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Tübingen

2017



Tag der mündlichen Prüfung: 13.07.2017
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and countless helpful comments. Joachim Grammig is also co-author of the working

paper Consumption-Based Asset Pricing with Rare Disaster Risk: A Simulated

Method of Moments Approach, which forms Chapter 2 of this dissertation. He

deserves special gratitude for teaching me how ideas can be turned into scientific

papers.

Parts of this thesis were presented at the 28th and 29th Annual Congresses of the

European Economic Association, the 21st and 23rd Annual Meetings of the German

Finance Association, the 2015 Annual Meeting of the Royal Economic Society, the

14th and 16th CFR Colloquia on Financial Markets, the 18th Annual Conference of the

Swiss Society for Financial Market Research, the 19th Annual European Conference

of the Financial Management Association, the 2015 Conference on Frontiers of

Theoretical Econometrics in Constance, the 2015 SAFE Asset Pricing Workshop, the

2016 Financial Econometrics and Empirical Asset Pricing Conference in Lancaster,

the 2016 Doctoral Seminar of the German Finance Association, the 2017 Vienna-

Copenhagen Conference on Financial Econometrics, the 2013, 2014, and 2015 joint

doctoral seminars in econometrics by the universities of Hohenheim, Constance, and
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CHAPTER 1

Introduction

The central paradigm in asset pricing theory asserts that positive expected excess

returns result as a form of risk compensation – so according to the high U.S. equity

premium after World War II, there must be considerable risk for which to compensate.

A methodological lynchpin of this view is the basic pricing equation for a gross return

Rt+1 that is implied by Hansen and SingletonHansen and Singleton’s (19821982) canonical consumption-based

asset pricing model (C-CAPM) with time-additive power utility:

Et [β (Ct+1

Ct
)
−γ

Rt+1] = 1, (1.1)

where β is the subjective discount factor, γ is the coefficient of constant relative

risk aversion and Ct denotes consumption in period t. As demonstrated by Mehra

and Prescott (19851985) though, the canonical C-CAPM cannot explain the U.S. equity

premium with plausible values of β and γ, leading to a widespread belief that the

model is strong in theory but weak in application.

This phenomenon – the equity premium puzzle – is frequently addressed in finance

and many attempts have been made to solve it. A famous competitor amongst these

attempts is the rare disaster hypothesis (RDH) by RietzRietz (19881988) and BarroBarro (20062006),

according to which the high U.S. postwar excess returns resulted from a sample

selection effect: Investors ex ante demanded compensation for highly unlikely but

possibly disastrous consumption contractions from which they ex post – due to the

lucky path that U.S. history took – did not suffer. Considering the Cold War whose

possible escalation loomed for decades, the prosperous consumption path that we

observe today is indeed just one particularly pleasant string out of the multitude of

outcomes that investors in the 1950s to 1980s had to consider. This intuitiveness

makes the RDH an appealing explanation of the equity premium puzzle and the

poor empirical performance of Hansen and SingletonHansen and Singleton’s (19821982) canonical consumption-

based asset pricing model and its followup variants. However, as much as the RDH is

appreciated in theory and supported by calibration studies, it is difficult to estimate

the preference parameters of a C-CAPM that explicitly allows for disaster risk.

With this dissertation, I propose econometric estimation strategies for the prefer-

ence parameters of such a disaster-including C-CAPM that facilitate testing of the
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RDH. The empirical success of the hypothesis is evaluated based on the plausibility

and precision of the parameter estimates as well as on the sensibility of fundamental

model-implications, like the model-implied mean market and T-bill return, mean eq-

uity premium, and market Sharpe ratio. For this purpose, I consider three approaches

that use simulated method of moments-type estimation strategies to account for the

possibility of severe but rare contractions in consumption.

This introductory chapter provides an overview of the beginnings and recent

advances in asset pricing with disasters. Section 1.11.1 explains the origin and reception

of the RDH, whilst Section 1.21.2 reviews more recent disaster risk literature. Studies

that criticize the RDH on theoretical or empirical grounds are discussed in Section

1.31.3 and Section 1.41.4 outlines the contribution and composition of this dissertation.

1.1 The equity premium puzzle and early RDH literature

Coining the term equity premium puzzle, Mehra and PrescottMehra and Prescott (19851985) were the first

to claim that the high U.S. equity premia, which have been observed for more

than a century, could not be explained in an asset pricing framework that relies

on time-additive power utility and economically plausible values for relative risk

aversion and time preference. Their empirical assessment is based on annual data for

the 1889-1978 period and the equity premium is computed from the Standard and

Poor’s 500 Index and short-term T-bill returns, resulting in an average annual equity

premium of about 7%. Mehra and PrescottMehra and Prescott adapt LucasLucas’s (19781978) pure exchange

model by assuming that the growth rate of consumption follows a two-state Markov

process in which consumption growth is either slightly above or slightly below average

and transition probabilities are symmetric. The parameters of the Markov process are

calibrated to real consumption growth data. Deriving analytical expressions for the

risk-free rate and the market return that solely depend on the parametrization of the

Markov process and the choice of the two preference parameters, Mehra and PrescottMehra and Prescott

(19851985) evaluate the range of average risk premia that are feasible when restricting

0 < γ ≤ 10 and 0 ≤ β ≤ 1. The chosen plausibility bounds of the preference parameters

are generous: Mehra and PrescottMehra and Prescott themselves stress that an RRA value of 10 is

very high compared to earlier theoretical and empirical findings (e.g., ArrowArrow (19711971)

who claims on theoretical grounds that the RRA coefficient should be close to 1).

Furthermore, studying time preference values between 0 and 1 implies that every
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degree of indifference towards future consumption is accounted for.11 The largest

premium that can be obtained using this set of preference parameters is 0.35%, which

is accompanied by a mean annual risk-free rate of 4% that does not correspond to the

empirically observed value of 0.8%. The framework proposed by Mehra and PrescottMehra and Prescott

(19851985) can thus neither explain the high U.S. excess returns, nor the low risk-free

rate. The authors also consider a four-state Markov chain process and a wide range

of transition probabilities. The results remain unchanged, leading to the conclusion

that market frictions would be needed to reconcile plausible preference parameters

with the data.

RietzRietz (19881988) builds on Mehra and PrescottMehra and Prescott (19851985) and proposes an alternative

approach to solve the equity premium puzzle. He re-specifies their two-state Markov

process to include a third state that only occurs with a very small probability

but signifies a severe decline in consumption. RietzRietz argues that investors would

demand compensation in form of excess returns for the possibility of such crashes

and that the twentieth century in the U.S.A. is not representative of such disasters,

in the sense that we only observe the high excess returns but no consumption

contractions. In more recent literature, this idea is referred to as the rare disaster

hypothesis.22 By restricting the transition probability matrix accordingly, RietzRietz

(19881988) ensures that the crash state is followed by one of the two regular consumption

growth specifications, thereby defining the consumption disasters to be single-period

events. Using otherwise the same model specification as Mehra and PrescottMehra and Prescott (19851985),

these consumption contractions translate into expected equity and risk-free asset

returns.33 Using an annual crash probability of 0.09%, γ = 6.90, and β = 0.995, RietzRietz’s

(19881988) model specification can account for an annual risk-free return of 0.77% and

a corresponding risk premium of 6.38%. Consumption growth in the crash state

is specified such that the level of consumption is about halved in the event of a

disaster. If the level of consumption is reduced to 75% of its previous value in the

case of a crash and if such disasters occur with an annual probability of at least

1%, risk aversion parameters in the range of 9-10 are necessary to replicate the

empirical equity premium and the risk-free return. Analogously, a robustness check

1 β = 0 implies that investors do not assign any value to future consumption when deciding on
their consumption paths and β = 1 implies that investors are indifferent between current and
future consumption.

2 Although RietzRietz (19881988) counts as the originator of the rare disaster hypothesis and the literature
related to it, it is interesting to note that he actually never uses the term disaster, but refers to
crashes, instead.

3 The terminology risk-free is certainly misleading in this context, because if the asset was truly
risk-free, its returns should not be affected by consumption disasters.
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is performed in which the level of consumption contracts by more than 90% in the

crash state. In this specification, γ = 1.5 suffices to match the observed risk-free

return and risk premium values at an annual disaster probability of 0.01% to 0.1%.

In the same year, Mehra and PrescottMehra and Prescott (19881988) counter RietzRietz’s (19881988) analysis by

pointing out its possible shortcomings, such as the assumption that crashes appear

as single-period contractions, that these contraction sizes are very large, and that

the required RRA coefficients are frequently in the upper quarter of the plausible

parameter range. Section 1.31.3 deals with these points of critique and outlines how

they can be dealt with.

The seminal work by Mehra and PrescottMehra and Prescott (19851985) induced a large literature that

deals with different attempts to resurrect the consumption-based asset pricing model

and solve the equity premium puzzle. The most famous of these second-generation

C-CAPM advances are (a) the habit formation model by Campbell and CochraneCampbell and Cochrane

(19991999), (b) Bansal and YaronBansal and Yaron’s (20042004) long-run risk model, and (c) the rare disaster

hypothesis revived by BarroBarro (20062006). In the habit formation model, representative

agents maximize expected utility based on a power utility function, which considers

the level of consumption in excess of an external habit level that itself depends

on consumption. It is external in the sense that effects on the future habit level

are not considered in the consumption optimization problem. Applying a vari-

ety of parameter restrictions and ensuring excess consumption to be non-negative,

Campbell and CochraneCampbell and Cochrane (19991999) use a calibration study to show that such a model

is able to explain the empirical equity premium and mean risk-free rate with γ = 2.

Bansal and YaronBansal and Yaron (20042004) assume that there is a small but persistent component in

consumption and dividend growth, whereas many other studies model consumption

growth as an independent and identically distributed process. Using the available U.S.

consumption growth series with their limited number of observations, differentiating

between a process that features a small persistent component and one that has no

memory, is difficult. The idea behind this long-run risk approach is that the long-term

expected growth rates are directly affected by the persistent component and that

asset prices will react to innovations in it. As long as the degree of persistence is

high, the component as such may be small. Using recursive preferences and also

a calibration approach, Bansal and YaronBansal and Yaron (20042004) are able to replicate the average

equity premium and short-term interest rate with an intertemporal elasticity of

substitution (IES) of 1.5 and γ = 10.

Apart from these three seminal second-generation consumption-based asset pricing

models, many more studies were inspired by Mehra and PrescottMehra and Prescott (19851985) to propose
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different attempts to vindicate the C-CAPM. However, these studies only partially

succeed to explain the U.S. equity premium with plausible and precise estimates of

the preference parameters. YogoYogo (20062006), for example, proposes an asset pricing model

that differentiates between the consumption of durable and nondurable goods. Most

other studies solely rely on the consumption of nondurables and services, because

only a small fraction of the stock of the durable good that investors own is actually

consumed during the period lengths that are conventionally considered (e.g., months,

quarters, years). YogoYogo’s (20062006) model can account for the cross-sectional variation

in expected stock returns, but only with a very high level of risk aversion.44 The

smallest estimate of the RRA coefficient amounts to 174.5, while the estimated

subjective discount factor implies a positive rate of time preference (0.88). SavovSavov

(20112011) relies on waste data as a measure of consumption, calibrates time preference

to 0.95, and obtains γ̂ = 17.0 with a large standard error (9.0). Similar results are

reported by KroenckeKroencke (20172017), who uses unfiltered NIPA consumption and receives

RRA estimates between 19 and 23 in the postwar period. Again, standard errors are

high (10.0). Julliard and ParkerJulliard and Parker (20052005) analyze the ultimate risk of consumption,

defined as the covariance of returns and consumption growth aggregated over current

and future periods. They assume indifference regarding the timing of consumption

by calibrating the time preference parameter to 1 and obtain γ̂ = 9.1. However, this

estimate has a relatively high standard error of 17.2.

1.2 Recent rare disaster literature: a review

After laying dormant for two decades, BarroBarro (20062006) revived the rare disaster literature

with a calibration study in which he considers single-period disasters in a power

utility context and finds that plausible values of the time preference and risk aversion

parameters are compatible with high equity premia when allowing for rare but

severe contractions in consumption. In 20092009, BarroBarro extended his base model with

recursive preferences. Much thought has been given on how to estimate the size

distribution of disasters. Whilst BarroBarro (20062006) uses GDP data on 35 countries to

detect disastrous contractions in, Barro and UrsúaBarro and Ursúa (20082008) assembled consumption

data for 41 countries and additionally created a GDP dataset for these countries.

They find that the distribution of disasters that are detected in consumption data is

4 Whilst YogoYogo’s (20062006) theoretical contribution is much appreciated and cited in related literature,
his empirical assessment is currently rigorously criticized based on his readily available code.
Borri and RagusaBorri and Ragusa (20172017) find that the preference parameter estimates reported by YogoYogo (20062006)
do result from a failed optimization.
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very close to that of disasters that are obtained from GDP data. The similarity is

caused by the fact that the sharpest contractions, which are often related to one of

the world wars, arise in GDP and consumption similarly. Barro and UrsúaBarro and Ursúa’s (20082008)

consumption dataset is also used by Barro and JinBarro and Jin (20112011) who suggest to model

(transformed) disaster sizes by means of power law distributions. They consider one-

parameter power law distributions as well as double power law distributions, which

result from merging two power laws at a certain threshold to allow for a different

kurtosis in the lower and upper tail of the distribution. An alternative approach for

estimating the distribution of disastrous contractions is proposed by Backus et al.Backus et al.

(20112011) who suggest to derive the distribution of consumption contractions from equity

index options. They use these options to determine the risk-neutral distribution

of stock returns and, assuming a time-additive power utility function and an RRA

coefficient to match the empirical equity premium, obtain the physical distribution

of consumption growth. This distribution, however, looks nothing like the the one

that is implied by international macro data, because it implies that consumption

contractions appear more frequently and are less disastrous than suggested by BarroBarro

(20062006) or Barro and UrsúaBarro and Ursúa (20082008). Tsai and WachterTsai and Wachter (20152015), who provide a thorough

survey of the RDH literature, argue that this option-implied consumption growth

distribution is at odds with empirical data, because such frequent jumps should

have been observed. A reconciliation of option prices and the consumption growth

distribution that is implied by macro data is achieved by Seo and WachterSeo and Wachter (20162016)

who allow for stochastic disaster probabilities and recursive preferences with the IES

fixed at 1.

Seo and WachterSeo and Wachter (20162016) are not alone in assuming time-varying disaster proba-

bilities. Whilst the early rare disaster literature focused on constant disaster risk,

this approach has by now been discarded in favor of allowing for time-varying specifi-

cations of the disaster process. For example, GourioGourio (20122012) introduces time-varying

disaster risk into a business cycle model and WachterWachter (20132013) shows that the volatil-

ity puzzle can be explained once a stochastic disaster intensity is accounted for.

Nakamura et al.Nakamura et al. (20132013) use the dataset assembled by Barro and UrsúaBarro and Ursúa (20082008) and

conduct a Bayesian analysis to estimate the parameters of an elaborate disaster

process that distinguishes contractions based on their origin and the longevity of

their impact. They assume recursive preferences introduced by Epstein and ZinEpstein and Zin

(19891989), and WeilWeil (19891989) and, fixing the subjective discount factor and the IES at

convenient values, find that the model-implied equity premium can be explained

at plausible values of the RRA coefficient. GabaixGabaix (20122012) proposes another way of
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including time-variation in the disaster process by assuming that the probability of a

disaster is constant, but that the sensitivity of cash flows to a disaster is stochastic,

meaning that there is a time-varying resilience of assets, which in turn generates

time-varying risk premia. Assuming time-additive utility and linearity-generating

processes, GabaixGabaix (20122012) challenges 10 puzzles in finance.55

GourioGourio (20132013) finds that allowing corporate debt to be affected by disasters

accounts for important features of the credit spread. Bai et al.Bai et al. (20152015) conclude that

the RDH can be used to explain the value premium and Seo and WachterSeo and Wachter (20162016)

argue that the volatility skew can be reconciled with the equity premium in models

that include stochastic disaster probabilities. Gillman et al.Gillman et al. (20152015) shed light on

various pricing phenomena in the equity and bond market by letting disasters affect

the growth persistence of consumption and dividends. Assuming a time-varying

probability of world disasters, Farhi and GabaixFarhi and Gabaix (20162016) explain an assortment of

exchange rate puzzles. Tsai and WachterTsai and Wachter (20162016) propose a model that not only allows

for rare disasters but also booms and find that the curious empirical simultaneity

of growth stocks being riskier than value stocks and having lower returns becomes

comprehensible. Building a bridge between two prominent attempts to resurrect

the C-CAPM, Barro and JinBarro and Jin (20162016) use Bayesian techniques to analyze a model

that accounts for long-run and disaster risk. They find that the disaster component

explains most of the equity premium.

1.3 Controversy about the rare disaster hypothesis

As indicated above, the empirical success of the RDH in calibrations was also

accompanied by several studies that expressed doubt regarding allegedly unrealistic

assumptions which are frequently invoked in the rare disaster literature. I will use

this section to lay out the main points of criticism and what they imply.

For this purpose, let us return to Mehra and PrescottMehra and Prescott’s (19881988) note on RietzRietz

(19881988), which is the first documented critique of the RDH. The arguments of the

authors are threefold. First, Mehra and PrescottMehra and Prescott stress that RietzRietz’s calibrated crash

sizes represent extremely large single-period contractions, which means that in some

of the model settings, the level of consumption is reduced by more than 90% in

the event of a disaster. Shocks like this have never been observed in U.S. data –

not in aggregate size, and especially not as an instant jump. Second, the authors

5 Linearity-generating processes are a class of stochastic processes that generates closed-form
solutions for bond and stock prices. See GabaixGabaix (20092009) for details.
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claim that the RRA coefficients which are needed to replicate the historical average

equity premia are frequently in the upper quarter of the parameter range that was

considered by Mehra and PrescottMehra and Prescott (19851985) and that values so close to 10 may not be

plausible in the first place. Third, they argue that there is not enough historical

support for RietzRietz’s (19881988) RDH – a point of critique that is clearly linked to the first

one which referred to the consumption contraction sizes.

BarroBarro (20062006) addresses this critique by being the first to actually consider the

probability and size distribution of historical disasters. He defines a disaster as

an aggregate decline of at least 14.5% and detects all large GDP contractions in

a panel dataset that features 35 countries in the 1900-2003 period. As mentioned

above, Barro and UrsúaBarro and Ursúa (20082008) extend this approach by assembling a cross-country

consumption dataset that can be used for the same purpose. The idea behind this

strategy is that the U.S. history was particularly lucky and that the GDP and

consumption series of other countries may be more representative of the possible

disasters that the U.S.A. sidestepped. Both studies also include data on the behavior

of the respective stock market indexes and risk-free rate proxies during the detected

disaster periods. These information provide the historical support that RietzRietz (19881988),

who uses a purely technical approach, does not offer. It turns out that these data-

based disaster probabilities and sizes are closest to RietzRietz’s (19881988) setting in which the

level of consumption is reduced to 75% of its previous value in the event of a disaster.

With this Markov process, RietzRietz needs annual crash probabilities in the range of

1% to 1.4% and γ = 10 to replicate the observed average equity premium. Using his

macro data approach, BarroBarro (20062006) obtains an annual disaster probability of 1.7%

with an average disaster size of 29%. He is able to explain the equity premium with

γ = 4, thus not only offering an answer to Mehra and PrescottMehra and Prescott’s (19881988) demand for a

historical foundation, but also reconciling the empirical equity premium with a small

RRA coefficient.

The first point of critique mentioned by Mehra and PrescottMehra and Prescott (19881988) is not eradi-

cated by BarroBarro (20062006), however. He, just as RietzRietz (19881988), assumes that the consump-

tion disasters evolve as single-period contractions and argues that this simplification

is justified by the high correlation of consumption during disasters. In order to

assess the possible consequences that may arise from this procedure and the criticism

thereof, it is necessary to be specific about the differentiation of single-period and

multi-period disasters in the RDH literature. Let us consider, for this purpose, U.S.

GDP during the Great Depression, which declined by 31% in the four years between

1929 and 1933. BarroBarro (20062006) who derives a closed-form expression of the equity
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premium, performs his calibration on an annual frequency, meaning that parameters

that represent mean consumption growth and variance are fitted to match annual

consumption data. Disaster risk enters the expression through the disaster probability

and through the distribution of contraction sizes. Whilst BarroBarro (20062006) calibrates the

disaster probability to annual data, he neglects the time dimension when it comes to

disaster sizes, instead just using the peak-to-trough contraction without regarding the

number of periods over which this disaster accrued. This means that BarroBarro’s (20062006)

calibration features the 31% disaster instead of the 8.9% contraction which would

result by splitting the disaster equally across four years. Many of the studies that

were mentioned in the literature overview, amongst them Barro and UrsúaBarro and Ursúa (20082008),

rely on the correlation argument and assume that disasters evolve in a single period,

too.

By now, the question whether the simplification to single-period disasters is

actually the driving force behind the hypothesis’s success in calibrations has become

the main controversy in the RDH literature. In a comment on Barro and UrsúaBarro and Ursúa

(20082008), ConstantinidesConstantinides (20082008) argues that the use of single-period disasters causes a

misspecification of the fundamental consumption-based asset pricing paradigm, which

is founded on the contemporaneous dependence of consumption growth and (excess)

returns. Modeling single-period disasters, according to Constantinides, actually

implies considering consumption growth over multiple periods without accounting for

returns in the same time span. Assuming the same model framework as BarroBarro (20062006)

and using their modified dataset, Barro and UrsúaBarro and Ursúa (20082008) are able to replicate the

empirically observed mean equity premium at plausible preference parameters. In a

calibration akin to theirs, Constantinides replaces overall disaster sizes by annual

contractions and shows that this causes the model-implied equity premium to shrink

to less than 25% of the observed value.

Julliard and GhoshJulliard and Ghosh (20122012) perform an empirical application and choose four

different angles of attack to argue in the same direction. The first part of their

study is based on long annual consumption growth and return series assembled

by CampbellCampbell (20032003). The series span the range 1929-2009 and thus feature two of

the GDP contractions detected by BarroBarro (20062006): the Great Depression (1929-1933;

31%) and a decline that followed World War II (1944-1947; 24%).66 The average

equity premium is about 6% in this sample. Using the empirical likelihood method,

6 According to BarroBarro (20062006), the decline in GDP after World War II represents an aftermath
of war, which is not related to a drop in consumption and thus excluded from his analysis.
Indeed, when using the consumption data assembled by Barro and UrsúaBarro and Ursúa (20082008), no disastrous
contraction is detected during these years.
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which corresponds to a generalized method of moments (GMM) setting, in which the

weighting of the respective observations can deviate from their relative frequency in

the sample, Julliard and GhoshJulliard and Ghosh (20122012) find that the resulting RRA estimate is still

implausibly large.

