCYQK 0
0 IIKRARNLIFDHGISVAEEQKNGGGFSEGFNVKYMRKQSRISF 0
0 MCCIMVFSFIICWTPYTVMSCVTIFTQVPSTLSTIPTFFAK 0
0 AAPMSNSIIYFFMNKKFREAFFRTFCCCQQNIILPRNTGAAHLAK 2
1
YYPNWNLWSLFHARPLCNKEGVYVGAEHQDDTGHSRGQLEYEMAANQMAPQVEGDVD
AKNQDEDISPKASTSSTSFRMERLTNFKAEQRNKSKNELPLLNLIKQESFVKSQRTS
RVVTSNVDSDTPTPNETEDQRRSSNTDALPSTSDSLKYRQTHFGGRDSNHAKNYGHK
VMLHTVHPEKPGKSPRRKTSTSKMSNKSATSKRRNSQSSDQSQKLSPATKTPPSRSC
SSSQQSNSNNDSGIEVLPDSGLLDPSDKNPAQSSVAKYSRHMAQDNLDEMFSWL 0

	
>Pdu-r-opsin2 translated with introns annotated
0 M 0
0 MFFQSE
MAQDDSESFTAYPEEGDTNNITLGDLDLDSTLTVPYLENGLFFHPHWRKYRQMLENV
PDSVHYILGIYITFVGFAGVIGNAIVIFVFTA
TKSLRTPSNMFIVNLAMSDLGFSLVNGFPLM 2
1 SVSSFMRKWYFGRV 1
2 GCILYGTLSGVFGLTSINTLALIAFDRFYVIQFPLRAIRTVTRTR 2
1
SFVQICLVWIWATFWSCPPLFGWGRYIPEGLQTSCGFDFLSQDPLNRAFNYCIFSCG
FVLPVTFAICSYCGILATVSMQAKHMEKIKQTKGGQLNDDKEKEKKQQIRLAKIAAG
TISLFIISWMPYALLVILSTSGYRHIMTPYVCQIPSVFAKASAIWNPFVYSISHPKY
RQALQERFPWLLCNKKDTDDVIELGDKKTRKQSLDSENLSDSTISESSKDSPKPRKA
NVTPTPASKKVVSQAAFGTSNKSQVTSNTL 0

	

	 177	

>r-opsin5 translated with introns annotated
0
MAGPCESGCPALDYRSDNITNVANVTNVVQVLLHNNSETTSATTDVLAMHSGIHHHY
WTKFSPPPHEIHITIGFAMATIGVLAVAGNTFVIFVFLR 2
1 FRSLRTPGNLLMINLAVSDLLMAVTGFPLYSISSFYGRWVLPDA 1
2
VCLFYGACGATFGLLSINSLAAIAVDRYLVIAHSYAVTKRTNRRQAIVMIVLSWINS
LCWAIPPLLGWNRYLLEGFGTTCTFDYLSRTKSDRLFVMLMFCCGFCLPLLLIIGSY
AYIYSVVHRHERMFRNMSQNLNARIMHGGKEATQRTEMKTARTVILAVLFYCISWVP
YATIALIGIYGNYQLLTPLVTAVPGILAKMSTIYNPLLYTFSHPRFHKKVMLLLFKR
SMVLDKNTSNMDHMGGGKSQCHTQCLPKVNGSEPQAVSTLSSTSSWSGDTLPGDQRN
AFHLRDASDHTDTISLASTARLSNQASFSSKSRQPRFMQKGKKDQNRSGRRGKDSAN
NSIEERHTFLKQKEGKESKPKKFLKDLPVKPPVETVV 0

11.5 Test	statistics	details	for	Figure	13A	
Within each row, compare columns (simple effects within rows)

 Number of families 14
 Number of comparisons per family 6
 Alpha 0.05

 Tukey's multiple comparisons test Significance Adjusted P Value

 dark
 41 hpf vs. 53 hpf ns 0.9976

41 hpf vs. 3 dpf ns 0.8985
41 hpf vs. 4.5 dpf ns 0.6323
53 hpf vs. 3 dpf ns 0.9909
53 hpf vs. 4.5 dpf ns 0.7381
3 dpf vs. 4.5 dpf ns 0.2122