Allowing for the possibility that the consumption contractions in the data are just

too few to explain the equity premium puzzle, the authors perform a second study

in which they use Barro and UrsúaBarro and Ursúa’s (20092009) identified disasters and equally split the

aggregate contraction sizes over the number of periods over which the respective

crash occurred, thus generating multi-period disasters. Using these contractions,

and CampbellCampbell’s (20032003) data from which they discard the observations that are

related to the Great Depression, they create counterfactual samples in which the

disaster probability is varied. Julliard and GhoshJulliard and Ghosh (20122012) find that the annual disaster

probability must be at least 9.6% to obtain an γ ≤ 10. They argue that this result

is comparable to Backus et al.Backus et al.’s (20112011) distribution of option-implied consumption

contractions.

For their third angle of attack, Julliard and GhoshJulliard and Ghosh (20122012) extend the previous

analysis by studying how likely the occurrence of the equity premium puzzle would

be if the RDH was indeed its solution. For this purpose, they choose the disaster

probability such that the equity premium is matched and then simulate annual

consumption growth and return series. The number of observations is chosen to

accord with the length of the CampbellCampbell’s (20032003) series. Generating 10,000 of such

counterfactual samples and computing the equity premia that would result from these

series, Julliard and GhoshJulliard and Ghosh (20122012) find that the median equity premium is 0. Only

about 2% of the simulated average equity premia reach the size of their empirically

observed counterpart, implying that the equity premium puzzle itself would be a rare

event. Finally, Julliard and GhoshJulliard and Ghosh (20122012) also show that allowing for rare disasters

does not help explain the cross-sectional variation of asset returns. Considering the

results depicted above, it does not come as a surprise that the authors conclude their

analysis by labeling the RDH a very unlikely solution to the equity premium puzzle.

1.4 Contribution and composition of this thesis

My dissertation contributes to existing literature by proposing frequentist estimation

approaches that facilitate empirically assessing and testing the RDH. Estimating the

preference parameters of a disaster-including C-CAPM creates added value, because

calibration studies do not allow answering questions related to estimation precision
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or model-implications of the empirical analysis – however, these issues constitute the

benchmark by which all second-generation consumption-based asset pricing models

are measured. The simulated method of moments (SMM) allows dealing with the

extreme form of sample selection that is not only the RDH’s legitimation, but also

its great obstacle.

Besides proposing econometric techniques that allow estimation of the C-CAPM

preference parameters, this dissertation also offers a contribution to the disaster

duration controversy outlined above. The studies that are presented in Chapters 3

and 4 feature multi-period disasters and are still able to reconcile plausible preference

parameters with high average equity premia. The great difference between my studies

and the ones performed by Julliard and GhoshJulliard and Ghosh (20122012) and ConstantinidesConstantinides (20082008) is

that they choose to work with a power utility function. This class of utility functions

was also used by BarroBarro (20062006) and Barro and UrsúaBarro and Ursúa (20082008) and has the peculiarity of

measuring risk aversion and the elasticity of substitution through the same parameter,

as the IES is set to be the inverse of the RRA coefficient.

Is such a restriction plausible in the context of multi-period disasters? I think not.

My reasoning is as follows: The IES captures an investor’s willingness to substitute

consumption over time. There is an ongoing discussion in the literature on whether

its value should be larger or smaller than 1, but independent of this debate, a higher

IES signifies a higher willingness to substitute. However, the size and duration of

crashes constitute two different dimensions of disaster risk. The RRA coefficient

relates to the contraction size and how harmful it is to an investor’s utility. An

investor who is more risk averse will suffer more from a given disaster than a less risk

averse one. When assuming a time-additive power utility function, this is actually

the only source of risk that matters. Accounting for multi-period disasters includes a

second risk dimension: the length of a disaster. In these frameworks, the average

contraction size per period is reduced, but these disaster periods materialize in

clusters. The IES determines how well an investor can deal with such a clustering.

With a higher willingness to substitute consumption over time, it will be easier to

cope with multi-period disasters.

Accordingly, power utility does not suffice to account for these two different

dimensions of risk. The IES is the inverse of the RRA coefficient and thus, there

is no room for an investor that is plausibly risk averse and willing to substitute

consumption over time. It is important to note that Julliard and GhoshJulliard and Ghosh (20122012) may

refer to multi-period disasters, but their estimation approach cannot account for the

clustering of consumption contractions. If they re-shuffled the observations in their
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counterfactual samples, such that the disasters were broken apart, this would not

affect their RRA estimates in any way. For this reason, the multi-period disaster

studies presented in Chapters 3 and 4 of this dissertation use recursive preferences

which disentangle an investor’s risk aversion from her willingness to substitute over

time. The resulting RRA and IES estimates are both larger than 1; a parameter

combination that cannot be accounted for by power utility.

I structure my thesis as follows: Assuming single-period disasters and a time-

additive power utility function, Chapter 2 presents an SMM-based estimation ap-

proach that facilitates the estimation of the C-CAPM preference parameters. This

study is based on the working paper Consumption-Based Asset Pricing with Rare

Disaster Risk: A Simulated Method of Moments Approach, which is joint work with

Joachim Grammig. Chapter 3 is based on my working paper Empirical Asset Pricing

with Multi-Period Disasters and Partial Government Defaults, which extends the

previous study to account for the duration of disasters. For reasons described above,

I assume Epstein-Zin-Weil preferences to disentangle the RRA coefficient from the

IES. This study no longer includes a risk-free rate, but computes excess returns over

a T-bill return that can be subject to disasters. Chapter 4 modifies the pricing kernel

by differentiating between consumption of durable and nondurable goods as proposed

by YogoYogo (20062006). It combines rare disaster and long-run risk literature to illustrate

how multi-period consumption disasters translate into returns. This chapter is based

on my working paper The Taming of the Two: Simulation-Based Asset Pricing with

Multi-Period Disasters and Two Consumption Goods. Chapter 5 concludes with an

assessment of how the results presented in this dissertation contribute to the RDH

literature and what they imply for the link between the real economy and finance

that is constituted by the C-CAPM.
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CHAPTER 2

Consumption-Based Asset Pricing with Rare
Disaster Risk∗∗

2.1 Motivation

With this study, we provide an empirical assessment of the rare disaster hypothesis

by estimating and testing a C-CAPM that allows for the possibility of disastrous

consumption contractions. We propose and apply an SMM-type estimation strategy

that accounts for the fact that no such disasters are actually observed in the postwar

U.S. data. The empirical results vindicate both the consumption-based asset pricing

paradigm and the rare disaster hypothesis.

Our work is inspired by BarroBarro (20062006), who draws on RietzRietz (19881988) and proposes a

model that allows to assess the effect of rare disasters on asset prices. He uses cross-

country panel data to calibrate the probability and size of disastrous consumption

contractions, assumes reasonable investor risk and time preferences, and shows that

the model-implied equity premia are in the range of their empirically observed

counterparts. While such calibrations are useful, they cannot answer the following

questions: How do asset pricing models that account for rare disasters perform when

econometric methods get applied to estimate (instead of calibrate) the preference

parameters using empirical data? Are the resulting estimates economically plausible?

What is the estimation precision that can be expected and how informative are

the available data? Are model-implied key economic indicators like the equity

premium, mean risk-free rate, and market Sharpe ratio comparable to their empirical

counterparts? Addressing these questions is complicated by the rarity of extreme

consumption contractions, such that they may not occur in any particular dataset.

As John CochraneCochrane puts it:

We had no banking panics, and no depressions; no civil wars, no consti-
tutional crises; we did not lose the Cold War, no missiles were fired over
Berlin, Cuba, Korea, or Vietnam. If any of these things had happened, we
might well have seen a calamitous decline in stock values, and I would not
be writing about the equity premium puzzle. (CochraneCochrane, 20052005, p. 461)

∗ This chapter is based on Grammig and SönksenGrammig and Sönksen (20162016), available on ssrn:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=2397065
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Accordingly, the empirical deficiencies of the C-CAPM may result from a sample

selection effect, in that the consumption and return data that the U.S. economy

produced over the past 65 years represent one lucky itinerary of all the various

histories that could have been. If disastrous consumption contractions were possible

but did not occur, then we should account for them by traveling the roads that

the U.S. postwar economy did not take. We should consider histories marked by

banking panics and depressions or in which the U.S.A. lost the Cold War – in short,

alternative histories, in which we would not conduct this study in the first place. We

use the simulated method of moments to facilitate such journeys, as advocated by

Ken SingletonSingleton:

More fully specified models allow experimentation with alternative for-
mulations of economies and, perhaps, analysis of processes that are
more representative of history for which data are not readily available.
(SingletonSingleton, 20062006, p. 254)

In the spirit of this view, we propose a two-step estimation strategy that entails

simulating disaster-including consumption growth and return data. Conceiving

a sequence of disaster events as a realization of a marked point process (MPP),

we model the time durations between events (“points”) using the autoregressive

conditional hazard (ACH) framework introduced by Hamilton and JordaHamilton and Jorda (20022002).

The size of the consumption contraction (the “mark”) is described by a double power

law (DPL) distribution, as in Barro and JinBarro and Jin (20112011). A Gaussian copula function

links the marginal distributions of the return and consumption contractions. We

rely on the disaster identification scheme used by BarroBarro (20062006) that is applied

to the updated cross-country panel data collected by Barro and UrsúaBarro and Ursúa (20082008) and

Bolt and van ZandenBolt and van Zanden (20142014), respectively. Using the estimated ACH-DPL model,

we then generate disaster-including consumption and return series for the SMM

estimation of the power utility preference parameters β and γ. A bootstrap simulation

provides parameter standard errors and confidence intervals. To verify the robustness

of the results, we use alternative ACH specifications, disaster-defining thresholds,

test assets, and data simulation procedures.

As a preview of some results, Figure 11 shows that all the estimates of γ and β thus

obtained lie within an area that confines values that are accepted as economically

reasonable. Further analysis reveals that the boundaries of the 95% confidence

intervals are also located in that region. Moreover, the model-implied market

equity premium, mean risk-free rate, and market Sharpe ratio are also economically
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meaningful. Additionally, we find that the seemingly implausible preference parameter

estimates reported in previous literature are not at all unlikely if the time series are

as short as the postwar quarterly data used in empirical analyses of the C-CAPM.

With the availability of longer, disaster-including time series, the estimates become

perfectly reasonable.

Figure 1: Preview of estimation results
The figure shows the point estimates of the subjective discount factor β and the coefficient of
relative risk aversion γ, using different specifications of a disaster-including C-CAPM and test
assets. Each point represents a combination of one of two moment matching strategies, one of
two ACH specifications assumed for the occurrence of a disaster, one of three methods to simulate
disaster-including data, one of three disaster definitions, and one of three sets of test assets. The
colored boxes indicate economically reasonable parameter values. Mehra and PrescottMehra and Prescott (19851985) and
RietzRietz (19881988) consider a range of γ between 0 to 10 as plausible, whereas CochraneCochrane (20052005, Ch. 21)
refers to 1 and 5 as the traditional bounds. A positive rate of time preference implies a β smaller
than 1.
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The remainder of the chapter is structured as follows: Section 2.22.2 outlines the

empirical methodology. Section 2.32.3 describes the data. In Section 2.42.4, we present

the empirical results. Section 2.52.5 concludes.

2.2 Methodology

To explain our empirical methodology, we proceed as follows: We first introduce a

disaster-including consumption process in the spirit of BarroBarro (20062006) and work out

the implications for the basic pricing equation (1.11.1). These considerations lead to
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moment matches for the SMM estimation of a disaster-including C-CAPM, which

in turn necessitates the simulation of disaster-including consumption and return

processes (Section 2.2.12.2.1). We then show how an MPP for the occurrence and size

of disastrous consumption contractions can be used for this purpose. We employ a

two-step strategy, that entails the estimation of the MPP parameters in the first and

that of the C-CAPM preference parameters in the second step. Sections 2.2.22.2.2 and

2.2.32.2.3 explain the details. Section 2.2.42.2.4 outlines how to obtain bootstrap inference for

the two-step estimation procedure.

2.2.1 Moment matches for a disaster-including C-CAPM

BarroBarro (20062006) considers a disaster-including consumption process, used to obtain

closed-form solutions of equity premia, both conditional and unconditional on disaster

periods. We draw on BarroBarro’s (20062006) specification and assume that consumption

evolves as

Ct+1 = Cteut+1evt+1 , (2.1)

where ut+1 ∼ (µ̃, σ2) and vt+1 = ln(1 − bt+1)dt+1. The indicator dt+1 is equal to 1 if a

disaster occurs in period t + 1 and 0 otherwise. If dt+1 = 1, consumption contracts by

a random factor bt+1 ∈ [q,1], where q is referred to as the disaster threshold, such

that
Ct+1

Ct
= eut+1(1 − bt+1)dt+1 . (2.2)

Accordingly, eut+1 denotes regular, non-disastrous consumption growth, and (1 −
bt+1)dt+1 accounts for the effect of a disaster. Substituting the right-hand side of

Equation (2.22.2) into Equation (1.11.1), we can write:

E [β (eutevt)−γ Rt] = P(dt = 1)E [β (eut(1 − bt))−γ Rt∣dt = 1]

+ (1 − P(dt = 1))E [β (eut)−γ Rt∣dt = 0]

= 1.

(2.3)

Rearranging terms, we obtain:

E [β (eut)−γ Rt∣dt = 0] = 1

1 − P(dt = 1)
[1 − P(dt = 1)E [β (eut(1 − bt))−γ Rt∣dt = 1]] .

(2.4)
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For the pricing of an excess return Re
t , the analogue of Equation (2.42.4) is:

E [(eut)−γ Re
t ∣dt = 0] = − P(dt = 1)

1 − P(dt = 1)
[E [(eut(1 − bt))−γ Re

t ∣dt = 1]] . (2.5)

If a sample with disaster observations were available, we could pursue a GMM

estimation strategy, for which we would use the sample counterparts of the population

moments in Equations (2.42.4)-(2.52.5) and rely on a uniform law of large numbers, such

that

1

T −DT

T

∑
t=1

βcg−γnd,tRnd,t(1 − dt) −
1

1 − DT
T

[1 − DT

T
[ 1

DT

T

∑
t=1

βcg−γd,tRd,tdt]] Ð→p 0 (2.6)

uniformly. Analogously,

1

T −DT

T

∑
t=1

βcg−γnd,tR
e
nd,t(1 − dt) +

DT
T

1 − DT
T

[ 1

DT

[
T

∑
t=1

βcg−γd,tR
e
d,tdt]] Ð→p 0 (2.7)

uniformly. In Equations (2.62.6) and (2.72.7), cgnd,t and Rnd,t denote regular consumption

growth and return, and cgd,t and Rd,t are consumption growth and gross return in a

disaster period, respectively. Moreover, DT = ∑Tt=1 dt, and DT
T Ð→p P(dt = 1). However,

the GMM strategy is impeded, because even for long time series, the quality of the

population and sample moment matches would be poor. Rare disasters are, well, rare,

and T would have to be very large to ensure even moderate estimation precision.

Using U.S. postwar data – as in all of the studies mentioned in the introduction –

the problem becomes aggravated. These data do not contain any disaster observations,

such that dt = 0 ∀ t, and thus DT = 0. To apply GMM, one has to rely on disaster-

free consumption growth cgnd,t and returns Rnd,t (with excess returns, Re
nd,t), and

match the left-hand side of Equation (2.42.4) (with excess returns, Equation (2.52.5)) with

its sample counterpart 1
T ∑

T
t=1 βcg

−γ
nd,tRnd,t (with excess returns, 1

T ∑
T
t=1 cg

−γ
nd,tR

e
nd,t).

However, the right-hand side of Equation (2.42.4) is sure to equal 1, and the right-hand

side of Equation (2.52.5) is sure to equal 0, only if P(dt = 1) = 0. Therefore, the usual

moment matches

GT (β, γ) ≡
1

T

T

∑
t=1

βcg−γnd,tRnd,t − 1, (2.8)

using the gross returns of N test assets, Rnd,t = [R1
nd,t, . . . ,R

N
nd,t]′, and

GT (γ) ≡
1

T

T

∑
t=1

cg−γnd,tR
e
nd,t, (2.9)
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using excess returns, Re
nd,t = [Re1

nd,t, . . . ,R
eN
nd,t]′, are suitable only if disastrous con-

sumption contractions are impossible.

We therefore propose an SMM estimation strategy that implies matching sample

moments, obtained from a disaster-free sample of size T , with simulated theoretical

moments that account for the possibility of consumption disasters. These moment

matches are derived from Equations (2.42.4) and (2.52.5). Using time series of length T of

regular, disaster-free consumption data and (excess) returns, the sample counterparts

of the expected values on the left-hand sides of Equations (2.42.4) and (2.52.5) can be

computed as 1
T

T

∑
t=1
βcg−γnd,tRnd,t and 1

T

T

∑
t=1
cg−γnd,tR

e
nd,t, respectively. In contrast, the right-

hand side moments of Equations (2.42.4) and (2.52.5) can neither be expressed as functions

of parameters nor can the sample counterparts be computed using disaster-free data.

However, if it is possible to specify processes that are, in terms of Singleton’s quote,

“more representative of history,” i.e., series that include disaster observations, these

moments can be simulated:

1 − P(dt = 1)E [β (eut(1 − bt))−γ Rt∣dt = 1]
1 − P(dt = 1)

≈ 1

1 − DT
T

(1 − 1

T

T

∑
s=1

βcg−γs Rsds) ,

(2.10)

and

P(dt = 1)
1 − P(dt = 1)

[E [(eut(1 − bt))−γ Re
t ∣dt = 1]] ≈ 1

1 − DT
T

1

T

T

∑
s=1

cg−γs R
e
sds, (2.11)

where DT = ∑Ts=1 ds denotes the number of disasters in a simulated sample of size T .

Using the gross risk-free rate Rf and a vector of excess returns Re as test assets, we

can then employ the following moment matches:

GT (θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
T

T

∑
t=1
βcg−γnd,tR

f
nd,t −

1

1−
D
T

T

(1 − 1
T

T

∑
s=1
βcg−γs R

f
sds)

1
T

T

∑
t=1
βcg−γnd,tR

e
nd,t +

1

1−
D
T

T

1
T

T

∑
s=1
βcg−γs Re

sds

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.12)

where θ = (β, γ)′. To estimate only γ, we could use the following vector of moment

matches, derived from Equation (2.72.7):

GT (θ) = [ 1
T

T

∑
t=1
cg−γnd,tR

e
nd,t +

1

1−
D
T

T

1
T

T

∑
s=1
cg−γs Re

sds] . (2.13)

Here, θ = γ, because β is not identified. One should use a large T to ensure that the
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simulated data contain enough disasters and the approximations in Equations (2.102.10)

and (2.112.11) are sufficiently accurate.

Using either the moment matches from Equation (2.122.12) or Equation (2.132.13), SMM

estimates then can be obtained by

θ̂ = arg min
θ ∈Θ

GT (θ)′WTGT (θ), (2.14)

where WT is a symmetric and positive semi-definite distance matrix. The compact

set Θ ⊂ Rp denotes the admissible parameter space, where p is the number of

parameters.77

2.2.2 Modeling disasters as a marked point process

To use the proposed moment matches for the SMM estimation of the C-CAPM

preference parameters, we have to simulate disaster-including consumption and

return data. For that purpose, we split the parameter estimation into two steps.

The first step consists of specifying and estimating a marked point process, with

which we model the time durations between the occurrence of consumption disaster

events (“points”) and their size (the “mark”). The MPP parameters are estimated

by maximum likelihood (ML) using chained cross-country panel data. Using the

estimates, we can simulate disaster-including consumption and return processes and

perform the SMM estimation of the C-CAPM preference parameters in the second

step.

Hamilton and JordaHamilton and Jorda’s (20022002) autoregressive conditional hazard approach provides

a framework to model the time duration between disaster events. The double power

law distribution is used to describe the size of a disastrous consumption contraction.

The initial choice for such an ACH-DPL model is the threshold q that defines the

calendar time and size of a disaster, that is, the points and marks of the MPP.88

Suppose that the sequence of disaster events thus defined is observable in event

time, that is, each consumption contraction ≥ q marks an event, and time is measured

as the interval between two disaster events. To formalize the exposition, let N(t)

7 References are HansenHansen (19821982) for GMM and Duffie and SingletonDuffie and Singleton (19931993) for SMM; excellent
synopses are provided by HallHall (20052005) and SingletonSingleton (20062006).

8 In the empirical analysis, we consider several threshold values proposed in previous literature.
Our base setting is q=0.145, as in BarroBarro (20062006). The identification of a disaster event necessitates
some additional assumptions and to account for the peculiarities of the data used for the empirical
analysis. We use BarroBarro’s (20062006) disaster identification procedure that is explained in Section
2.32.3. Further details are provided in Appendix A.1A.1.
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denote the number of disasters that have occurred as of calendar period t = 1, . . . , T ,

and let τn denote the time duration, measured in quarters, between the nth and

(n + 1)th disaster event. Following Hamilton and JordaHamilton and Jorda (20022002), the conditional

expected duration ψN(t) ≡ E(τN(t)∣τN(t−1), τN(t−2), . . .) is assumed to evolve as

ψN(t) = ατN(t)−1 + β̃ψN(t)−1, (2.15)

where α and β̃ are parameters.99 The probability of a disaster occurring in period t,

conditional on the information available in t − 1, is the discrete-time hazard rate,

ht = P(N(t) ≠ N(t − 1)∣Ft−1). (2.16)

If the information set Ft−1 consists only of past durations, the hazard rate remains

the same until the next disaster event occurs. Hamilton and JordaHamilton and Jorda (20022002) show that

in this case, the hazard rate and conditional expected durations are inversely related:

ht =
1

ψN(t−1)

. (2.17)

To allow for the impact of a constant and a predetermined variable x observed at

t−1, Hamilton and JordaHamilton and Jorda (20022002) propose to use a hazard rate that varies in calendar

time, that is,

ht =
1

ψN(t−1) + µ + δxt−1

, (2.18)

where µ and δ are parameters. Equation (2.182.18) easily can be extended to include

more than one predetermined variable.

To model the mark in this MPP, we follow Barro and JinBarro and Jin (20112011) and assume that

the distribution of transformed contraction sizes zc = (1 − b)−1 can be described by

a DPL density.1010 The joint probability density function of the disaster indicator dt

and the transformed contraction size zc,t can then be written as

f(dt, zc,t∣Ft−1;θACH,θDPL) = g(dt∣Ft−1) × q(zc,t∣dt,Ft−1) (2.19)

= [ht(θACH)]dt[1 − ht(θACH)](1−dt) × fDPL(zc,t;θDPL)dt ,

where fDPL denotes the DPL density function with parameters collected in the vector

9 Equation (2.152.15) defines an ACH(1,1) model. The generalization is an ACH(p,q) specification
that includes q lagged values of τ and p lagged values of ψ.

10 Appendix A.2A.2 collects useful information about the DPL distribution.
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θDPL. The vector θACH contains the ACH parameters.

The conditional log-likelihood function of an ACH-DPL model is then given by:

L(θACH,θDPL) =
T

∑
t=1

dt lnht(θACH)+(1−dt) ln[1−ht(θACH)]+
T

∑
t=1

dt ln fDPL(zc,t;θDPL).

(2.20)

Assuming that the parameters θACH and θDPL are variation-free, the parameter

estimation can be split in two parts (for a similar approach, see EngleEngle, 20002000). To

obtain estimates of the ACH parameters, we can maximize:

L(θACH) =
T

∑
t=1

dt lnht(θACH) + (1 − dt) ln[1 − ht(θACH)], (2.21)

whereas the DPL parameters can be estimated by maximizing:

L(θDPL) =
T

∑
t=1

dt ln fDPL(zc,t;θDPL). (2.22)

The data used to estimate the ACH-DPL parameters are not be the same as those

used for the second-step SMM estimation of the C-CAPM preference parameters.

U.S. postwar data do not contain disastrous consumption contractions, at least not

for conventional choices of disaster thresholds q, so they are not be useful. We

therefore adopt Barro and JinBarro and Jin’s (20112011) idea and use cross-country panel consumption

data to estimate the ACH-DPL model parameters. In particular, we use an updated

version of the consumption dataset assembled by Barro and UrsúaBarro and Ursúa (20082008), as well as

the GDP data collected by Bolt and van ZandenBolt and van Zanden (20142014). The data are described in

greater detail in Section 2.32.3. Prior to the first-step estimation, these data – annual,

unbalanced panels – must be represented as event time data that is, we have to identify

disaster events and measure the time duration between them. When maximizing the

log-likelihood function in Equation (2.212.21) to obtain θ̂ACH, the country-specific time

series are chained, and N(t), τN(t), and ψN(t) get re-initialized whenever a country

change occurs in the chained data. Details of the procedure are provided in Appendix

A.1A.1.1111 The estimates θ̂DPL are obtained by maximizing the log-likelihood function

11 This re-initialization procedure is adopted from Engle and RussellEngle and Russell (19981998), who introduce a
dynamic duration model for the time interval between trading events, in which they must
account for overnight interruptions of the trading process. To prevent previous-day observations
from affecting the conditional expected durations of the next day, Engle and RussellEngle and Russell (19981998)
re-initialize the conditional expected duration sequence at the start of every day when performing
the maximum likelihood estimation.
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in Equation (2.222.22), based on the observations of disaster sizes identified from the

cross-country panel data. Once the estimates θ̂ACH and θ̂DPL are available, it is

possible to simulate the disaster-including data required for the SMM estimation of

the C-CAPM preference parameters.

2.2.3 Simulating disaster-including data

In this section, we describe how we simulate the sequences of the disaster indicator

{ds}Ts=1, consumption growth {cgs}Ts=1, and asset returns {Rs}Ts=1, which are needed

to perform the SMM estimation as described in Section 2.2.12.2.1.

The first step of the simulation procedure is to obtain {cgnd,s}Ts=1, {Rnd,s}Ts=1, and

{Rf
nd,s}

T

s=1
by drawing with replacement from regular, disaster-free consumption and

return data. To preserve the contemporaneous covariance structure of consumption

growth and returns, these draws are performed simultaneously. Next, we simulate the

ACH-DPL process, using the estimates θ̂ACH and θ̂DPL, which yields a series of hazard

rates/disaster probabilities {hs(θ̂ACH, θ̂DPL)}Ts=1 and disaster indicators {ds}Ts=1. In

the case of ds = 1, we can obtain the size of the consumption contraction bs by a draw

from the DPL distribution with parameters θ̂DPL, which yields cgs = (1 − bs)cgnd,s.
If financial return data corresponding to the consumption contractions were

available, it would be possible to extend the ACH-DPL to account for more marks, in

particular, the asset returns associated with a disastrous consumption contraction (dis-

aster returns). However, the cross-country panel data collected by Barro and UrsúaBarro and Ursúa

(20082008) and Bolt and van ZandenBolt and van Zanden (20142014) do not contain information about asset prices,

such that we must devise an alternative way to simulate disaster returns. For that

purpose, we transfer the notion of a disaster-including consumption growth process

in Equation (2.22.2) to a gross return of an asset, viz:

R = (1 − b̃)dRnd. (2.23)

We consider three possible methods to obtain the return contraction factor b̃

that allow for different degrees of dependence between the consumption and return

contractions. All variants are based on the assumption that the marginal distribution

of the transformed return contractions zR = (1−b̃)−1 is the same as that of zc = (1−b)−1,

fDPL(zc;θDPL) = fDPL(zR;θDPL), (2.24)

and we use a copula function C to model the dependence between zc and zR. By
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Sklar’s theorem, their joint cumulative distribution function (cdf) can then be

represented as:

F (zc, zR;θDPL,θC) = C (FDPL(zc;θDPL), FDPL (zR;θDPL) ;θC) , (2.25)

where FDPL refers to the cdf of the DPL distribution, and θC contains the parameters

of the copula function. Using the Gaussian copula function CG, Equation (2.252.25)

becomes:

F (zc, zR;θDPL, ρ) = CG (uc, uR;ρ) , (2.26)

where uc = FDPL(zc;θDPL), and uR = FDPL(zR;θDPL). The copula correlation coeffi-

cient ρ determines the dependence of zc and zR.

We focus on three potential choices for defining ρ. The first is to estimate ρ

by the empirical correlation of regular consumption growth and the return of the

respective test asset. The second choice would fix ρ = 0.99, motivated by empirical

evidence that the correlations between financial returns increase in the tails of the

joint distribution (Longin and SolnikLongin and Solnik, 20012001). The third option is to set ρ = 0, which

amounts to drawing zc and zR independently, but from the same DPL distribution.

These three approaches are labeled EmpCorr (Empirical Correlation), TailCorr (Tail

Correlation), and ZeroCorr (Zero Correlation), respectively. For an assessment of

the robustness of the results, we perform a sensitivity analysis in which we vary ρ

between 0 and 0.99.

To obtain the contraction factors bs and b̃s, we draw two standard normally

distributed variables yc,s and yR,s, which have correlation ρ, and compute uc,s = Φ(yc,s)
and uR,s = Φ (yR,s), where Φ(⋅) denotes the cdf of the standard normal distribution.

The simulated contraction factors bs and b̃s then result from:

bs = 1 − 1

F −1
DPL(uc,s; θ̂DPL)

and b̃s = 1 − 1

F −1
DPL (uR,s; θ̂DPL)

, (2.27)

where F −1
DPL is the quantile function of the DPL distribution. In turn, we can compute

cgs = (1 − bs)dscgnd,s, Rs = (1 − b̃s)dsRnd,s, R
f
s = Rf

nd,s (assuming that the risk-free

rate does not contract), and Re
s = Rs −Rf

nd,s, for s = 1, . . . ,T .

The simulated series can now be used to compute moment matches in Equations

(2.122.12) and (2.132.13) and to estimate the C-CAPM parameters β and γ by minimizing

the SMM objective function in Equation (2.142.14).
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2.2.4 Bootstrap inference

The two-step estimation approach precludes the reliance on standard inference in

the second estimation step. To circumvent this problem, we employ a bootstrap

simulation. Using the first-step ML estimates θ̂ACH and θ̂DPL, we simulate the

estimated ACH-DPL model to obtain sequences of time durations between disaster

events, and the associated contraction sizes. The length of the simulated series is

equal to the number of country-quarters used to estimate the ACH-DPL parameters.

With these simulated data, we can estimate the ACH-DPL parameters anew. When

this procedure is replicated K times, we obtain an empirical distribution of first-step

estimates, {θ̂
(k)

DPL, θ̂
(k)

ACH}
K

k=1

, which provides the basis for bootstrap inference.

Within each of the K replications, we then estimate the preference parameters

by SMM, based on bootstrapped data. For that purpose, we draw with replacement

from the regular consumption growth and return data. Again, to preserve their

contemporaneous dependence, consumption and return data are drawn simultaneously

(for a similar approach, see Maio and Santa-ClaraMaio and Santa-Clara, 20122012). The number of draws is

identical to the number of observations in the original consumption/return time

series. Using the bootstrapped consumption and return data from the kth replication

and the parameter estimates θ̂
(k)

DPL and θ̂
(k)

ACH, we perform the SMM estimation of

the C-CAPM preference parameters as described in Section 2.2.12.2.1. Collecting the

preference parameter estimates from the K bootstrap replications, {β̂(k), γ̂(k)}
K

k=1
,

we can use the empirical distribution to compute parameter standard errors and

confidence intervals using the percentile method as described by Efron and TibshiraniEfron and Tibshirani

(19861986).

2.2.5 Alternative Histories Bootstrap

We have argued previously that the moment matches in Equations (2.82.8) and (2.92.9)

should not be used if disasters are possible but not observed. Because the simulated

consumption growth and return series include disaster observations, these moment

matches can be reconsidered and used for GMM estimation. We refer to this approach

as Alternative H istories Bootstrap (AHB), a name that echoes Cochrane’s quote

from the introduction.

The input for the AHB procedure are H independent disaster-including simulated

samples (“alternative histories”) of size T , which we generate as described in Section

2.2.32.2.3. Let {cg(h)s ,R
f(h)
s ,R

e(h)
s }

T

s=1
denote the simulated data from replication h. For
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each h = 1, . . . ,H, we estimate β and γ by GMM, using the moment matches:

G(h)T (β, γ) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
T

T

∑
s=1
β (cg(h)s )

−γ
R
f(h)
s − 1

1
T

T

∑
s=1
β (cg(h)s )

−γ
R
e(h)
s

⎤⎥⎥⎥⎥⎥⎥⎦

. (2.28)

Then, we can estimate β and γ by averaging {β̂(h)}Hh=1 and {γ̂(h)}Hh=1 across ensembles:

β̂ = 1

H

H

∑
h=1

β̂(h) and γ̂ = 1

H

H

∑
h=1

γ̂(h), (2.29)

where γ̂(h) and β̂(h) refer to the estimates obtained in the hth replication. We use

the empirical distribution of γ̂(h) and β̂(h) to provide standard errors and confidence

intervals. By varying T , the AHB approach makes it possible to quantify the

speculations about the relationships of sample size, frequency of disaster events, and

estimation precision from Section 2.2.12.2.1.

2.3 Data

The first-step estimation of the ACH-DPL model is based on updated cross-country

consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). These unbalanced

panel data contain annual consumption information about 42 countries between 1800

and 2009, from which we select the same 35 countries that BarroBarro (20062006) used for his

study.1212 Table 11 lists these countries and the time periods for which consumption

data are available. To identify a disaster event for the baseline analysis, we follow

BarroBarro (20062006) and set the disaster threshold to q=0.145. For robustness checks, we

also consider q=0.095 and q=0.195, as in Barro and JinBarro and Jin’s (20112011) study.

BarroBarro’s (20062006) disaster identification scheme provides the blueprint for our data

preparation. A consumption contraction larger than q can accrue over more than one

period and may contain single periods of intermittent positive growth, as long as (1)

the positive growth intermezzo is smaller than the negative growth in the subsequent

period, and (2) the size of the disaster does not decrease when we allow it to overlap

the positive growth period.

As an alternative, we also perform the first-step estimation on annual cross-

country panel GDP data beginning in 1900, as in BarroBarro (20062006) and Barro and JinBarro and Jin

12 The data are available at http://scholar.harvard.edu/barro/publications/barro-ursua-
macroeconomic-data accessed 04/24/2015.
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Table 1: Cross-country panel data used for the first-step estimation
The table lists the 35 countries and time periods with available data that provide the basis for the
ACH-DPL estimation. The second column reports the time periods for which consumption data
assembled by Barro and UrsúaBarro and Ursúa (20082008) are available and the third column reports the time periods
for which the GDP data provided by Bolt and van ZandenBolt and van Zanden (20142014) are available (beginning with
1900 onwards).

Country Barro and UrsúaBarro and Ursúa Bolt and van ZandenBolt and van Zanden

Argentina 1875 − 2009 1900 − 2010
Australia 1901 − 2009 1900 − 2010
Austria 1913 − 1918, 1924 − 1944, 1947 − 2009 1900 − 2010
Belgium 1913 − 2009 1900 − 2010
Brazil 1901 − 2009 1900 − 2010
Canada 1871 − 2009 1900 − 2010
Chile 1900 − 2009 1900 − 2010
Colombia 1925 − 2009 1900 − 2010
Denmark 1844 − 2009 1900 − 2010
Finland 1860 − 2009 1900 − 2010
France 1824 − 2009 1900 − 2010
Germany 1851 − 2009 1900 − 2010
Greece 1938 − 2009 1900 − 2010
India 1919 − 2009 1900 − 2010
Indonesia 1960 − 2009 1949 − 2010
Italy 1861 − 2009 1900 − 2010
Japan 1874 − 2009 1900 − 2010
Malaysia 1900 − 1939, 1947 − 2009 1911 − 1942, 1947 − 2010
Mexico 1900 − 2009 1900 − 2010
the Netherlands 1807 − 1809, 1814 − 2009 1900 − 2010
New Zealand 1878 − 2009 1900 − 2010
Norway 1830 − 2009 1900 − 2010
the Philippines 1946 − 2009 1902 − 1940, 1946 − 2010
Peru 1896 − 2009 1900 − 2010
Portugal 1910 − 2009 1900 − 2010
South Korea 1911 − 2009 1911 − 1940, 1950 − 2010
Spain 1850 − 2009 1900 − 2010
Sri Lanka 1960 − 2009 1900 − 2010
Sweden 1800 − 2009 1900 − 2010
Switzerland 1851 − 2009 1900 − 2010
Taiwan 1901 − 2009 1901 − 1940, 1950 − 2010
UK 1830 − 2009 1900 − 2010
U.S.A. 1834 − 2009 1900 − 2010
Uruguay 1960 − 2009 1900 − 2010
Venezuela 1923 − 2009 1900 − 2010

(20112011). For that purpose, we use the data provided by Bolt and van ZandenBolt and van Zanden (20142014),

who extend the database assembled by Angus Maddison and originally used by

BarroBarro (20062006).1313 Table 11 lists the countries and time periods for which GDP data are

available. Disastrous GDP contractions are identified as described previously and

serve as proxies for consumption disasters. The advantage of using GDP data is that

the GDP series of most countries start well before consumption data become available.

We follow BarroBarro (20062006) and exclude disastrous GDP contractions that represent the

aftermaths of war and that allegedly are not related to drops in consumption. Figure

13 The data are available at http://www.ggdc.net/maddison/oriindex.net accessed 06/26/2014.
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22 shows that the disaster events thus identified cluster during World War I, the Great

Depression, World War II, and turmoil in South America during 1980–2000.

Figure 2: Disastrous consumption and GDP contractions
Panel (a) depicts the 89 consumption disasters identified from Barro and UrsúaBarro and Ursúa’s (20082008) cross-
country panel data (updated). The sampling period is 1800–2009. Panel (b) depicts the 68 GDP
disasters identified from Bolt and van ZandenBolt and van Zanden’s (20142014) cross-country panel data. The sampling
period is 1900–2010. The disaster threshold q=0.145 in both cases. Black lines denote European
countries, red lines South American countries and Mexico, golden lines Western offshores (Australia,
Canada, New Zealand, U.S.A.), and blue lines represent Asian countries. The dotted horizontal
lines depict the average contraction sizes.

1800 1830 1860 1890 1920 1950 1980 2010

year

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
o

n
tr

a
c
ti
o

n
 i
n

 c
o

n
s
u

m
p

ti
o

n
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(b) Bolt and van ZandenBolt and van Zanden data

For the second-step SMM estimation, we use quarterly U.S. real personal con-

sumption expenditures per capita on services and non-durable goods in chained

2009 U.S. dollars, as provided by the Federal Reserve Bank of Saint Louis.1414 The

data span the time period 1947:Q2–2014:Q4. The second-step estimation also uses

financial data that come from CRSP and Kenneth French’s financial data library.1515

We focus on the returns of the following three sets of test assets: (1) the market

portfolio return calculated for the CRSP value-weighted market portfolio comprised

of NYSE, AMEX, and NASDAQ traded stocks; (2) ten size-sorted portfolios; and

(3) ten industry portfolios. We use the value-weighted variants of these portfolios.

Nominal monthly returns are converted to real returns at a quarterly frequency, using

14 For services: http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA. For non-
durable goods: http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA. Both accessed
03/09/2016.

15 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html, ac-
cessed 03/09/2016. Due to the frequent changes in the underlying CRSP data, newer or older
downloads may results in different series.
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Table 2: Descriptive statistics: Consumption and test asset returns 1947:Q2–2014:Q4
The table contains the descriptive statistics of consumption growth and gross returns of the three
sets of test assets. Panel A: CRSP value-weighted market portfolio Rm and risk-free rate proxy
Rf (mkt), Panel B: size-sorted portfolios and Rf (size dec), and Panel C: industry portfolios and
Rf (industry). The data range is 1947:Q2–2014:Q4. In Panel B, 1st, 2nd, and so on refer to the
deciles of the the ten size-sorted portfolios. The industry portfolios in Panel C are: nondurables
(NoDur : food, textiles, tobacco, apparel, leather, toys), durables (Durbl : cars, TVs, furniture,
household appliances), manufacturing (Manuf : machinery, trucks, planes, chemicals, paper, office
furniture), energy (Engry : oil, gas, coal extraction and products), business equipment (HiTec:
computers, software, and electronic equipment), telecommunication (Telcm: telephone and television
transmission), shops (Shops: wholesale, retail, laundries, and repair shops), health (Hlth: healthcare,
medical equipment, and drugs), utilities (Utils), and others (Other : transportation, entertainment,
finance, and hotels). The column labeled ac gives information on the first order autocorrelation,
and std is the standard deviation.

Panel A: mkt
mean std ac correlations

Ct+1
Ct

Rf

Rm 1.0211 0.0816 0.084 0.175 0.026

Rf 1.0017 0.0045 0.857 0.204
Ct+1
Ct

1.0048 0.0051 0.311

Panel B: size dec
mean std ac correlations

Ct+1
Ct

Rf 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.0290 0.1251 0.061 0.178 -0.015 0.711 0.818 0.857 0.884 0.895 0.912 0.931 0.949 0.964

2nd 1.0271 0.1177 -0.001 0.172 0.005 0.781 0.871 0.915 0.933 0.947 0.961 0.974 0.982

3rd 1.0287 0.1115 -0.024 0.165 -0.001 0.818 0.907 0.943 0.956 0.968 0.976 0.985

4th 1.0270 0.1072 -0.018 0.165 0.002 0.830 0.914 0.948 0.962 0.976 0.983

5th 1.0274 0.1036 0.013 0.167 0.019 0.855 0.936 0.967 0.972 0.982

6th 1.0262 0.0971 0.019 0.143 0.001 0.868 0.946 0.970 0.977

7th 1.0262 0.0964 0.042 0.157 0.009 0.892 0.965 0.982

8th 1.0249 0.0923 0.022 0.145 0.019 0.906 0.975

9th 1.0237 0.0841 0.068 0.148 0.021 0.935

10th 1.0198 0.0767 0.119 0.178 0.043

Panel C: industry

mean std ac correlations

Ct+1
Ct

Rf Other Utils Hlth Shops Telcm HiTec Engry Manuf Durbl

NoDur 1.0238 0.0811 0.047 0.090 0.105 0.838 0.674 0.800 0.871 0.656 0.642 0.445 0.829 0.685

Durbl 1.0236 0.1156 0.103 0.190 0.009 0.801 0.484 0.520 0.773 0.581 0.690 0.490 0.832

Manuf 1.0229 0.0899 0.082 0.173 0.014 0.901 0.580 0.745 0.825 0.647 0.807 0.635

Engry 1.0253 0.0888 0.041 0.163 -0.039 0.592 0.534 0.423 0.422 0.432 0.497

HiTec 1.0258 0.1159 0.070 0.167 -0.000 0.758 0.470 0.663 0.733 0.659

Telcm 1.0187 0.0805 0.148 0.099 0.104 0.695 0.627 0.568 0.668

Shops 1.0238 0.0957 0.039 0.158 0.044 0.837 0.557 0.704

Hlth 1.0267 0.0909 0.054 0.092 0.085 0.726 0.542

Utils 1.0195 0.0711 0.080 0.069 0.071 0.655

Other 1.0217 0.0982 0.078 0.159 0.034
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the growth of the consumer price index of all urban consumers.1616

For the calculation of the risk-free rate proxy, we use the three-month nominal

T-bill yield from the CRSP database. Following Beeler and CampbellBeeler and Campbell (20122012), we

approximate the ex-ante risk-free rate by using a forecast for the ex-post real rate,

where the predictors are the quarterly T-bill yield and the average of quarterly log

inflation across the past year. Table 22 reports the descriptive statistics for these data.

2.4 Empirical results

2.4.1 First-step results: ACH-DPL parameter estimates

Table 33 presents the ML estimation results for four ACH-DPL specifications that

differ with respect to the parsimony of the ACH part and that emerge as special cases

of Equation (2.182.18). The baseline specification is an ACH(0,0) with α = β̃ = δ = 0,

henceforth referred to as ACH0, for which the hazard rate is given by:

ht =
1

µ
. (2.30)

The second specification is an ACH(0,1) with no predetermined variables, which we

refer to as ACH1, and which implies the hazard rate:

ht =
1

µ + ατN(t−1)−1

. (2.31)

Extending Equation (2.312.31) to include the previous excess contraction be
N(t−1)

as a

predetermined variable, we obtain the third specification, referred to as ACH+, for

which

ht =
1

µ + ατN(t−1)−1 + δbeN(t−1)

. (2.32)

Excess contractions are computed by subtracting the DPL-implied expected disaster

size b from the previous disastrous consumption contraction. Finally, we consider a

more restricted version of Equation (2.322.32) with α = 0, such that

ht =
1

µ + δbe
N(t−1)

, (2.33)

16 These data are provided by the Federal Reserve Bank of Saint Louis:
http://research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 03/09/2016.
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which we refer to as ACHx.1717 The ACH0 model corresponds to BarroBarro’s (20062006) method

to estimate the unconditional disaster probability, while ACH1, ACH+, and ACHx,

imply time-varying conditional disaster probabilities.