 380
 41 hpf vs. 53 hpf ns 0.6799

41 hpf vs. 3 dpf ns 0.9984
41 hpf vs. 4.5 dpf ns 0.2376
53 hpf vs. 3 dpf ns 0.7434
53 hpf vs. 4.5 dpf ns 0.0707
3 dpf vs. 4.5 dpf ns 0.1566

 520
 41 hpf vs. 53 hpf ns 0.4279

41 hpf vs. 3 dpf ns 0.9733
41 hpf vs. 4.5 dpf ns 0.0931
53 hpf vs. 3 dpf ns 0.6075

	178	

53 hpf vs. 4.5 dpf ** 0.009
3 dpf vs. 4.5 dpf * 0.0253

 380
 41 hpf vs. 53 hpf ns 0.3059

41 hpf vs. 3 dpf ns 0.9677
41 hpf vs. 4.5 dpf ns 0.2013
53 hpf vs. 3 dpf ns 0.4803
53 hpf vs. 4.5 dpf ** 0.0098
3 dpf vs. 4.5 dpf ns 0.0629

 520
 41 hpf vs. 53 hpf ns 0.645

41 hpf vs. 3 dpf ns 0.9989
41 hpf vs. 4.5 dpf * 0.013
53 hpf vs. 3 dpf ns 0.7007
53 hpf vs. 4.5 dpf ** 0.0055
3 dpf vs. 4.5 dpf ** 0.0065

 380
 41 hpf vs. 53 hpf ns 0.1789

41 hpf vs. 3 dpf ns 0.9248
41 hpf vs. 4.5 dpf * 0.0412
53 hpf vs. 3 dpf ns 0.3727
53 hpf vs. 4.5 dpf *** 0.0006
3 dpf vs. 4.5 dpf ** 0.0047

 520
 41 hpf vs. 53 hpf ns 0.6192

41 hpf vs. 3 dpf ns 0.9966
41 hpf vs. 4.5 dpf * 0.0359
53 hpf vs. 3 dpf ns 0.7047
53 hpf vs. 4.5 dpf * 0.0106
3 dpf vs. 4.5 dpf * 0.016

 380
 41 hpf vs. 53 hpf ns 0.2685

41 hpf vs. 3 dpf ns 0.9958
41 hpf vs. 4.5 dpf ns 0.1838
53 hpf vs. 3 dpf ns 0.3403
53 hpf vs. 4.5 dpf ** 0.0068
3 dpf vs. 4.5 dpf ns 0.1006

	 179	

 520
 41 hpf vs. 53 hpf ns 0.7052

41 hpf vs. 3 dpf ns > 0.9999
41 hpf vs. 4.5 dpf * 0.0153
53 hpf vs. 3 dpf ns 0.7048
53 hpf vs. 4.5 dpf ** 0.0087
3 dpf vs. 4.5 dpf * 0.012

 380
 41 hpf vs. 53 hpf ns 0.903

41 hpf vs. 3 dpf ns 0.9347
41 hpf vs. 4.5 dpf * 0.0183
53 hpf vs. 3 dpf ns 0.6865
53 hpf vs. 4.5 dpf * 0.0328
3 dpf vs. 4.5 dpf ns 0.0819

 520
 41 hpf vs. 53 hpf ns 0.7078

41 hpf vs. 3 dpf ns 0.9975
41 hpf vs. 4.5 dpf * 0.0215
53 hpf vs. 3 dpf ns 0.7797
53 hpf vs. 4.5 dpf * 0.0113
3 dpf vs. 4.5 dpf ** 0.0096

 380
 41 hpf vs. 53 hpf ns 0.803

41 hpf vs. 3 dpf ns 0.6518
41 hpf vs. 4.5 dpf * 0.0398
53 hpf vs. 3 dpf ns 0.3116
53 hpf vs. 4.5 dpf * 0.0297
3 dpf vs. 4.5 dpf ns 0.4307