Table 3: First-step estimation results: ACH-DPL parameters
The table presents the maximum likelihood estimates for four ACH-DPL specifications. L is the
log-likelihood value at the maximum, and LR gives the p-values (in percent) of the likelihood
ratio tests of the null hypothesis that the parameter restrictions implied by the ACH0 specification
are correct. The alternative is the ACH1, the ACHx, or the ACH+ specification, respectively.
AIC = 2k − 2 ln(L) and SBC = −2 ln(L) + k ln(T ) denote the Akaike and Schwarz-Bayes information
criteria; k is the number of model parameters. The estimation results in Panel A are based on
the updated country panel consumption data assembled by Barro and UrsúaBarro and Ursúa (20082008) (consumption
contractions, 1800–2009). The estimation results in Panel B are based on the country panel GDP
data provided by Bolt and van ZandenBolt and van Zanden (20142014) (GDP contractions, 1900–2010). Standard errors are
reported in parentheses.

Panel A: Consumption 1800-2009

α̃ θ̃ δ̃ µ α δ L AIC SBC LR

DPL 4.194 10.769 1.388 -40.7
(0.720) (2.173) (0.043)

ACH0 178.8 -538.5 1078.9 1086.6
(19.2)

ACHx 185.3 462.2 -535.4 1074.8 1090.1 1.3
(21.3) (229.8)

ACH1 196.5 -0.129 -538.2 1080.4 1095.7 47.0
(31.7) (0.165)

ACH+ 187.0 -0.014 457.4 -535.4 1076.8 1099.8 4.7
(28.5) (0.154) (235.5)

Panel B: GDP 1900-2010

α̃ θ̃ δ̃ µ α δ L AIC SBC LR

DPL 3.938 11.840 1.364 -27.4
(0.737) (2.821) (0.042)

ACH0 210.4 -431.9 865.8 873.4
(25.6)

ACHx 215.0 649.9 -428.1 860.2 875.3 0.6
(27.5) (274.3)

ACH1 265.2 -0.319 -431.6 867.2 882.3 41.9
(82.8) (0.430)

ACH+ 162.6 0.359 794.0 -427.7 861.3 884.0 1.4
(48.2) (0.331) (331.2)

17 We also considered an ACH(1,1) specification, but the data are not sufficient to identify the
autoregressive ACH parameter β̃. The maximization of the ACH(1,1) log-likelihood terminated
at different points when starting with different values, such that it did not produce reliable
estimates. No such problems occurred for the four ACH variants, for which we report the
estimation results in Table 33. The optimizations are performed using either the pattern search
algorithm or the Nelder-Mead simplex algorithm that are available in Matlab’s optimization
toolbox.
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Table 33 reports the ML estimates of the ACH parameters, their standard errors

computed from numerical estimates of the Hessian of the log-likelihood function, as

well as the Akaike (AIC) and Schwarz-Bayes (SBC) information criteria. The results

reported in Panel A are based on the updated Barro and UrsúaBarro and Ursúa (20082008) consumption

data, those in Panel B are based on Bolt and van ZandenBolt and van Zanden’s (20142014) GDP data. The

table also reports the p-values of likelihood-ratio statistics with which we test the

more extensively parametrized ACH specifications against the parsimonious ACH0.

The likelihood-ratio tests reveal that the ACH0 is not rejected at the 5% level against

the ACH1, but it is rejected against both the ACH+ and ACHx. Whereas the

AIC suggests selecting the ACHx, the SBC prefers the ACH0. The standard errors

indicate a reasonable estimation precision for both specifications. Figure 33 depicts

the sequence of hazard rates implied by ACH0 and ACHx, using the estimates from

Panel A of Table 33. We continue to focus on these two specifications and use them

for the SMM estimation of the preference parameters in the second step. The ML

Figure 3: Hazard rates implied by ACH0-DPL and ACHx-DPL
The figure depicts the sequence of hazard rates/conditional disaster probabilities implied by the
ACH0-DPL and the ACHx-DPL, respectively, using the estimates reported in Panel A of Table
33. The hazard sequences result from simulating data from the two ACH-DPL specifications. The
simulated sample size T =15,645, which is the number of chained country-quarters using the updated
Barro and UrsúaBarro and Ursúa (20082008) consumption data.
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estimates of the parameters of the DPL distribution also appear in Table 33, along

with their standard errors, which indicate a reasonable estimation precision. Figure

44 depicts the empirical and fitted cdfs, revealing that the DPL fits the empirical

distribution of disaster sizes well.
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Figure 4: Fitted DPL and empirical cdfs for disaster sizes
Panel (a) illustrates the empirical distribution function (solid line) and the fitted cumulative
distribution function (dotted line) of the disastrous contractions identified in Barro and UrsúaBarro and Ursúa’s
(20082008) consumption panel data using q=0.145. The vertical dashed line indicates the threshold at
which one power law morphs into the other. Panel (b) shows the plot using Bolt and van ZandenBolt and van Zanden’s
(20142014) GDP panel data. The fitted cumulative distribution functions use the DPL parameter
estimates from Table 33.
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(a) Barro and UrsúaBarro and Ursúa data
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(b) Bolt and van ZandenBolt and van Zanden data

Comparing Panels A and B of Table 33, we observe that the results remain

qualitatively the same whether we use the updated Barro and UrsúaBarro and Ursúa (20082008) cross-

country consumption data from 1800-2009 or Bolt and van ZandenBolt and van Zanden’s (20142014) GDP

data ranging from 1900-2010 to obtain disaster information.

2.4.2 SMM preference parameter estimates and model-implied key

financial indicators

The SMM estimation results in Table 44 are based on the moment matches in Equation

(2.122.12) with T =107. As a consistency check, we also report the estimation results

obtained by applying the AHB method using T =16k and H=1k. In all instances,

the identity matrix serves as the distance matrix. The results reported in Table 44

are based on the TailCorr data simulation procedure.1818

18 The EmpCorr and ZeroCorr results are presented as parts of the robustness checks in Section
2.4.32.4.3 and Appendix A.3A.3, respectively. The three data simulation procedures produce similar
results and lead to the same conclusions.
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Table 4: Second-step estimation results: C-CAPM preference parameters
The table presents the second-step estimates of the C-CAPM preference parameters β and γ.
The SMM estimation is based on the moment matches in Equation (2.122.12) with T =107, using the
excess returns of the respective test assets and the risk-free rate proxy. The AHB estimates are
based on T =16k. All estimates rely on the TailCorr data simulation procedure. The numbers in
parentheses are bootstrap standard errors and the numbers in brackets are the bounds of the 95%
confidence intervals computed using the percentile method. The number of bootstrap replications
is K=1k. The table also reports the p-values (in percent) of Hansen’s J-statistic (see Equation
(2.342.34)) and root mean squared errors (R), computed as explained in Equation (2.352.35). For the
AHB method, R is obtained by averaging over the H=1k replications. Panels A-D break down
the results by the MPP used to simulate the disaster-including data (Panels A and B: ACHx-DPL,
Panels C and D: ACH0-DPL). In all cases, the disaster threshold is q=0.145. In Panels A and
C, the first-step estimation results are based on the updated cross-country panel consumption
data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). In Panels B and D, the first-step estimation
results are based on Bolt and van ZandenBolt and van Zanden’s (20142014) GDP data. Each panel reports the results by
set of test assets (mkt, size dec, industry).

Panel A: ACHx/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.985 (0.006) 3.51 (0.61) 0.979 (0.007) 3.72 (0.65) 31.3 24 0.983 (0.005) 3.63 (0.61) 67.0 23

[0.974 0.997] [2.12 4.56] [0.966 0.994] [2.29 4.86] [0.972 0.994] [2.27 4.72]

AHB 0.983 (0.002) 4.07 (0.74) 0.976 (0.003) 4.31 (0.78) 24 0.980 (0.002) 4.17 (0.75) 23
[0.980 0.986] [2.68 5.61] [0.971 0.981] [2.82 5.94] [0.976 0.984] [2.74 5.74]

Panel B: ACHx/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.986 (0.005) 3.39 (0.62) 0.981 (0.007) 3.57 (0.65) 32.1 23 0.984 (0.005) 3.49 (0.62) 67.4 23

[0.976 0.997] [2.12 4.57] [0.967 0.993] [2.25 4.72] [0.973 0.994] [2.21 4.58]

AHB 0.984 (0.002) 4.02 (0.77) 0.978 (0.002) 4.27 (0.81) 24 0.981 (0.002) 4.14 (0.78) 23
[0.981 0.987] [2.59 5.60] [0.973 0.981] [2.71 5.87] [0.977 0.984] [2.63 5.69]

Panel C: ACH0/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.985 (0.005) 3.47 (0.64) 0.980 (0.007) 3.56 (0.69) 31.1 24 0.983 (0.006) 3.47 (0.67) 68.7 23

[0.974 0.996] [1.98 4.59] [0.966 0.993] [2.13 4.87] [0.972 0.993] [2.09 4.75]

AHB 0.983 (0.002) 4.03 (0.73) 0.976 (0.003) 4.32 (0.80) 24 0.980 (0.002) 4.18 (0.77) 23
[0.980 0.986] [2.67 5.60] [0.971 0.981] [2.85 6.07] [0.976 0.984] [2.77 5.86]

Panel D: ACH0/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.986 (0.006) 3.35 (0.65) 0.981 (0.007) 3.51 (0.69) 31.0 24 0.984 (0.005) 3.43 (0.67) 67.2 23

[0.975 0.997] [2.05 4.67] [0.968 0.993] [2.08 4.87] [0.973 0.993] [2.06 4.72]

AHB 0.984 (0.002) 4.05 (0.78) 0.977 (0.002) 4.30 (0.85) 24 0.981 (0.002) 4.17 (0.82) 23
[0.981 0.987] [2.62 5.70] [0.972 0.981] [2.74 6.08] [0.977 0.984] [2.67 5.89]
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Panels A-D in Table 44 break down the estimation results by the ACH-DPL

specification and cross-country panel data on which the MPP parameters are esti-

mated in the first step. Each panel shows the estimation results for the three sets of

test assets: the excess returns of the CRSP value-weighted market portfolio (mkt),

ten size-sorted portfolios (size dec), and ten industry portfolios (industry), each

augmented by the risk-free rate proxy. We report the point estimates of β and γ, as

well as their bootstrap standard errors and the associated 95% confidence intervals.

The confidence bounds are obtained by the percentile method, that is, by computing

the 0.025 and 0.975 quantiles of the bootstrap distribution.1919 We also report the

p-values of Hansen’s J-statistic,

J = GT (β̂, γ̂)′[Âvar(GT [β̂, γ̂])]+GT (β̂, γ̂), (2.34)

where + denotes the Moore-Penrose inverse. The reported root mean squared errors

are computed as:

R =
√

1

M
GT (β̂, γ̂)′GT (β̂, γ̂) × 104, (2.35)

where M denotes the number of rows of GT (β̂, γ̂).
Table 44 shows that irrespective of the cross-country panel data, MPP specification,

and set of test assets, all variants to estimate a disaster-including C-CAPM yield

economically plausible results. The SMM estimates of the RRA coefficient γ are

between 3.35 and 3.72, well within the canonical plausibility range of 1 to 10 suggested

by Mehra and PrescottMehra and Prescott (19851985) and RietzRietz (19881988), and even smaller than the stricter

traditional upper bound of γ=5 mentioned by CochraneCochrane (20052005). The estimates of

the subjective discount factor range from 0.979 to 0.986, which implies positive and,

in particular at the quarterly frequency, reasonable time preferences. The J-tests do

not reject the disaster-including C-CAPM on conventional levels of significance. The

estimation precision is good, as indicated by the small bootstrap standard errors

and the narrow confidence intervals, the bounds of which also lie within the range

that defines economically sensible parameter estimates. Figure 55 further illustrates

these findings by means of kernel estimates. It shows that the distributions of the

preference parameter estimates have their probability masses located at plausible

values for β and γ. Table 44 also shows that the AHB estimates, which rely on

simulated data only, and which should be seen as a consistency check, are close to

19 Bias-corrected bootstrap confidence intervals and point estimates are reported as part of the
battery of robustness checks, see Section 2.4.32.4.3.
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the SMM estimates, both in terms of size and estimation precision.

Figure 5: Kernel estimates using pooled SMM bootstrap results
The figure depicts kernel densities using pooled bootstrap SMM estimates of β (Panel (a)) and γ
(Panel (b)). The results of the K=1k bootstrap replications are pooled over three sets of test assets
(mkt, size dec, industry), each of which is augmented by the risk-free rate. All estimations use the
TailCorr simulation procedure, the ACHx-DPL, and Barro and UrsúaBarro and Ursúa’s (20082008) consumption data
with q=0.145. The dotted lines indicate the 2.5% and 97.5% quantiles, respectively. We use a
Gaussian kernel with a bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.
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To perform another test of economic plausibility, we use the SMM results in

Table 44 to estimate the mean risk-free rate and market portfolio return, equity

premium, and market Sharpe ratio implied by the disaster-including C-CAPM, and

compare them with their counterparts observed in the empirical data. Approximating

population moments by averaging over the T simulated observations, we estimate

the model-implied mean risk-free rate as:

Ê(Rf) = 1 − covT (m(β̂, γ̂),Rf)
ET (m(β̂, γ̂))

, (2.36)

and the model-implied expected mean market return as:

Ê(Rm) = 1 − covT (m(β̂, γ̂),Rm)
ET (m(β̂, γ̂))

, (2.37)

where ET (x) = 1
T ∑

T
s=1 xs and covT (x, y) = ET (xy) −ET (x)ET (y).

The estimate of the model-implied equity premium is then Ê(Rm) − Ê(Rf), and

the model-implied Sharpe ratio of the market portfolio is estimated by

Ê(Rm) − Ê(Rf)
σT (Rm −Rf)

, (2.38)
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where σT (x) =
√
ET (x2) −ET (x)2.

Table 55 reports the estimates of these model-implied key financial indicators and

the associated 95% confidence intervals obtained by the percentile method.2020 As in

Table 44, the four panels break down the results by MPP, country-panel data, and

set of test assets. The SMM estimation is based on the TailCorr data simulation

procedure.2121

We observe that the point estimates of the model-implied key financial indicators

are perfectly plausible and comparable to the values observed in the empirical data

reported in Panel A of Table 55. Using the market portfolio and the risk free rate

proxy as test assets (mkt) implies that the number of moment matches is identical

to the number of parameters. However, it is worth noting that the SMM estimation

strategy does not imply that the mean market portfolio return and mean risk-free

rate observed in the empirical data are matched by the model-implied counterparts.

Using the two other sets of test assets (size dec and industry), the market portfolio

is not even among the test assets. Nevertheless, estimating the model-implied mean

market return and the market Sharpe ratio based on these data yields economically

sensible values, too, which can be seen as an out-of-sample plausibility test. Moreover,

even the bounds of the 95% confidence intervals imply perfectly plausible values for

the key financial indicators. In all instances, the confidence intervals overlap the

empirically observed values reported in Panel A of Table 55.

The literature survey in Section 1.11.1 showed that previous tests of the canonical

C-CAPM often yield implausibly large and imprecise RRA coefficient estimates,

using in many cases calibrated subjective discount factors. In comparison with

these studies, the overall appeal of the estimation results in terms of statistical and

economic coherence is very good. They show that the canonical C-CAPM can explain

the high market equity premium and the low risk-free rate with reasonable risk and

time preferences, once rare disaster risk is accounted for. BarroBarro (20062006) came to a

similar conclusion by using a calibrated theoretical model, and by showing that it can

replicate the moments of financial indicators. By contrast, the strategy employed here

is to use econometric techniques to estimate the parameters of a disaster-including

C-CAPM on empirical data, which are then used to check whether the estimates

and model implications are economically sensible and statistically useful. Unlike in

20 For that purpose, we compute the respective financial indicator for each of the 1k bootstrap
replications, and obtain the upper and lower bound by reading out the 0.025 and 0.975 quantile
of the empirical distribution.

21 The corresponding EmpCorr and ZeroCorr results are presented in the robustness checks section
or in Appendix A.3A.3.
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Table 5: Key financial indicators implied by a disaster-including C-CAPM
The table presents estimates of the mean risk-free rate, mean market return, equity premium, and
market Sharpe ratio implied by a disaster-including C-CAPM. These indicators are computed
as given by Equations (2.362.36), (2.372.37), and (2.382.38). The estimates of the subjective discount factor
and the RRA coefficient are taken from Table 44. The numbers in brackets are the bounds of the
95% confidence intervals based on K=1k bootstrap replications and computed using the percentile
method. Panels A-D break down the results by the MPP used to simulate the disaster-including
data (Panels A and B: ACHx-DPL, Panels C and D: ACH0-DPL). In Panels A and C, the first-
step estimation results are based on the updated cross-country panel consumption data originally
assembled by Barro and UrsúaBarro and Ursúa (20082008). In Panels B and D, the first-step estimation results are
based on Bolt and van ZandenBolt and van Zanden’s (20142014) cross-country panel GDP data. Each panel reports the
results by set of test assets (mkt, size dec, industry). Panel A also contains the values of the
indicators in the empirical data (1947:Q2–2014:Q4).

Panel A: ACHx/Consumption

data mkt size dec industry

mean risk-free rate 0.17 0.17 0.18 0.18
(% per qtr) [0.12 0.23] [0.12 0.24] [0.13 0.24]

equity premium 1.94 1.79 2.27 2.00
(% per qtr) [0.83 2.75] [1.13 3.47] [1.04 2.93]

mean market return 2.11 1.96 2.45 2.18
(% per qtr) [0.99 2.93] [1.29 3.65] [1.23 3.12]

Sharpe ratio 0.237 0.212 0.270 0.237
(market) [0.094 0.342] [0.127 0.424] [0.118 0.358]

Panel B: ACHx/GDP

mkt size dec industry

mean risk-free rate 0.17 0.18 0.18
(% per qtr) [0.12 0.22] [0.13 0.23] [0.13 0.24]

equity premium 1.81 2.29 2.02
(% per qtr) [0.90 2.75] [1.15 3.41] [1.16 2.93]

mean market return 1.98 2.47 2.20
(% per qtr) [1.06 2.92] [1.34 3.61] [1.34 3.12]

Sharpe ratio 0.215 0.273 0.240
(market) [0.102 0.345] [0.136 0.420] [0.132 0.357]

Panel C: ACH0/Consumption

mkt size dec industry

mean risk-free rate 0.17 0.18 0.18
(% per qtr) [0.12 0.22] [0.13 0.24] [0.13 0.24]

equity premium 1.78 2.27 2.00
(% per qtr) [0.83 2.71] [1.13 3.40] [1.06 2.95]

mean market return 1.96 2.45 2.18
(% per qtr) [1.01 2.89] [1.31 3.58] [1.23 3.13]

Sharpe ratio 0.211 0.269 0.237
(market) [0.096 0.339] [0.129 0.423] [0.124 0.365]

Panel D: ACH0/GDP

mkt size dec industry

mean risk-free rate 0.17 0.18 0.18
(% per qtr) [0.12 0.22] [0.13 0.23] [0.13 0.24]

equity premium 1.80 2.29 2.02
(% per qtr) [0.79 2.76] [1.23 3.39] [1.17 2.90]

mean market return 1.98 2.47 2.20
(% per qtr) [0.95 2.93] [1.41 3.57] [1.34 3.09]

Sharpe ratio 0.214 0.272 0.240
(market) [0.092 0.346] [0.142 0.410] [0.134 0.357]
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calibration exercises, it is a priori not obvious whether the model parameter estimates

and model-implied key financial indicators will indeed be plausible and whether

the available data will be sufficiently informative to allow precise assessments. Our

results therefore provide new empirical evidence in favor of both the rare disaster

hypothesis and the consumption-based asset pricing paradigm.

2.4.3 Robustness checks

The analyses presented in the previous section rely on the TailCorr data simulation

procedure, but the results do not qualitatively change when we consider the alternative

choices of the copula correlation ρ instead. The SMM estimates in Table 66 and the

estimates of the key financial indicators in Table 77 are based on the EmpCorr data

simulation procedure.2222 Comparing them with the TailCorr results in Tables 44 and 55,

we arrive at the same result: We obtain economically plausible and precise estimates

of the preference parameters and key financial indicators.

To further extend this robustness check, Figure 66 shows the effect of varying ρ

between 0 and 0.99. We observe that γ̂ decreases somewhat and β̂ becomes bigger

with increasing copula correlation, but the preference parameter estimates always

remain economically plausible in size, and they exhibit small confidence bounds for

all values of ρ. Figure 66 shows the results using the ACHx-DPL model estimated on

the updated Barro and UrsúaBarro and Ursúa (20082008) cross-country consumption data, and using the

excess return of market portfolio and the risk-free rate as test assets; this version is

representative for the other estimation variants.2323

We obtain the estimation results in Table 88 when we use only the excess returns of

the test assets but not the risk-free rate proxy – that is, when we use the alternative

moment matches in Equation (2.132.13) instead of those in Equation (2.122.12). In this

setup, the subjective discount factor β is not identified. Comparing the estimates in

Table 88 with Panels A and B of Table 44, we observe that the pattern of γ estimates

across data simulation procedures and test assets is very similar. Table 88 focuses

on the results obtained using the estimated ACHx-DPL model. The corresponding

ACH0-DPL-based results are, with respect to the pattern of the RRA coefficient

estimates, akin those in Panels C and D of Table 44. We report them in Section A.3A.3

of the appendix.

Moreover, we confirm that the results and conclusions do not depend on the

disaster threshold size of q=0.145. Table 99 shows the estimation results obtained

22 For the sake of brevity, the corresponding ZeroCorr results are deferred to Appendix A.3A.3.
23 Additional results can be found in Appendix A.3A.3.
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Table 6: Robustness check: C-CAPM preference parameter estimates using the
EmpCorr data simulation procedure
The table presents the second-step estimates of the C-CAPM preference parameters β and γ based
on the EmpCorr data simulation procedure. The other estimation settings (moment matches,
T =107 for SMM, T =16k for AHB, q=0.145, K=H=1k), the table layout, and the reported statistics
correspond to Table 44.

Panel A: ACHx/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.965 (0.016) 3.97 (0.87) 0.945 (0.019) 4.26 (0.75) 27.7 22 0.953 (0.015) 4.18 (0.70) 49.5 23

[0.925 0.990] [2.37 5.19] [0.907 0.981] [2.54 5.49] [0.923 0.983] [2.56 5.33]

AHB 0.959 (0.014) 4.71 (0.78) 0.950 (0.008) 4.90 (0.83) 49 0.957 (0.006) 4.77 (0.80) 43
[0.927 0.978] [3.24 6.26] [0.932 0.963] [3.27 6.53] [0.942 0.968] [3.21 6.34]

Panel B: ACHx/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.964 (0.016) 3.83 (0.70) 0.946 (0.019) 4.07 (0.74) 28.9 21 0.952 (0.015) 4.01 (0.72) 36.7 27

[0.927 0.988] [2.38 5.20] [0.907 0.982] [2.50 5.34] [0.921 0.982] [2.47 5.24]

AHB 0.958 (0.018) 4.67 (0.85) 0.952 (0.008) 4.84 (0.87) 51 0.958 (0.006) 4.72 (0.83) 45
[0.919 0.980] [3.07 6.32] [0.935 0.965] [3.04 6.49] [0.943 0.969] [2.99 6.31]

Panel C: ACH0/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.961 (0.016) 3.99 (0.73) 0.943 (0.018) 4.07 (0.79) 23.1 36 0.951 (0.015) 4.00 (0.77) 60.5 24

[0.922 0.988] [2.27 5.23] [0.911 0.980] [2.31 5.51] [0.921 0.982] [2.30 5.38]

AHB 0.959 (0.016) 4.67 (0.78) 0.950 (0.008) 4.91 (0.85) 47 0.957 (0.006) 4.78 (0.81) 42
[0.924 0.978] [3.16 6.22] [0.934 0.963] [3.28 6.69] [0.944 0.968] [3.20 6.51]

Panel D: ACH0/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.964 (0.018) 3.80 (0.74) 0.951 (0.017) 3.94 (0.78) 31.8 29 0.958 (0.014) 3.87 (0.76) 9.2 27

[0.919 0.989] [2.33 5.26] [0.914 0.978] [2.28 5.49] [0.924 0.980] [2.28 5.36]

AHB 0.960 (0.016) 4.68 (0.85) 0.952 (0.007) 4.87 (0.91) 51 0.958 (0.006) 4.75 (0.87) 45
[0.921 0.979] [3.13 6.46] [0.936 0.964] [3.18 6.70] [0.946 0.969] [3.13 6.53]

when using q=0.095 and q=0.195 instead. These disaster thresholds are in accordance

with Barro and JinBarro and Jin’s (20112011) choices. Although there are 156 identified disasters for

q=0.095, and only 56 for q=0.195, the estimation results remain qualitatively the

same as in the base case. To conserve space, Table 99 only presents the ACHx-

DPL results, estimated using the updated Barro and UrsúaBarro and Ursúa (20082008) data. The other

variants that involve the ACH0-DPL specification are very similar, with respect to

the pattern of the β̂ and γ̂ estimates, to those reported in Panels C-D of Table 44.

These additional estimation results are available in Section A.3A.3 of the appendix.
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Table 7: Robustness check: Key financial indicators implied by a disaster-including
C-CAPM using the EmpCorr data simulation procedure
The table presents estimates of the mean risk-free rate, mean market return, equity premium,
and market Sharpe ratio implied by a disaster-including C-CAPM that uses the EmpCorr data
simulation procedure. The table layout and the reported statistics correspond to Table 55.

Panel A: ACHx/Consumption

data mkt size dec industry

mean risk-free rate 0.17 0.17 0.18 0.18
(% per qtr) [0.12 0.23] [0.13 0.27] [0.14 0.26]

equity premium 1.94 1.79 2.63 2.33
(% per qtr) [0.75 2.77] [1.08 3.75] [1.02 3.20]

mean market return 2.11 1.96 2.81 2.51
(% per qtr) [0.93 2.95] [1.25 3.93] [1.20 3.42]

Sharpe ratio 0.237 0.212 0.312 0.276
(market) [0.088 0.347] [0.122 0.462] [0.116 0.397]

Panel B: ACHx/GDP

mkt size dec industry

mean risk-free rate 0.17 0.18 0.18
(% per qtr) [0.12 0.22] [0.13 0.26] [0.14 0.26]

equity premium 1.81 2.62 2.35
(% per qtr) [0.90 2.75] [1.11 3.69] [1.12 3.34]

mean market return 1.98 2.80 2.53
(% per qtr) [1.06 2.92] [1.29 3.88] [1.31 3.54]

Sharpe ratio 0.215 0.312 0.280
(market) [0.102 0.345] [0.129 0.451] [0.129 0.408]

Panel C: ACH0/Consumption

mkt size dec industry

mean risk-free rate 0.17 0.19 0.18
(% per qtr) [0.12 0.22] [0.13 0.25] [0.13 0.26]

equity premium 1.78 2.77 2.44
(% per qtr) [0.84 2.71] [1.05 3.68] [1.05 3.28]

mean market return 1.96 2.96 2.62
(% per qtr) [1.01 2.89] [1.26 3.87] [1.24 3.48]

Sharpe ratio 0.211 0.328 0.289
(market) [0.096 0.339] [0.124 0.454] [0.120 0.402]

Panel D: ACH0/GDP

mkt size dec industry

mean risk-free rate 0.17 0.19 0.18
(% per qtr) [0.12 0.22] [0.13 0.26] [0.14 0.25]

equity premium 1.80 2.78 2.49
(% per qtr) [0.79 2.76] [1.16 3.58] [1.11 3.18]

mean market return 1.98 2.97 2.67
(% per qtr) [0.95 2.93] [1.34 3.76] [1.30 3.36]

Sharpe ratio 0.214 0.331 0.297
(market) [0.092 0.346] [0.135 0.433] [0.127 0.389]
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Figure 6: Robustness check: Effect of a varying copula correlation
The figure depicts the estimates of the subjective discount factor β (Panels (a) and (c)) and the
RRA coefficient γ (Panels (b) and (d)) using a varying copula correlation ρ. The simulation of
disaster-including data is based on the first-step ACHx-DPL estimates using the updated cross-
country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The disaster
threshold is q=0.145. Test assets are the excess return of the market portfolio (mkt) and the
risk-free rate. Panels (a) and (b) refer to the SMM estimates, and Panels (c) and (d) pertain to the
AHB estimates. The dashed (red) lines are the 95% confidence bounds.
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(a) SMM with ACHx: β̂
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(b) SMM with ACHx: γ̂
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(c) AHB with ACHx: β̂
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(d) AHB with ACHx: γ̂
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Table 8: Robustness check: Estimation results using only excess returns as test assets
The table presents the second-step estimates of the RRA coefficient γ. The SMM estimation results
are based on the moment matches in Equation (2.132.13) using the excess returns of the respective test
assets. The other estimation settings (T =107 for SMM, T =16k for AHB, q=0.145, K=H=1k),
and the reported statistics correspond to Table 44. The simulation of disaster-including data makes
use of the first-step ACHx-DPL estimates. In Panel A, the first-step estimation results are based
on the updated cross-country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). In Panel B, the first-step estimation results are based on Bolt and van ZandenBolt and van Zanden’s (20142014)
GDP data. Each panel breaks down the results by set of test assets (mkt, size dec, industry) and
data simulation procedure (TailCorr, EmpCorr, ZeroCorr).

Panel A: Consumption

TailCorr/mkt TailCorr/size dec TailCorr/industry

γ γ J R γ J R
SMM 3.51 (0.61) 3.72 (0.65) 32.9 25 3.63 (0.61) 67.2 24

[2.12 4.56] [2.29 4.86] [2.27 4.72]

AHB 4.07 (0.74) 4.31 (0.78) 26 4.17 (0.75) 25
[2.68 5.61] [2.82 5.94] [2.74 5.74]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

γ γ J R γ J R
SMM 3.97 (0.87) 4.26 (0.75) 33.0 25 4.17 (0.70) 50.9 26

[2.37 5.19] [2.53 5.49] [2.56 5.33]

AHB 4.71 (0.78) 4.89 (0.83) 54 4.77 (0.80) 47
[3.24 6.26] [3.26 6.52] [3.20 6.34]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

γ γ J R γ J R
SMM 4.09 (0.88) 4.40 (0.75) 35.2 27 4.29 (0.72) 55.4 29

[2.50 5.38] [2.68 5.61] [2.60 5.47]

AHB 4.86 (0.78) 5.03 (0.84) 55 4.88 (0.80) 48
[3.37 6.39] [3.38 6.67] [3.35 6.45]

Panel B: GDP

TailCorr/mkt TailCorr/size dec TailCorr/industry

γ γ J R γ J R
SMM 3.39 (0.62) 3.57 (0.65) 33.7 25 3.49 (0.62) 67.6 24

[2.12 4.57] [2.25 4.72] [2.21 4.58]

AHB 4.02 (0.77) 4.27 (0.81) 25 4.14 (0.78) 25
[2.59 5.60] [2.71 5.87] [2.63 5.69]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

γ γ J R γ J R
SMM 3.83 (0.70) 4.07 (0.74) 34.6 23 4.01 (0.72) 38.9 30

[2.38 5.20] [2.50 5.33] [2.47 5.24]

AHB 4.67 (0.85) 4.84 (0.87) 56 4.72 (0.83) 49
[3.07 6.32] [3.04 6.49] [2.99 6.31]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

γ γ J R γ J R
SMM 3.94 (0.71) 4.21 (0.75) 37.6 24 4.12 (0.73) 46.3 33

[2.44 5.35] [2.57 5.45] [2.51 5.37]

AHB 4.82 (0.85) 4.97 (0.87) 57 4.83 (0.84) 51
[3.21 6.47] [3.15 6.63] [3.08 6.41]
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Table 9: Robustness check: C-CAPM preference parameter estimates with varying q
The table presents the second-step estimates of the preference parameters β and γ using alternative
disaster thresholds. Panel A uses a disaster threshold of q=0.095, and Panel B uses q=0.195. The
other estimation settings (moment matches, T =107 for SMM, T =16k for AHB, K=H=1k), and
the reported statistics correspond to Table 44. The first-step estimation results are based on the
updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The
simulation of disaster-including data is based on the first-step ACHx-DPL estimates. Each panel
breaks down the results by set of test assets (mkt, size dec, industry) and data simulation procedure
(TailCorr, EmpCorr, ZeroCorr).

Panel A: q=0.095

TailCorr/mkt TailCorr/size dec TailCorr/industry

β γ β γ J R β γ J R
SMM 0.984 (0.006) 3.40 (0.62) 0.978 (0.007) 3.58 (0.65) 29.7 24 0.981 (0.006) 3.49 (0.63) 66.6 23

[0.972 0.995] [2.20 4.67] [0.964 0.992] [2.31 4.85] [0.971 0.992] [2.27 4.78]

AHB 0.981 (0.002) 3.92 (0.68) 0.974 (0.003) 4.19 (0.75) 24 0.978 (0.002) 4.04 (0.71) 23
[0.977 0.985] [2.61 5.38] [0.968 0.979] [2.72 5.72] [0.974 0.982] [2.64 5.53]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

β γ β γ J R β γ J R
SMM 0.951 (0.023) 4.02 (0.74) 0.935 (0.024) 4.19 (0.77) 19.6 36 0.942 (0.019) 4.13 (0.75) 28.3 24

[0.892 0.986] [2.63 5.43] [0.878 0.975] [2.65 5.71] [0.902 0.976] [2.61 5.64]

AHB 0.942 (0.030) 4.82 (0.81) 0.936 (0.011) 4.98 (0.86) 55 0.944 (0.009) 4.86 (0.83) 48
[0.875 0.974] [3.22 6.43] [0.910 0.955] [3.25 6.69] [0.924 0.960] [3.19 6.48]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

β γ β γ J R β γ J R
SMM 0.932 (0.031) 4.21 (0.73) 0.911 (0.030) 4.37 (0.79) 16.6 38 0.923 (0.023) 4.29 (0.77) 34.5 24

[0.862 0.978] [2.75 5.56] [0.847 0.963] [2.75 5.93] [0.877 0.967] [2.68 5.82]

AHB 0.926 (0.040) 5.03 (0.83) 0.920 (0.018) 5.18 (0.88) 55 0.933 (0.013) 5.02 (0.84) 49
[0.831 0.967] [3.39 6.70] [0.875 0.947] [3.42 6.93] [0.905 0.953] [3.32 6.65]

Panel B: q=0.195

TailCorr/mkt TailCorr/size dec TailCorr/industry

β γ β γ J R β γ J R
SMM 0.987 (0.006) 3.48 (0.65) 0.981 (0.007) 3.66 (0.63) 32.0 23 0.984 (0.005) 3.58 (0.61) 67.4 23

[0.976 0.997] [2.12 4.52] [0.968 0.994] [2.21 4.73] [0.974 0.995] [2.19 4.54]

AHB 0.985 (0.002) 4.13 (0.78) 0.978 (0.002) 4.31 (0.84) 24 0.982 (0.002) 4.18 (0.81) 23
[0.982 0.988] [2.67 5.75] [0.973 0.982] [2.75 6.05] [0.978 0.985] [2.68 5.86]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

β γ β γ J R β γ J R
SMM 0.969 (0.014) 3.86 (0.68) 0.957 (0.015) 4.06 (0.70) 32.1 17 0.962 (0.013) 4.00 (0.68) 47.0 25

[0.937 0.993] [2.36 4.96] [0.922 0.984] [2.48 5.11] [0.936 0.985] [2.43 5.05]

AHB 0.968 (0.011) 4.61 (0.80) 0.959 (0.006) 4.76 (0.86) 44 0.965 (0.005) 4.64 (0.82) 39
[0.941 0.983] [3.04 6.27] [0.947 0.969] [3.11 6.45] [0.955 0.973] [3.04 6.25]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

β γ β γ J R β γ J R
SMM 0.963 (0.017) 3.95 (0.69) 0.947 (0.018) 4.16 (0.72) 36.6 16 0.954 (0.014) 4.09 (0.69) 52.8 25

[0.922 0.991] [2.40 5.11] [0.910 0.979] [2.53 5.27] [0.924 0.981] [2.46 5.12]

AHB 0.962 (0.013) 4.72 (0.79) 0.953 (0.008) 4.86 (0.86) 44 0.960 (0.006) 4.72 (0.82) 40
[0.933 0.980] [3.13 6.34] [0.936 0.965] [3.21 6.56] [0.948 0.971] [3.13 6.33]
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Table 10: Robustness check: Bias-corrected estimates and confidence bounds
The table presents bias-corrected SMM estimates of the C-CAPM preference parameters β and
γ. The numbers in brackets are the bounds of the 95% confidence intervals computed using the
bias-correction method proposed by Efron and TibshiraniEfron and Tibshirani (19861986). The table presents the results
for each of the three data simulation procedures. In other respects, the table layout, estimation
settings (T =107, q=0.145, K=1k), and the reported statistics correspond to Table 44.

Panel A: ACHx/Consumption

mkt size dec industry

β γ β γ J R β γ J R
Tail 0.985 (0.006) 3.71 (0.61) 0.979 (0.007) 3.97 (0.65) 31.3 24 0.982 (0.005) 3.86 (0.61) 67.0 23
Corr [0.974 0.996] [2.62 5.28] [0.966 0.993] [2.86 5.47] [0.971 0.992] [2.79 5.43]

Emp 0.968 (0.016) 4.19 (0.87) 0.942 (0.019) 4.59 (0.75) 27.7 22 0.950 (0.015) 4.49 (0.70) 49.5 23
Corr [0.930 0.992] [2.91 5.72] [0.891 0.975] [3.29 6.29] [0.916 0.977] [3.22 6.11]

Zero 0.963 (0.021) 4.30 (0.88) 0.925 (0.022) 4.75 (0.76) 28.4 24 0.940 (0.018) 4.61 (0.72) 53.5 26
Corr [0.918 0.992] [2.97 5.86] [0.874 0.965] [3.44 6.57] [0.901 0.973] [3.35 6.36]

Panel B: ACHx/GDP

mkt size dec industry

β γ β γ J R β γ J R
Tail 0.986 (0.005) 3.56 (0.62) 0.981 (0.007) 3.77 (0.65) 32.1 23 0.984 (0.005) 3.68 (0.62) 67.4 23
Corr [0.976 0.996] [2.45 5.08] [0.967 0.992] [2.61 5.70] [0.972 0.993] [2.57 5.50]

Emp 0.967 (0.016) 4.00 (0.70) 0.943 (0.019) 4.35 (0.74) 28.9 21 0.950 (0.015) 4.28 (0.72) 36.7 27
Corr [0.933 0.990] [2.75 5.70] [0.899 0.976] [3.03 6.38] [0.917 0.977] [3.00 6.23]

Zero 0.961 (0.021) 4.11 (0.71) 0.925 (0.022) 4.50 (0.75) 30.0 21 0.938 (0.018) 4.40 (0.73) 43.4 30
Corr [0.916 0.989] [2.85 5.83] [0.876 0.967] [3.15 6.59] [0.903 0.970] [3.09 6.40]

Panel C: ACH0/Consumption

mkt size dec industry

β γ β γ J R β γ J R
Tail 0.984 (0.005) 3.66 (0.64) 0.979 (0.007) 3.66 (0.69) 31.1 24 0.983 (0.006) 3.57 (0.67) 68.7 23
Corr [0.973 0.995] [2.59 5.20] [0.965 0.992] [2.38 5.25] [0.971 0.993] [2.36 5.16]

Emp 0.960 (0.016) 4.24 (0.73) 0.937 (0.018) 4.25 (0.79) 23.1 36 0.947 (0.015) 4.15 (0.77) 60.5 24
Corr [0.912 0.985] [2.98 6.00] [0.892 0.971] [2.85 6.13] [0.912 0.974] [2.71 5.91]

Zero 0.947 (0.021) 4.41 (0.74) 0.910 (0.022) 4.44 (0.80) 24.2 39 0.930 (0.018) 4.30 (0.78) 71.9 24
Corr [0.885 0.980] [3.13 6.16] [0.855 0.950] [3.05 6.41] [0.887 0.963] [2.92 6.11]

Panel D: ACH0/GDP

mkt size dec industry

β γ β γ J R β γ J R
Tail 0.986 (0.006) 3.46 (0.65) 0.980 (0.007) 3.65 (0.69) 31.0 24 0.984 (0.005) 3.56 (0.67) 67.2 23
Corr [0.975 0.996] [2.37 4.95] [0.965 0.992] [2.52 5.49] [0.972 0.993] [2.46 5.25]

Emp 0.967 (0.018) 3.92 (0.74) 0.952 (0.017) 4.09 (0.78) 31.8 29 0.960 (0.014) 4.00 (0.76) 9.2 27
Corr [0.926 0.990] [2.66 5.63] [0.915 0.979] [2.77 6.11] [0.929 0.983] [2.73 5.89]

Zero 0.959 (0.023) 4.06 (0.76) 0.940 (0.020) 4.20 (0.80) 36.8 34 0.951 (0.016) 4.10 (0.78) 10.2 26
Corr [0.908 0.989] [2.76 5.94] [0.897 0.975] [2.86 6.22] [0.916 0.981] [2.78 5.98]
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Finally, Table 1010 presents bootstrap bias-corrected estimates and confidence

bounds using the three data simulation procedures.2424 We note that the bias correc-

tions are only moderate and do not alter the conclusions. The bias-corrected point

estimates are slightly higher than the uncorrected estimates, and the confidence

interval bounds shift slightly upwards.

2.4.4 AHB results

We argued in Section 2.2.12.2.1 that the quality of the usual C-CAPM moment matches is

affected when using short time series that contain too few, if any, disaster observations

to be representative of the possible paths of history that investors imagined. Using

the AHB method, we can assess what sample size would be needed to achieve a

reasonable estimation precision. We can also study the properties of the estimates

of the subjective discount factor β and the RRA coefficient γ when the simulated

sample size is as small as in the empirical data, but some simulated histories include

disaster observations. A comparison with the estimation results using disaster-free

empirical data serves as a check of the plausibility of the rare disaster hypothesis.

In addition to T =16k, we also perform AHB estimations with shorter simulated

histories, namely, T =271, 1k, and 5k.

For each T , we perform separate AHB estimations using the alternative data

simulation procedures and test assets. The results in Table 1111 rely on the Tail-

Corr procedure and the first-step ACHx-DPL estimates based on the updated

Barro and UrsúaBarro and Ursúa (20082008) data. These results are representative of the other data

simulation variants.2525 Figure 77 illustrates the AHB estimation results using kernel

densities of the bootstrapped estimates of β and γ.

The AHB estimates using T =271, the number of observations in our 1947:Q2–

2014:Q4 sample, reflect the notorious properties of their empirical counterparts: β̂ is

greater than 1 using size-sorted and industry portfolios as test assets. The estimated

RRA coefficient γ̂, and even more so the 95% quantiles of the bootstrap distribution,

are far beyond the upper plausibility limit. Furthermore, the estimates are imprecise,

24 Bias corrected estimates of a parameter θ are computed as θ̂BC = 2θ̂ − 1
K ∑

K
k=1 θ̂

(k). Bias
corrected confidence bounds are obtained as described by Efron and TibshiraniEfron and Tibshirani (19861986). They
propose to compute the lower and upper bound of the 1 − α confidence interval as θlBC(α) =
Ĝ−1[Φ(zα/2 +2Φ−1[Ĝ(θ̂)])] and θuBC(α) = Ĝ−1[Φ(z1−α/2 +2Φ−1[Ĝ(θ̂)])], where Φ is the cdf, Φ−1

is the quantile function, and zα̃ is the α̃ quantile of the standard normal distribution. Moreover,
Ĝ(θ̂) = 1

K ∑
K
k=1 1(θ̂(k) < θ̂), and Ĝ−1(α̃) returns the α̃-quantile of the bootstrap distribution

of the estimator. According to this notation, the uncorrected confidence bounds using the
percentile method are given by θl(α) = Ĝ−1[Φ(zα/2)] and θu(α) = Ĝ−1[Φ(z1−α/2)].