 520
 41 hpf vs. 53 hpf ns 0.7578

41 hpf vs. 3 dpf ns > 0.9999
41 hpf vs. 4.5 dpf * 0.021
53 hpf vs. 3 dpf ns 0.7519
53 hpf vs. 4.5 dpf * 0.0147
3 dpf vs. 4.5 dpf * 0.0176

 dark

	180	

41 hpf vs. 53 hpf ns 0.9367
41 hpf vs. 3 dpf * 0.0215
41 hpf vs. 4.5 dpf ns 0.0898
53 hpf vs. 3 dpf ns 0.484
53 hpf vs. 4.5 dpf ns 0.7318
3 dpf vs. 4.5 dpf ns 0.9322

11.6 Test	statistics	details	for	Figure	13B	
Within each row, compare columns (simple effects within rows)

 Number of families 20
 Number of comparisons per family 6
 Alpha 0.05

 Tukey's multiple comparisons test Significance Adjusted P Value

 dark
 41 hpf vs. 53 hpf ns 0.9795

41 hpf vs. 3 dpf ns 0.9739
41 hpf vs. 4.5 dpf ** 0.006
53 hpf vs. 3 dpf ns > 0.9999
53 hpf vs. 4.5 dpf ns 0.0993
3 dpf vs. 4.5 dpf ns 0.0559

 340
 41 hpf vs. 53 hpf ns 0.8982

41 hpf vs. 3 dpf ns 0.0538
41 hpf vs. 4.5 dpf **** < 0.0001
53 hpf vs. 3 dpf * 0.0235
53 hpf vs. 4.5 dpf **** < 0.0001
3 dpf vs. 4.5 dpf *** 0.0007

 360
 41 hpf vs. 53 hpf ns 0.087

41 hpf vs. 3 dpf **** < 0.0001
41 hpf vs. 4.5 dpf **** < 0.0001
53 hpf vs. 3 dpf **** < 0.0001
53 hpf vs. 4.5 dpf **** < 0.0001
3 dpf vs. 4.5 dpf ns > 0.9999

 380
 41 hpf vs. 53 hpf ns 0.1083

	 181	

41 hpf vs. 3 dpf ns 0.0556
41 hpf vs. 4.5 dpf ** 0.0048
53 hpf vs. 3 dpf *** 0.0001
53 hpf vs. 4.5 dpf **** < 0.0001
3 dpf vs. 4.5 dpf ns 0.9812

 400
 41 hpf vs. 53 hpf ns 0.1285

41 hpf vs. 3 dpf ns 0.2715
41 hpf vs. 4.5 dpf ns 0.5373
53 hpf vs. 3 dpf ** 0.0019
53 hpf vs. 4.5 dpf ** 0.0043
3 dpf vs. 4.5 dpf ns 0.9068

 420
 41 hpf vs. 53 hpf ns 0.1775

41 hpf vs. 3 dpf ns 0.079
41 hpf vs. 4.5 dpf ns 0.5727
53 hpf vs. 3 dpf ns 0.9988
53 hpf vs. 4.5 dpf ns 0.7191
3 dpf vs. 4.5 dpf ns 0.5364

 440
 41 hpf vs. 53 hpf ns 0.9913

41 hpf vs. 3 dpf ns 0.7378
41 hpf vs. 4.5 dpf ns 0.1938
53 hpf vs. 3 dpf ns 0.6569
53 hpf vs. 4.5 dpf ns 0.2101
3 dpf vs. 4.5 dpf ns 0.882

 460
 41 hpf vs. 53 hpf ns > 0.9999

41 hpf vs. 3 dpf ns 0.3987
41 hpf vs. 4.5 dpf *** 0.0005
53 hpf vs. 3 dpf ns 0.5617
53 hpf vs. 4.5 dpf ** 0.0072
3 dpf vs. 4.5 dpf ns 0.2028

 480
 41 hpf vs. 53 hpf ns 0.9687

41 hpf vs. 3 dpf ns 0.5958
41 hpf vs. 4.5 dpf *** 0.0004

	182	

53 hpf vs. 3 dpf ns 0.4369
53 hpf vs. 4.5 dpf *** 0.0009
3 dpf vs. 4.5 dpf ns 0.0888