25 Appendix A.3A.3 reports the results for these alternative data simulation procedures and test assets.
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Table 11: Effect of a varying T on AHB parameter estimates using the ACHx model
The table reports the AHB estimates of the subjective discount factor and the coefficient of
relative risk aversion for a varying T . The 95% quantiles of the parameter estimates from the
H=1k simulated histories are underlined, and the standard deviations are reported in parentheses.
Columns labeled p report the relative frequency for γ̂(h) > 10 (in percent). The last column reports
the percentage of simulated histories for which no consumption disaster occurs. The estimations use
the excess returns of the portfolios in the sets of test assets (mkt, size dec, industry), which in each
case are augmented by the risk-free rate. The first-step estimation results are based on the updated
country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The simulation of
disaster-including data is based on the first-step ACHx-DPL estimates and the TailCorr procedure.
The disaster threshold is q=0.145.

mkt size dec industry

T β γ p β γ p β γ p no disaster
271 0.984 14.14 38.3 1.064 39.94 55.7 1.079 39.87 54.6 46.3

(0.098) (28.65) (0.202) (63.58) (0.201) (57.43)
1.007 23.83 1.473 175.45 1.494 163.85

1k 0.979 6.80 16.1 0.974 9.04 19.0 0.981 8.82 16.9 2.3
(0.010) (3.87) (0.056) (17.48) (0.055) (17.90)
0.991 14.74 0.984 16.66 0.987 16.33

5k 0.982 4.61 0.0 0.974 4.90 0.2 0.979 4.73 0.2 0.0
(0.003) (1.26) (0.004) (1.33) (0.003) (1.29)
0.987 6.84 0.981 7.31 0.984 7.04

16k 0.983 4.07 0.0 0.976 4.31 0.0 0.980 4.17 0.0 0.0
(0.002) (0.74) (0.003) (0.78) (0.002) (0.75)
0.986 5.36 0.980 5.59 0.983 5.41

as indicated by their large standard deviations, and the kernel densities on the

left-hand side panels of Figure 77. Table 1111 also reports the percentage of simulated

histories that do not contain any disaster. For T =271, we estimate that the odds of

experiencing a disaster-free period like that from 1947 to 2015 are almost 1:1. We

were lucky, but having been lucky was actually not an unlikely event.

Increasing the simulated sample size to T =1k – roughly three investor generations

– causes the AHB point estimates of β and γ to take on more plausible values. Now,

only 2.3% of the simulated histories do not contain a disaster. The estimation

precision increases but is still moderate, as indicated by the standard deviations and

the shape of the kernel density estimates on the right-hand side panels of Figure

77. With T =5k – about 15 investor generations – the estimates of the subjective

discount factor and the RRA coefficient become economically reasonable, the standard

deviations are small, and the kernel densities center more closely around the point

estimates. There are no disaster-free histories anymore.

The AHB results suggest that the apparent empirical failure of the C-CAPM

when applied to disaster-free postwar U.S. data comes as no surprise and is perfectly

in line with the rare disaster hypothesis. If the rare disaster hypothesis were true,

using standard econometric analysis, we would have to wait for a long time – with
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unpleasant intermezzos of consumption contractions – before we could expect more

precise estimates. Our simulation-based methods thus provide a shortcut.

Figure 7: Effect of a varying T on AHB parameter estimates
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACHx-DPL estimates and the TailCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.

0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

T =271

(a) β̂ for small T

0.94 0.95 0.96 0.97 0.98 0.99 1

0

50

100

150

200

250

T =1k

T =5k

T =16k

(b) β̂ for large T

0 50 100 150 200 250 300

0

0.02

0.04

0.06

0.08
T =271

(c) γ̂ for small T

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

T =1k

T =5k

T =16k

(d) γ̂ for large T

47



2.5 Discussion and conclusion

Adopting BarroBarro’s (20062006) specification of a disaster-including consumption process,

we consider revised moment matches that we use to estimate the C-CAPM preference

parameters by SMM. To simulate the disaster-including consumption growth and

return processes required for the SMM estimation, we specify a marked point process

from which we obtain conditional disaster probabilities and calamitous contraction

sizes. The MPP parameters are estimated using chained cross-country panel data.

The SMM estimation relies on alternative ways to simulate disaster-including con-

sumption growth and financial returns, as well as different MPP specifications and

sets of test assets.

Whichever approach and data are used, the results remain qualitatively the same:

The estimated preference parameters are economically plausible in size, and the

estimation precision is much higher than in previous studies that have empirically

tested the canonical C-CAPM. In particular, the estimates of the RRA coefficient

are smaller than 5 for most specifications and always smaller than 10, that is, in a

range consistent with reasonably risk-averse investors. Moreover, the estimates of

the subjective discount factor β are smaller than 1, which implies a positive rate

of time preference. The parameter standard errors are small, and the confidence

bounds are narrow. Using the parameter estimates to calculate the model-implied

market equity premium, risk-free rate, and market Sharpe ratio, these key financial

indicators take on economically plausible values, with 95% confidence intervals that

overlap the empirical counterparts. A comparable combination of plausibility and

estimation precision has not been provided previously in related literature.

We also find that the size and precision of the parameter estimates reported in

previous studies are realistic under the rare disaster hypothesis. Decades would have

to pass before standard econometric techniques could yield precise estimation results

with empirical data. The simulation-based estimation approaches that we apply in

our study provide a shortcut to an empirical assessment of the effect of consumption

disasters on asset prices. They come with the cost of assumptions, which may be

questioned but also can be modified, and it is possible to study the sensitivity of the

estimation results. In our study though, varying the assumptions did not change the

results qualitatively.
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A Appendix

A.1 Estimation of ACH-DPL model parameters using cross-country panel

data: details

To estimate the ACH-DPL model parameters, the available cross-country data

(annual, unbalanced panels) must be represented as event time data. For that

purpose, we have to identify disaster events by setting the threshold value q that

defines a disastrous consumption contraction and compute the time duration between

these events. To match the frequency of the data used in the second estimation

step, the time duration between disasters is measured in quarters. As described in

the main text, we adopt the disaster identification scheme applied by BarroBarro (20062006).

He focuses on the peak-to-trough effect of disasters, and ignores the length over

which a consumption contraction ≥ q unfolds. As a result, there can be consumption

contractions that unfold over multiple calendar periods. They are treated as a single

disaster event. Each disaster event thus identified is associated with the calendar

year at which the consumption contraction began, and we draw from a Bernoulli

distribution with success probability 0.25 to determine in which quarter of the

respective year the disaster started. Counting the number of quarters between the

disaster events gives τn, the time duration between the nth and (n + 1)th disaster.

The resulting country-specific event time data series are then concatenated, which

yields the chained cross-country data that are used for the estimation of the ACH

parameters θACH. The contraction sizes pertaining to the disaster events are saved

in a separate vector and used for ML estimation of the DPL parameters θDPL. ACH

parameter estimates θ̂ACH result from maximizing the log-likelihood function in

Equation (2.212.21).

As explained in the main text, we make sure not to use durations or predeter-

mined variables xt−1 from another country when constructing the ACH log-likelihood

function. Instead, we re-initialize at each country change in the chained series the

last duration to τN(1) = 1
p̂q

, where p̂q is computed as the relative frequency of dis-

asters in the chained cross-country series. In the updated Barro and UrsúaBarro and Ursúa (20082008)

data (consumption, sample period 1800-2010), p̂q = 0.0057, such that τN(1) = 176

quarters. In the Bolt and van ZandenBolt and van Zanden (20142014) data (GDP, sample period 1900-2010),

p̂q = 0.0047 and τN(1) = 212.
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A.2 Using the DPL distribution to model the size of disasters

Following Barro and JinBarro and Jin (20112011), we use a DPL distribution to model the size of the

disastrous contractions b. For that purpose, we apply the transformation z = (1−b)−1,

for which we assume the density function:

fDPL(z;θDPL) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if z < z0

Bz−(1+θ̃) if z0 ≤ z < δ̃

Az−(1+α̃) if δ̃ ≤ z

, (A.1)

where θDPL = (α̃, δ̃, θ̃, )′, B = Aδ̃(θ̃−α̃), and A = [ δ̃(θ̃−α̃)
θ̃−1

(z(1−θ̃)0 − δ̃(1−θ̃)) + δ̃(1−α̃)

α̃−1 ]
−1

. In

the present context, z0 = (1 − q)−1.

A draw from the DPL distribution can be performed by drawing a standard

uniform random variable ν and inserting it in the quantile function of the DPL

distribution, given by:

F −1
DPL(ν;θDPL) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−θ̃

√
z−θ̃0 − θ̃

Bν if ν ≤ FDPL(δ̃;θDPL)
−α̃

√
δ̃−α̃ − α̃

A (ν − B
θ̃
(z−θ̃0 − δ̃−θ̃)) if ν > FDPL(δ̃;θDPL),

(A.2)

where FDPL denotes the cdf of the DPL distribution.

The realizations of the random variables z drawn using the quantile function in

Equation (A.2A.2) must be re-transformed into contraction sizes by b = 1 − 1
z . Applying

the density transformation theorem, we can compute the expected value of the

contraction size b by:

E[b] = E [1 − 1

z
] = 1 +Aδ̃−(α̃+1) ( 1

θ̃ + 1
− 1

α̃ + 1
) − A

(θ̃ + 1)
δ̃(θ̃−α̃)z

−(θ̃+1)
0 . (A.3)

A.3 Additional results and robustness checks

In this section, we present additional results concerning the robustness checks in

Section 2.4.32.4.3.
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Table 12: Robustness check: C-CAPM preference parameter estimates using the
ZeroCorr data simulation procedure
The table presents the second-step estimates of the C-CAPM preference parameters β and γ.
The SMM estimation is based on the moment matches in Equation (2.122.12) with T =107, using the
excess returns of the respective test assets and the risk-free rate proxy. The AHB estimates are
based on T =16k. All estimates rely on the ZeroCorr data simulation procedure. The numbers in
parentheses are bootstrap standard errors and the numbers in brackets are the bounds of the 95%
confidence intervals computed using the percentile method. The number of bootstrap replications
is K=1k. The table also reports the p-values (in percent) of Hansen’s J-statistic (see Equation
(2.342.34)) and root mean squared errors (R), computed as explained in Equation (2.352.35). For the
AHB method, R is obtained by averaging over the H=1k replications. Panels A-D break down
the results by the MPP used to simulate the disaster-including data (Panels A and B: ACHx-DPL,
Panels C and D: ACH0-DPL). In all cases, the disaster threshold is q=0.145. In Panels A and
C, the first-step estimation results are based on the updated cross-country panel consumption
data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). In Panels B and D, the first-step estimation
results are based on Bolt and van ZandenBolt and van Zanden’s (20142014) GDP data. Each panel reports the results by
the set of test assets used for estimation (mkt, size dec, industry).

Panel A: ACHx/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.956 (0.021) 4.09 (0.88) 0.930 (0.022) 4.40 (0.76) 28.4 24 0.942 (0.018) 4.29 (0.72) 53.5 26

[0.902 0.986] [2.50 5.38] [0.888 0.974] [2.69 5.62] [0.907 0.978] [2.60 5.48]

AHB 0.950 (0.018) 4.86 (0.78) 0.941 (0.012) 5.04 (0.84) 49 0.950 (0.009) 4.89 (0.80) 43
[0.910 0.975] [3.37 6.39] [0.913 0.958] [3.41 6.68] [0.928 0.964] [3.35 6.45]

Panel B: ACHx/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.955 (0.021) 3.94 (0.71) 0.929 (0.022) 4.21 (0.75) 30.0 21 0.940 (0.018) 4.12 (0.73) 43.4 30

[0.907 0.983] [2.44 5.35] [0.886 0.974] [2.58 5.46] [0.907 0.975] [2.51 5.37]

AHB 0.949 (0.026) 4.82 (0.85) 0.942 (0.011) 4.98 (0.87) 52 0.951 (0.009) 4.84 (0.84) 46
[0.899 0.976] [3.21 6.47] [0.915 0.959] [3.16 6.63] [0.931 0.965] [3.08 6.42]

Panel C: ACH0/Consumption

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.948 (0.021) 4.14 (0.74) 0.922 (0.022) 4.23 (0.80) 24.2 39 0.937 (0.018) 4.13 (0.78) 71.9 24

[0.901 0.983] [2.36 5.34] [0.886 0.973] [2.40 5.66] [0.906 0.976] [2.37 5.51]

AHB 0.951 (0.025) 4.82 (0.78) 0.941 (0.011) 5.05 (0.85) 47 0.950 (0.008) 4.90 (0.81) 42
[0.901 0.975] [3.30 6.35] [0.917 0.958] [3.41 6.84] [0.932 0.964] [3.31 6.62]

Panel D: ACH0/GDP

mkt size dec industry

β γ β γ J R β γ J R
SMM 0.953 (0.023) 3.92 (0.76) 0.938 (0.020) 4.06 (0.80) 36.8 34 0.947 (0.016) 3.98 (0.78) 10.2 26

[0.901 0.985] [2.36 5.37] [0.893 0.970] [2.33 5.64] [0.911 0.974] [2.35 5.48]

AHB 0.951 (0.022) 4.83 (0.85) 0.942 (0.011) 5.01 (0.91) 51 0.952 (0.008) 4.86 (0.88) 46
[0.900 0.976] [3.26 6.61] [0.919 0.959] [3.29 6.86] [0.933 0.965] [3.24 6.64]
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Table 13: Robustness check: Key financial indicators implied by a disaster-including
C-CAPM using the ZeroCorr data simulation procedure
The table presents estimates of the mean risk-free rate, mean market return, equity premium, and
market Sharpe ratio implied by a disaster-including C-CAPM. These indicators are computed as
given by Equations (2.362.36), (2.372.37), and (2.382.38). The estimates of the subjective discount factor and
the RRA coefficient are taken from Table 1212. The numbers in brackets are the bounds of the
95% confidence intervals based on K=1k bootstrap replications and computed using the percentile
method. Panels A-D break down the results by the MPP used to simulate the disaster-including
data (Panels A and B: ACHx-DPL, Panels C and D: ACH0-DPL). In Panels A and C, the first-
step estimation results are based on the updated cross-country panel consumption data originally
assembled by Barro and UrsúaBarro and Ursúa (20082008). In Panels B and D, the first-step estimation results are
based on Bolt and van ZandenBolt and van Zanden’s (20142014) cross-country panel GDP data. Each panel reports the
results by set of test assets used for estimation (mkt, size dec, industry). Panel A also contains the
values of the indicators in the empirical data (1947:Q2–2014:Q4).

Panel A: ACHx/Consumption

data mkt size dec industry

mean risk-free rate 0.17 0.17 0.18 0.18
(% per qtr) [0.12 0.23] [0.13 0.27] [0.13 0.26]

equity premium 1.94 1.79 2.57 2.19
(% per qtr) [0.74 2.82] [1.07 3.67] [0.95 3.08]

mean market return 2.11 1.96 2.75 2.37
(% per qtr) [0.92 2.97] [1.25 3.87] [1.17 3.29]

Sharpe ratio 0.237 0.212 0.305 0.260
(market) [0.086 0.352] [0.118 0.450] [0.110 0.391]

Panel B: ACHx/GDP

mkt size dec industry

mean risk-free rate 0.17 0.18 0.18
(% per qtr) [0.12 0.22] [0.13 0.27] [0.14 0.27]

equity premium 1.81 2.51 2.17
(% per qtr) [0.90 2.75] [1.12 3.88] [1.06 3.12]

mean market return 1.98 2.69 2.35
(% per qtr) [1.06 2.92] [1.30 4.10] [1.27 3.33]

Sharpe ratio 0.215 0.299 0.258
(market) [0.102 0.345] [0.129 0.466] [0.123 0.388]

Panel C: ACH0/Consumption

mkt size dec industry

mean risk-free rate 0.17 0.19 0.18
(% per qtr) [0.12 0.22] [0.13 0.26] [0.13 0.26]

equity premium 1.78 2.76 2.32
(% per qtr) [0.84 2.71] [1.03 3.60] [1.00 3.12]

mean market return 1.96 2.95 2.50
(% per qtr) [1.01 2.89] [1.24 3.78] [1.18 3.31]

Sharpe ratio 0.211 0.327 0.275
(market) [0.096 0.339] [0.122 0.440] [0.115 0.385]

Panel D: ACH0/GDP

mkt size dec industry

mean risk-free rate 0.17 0.19 0.18
(% per qtr) [0.12 0.22] [0.13 0.26] [0.14 0.25]

equity premium 1.80 2.76 2.38
(% per qtr) [0.78 2.79] [1.14 3.52] [1.08 3.09]

mean market return 1.98 2.94 2.56
(% per qtr) [0.98 2.95] [1.32 3.73] [1.28 3.28]

Sharpe ratio 0.214 0.328 0.283
(market) [0.093 0.338] [0.133 0.430] [0.123 0.372]
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Table 14: Robustness check: Estimation results using only excess returns as test assets
(ACH0)
The table presents the second-step estimates of the RRA coefficient γ. The SMM estimation results
are based on the moment matches in Equation (2.132.13) using the excess returns of the respective test
assets. The other estimation settings (T =107 for SMM, T =16k for AHB, q=0.145, K=H=1k),
and the reported statistics correspond to Table 44. The simulation of disaster-including data makes
use of the first-step ACH0-DPL estimates. In Panel A, the first-step estimation results are based
on the updated cross-country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). In Panel B, the first-step estimation results are based on Bolt and van ZandenBolt and van Zanden’s (20142014)
GDP data. Each panel breaks down the results by set of test assets (mkt, size dec, industry) and
data simulation procedures (TailCorr, EmpCorr, ZeroCorr).

Panel A: Consumption 1800-2009

TailCorr/mkt TailCorr/size dec TailCorr/industry

γ γ J R γ J R
SMM 3.47 (0.64) 3.56 (0.69) 32.7 25 3.47 (0.67) 68.9 24

[1.98 4.59] [2.13 4.87] [2.09 4.75]

AHB 4.03 (0.73) 4.32 (0.80) 26 4.18 (0.77) 25
[2.67 5.60] [2.85 6.06] [2.77 5.86]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

γ γ J R γ J R
SMM 3.99 (0.73) 4.07 (0.79) 29.9 40 4.00 (0.77) 61.2 26

[2.27 5.23] [2.31 5.51] [2.30 5.38]

AHB 4.67 (0.78) 4.91 (0.85) 52 4.78 (0.81) 46
[3.16 6.22] [3.28 6.67] [3.20 6.50]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

γ γ J R γ J R
SMM 4.14 (0.74) 4.23 (0.80) 34.5 45 4.12 (0.78) 72.9 26

[2.36 5.34] [2.40 5.65] [2.37 5.51]

AHB 4.82 (0.78) 5.05 (0.85) 52 4.89 (0.81) 47
[3.30 6.35] [3.40 6.84] [3.31 6.61]

Panel B: GDP 1900-2010

TailCorr/mkt TailCorr/size dec TailCorr/industry

γ γ J R γ J R
SMM 3.35 (0.65) 3.51 (0.69) 32.6 25 3.43 (0.67) 67.3 24

[2.05 4.67] [2.08 4.87] [2.06 4.72]

AHB 4.05 (0.78) 4.30 (0.85) 25 4.17 (0.82) 25
[2.62 5.70] [2.74 6.08] [2.67 5.89]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

γ γ J R γ J R
SMM 3.80 (0.74) 3.94 (0.78) 36.2 32 3.87 (0.76) 10.9 29

[2.33 5.26] [2.28 5.49] [2.28 5.36]

AHB 4.68 (0.85) 4.86 (0.91) 56 4.74 (0.87) 49
[3.13 6.46] [3.17 6.69] [3.13 6.52]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

γ γ J R γ J R
SMM 3.92 (0.76) 4.06 (0.80) 42.9 38 3.98 (0.78) 12.7 29

[2.36 5.37] [2.33 5.63] [2.34 5.48]

AHB 4.83 (0.85) 5.00 (0.91) 57 4.86 (0.88) 51
[3.26 6.61] [3.28 6.86] [3.23 6.64]

53



Table 15: Robustness check: C-CAPM preference parameter estimates with varying
q (ACH0)
The table presents the second-step estimates of the preference parameters β and γ using alternative
disaster thresholds. Panel A uses a disaster threshold of q=0.095, and Panel B uses q=0.195. The
other estimation settings (moment matches, T =107 for SMM, T =16k for AHB, K=H=1k), and the
reported statistics correspond to Table 44. The first-step estimation results are based on the updated
country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The simulation
of disaster-including data is based on the first-step ACH0-DPL estimates. Each panel breaks down
the results by set of test assets (mkt, size dec, industry) and data simulation procedures (TailCorr,
EmpCorr, ZeroCorr).

Panel A: q=0.095

TailCorr/mkt TailCorr/size dec TailCorr/industry

β γ β γ J R β γ J R
SMM 0.983 (0.006) 3.41 (0.64) 0.978 (0.007) 3.58 (0.65) 30.0 24 0.981 (0.006) 3.48 (0.62) 65.3 23

[0.972 0.996] [2.17 4.58] [0.963 0.992] [2.34 4.86] [0.969 0.992] [2.32 4.70]

AHB 0.981 (0.002) 3.94 (0.72) 0.974 (0.003) 4.18 (0.81) 24 0.978 (0.002) 4.03 (0.77) 23
[0.977 0.985] [2.73 5.56] [0.968 0.979] [2.78 5.93] [0.973 0.982] [2.70 5.72]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

β γ β γ J R β γ J R
SMM 0.950 (0.023) 4.08 (0.74) 0.935 (0.022) 4.20 (0.76) 25.1 30 0.943 (0.019) 4.12 (0.73) 5.8 30

[0.898 0.987] [2.50 5.34] [0.888 0.977] [2.65 5.66] [0.902 0.977] [2.66 5.53]

AHB 0.943 (0.033) 4.83 (0.83) 0.937 (0.010) 4.97 (0.92) 55 0.944 (0.009) 4.84 (0.89) 48
[0.872 0.972] [3.28 6.63] [0.914 0.955] [3.27 6.88] [0.927 0.960] [3.21 6.67]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

β γ β γ J R β γ J R
SMM 0.933 (0.028) 4.26 (0.73) 0.911 (0.029) 4.38 (0.78) 23.0 33 0.925 (0.023) 4.28 (0.75) 7.2 31

[0.873 0.979] [2.69 5.49] [0.857 0.967] [2.81 5.88] [0.881 0.969] [2.80 5.73]

AHB 0.928 (0.038) 5.04 (0.84) 0.921 (0.016) 5.17 (0.94) 56 0.933 (0.012) 5.01 (0.90) 50
[0.846 0.966] [3.44 6.87] [0.885 0.947] [3.40 7.08] [0.908 0.953] [3.34 6.84]

Panel B: q=0.195

TailCorr/mkt TailCorr/size dec TailCorr/industry

β γ β γ J R β γ J R
SMM 0.987 (0.005) 3.41 (0.66) 0.981 (0.007) 3.71 (0.70) 30.6 24 0.984 (0.005) 3.62 (0.67) 68.5 23

[0.976 0.998] [2.04 4.76] [0.969 0.994] [2.14 4.92] [0.974 0.995] [2.15 4.80]

AHB 0.985 (0.002) 4.12 (0.79) 0.978 (0.002) 4.33 (0.84) 24 0.982 (0.002) 4.20 (0.81) 23
[0.981 0.988] [2.69 5.97] [0.973 0.982] [2.82 6.12] [0.978 0.985] [2.74 5.92]

EmpCorr/mkt EmpCorr/size dec EmpCorr/industry

β γ β γ J R β γ J R
SMM 0.969 (0.014) 3.79 (0.73) 0.956 (0.015) 4.13 (0.78) 15.4 25 0.962 (0.012) 4.06 (0.74) 68.5 21

[0.938 0.992] [2.27 5.27] [0.926 0.984] [2.35 5.46] [0.936 0.984] [2.34 5.32]

AHB 0.968 (0.010) 4.60 (0.81) 0.959 (0.006) 4.79 (0.85) 43 0.965 (0.005) 4.66 (0.81) 39
[0.942 0.983] [3.07 6.32] [0.945 0.969] [3.18 6.53] [0.953 0.974] [3.12 6.35]

ZeroCorr/mkt ZeroCorr/size dec ZeroCorr/industry

β γ β γ J R β γ J R
SMM 0.962 (0.016) 3.90 (0.74) 0.947 (0.018) 4.24 (0.79) 17.0 24 0.955 (0.014) 4.15 (0.75) 74.2 21

[0.925 0.989] [2.34 5.37] [0.911 0.979] [2.43 5.58] [0.925 0.981] [2.41 5.42]

AHB 0.963 (0.012) 4.71 (0.81) 0.952 (0.008) 4.89 (0.85) 43 0.960 (0.007) 4.75 (0.81) 39
[0.934 0.980] [3.13 6.43] [0.933 0.966] [3.26 6.62] [0.945 0.971] [3.20 6.43]
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Table 16: Robustness Check: Effect of a varying T on AHB parameter estimates using
the ACHx model (EmpCorr/ZeroCorr)
The table reports the AHB estimates of the subjective discount factor and the coefficient of relative
risk aversion for a varying T . Panel A uses the EmpCorr data simulation procedure and Panel B
uses ZeroCorr. The 95% quantiles of the parameter estimates from the H=1k simulated histories are
underlined, and the standard deviations are reported in parentheses. Columns labeled p report the
relative frequency for γ(h) > 10 (in percent). The last column reports the percentage of simulated
histories for which no consumption disaster occurs. The estimations use the excess returns of the
portfolios in the sets of test assets (mkt, size dec, industry), which in each case are augmented by the
risk-free rate. The first-step estimation results are based on the updated country panel consumption
data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The simulation of disaster-including data is
based on the first-step ACHx-DPL estimates. The disaster threshold is q=0.145.

Panel A: EmpCorr

mkt size dec industry

T β γ p β γ p β γ p no disaster
271 0.975 14.01 36.7 1.073 39.25 52.5 1.085 39.20 50.7 46.3

(0.108) (28.54) (0.196) (63.82) (0.197) (57.70)
1.021 22.50 1.473 175.45 1.494 163.85

1k 0.961 7.22 16.7 0.967 9.14 18.2 0.974 8.94 16.2 2.3
(0.032) (3.47) (0.058) (17.32) (0.057) (17.76)
0.995 14.18 0.991 14.90 0.996 14.27

5k 0.958 5.27 0.0 0.952 5.46 0.2 0.959 5.30 0.2 0.0
(0.028) (1.28) (0.010) (1.33) (0.008) (1.27)
0.981 7.44 0.967 7.72 0.971 7.48

16k 0.959 4.71 0.0 0.950 4.90 0.0 0.957 4.77 0.0 0.0
(0.014) (0.78) (0.008) (0.83) (0.006) (0.80)
0.977 5.98 0.962 6.27 0.966 6.08

Panel B: ZeroCorr

mkt size dec industry

T β γ p β γ p β γ p no disaster
271 0.973 13.97 36.8 1.073 39.22 52.5 1.085 39.17 50.5 46.3

(0.109) (28.51) (0.197) (63.82) (0.198) (57.70)
1.024 21.94 1.473 175.45 1.494 163.85

1k 0.956 7.31 16.8 0.962 9.23 18.3 0.971 9.02 16.2 2.3
(0.038) (3.39) (0.060) (17.29) (0.058) (17.74)
0.995 14.08 0.991 14.78 0.997 14.15

5k 0.951 5.42 0.0 0.945 5.60 0.2 0.954 5.42 0.2 0.0
(0.025) (1.28) (0.013) (1.33) (0.010) (1.27)
0.979 7.58 0.963 7.90 0.968 7.61

16k 0.950 4.86 0.0 0.941 5.04 0.0 0.950 4.89 0.0 0.0
(0.018) (0.78) (0.012) (0.84) (0.009) (0.80)
0.973 6.16 0.956 6.42 0.962 6.20
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Table 17: Robustness Check: Effect of a varying T on AHB parameter estimates using
the ACH0 model (EmpCorr/ZeroCorr)
The table reports the AHB estimates of the subjective discount factor and the coefficient of relative
risk aversion for a varying T . Panel A uses the EmpCorr data simulation procedure and Panel B
uses ZeroCorr. The 95% quantiles of the parameter estimates from the H=1k simulated histories are
underlined, and the standard deviations are reported in parentheses. Columns labeled p report the
relative frequency for γ(h) > 10 (in percent). The last column reports the percentage of simulated
histories for which no consumption disaster occurs. The estimations use the excess returns of the
portfolios in the sets of test assets (mkt, size dec, industry), which in each case are augmented by the
risk-free rate. The first-step estimation results are based on the updated country panel consumption
data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The simulation of disaster-including data is
based on the first-step ACH0-DPL estimates. The disaster threshold is q=0.145.

Panel A: EmpCorr

mkt size dec industry

T β γ p β γ p β γ p no disaster
271 0.973 12.75 40.1 1.056 33.01 49.7 1.066 32.89 47.9 37.7

(0.106) (22.89) (0.181) (52.99) (0.185) (51.84)
1.023 21.86 1.474 162.09 1.475 160.50

1k 0.962 7.57 20.8 0.961 7.93 22.6 0.969 7.65 20.5 0.2
(0.032) (3.85) (0.024) (5.16) (0.023) (5.46)
0.999 14.89 0.994 15.84 0.999 15.13

5k 0.959 5.18 0.1 0.952 5.48 0.5 0.959 5.31 0.3 0.0
(0.019) (1.34) (0.009) (1.43) (0.008) (1.37)
0.981 7.46 0.966 8.01 0.972 7.81

16k 0.959 4.67 0.0 0.950 4.91 0.0 0.957 4.78 0.0 0.0
(0.016) (0.78) (0.008) (0.85) (0.006) (0.81)
0.976 6.02 0.961 6.38 0.966 6.21

Panel B: ZeroCorr

mkt size dec industry

T β γ p β γ p β γ p no disaster
271 0.971 12.70 39.0 1.055 32.96 49.7 1.065 32.86 47.5 37.7

(0.109) (22.86) (0.182) (53.00) (0.185) (51.84)
1.024 21.43 1.474 162.09 1.475 160.50

1k 0.957 7.65 21.2 0.957 8.01 23.0 0.966 7.71 20.6 0.2
(0.041) (3.75) (0.027) (5.09) (0.025) (5.40)
1.000 14.65 0.995 15.75 1.000 15.07

5k 0.952 5.33 0.1 0.945 5.62 0.7 0.954 5.43 0.3 0.0
(0.023) (1.33) (0.013) (1.43) (0.010) (1.37)
0.978 7.61 0.962 8.14 0.969 7.92

16k 0.951 4.82 0.0 0.941 5.05 0.0 0.950 4.90 0.0 0.0
(0.025) (0.78) (0.011) (0.85) (0.008) (0.81)
0.972 6.17 0.955 6.52 0.962 6.34
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Figure 8: Robustness check: Effect of a varying copula correlation
The figure depicts the estimates of the subjective discount factor β (Panels (a) and (c)) and the
RRA coefficient γ (Panels (b) and (d)) using a varying copula correlation ρ. The simulation of
disaster-including data is based on the first-step ACH0-DPL estimates using the updated cross-
country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa (20082008). The disaster
threshold is q=0.145. Test assets are the excess return of the market portfolio (mkt) and the
risk-free rate. Panels (a) and (b) refer to the SMM estimates, and Panels (c) and (d) pertain to the
AHB estimates. The dashed (red) lines are the 95% confidence bounds.
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(a) SMM with ACH0: β̂
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(b) SMM with ACH0: γ̂
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(c) AHB with ACH0: β̂
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(d) AHB with ACH0: γ̂
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Figure 9: Robustness Check: Effect of varying T on AHB parameter estimates
(EmpCorr/ACHx)
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACHx-DPL estimates and the EmpCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.
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Figure 10: Robustness Check: Effect of varying T on AHB parameter estimates
(ZeroCorr/ACHx)
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACHx-DPL estimates and the ZeroCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.
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Figure 11: Robustness Check: Effect of varying T on AHB parameter estimates
(TailCorr/ACH0)
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACH0-DPL estimates and the TailCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.
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Figure 12: Robustness Check: Effect of varying T on AHB parameter estimates
(EmpCorr/ACH0)
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACH0-DPL estimates and the EmpCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.
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Figure 13: Robustness Check: Effect of varying T on AHB parameter estimates
(ZeroCorr/ACH0)
The four panels depict kernel densities of the AHB estimates of the subjective discount factor β
(Panels (a) and (b)) and the RRA coefficient γ (Panels (c) and (d)). Test assets are the excess
return of the market portfolio mkt and the risk-free rate proxy. The first-step estimation results are
based on the updated country panel consumption data originally assembled by Barro and UrsúaBarro and Ursúa
(20082008). The disaster threshold is q=0.145. The simulation of disaster-including data is based on the
first-step ACH0-DPL estimates and the ZeroCorr data simulation procedure. We use H=1k and
vary T from 271 (Panels (a) and (c)), to 1k, 5k, and 16k (Panels (b) and (d)). The solid (green)
densities in Panels (a) and (c) use T =271. The dotted (golden) densities in Panels (b) and (d) use
T =1k, the dashed (cyan) densities reflect T =5k, and the solid (red) densities use T =16k. The
AHB point estimates are indicated by vertical lines. We use a Gaussian kernel with a bandwidth as
suggested by SilvermanSilverman’s (19861986) rule of thumb.
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Figure 14: Robustness Check: Kernel estimates using pooled SMM bootstrap results
(EmpCorr/ZeroCorr)
The figure depicts kernel densities using pooled bootstrap SMM estimates of β (Panels (a) and (c))
and γ (Panels (b) and (d)). The results of the K=1k bootstrap replications are pooled over three
sets of test assets (mkt, size dec, industry), each of which is augmented by the risk-free rate. Panels
(a) and (b) use the EmpCorr data simulation procedure and Panels (c) and (d) use ZeroCorr. All
estimations use the ACHx-DPL and Barro and UrsúaBarro and Ursúa’s (20082008) consumption data with q=0.145.
The dotted lines indicate the 2.5% and 97.5% quantiles, respectively. We use a Gaussian kernel
with a bandwidth as suggested by SilvermanSilverman’s (19861986) rule of thumb.
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CHAPTER 3

Asset Pricing with Multi-Period Disasters and
Partial Government Defaults††

3.1 Motivation

This chapter proposes a novel econometric strategy to resolve the inherent sample

selection problem that is implied by the RDH, and to estimate and test an asset

pricing model with recursive investor preferences that accounts for the possibility

of rare and severe consumption contractions and partial government defaults. The

moment restrictions implied by such a disaster-including C-CAPM are used for a

simulation-based estimation of its structural parameters. By allowing for multi-period

disasters, which are modeled as a marked point process (MPP), I can address the

caveat that the success of the RDH may hinge on the assumption that a consumption

disaster must unfold within a single period. The econometric analysis comprises

two consecutive steps: maximum likelihood to estimate the MPP parameters using

cross-country consumption data, and then a simulation-based estimation of the

investor preference parameters based on U.S. macro and financial data. A bootstrap

procedure gauges the estimation precision. To the best of my knowledge, this is

the first study to estimate and test a C-CAPM that accounts for the possibility of

multi-period disasters and partial government defaults.

The empirical analysis shows that the estimates of the investor preference pa-

rameters – relative risk aversion, the intertemporal elasticity of substitution, and

the subjective discount factor – fall within a range that is economically meaningful,

and they feature narrow bootstrap confidence bounds. Specifically, the estimates

of the subjective discount factor are smaller than but close to unity, as would be

expected of an investor with a reasonable positive rate of time preference. The RRA

coefficient estimates range between 1.5 and 1.7; generally, RRA values <10 describe

a reasonably risk averse investor (e.g., Mehra and PrescottMehra and Prescott (19851985); RietzRietz (19881988);

Bansal and YaronBansal and Yaron (20042004)). CochraneCochrane (20052005) caps the interval of sensible relative risk

aversion more strictly at 5, in line with results reported by Meyer and MeyerMeyer and Meyer (20052005).

For the present study, the 95% confidence interval for the RRA estimate also lies

within this strict plausibility range. In addition, the IES estimates are (significantly)

† This chapter is based on SönksenSönksen (2017a2017a), available on ssrn:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=2789621
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greater than unity and of a magnitude that is frequently assumed for calibrations.

Moreover, the estimated RRA coefficient is (significantly) greater than the reciprocal

of the IES estimate, which provides evidence that investors prefer early resolution of

uncertainty. Several studies emphasize that an IES greater than 1, combined with a

preference for early resolution of uncertainty, is necessary to obtain meaningful asset

pricing implications from a C-CAPM (e.g., Bansal and YaronBansal and Yaron (20042004); BarroBarro (20092009);

Nakamura et al.Nakamura et al. (20132013)).

Accordingly, the model-implied key financial indicators – mean market return, T-

bill return, equity premium, and market Sharpe ratio – exhibit meaningful magnitudes

and are consistent with the empirically observed counterparts. These findings are

robust with respect to alternative model specifications (e.g., first-step model, disaster

definition, data simulation procedures). Compared with other prominent attempts

to vindicate the C-CAPM paradigm, these results are encouraging. Empirical asset

pricing studies often find implausible or imprecise parameter estimates that entail

doubtful asset pricing implications, calling into question the explanatory power of

the C-CAPM paradigm. The present results indicate instead that accounting for rare

disasters in a consumption-based asset pricing framework helps restore the nexus

between financial markets and the real economy.

The present study re-emphasizes the explanatory power of the RDH by showing

that the equity premium can be explained with plausible preference parameters and

assumptions regarding the disaster process. However, it is important to assume

Epstein-Zin-Weil preferences instead of an additive power utility. As some related

literature implies, it is crucial to allow for a preference for early resolution of

uncertainty, and the IES and RRA both must be greater than unity. Accounting

for the possibility of multi-period disasters and partial government default in an

empirical C-CAPM yields conforming RRA and IES estimates and thus meaningful

asset pricing implications.

The remainder of this chapter is structured as follows: Section 3.23.2 details the

motivation for a multi-period disaster-including C-CAPM with recursive preferences

and derives moment restrictions that provide the basis for the simulated method

of moments-type estimation strategy. It also introduces a marked point process to

explain the size and duration of and between disaster events. Section 3.33.3 contains

the macroeconomic and financial data used in this study, and Section 3.43.4 describes

the two-step estimation strategy. After a discussion of the estimation results and

robustness tests in Section 3.53.5, Section 3.63.6 concludes.
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3.2 Multi-period disasters in a C-CAPM

3.2.1 Asset pricing implications and moment restrictions

To formulate an empirically estimable asset pricing model that accounts for the pos-

sibility of multi-period disasters, I follow BarroBarro (20062006) and assume that consumption

growth evolves as
Ct+1

Ct
= eut+1evt+1 , (3.1)

where ut+1 ∼ (µ̃, σ2), vt+1 = ln(1 − bt+1)dt+1, and eut+1 describes consumption growth

in non-disastrous times. The term ln(1 − bt+1) comes into force only if the respective

period is affected by a disaster, that is, if the binary disaster indicator dt+1 equals

1. In this case, the non-disastrous consumption growth component shrinks by the

contraction factor bt+1. Time is discrete, and the observation frequency is fixed (e.g.,

quarterly). In BarroBarro’s (20062006) one-period disaster model, bt+1 ∈ [q, 1], where q denotes

the disaster threshold that differentiates regular bad times from disasters.

The definition of the contraction factor bt+1 must be adapted when accounting

for multi-period disasters. Here, a disaster is defined as a succession of contractions

that starts in period s1 and lasts until period s2, where s1 ≤ t + 1 ≤ s2, such that

1 −
s2

∏
j=s1

(1 − bj) ≥ q. (3.2)

In words, I refer to a disaster event as a severe decline in consumption at least of

size q. The decline may accrue over multiple disaster periods or come in the form of

one sharp contraction. Disaster periods are indicated by dt = 1 and associated with

a contraction factor bt ∈ (0,1]. If dt = 1, asset returns will also contract. Adopting

BarroBarro’s (20062006) specification for returns on treasury bills, I assume, analogous to

Equation 3.13.1, that for a gross return of an asset Ri:

Ri,t+1 = (1 − b̃i,t+1)dt+1Ri,nd,t+1, (3.3)

where Ri,nd denotes the asset’s gross return in non-disastrous periods, and b̃i is the

return equivalent of the consumption contraction factor b.

A representative investor, who faces these consumption risks, has recursive

preferences; as Epstein and ZinEpstein and Zin (19891989) show, the basic asset pricing equations for a

gross return Ri and an excess return Re
i = Ri −Rj, respectively, are then given by:

Et [mt+1(β, γ,ψ)Ri,t+1] = 1 and Et [mt+1(β, γ,ψ)Re
i,t+1] = 0, (3.4)
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where the stochastic discount factor (SDF) reads:

mt+1(β, γ,ψ) = βθ (
Ct+1

Ct
)
− θ
ψ

Rθ−1
a,t+1, with θ = 1 − γ

1 − 1
ψ

. (3.5)

In Equation (3.53.5), β denotes the subjective discount factor, ψ is the IES, and γ

represents the coefficient of relative risk aversion; Ra is the return on aggregate

wealth.

By conditioning down the basic asset pricing equation for a gross return, apply-

ing the law of total expectations, and using the consumption growth and return

specifications from Equations (3.13.1) and (3.33.3), we can write:

E [βθ (eutevt)−
θ
ψ Rθ−1

a,t Ri,t] = pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]

+ (1 − p)E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0]

= 1,

(3.6)

where p = P(dt = 1) is the unconditional disaster probability, and Ri,d,t = Ri,nd,t(1−b̃i,t).
Rearranging terms in Equation (3.63.6) yields the following moment restriction:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0] =
1 − pE [βθ ((1 − bt)eut)−

θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]

1 − p .

(3.7)

The corresponding moment restriction for an excess return Re
i reads:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tR
e
i,nd,t∣dt = 0] =

−pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tR
e
i,d,t∣dt = 1]

1 − p ,
(3.8)

where Re
i,d = Ri,d −Rj,d and Re

i,nd = Ri,nd −Rj,nd.

Equations (3.73.7) and (3.83.8) are of particular interest, because they suggest how

theoretical moments that can be approximated using the available non-disastrous

data (left-hand sides) can be disentangled from expressions that rely on information

about disasters (right-hand sides). In particular, using consumption growth and

return data that do not include disasters, we can approximate the left-hand side of

Equation (3.73.7) as follows:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0] ≈ 1

T

T

∑
t=1

βθcg
− θ
ψ

nd,tR
θ−1
a,nd,tRi,nd,t, (3.9)
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where cgnd,t denotes observable, non-disastrous consumption growth. Similarly,

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tR
e
i,nd,t∣dt = 0] ≈ 1

T

T

∑
t=1

βθcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
i,nd,t. (3.10)

Because U.S. postwar data do not incorporate any disasters, attempting to

approximate the right-hand side moments in Equations (3.73.7) and (3.83.8) using sample

means of the available data would be futile. However, if it were possible to simulate

consumption and return processes that account for the possibility of rare disasters,

we could consider an approximation by simulated moments, such as:

1 − pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]
1 − p

≈
1 − 1

T

T

∑
s=1
βθcg

− θ
ψ

s Rθ−1
a,s Rsds

1 − DT
T

, (3.11)

and

−pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tR
e
i,d,t∣dt = 1]

1 − p
≈
− 1
T

T

∑
s=1
βθcg

− θ
ψ

s Rθ−1
a,s R

e
sds

1 − DT
T

, (3.12)

where cgs, Ra,s, Rs, and Re
s denote simulated (disaster-including) consumption growth

and (excess) returns, and DT = ∑Ts=1 ds. A large T ensures a good approximation of

population moments by sample means, provided that a uniform law of large numbers

holds. In the same spirit by which Singleton motivates the simulated method of

moments, “more fully specified models allow experimentation with alternative formu-

lations of economies and, perhaps, analysis of processes that are more representative

of history for which data are not readily available” (SingletonSingleton, 20062006, p. 254), the

simulation should produce consumption and return data that are representative of

history, assuming the RDH is true.

Equations (3.113.11) and (3.123.12) provide the basis for the SMM-type estimation of the

preference parameters β, γ, and ψ. Before explaining the details of the estimation

strategy, it is necessary to specify the stochastic process that generates the disastrous

consumption contractions.

3.2.2 Multi-period disasters as a marked point process

I introduce an MPP to model the time duration between disastrous consumption

contractions and their size, as well as to account for the duration of the multi-period
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disasters. In the present application, the disaster periods are the points of the MPP;

the contraction sizes are the marks.