 500
 41 hpf vs. 53 hpf ns 0.9776

41 hpf vs. 3 dpf ns 0.5682
41 hpf vs. 4.5 dpf *** 0.0002
53 hpf vs. 3 dpf ns 0.4428
53 hpf vs. 4.5 dpf *** 0.0006
3 dpf vs. 4.5 dpf ns 0.0611

 520
 41 hpf vs. 53 hpf ns 0.9988

41 hpf vs. 3 dpf ns 0.1157
41 hpf vs. 4.5 dpf **** < 0.0001
53 hpf vs. 3 dpf ns 0.2846
53 hpf vs. 4.5 dpf ** 0.0011
3 dpf vs. 4.5 dpf ns 0.2031

 540
 41 hpf vs. 53 hpf ns 0.8626

41 hpf vs. 3 dpf ** 0.0092
41 hpf vs. 4.5 dpf **** < 0.0001
53 hpf vs. 3 dpf ns 0.1983
53 hpf vs. 4.5 dpf ** 0.0064
3 dpf vs. 4.5 dpf ns 0.6383

 560
 41 hpf vs. 53 hpf ns 0.999

41 hpf vs. 3 dpf * 0.0369
41 hpf vs. 4.5 dpf *** 0.0002
53 hpf vs. 3 dpf ns 0.1303
53 hpf vs. 4.5 dpf ** 0.0052
3 dpf vs. 4.5 dpf ns 0.7492

 580
 41 hpf vs. 53 hpf ns 0.9858

41 hpf vs. 3 dpf * 0.0112
41 hpf vs. 4.5 dpf *** 0.0004
53 hpf vs. 3 dpf ns 0.0919
53 hpf vs. 4.5 dpf * 0.0186

	 183	

3 dpf vs. 4.5 dpf ns 0.9814

 600
 41 hpf vs. 53 hpf ns 0.9754

41 hpf vs. 3 dpf ns 0.1721
41 hpf vs. 4.5 dpf * 0.0351
53 hpf vs. 3 dpf ns 0.5201
53 hpf vs. 4.5 dpf ns 0.2745
3 dpf vs. 4.5 dpf ns 0.9892

 620
 41 hpf vs. 53 hpf ns 0.9903

41 hpf vs. 3 dpf ns 0.6687
41 hpf vs. 4.5 dpf ns 0.6331
53 hpf vs. 3 dpf ns 0.9006
53 hpf vs. 4.5 dpf ns 0.9092
3 dpf vs. 4.5 dpf ns 0.9996

 640
 41 hpf vs. 53 hpf ns 0.8635

41 hpf vs. 3 dpf ns 0.1966
41 hpf vs. 4.5 dpf ns 0.0923
53 hpf vs. 3 dpf ns 0.7664
53 hpf vs. 4.5 dpf ns 0.682
3 dpf vs. 4.5 dpf ns > 0.9999

 660
 41 hpf vs. 53 hpf ns 0.9146

41 hpf vs. 3 dpf ns 0.1537
41 hpf vs. 4.5 dpf ns 0.0724
53 hpf vs. 3 dpf ns 0.6306
53 hpf vs. 4.5 dpf ns 0.5455
3 dpf vs. 4.5 dpf ns > 0.9999

 680
 41 hpf vs. 53 hpf ns 0.8911

41 hpf vs. 3 dpf ns 0.1609
41 hpf vs. 4.5 dpf ns 0.0547
53 hpf vs. 3 dpf ns 0.6792
53 hpf vs. 4.5 dpf ns 0.5288
3 dpf vs. 4.5 dpf ns 0.9992

	184	

dark
 41 hpf vs. 53 hpf ns 0.972

41 hpf vs. 3 dpf ns 0.9793
41 hpf vs. 4.5 dpf ns 0.9997
53 hpf vs. 3 dpf ns 0.9999
53 hpf vs. 4.5 dpf ns 0.9518
3 dpf vs. 4.5 dpf ns 0.9601
	