I draw on Hamilton and JordaHamilton and Jorda’s (20022002) autoregressive conditional hazard (ACH)

framework to model the duration between disaster periods. Initially, this approach

would set a threshold q to define a disaster event and thereby establish the respective

disaster periods and their contraction sizes. Suppose that the sequence of consumption

disaster events thus defined is observable at a quarterly frequency. Let M(t) denote

the number of disasters that occurred as of quarter t and let N(t) refer to the

respective number of disaster periods. The probability of quarter t being a disaster

period, conditional on the information available in t − 1, is the discrete-time hazard

rate,

ht = P(N(t) ≠ N(t − 1)∣Ft−1). (3.13)

Hamilton and JordaHamilton and Jorda’s (20022002) ACH framework also allows for flexible parametriza-

tion of the hazard rate in Equation (3.133.13). In a parsimonious specification, the

hazard rate depends on just two parameters, µ and µ̃:

ht = [(µ(1 − dt−1) + µ̃dt−1)(1 − d+t−1) + d+t−1]
−1
, (3.14)

where d+t is a binary indicator, such that

d+t = 1(dt = 1) ⋅ 1 [[1 −
t−1

∏
j=s1

(1 − bj)] < q] , (3.15)

where 1(⋅) is the indicator function. That is, d+t = 1 if quarter t belongs to a disaster

that commenced in period s1 ≤ t, and the accrued contractions up to t do not yet

qualify as a disaster. In this case, quarter t + 1 must be a disaster period too, such

that ht+1 = 1. If d+t = 0 and dt = 1, then ht+1 = 1/µ̃. If dt = 0, then ht+1 = 1/µ.

More extensive parametrization of the hazard rate is possible too. For example,

I could include the time durations of and between previous disaster events, the

aggregate size of the previous disaster, and the size of the contraction of the last

disaster period to explain the hazard rate:

ht = [[(µ + ατM(t−1)−1 + δb+M(t−1))(1 − dt−1)

+(µ̃ + α̃τ̃M(t−1)−1 + δ̃bN(t−1))dt−1](1 − d+t−1) + d+t−1]
−1
,

(3.16)

where τm denotes the duration, measured in quarters, between the mth and (m +
1)th disaster, and τ̃m denotes the number of quarters that the mth disaster lasted.
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Furthermore, bn is the contraction size of the nth disaster period, and b+m is the

aggregate size of the mth disaster. For the empirical analysis, I consider several

special cases of Equation (3.163.16). For example, the hazard rate specification in

Equation (3.143.14) emerges when α = δ = α̃ = δ̃ = 0.

To model disaster size, I adopt an idea from Barro and JinBarro and Jin (20112011) and employ a

power law distribution (PL) to describe the transformed contraction size zc = 1
1−b .

2626 I

assume that contractions that contribute to reaching the disaster threshold q (when

dt = 1 and d+t = 1) follow a different PL distribution than those that add to a disaster

after q was reached (when dt = 1, but d+t = 0).

The joint conditional probability density function of the resulting marked point

process, which I refer to as an ACH-PL model, can be written as:

f(dt, d+t , zc,t∣Ft−1;θACH , θ
+
PL, θPL) = f(dt, d+t ∣Ft−1) × f(zc,t∣dt, d+t ,Ft−1)

= [ht(θACH)]dt × [1 − ht(θACH)]1−dt

× (fPL(zc,t; θ+PL)d
+

t × fPL(zc,t; θPL)1−d+t )dt ,

(3.17)

where θACH contains the ACH parameters, fPL denotes the power law density, and

θ+PL and θPL are the power law tail coefficients that describe the size of the contractions

that contribute to reaching the disaster threshold and the size of contractions to

add on top of q, respectively. The probability density function in Equation (3.173.17) is

an essential ingredient for the estimation strategy, which entails drawing from that

distribution to simulate disaster-including consumption data.

3.3 Data

The empirical analysis of the disaster-including C-CAPM relies on two data sources,

which I use in two consecutive estimation steps. The estimation of the ACH-

PL parameters relies on annual cross-country panel data about consumption that

Barro and UrsúaBarro and Ursúa (20082008) assembled for 42 countries and that feature prominently

in prior rare disaster literature.2727 From these data, I select the same 35 countries

that BarroBarro (20062006) considered. Table 1818 lists the countries and the years for which

consumption data are available.

26 Specifically, Barro and JinBarro and Jin (20112011), who implicitly assume single-period disasters, use a double
power law distribution that consists of two power law distributions that morph into each other
at a certain threshold value. It turns out that the flexibility of the double power law distribution
is not required when modeling multi-period disasters.

27 These data are available at http://scholar.harvard.edu/barro/publications/barro-ursua-
macroeconomic-data, accessed 04/24/2015.
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Table 18: Country panel data used for the first-step estimation
This table lists the 35 countries and time periods with available data that provide the basis for
the ACH-PL estimation. The second column reports the time periods for which consumption data
assembled by Barro and UrsúaBarro and Ursúa (20082008) are available (beginning with 1800 onwards).

Country Barro and UrsúaBarro and Ursúa

Argentina 1875 − 2009
Australia 1901 − 2009
Austria 1913 − 1918, 1924 − 1944, 1947 − 2009
Belgium 1913 − 2009
Brazil 1901 − 2009
Canada 1871 − 2009
Chile 1900 − 2009
Colombia 1925 − 2009
Denmark 1844 − 2009
Finland 1860 − 2009
France 1824 − 2009
Germany 1851 − 2009
Greece 1938 − 2009
India 1919 − 2009
Indonesia 1960 − 2009
Italy 1861 − 2009
Japan 1874 − 2009
Malaysia 1900 − 1939, 1947 − 2009
Mexico 1900 − 2009
the Netherlands 1807 − 1809, 1814 − 2009
New Zealand 1878 − 2009
Norway 1830 − 2009
the Philippines 1946 − 2009
Peru 1896 − 2009
Portugal 1910 − 2009
South Korea 1911 − 2009
Spain 1850 − 2009
Sri Lanka 1960 − 2009
Sweden 1800 − 2009
Switzerland 1851 − 2009
Taiwan 1901 − 2009
UK 1830 − 2009
USA 1834 − 2009
Uruguay 1960 − 2009
Venezuela 1923 − 2009

To detect disaster events in these data, I rely on BarroBarro’s (20062006) identification

scheme, which implies that any sequence of downturns in consumption growth greater

than or equal to q = 0.145 qualifies as a disaster. The same disaster threshold is used

by BarroBarro (20092009) and Barro and JinBarro and Jin (20112011). A disaster may pan out over multiple

periods or occur as one sharp contraction. Positive intermezzos of consumption

growth within a disaster are allowed if (1) this positive growth is smaller in absolute

value than the negative growth in the following year and (2) the size of the disaster

does not decrease by including the intermezzo. Using this disaster identification

scheme, I detect 89 disaster events. Figure 1515 depicts their size and the periods over

which they accrue.

As previously mentioned, I assume that the ACH-PL process is observable at

a quarterly frequency. However, Barro and UrsúaBarro and Ursúa’s (20082008) data only permit the

computation of annual contractions. I therefore generate quarterly observations by

randomly distributing the annual contraction (see Appendix B.1B.1 for details).

71



Figure 15: Consumption disasters
This figure depicts the 89 consumption disasters identified from Barro and UrsúaBarro and Ursúa’s (20082008) country
panel data (updated). The sampling period is 1800–2009. The disaster threshold q=0.145. Black
lines denote European countries, red lines South American countries and Mexico, golden lines
Western offshores (Australia, Canada, New Zealand, and U.S.A.), and blue lines represent Asian
countries. The dotted horizontal line depicts the average contraction size.
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The estimation of the preference parameters is based on quarterly U.S. real

personal consumption expenditures per capita on services and nondurable goods

in chained 2009 U.S. dollars, as provided by the Federal Reserve Bank of Saint

Louis.2828 These data span the period 1947:Q2–2014:Q4. Financial data, at a monthly

frequency, come from CRSP and Kenneth French’s data library.2929 The data used

for the empirical analysis are (1) the CRSP market portfolio, comprised of NYSE,

AMEX, and NASDAQ traded stocks (mkt); (2) ten size-sorted portfolios (size dec);

and (3) ten industry portfolios (industry). All portfolios are value-weighted. The

gross return of the CRSP market portfolio serves as the proxy for Ra.3030

28 For services, see http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA. For non-
durable goods, see http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA. Both ac-
cessed 03/09/2016.

29 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html, ac-
cessed 03/09/2016. Due to the frequent changes in the underlying CRSP data, newer or older
downloads may results in different series.

30 The approximation of the return of the wealth portfolio by the return of the portfolio of
financial assets is also employed by WeberWeber (20002000), Stock and WrightStock and Wright (20002000), and YogoYogo (20062006).
Thimme and VölkertThimme and Völkert (20152015) offer a critique of this approach, arguing that a large fraction of the
wealth portfolio is comprised of non-financial wealth. They propose an alternative proxy based
on Lettau and LudvigsonLettau and Ludvigson’s (20012001) cay-variable that accounts for the return on human capital.
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Table 19: Descriptive statistics: Consumption and test asset returns 1947:Q2–2014:Q4
This table contains the descriptive statistics of consumption growth and gross returns of the three
sets of test assets. Panel A: CRSP value-weighted market portfolio Ra and T-bill return Rb (mkt);
Panel B: ten size-sorted portfolios and Rb (size dec); Panel C: ten industry portfolios and Rb
(industry). The data range is 1947:Q2–2014:Q4. In Panel B, 1st, 2nd, and so on refer to the deciles
of the the ten size-sorted portfolios. The ten industry portfolios in Panel C are: nondurables
(NoDur : food, textiles, tobacco, apparel, leather, toys), durables (Durbl : cars, TVs, furniture,
household appliances), manufacturing (Manuf : machinery, trucks, planes, chemicals, paper, office
furniture), energy (Engry : oil, gas, coal extraction and products), business equipment (HiTec:
computers, software, and electronic equipment), telecommunication (Telcm: telephone and television
transmission), shops (Shops: wholesale, retail, laundries, and repair shops), health (Hlth: healthcare,
medical equipment, and drugs), utilities (Utils), and others (Other : transportation, entertainment,
finance, and hotels). The column labeled ac gives the first-order autocorrelation, and std is the
standard deviation.

Panel A: mkt
mean std ac correlations

Ct+1
Ct

Rb

market 1.0211 0.0816 0.084 0.175 0.026

Rb 1.0017 0.0045 0.857 0.204
Ct+1
Ct

1.0048 0.0051 0.311

Panel B: size dec
mean std ac correlations

Ct+1
Ct

Rb 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.0290 0.1251 0.061 0.178 -0.015 0.711 0.818 0.857 0.884 0.895 0.912 0.931 0.949 0.964

2nd 1.0271 0.1177 -0.001 0.172 0.005 0.781 0.871 0.915 0.933 0.947 0.961 0.974 0.982

3rd 1.0287 0.1115 -0.024 0.165 -0.001 0.818 0.907 0.943 0.956 0.968 0.976 0.985

4th 1.0270 0.1072 -0.018 0.165 0.002 0.830 0.914 0.948 0.962 0.976 0.983

5th 1.0274 0.1036 0.013 0.167 0.019 0.855 0.936 0.967 0.972 0.982

6th 1.0262 0.0971 0.019 0.143 0.001 0.868 0.946 0.970 0.977

7th 1.0262 0.0964 0.042 0.157 0.009 0.892 0.965 0.982

8th 1.0249 0.0923 0.022 0.145 0.019 0.906 0.975

9th 1.0237 0.0841 0.068 0.148 0.021 0.935

10th 1.0198 0.0767 0.119 0.178 0.043

Panel C: industry

mean std ac correlations

Ct+1
Ct

Rb Other Utils Hlth Shops Telcm HiTec Engry Manuf Durbl

NoDur 1.0238 0.0811 0.047 0.090 0.105 0.838 0.674 0.800 0.871 0.656 0.642 0.445 0.829 0.685

Durbl 1.0236 0.1156 0.103 0.190 0.009 0.801 0.484 0.520 0.773 0.581 0.690 0.490 0.832

Manuf 1.0229 0.0899 0.082 0.173 0.014 0.901 0.580 0.745 0.825 0.647 0.807 0.635

Engry 1.0253 0.0888 0.041 0.163 -0.039 0.592 0.534 0.423 0.422 0.432 0.497

HiTec 1.0258 0.1159 0.070 0.167 -0.000 0.758 0.470 0.663 0.733 0.659

Telcm 1.0187 0.0805 0.148 0.099 0.104 0.695 0.627 0.568 0.668

Shops 1.0238 0.0957 0.039 0.158 0.044 0.837 0.557 0.704

Hlth 1.0271 0.0909 0.054 0.092 0.085 0.726 0.542

Utils 1.0195 0.0711 0.080 0.069 0.071 0.655

Other 1.0217 0.0982 0.078 0.159 0.034
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Nominal monthly returns are converted to real returns at a quarterly frequency,

using the growth of the consumer price index of all urban consumers.3131 In line with

Beeler and CampbellBeeler and Campbell (20122012), I approximate the ex ante non-disastrous T-bill return

Rb,nd (i.e., the “risk-free rate” proxy) by forecasting ex post Rb,nd on the basis of the

quarterly T-bill yield and the average of quarterly log inflation across the past year.

The three-month nominal T-bill yield comes from the CRSP database. Table 1919

contains the descriptive statistics for these data.

3.4 Estimation strategy

3.4.1 ACH-PL maximum likelihood estimation

The parameter estimation of the disaster-including C-CAPM involves two consecutive

steps. I first compute maximum likelihood estimates of the ACH-PL parameters θACH ,

θ+PL, and θPL. Using these estimates, it is possible to simulate disaster-including data,

which are required for the simulation-based estimation of the preference parameters

β, γ, and ψ in the second stage. Consider the maximum likelihood estimation step.

Equation (3.173.17) implies the following conditional ACH-PL log-likelihood function:

L(θACH , θ+PL, θPL) =
T

∑
t=1

(dt lnht(θACH) + (1 − dt) ln[1 − ht(θACH)])

+
T

∑
t=1

dt (d+t ln fPL(zc,t; θ+PL) + (1 − d+t ) ln fPL(zc,t; θPL)) .
(3.18)

The parameters in Equation (3.183.18) are variation-free, so it is possible to perform the

estimation of θ̂ACH , θ+PL, and θPL separately. In particular, the maximization of

L(θACH) =
T

∑
t=1

(dt lnht(θACH) + (1 − dt) ln[1 − ht(θACH)]) (3.19)

yields θ̂ACH , whereas estimates of θ+PL and θPL can be obtained by maximizing

L(θPL) =
T

∑
t=1

dt (d+t ln fPL(zc,t; θ+PL) + (1 − d+t ) ln fPL(zc,t; θPL)) . (3.20)

To perform the maximization of the log-likelihood function in Equation (3.193.19), the

cross-country panel data are represented as event time data. For that purpose,

31 These data are provided by the Federal Reserve Bank of Saint Louis:
http:// research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 03/09/2016.
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sequences of the disaster indicators dt and d+t are computed for every country.

Counting the number of quarters between disaster events gives τm, which equals the

time duration between the mth and (m + 1)th disaster. Moreover, τ̃m is obtained by

counting the number of quarters over which the respective disaster lasted. These

data are needed to compute the hazard rate in Equation (3.163.16)

The maximum likelihood estimation of the ACH parameters θACH is then per-

formed on the concatenated country-specific event time data series. During the

maximization of the log-likelihood function in Equation (3.193.19), the disaster event and

period counters M(t) and N(t) are reset to zero whenever a country change occurs

in the concatenated data. If the hazard rate specification in Equation (3.163.16) is used,

τ0 must be re-initialized to the average duration between disasters (179.7 quarters),

τ̃0 is reset to equal the average disaster length (13.1 quarters), and b+0 is reset to

equal the average contraction size (0.268). These values are also the initial values for

the maximum likelihood estimation. They correspond to q = 0.145; different disaster

thresholds use different initial values. The re-initialization procedure is adopted from

Engle and RussellEngle and Russell (19981998).3232

3.4.2 Financial moment restrictions and data simulation

An SMM-type estimation of the preference parameters entails exploiting the moment

restrictions in Equations (3.73.7) and (3.83.8). In particular, I rely on matching between

empirical and simulated moments, as is implied by the moment restriction in Equation

(3.73.7), that uses the sample moments in Equations (3.93.9) and (3.113.11). Applied to the

T-bill return Rb

gr(ϑ) =
⎡⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tRb,nd,t −

⎡⎢⎢⎢⎢⎢⎣

1− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Rb,sds

1−
D
T

T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
, (3.21)

where ϑ = (β, γ,ψ)′. Similarly, I exploit the moment restriction in Equation (3.83.8)

applied to an excess return Re
i = Ri −Rb, which suggests the following matching of

empirical and simulated moments:

ge(ϑ) =
⎡⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
i,nd,t −

⎡⎢⎢⎢⎢⎢⎣

− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s R
e
i,sds

1−
D
T

T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
. (3.22)

32 They consider an ACH-like dynamic duration model for the time interval between intraday
trading events. In this framework, the re-initialization accounts for overnight interruptions of
the trading process.
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Combining Equation (3.213.21) with Equation (3.223.22), and applied to the excess returns

of N test assets, I obtain:

G(ϑ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tRb,nd,t −

⎡⎢⎢⎢⎢⎢⎣

1− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Rb,sds

1−
D
T

T

⎤⎥⎥⎥⎥⎥⎦
1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
nd,t −

⎡⎢⎢⎢⎢⎢⎣

− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Re
sds

1−
D
T

T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)

where Re = [Re
1, . . . ,R

e
N]′. Choosing N ≥ 2, SMM-type estimation of the preference

parameters can then be attempted by:

ϑ̂ = arg min
ϑ∈Θ

G(ϑ)′WG(ϑ), (3.24)

where Θ denotes the admissible parameter space and W is a symmetric and positive

semi-definite weighting matrix.

To evaluate G(ϑ) within such an optimization, it is necessary to compute the

moments of simulated disaster-including data. For that purpose, I use the first-

step ACH-PL estimates θ̂ACH , θ̂+PL, and θ̂PL and simulate a series of hazard rates

{hs(θ̂ACH , θ̂+PL, θ̂PL)}Ts=1. The resulting conditional disaster probabilities then can

generate a sequence of disaster indicators {ds}Ts=1 and {d+s}Ts=1.

I obtain simulated series of non-disastrous consumption growth and returns,

{cgnd,s,Ra,nd,s,Rb,nd,s,Ri,nd,s}Ts=1 by block-bootstrapping from the non-disastrous U.S.

postwar data. For that purpose, I rely on the automatic block-length selection

procedure proposed by Politis and WhitePolitis and White (20042004) and corrected by Politis et al.Politis et al. (20092009),

in combination with the stationary bootstrap of Politis and RomanoPolitis and Romano (19941994), in which

the respective block-length gets drawn from a geometric distribution. The draws from

the consumption and return data are simultaneous, to retain the contemporaneous

covariance structure.

Because the cross-country consumption panel data collected by Barro and UrsúaBarro and Ursúa

(20082008) do not include information on asset prices, further assumptions are needed to

simulate disaster returns. In particular, I assume that the transformed contractions

zc = 1/(1 − b) and zR = 1/(1 − b̃) have the same marginal distribution,3333

f(zc; θ+PL, θPL) = f(zR; θ+PL, θPL), (3.25)

33 The asset index i is omitted for brevity.
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where

f(z; θ+PL, θPL) = fPL(z; θ+PL)d
+ × fPL(z; θPL)1−d+ , (3.26)

and write their joint cumulative distribution function (cdf) using a copula function

that links the two marginal distributions:

F (zc, zR; θ+PL, θPL,θC) = C(F (zc; θ+PL, θPL), F (zR; θ+PL, θPL);θC), (3.27)

where F (zC ; θ+PL, θPL) and F (zR; θ+PL, θPL) denote the marginal cdfs. The vector

θC collects the coefficients that determine the dependence of zc and zR. Using the

Gaussian copula CG, these dependencies can be measured by a single parameter, the

copula correlation ρ. Equation (3.273.27) then becomes:

F (zc, zR; θ+PL, θPL, ρ) = CG(uc, uR;ρ), (3.28)

where uc = F (zc; θ+PL, θPL) and uR = F (zR; θ+PL, θPL).
I consider three choices for the copula correlation. First, ρi may be estimated

by the empirical correlation between non-disastrous consumption growth and gross

return. Second, I consider the extreme case that ρ = 0.99, motivated by the finding

that the correlations between financial returns increase in the tails of their joint

distribution (see Longin and SolnikLongin and Solnik (20012001)). Third, I address the case when ρ = 0,

which implies drawing bs and b̃s independently from the same distribution.

Drawing bs and b̃s in case of ds=1 proceeds as follows: I draw yc,s and yR,s from a

bivariate standard normal distribution with correlation ρ, then compute uc,s = Φ(yc,s)
and uR,s = Φ(yR,s), where Φ denotes the standard normal cdf. Consumption growth

and return contraction factors then can be obtained by

bs = 1 − 1

F −1(uc,s; θ̂+PL, θ̂PL)
and b̃s = 1 − 1

F −1(uR,s; θ̂+PL, θ̂PL)
, (3.29)

where

F −1(u; θ+PL, θPL) = (F −1
PL(u; θ+PL))

d+ × (F −1
PL(u; θPL))

1−d+

. (3.30)

In this case, F −1
PL denotes the quantile function of the PL distribution. The combina-

tion of the contraction factors with the bootstrapped non-disastrous series allows

simulating disaster-including series for consumption growth, cgs = (1 − bs)dscgnd,s;
test asset returns, Ri,s = (1 − b̃i,s)dsRi,nd,s, i = 1, . . . ,N ; and the return of the wealth

portfolio proxy Ra,s = (1 − b̃a,s)dsRa,nd,s.

For the simulation of the T-bill return Rb,s, I draw on BarroBarro (20062006), who identifies
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partial government default in 42% of the disasters that he finds in the GDP series of

35 countries. Using this result, at the beginning of each disaster (that is, ds = 1 but

ds−1 = 0), I draw a government default indicator db,s from a Bernoulli distribution

with a success probability P(db,s = 1∣ds = 1, ds−1 = 0) = 0.42, which decides whether

the T-bill return is affected by the disaster. If db,s = 0, the T-bill will not contract. If

db,s = 1, a contraction factor b̃b,s is drawn in the same way as for the returns of the

test assets, such that Rb,s = (1 − b̃b,s)db,sRb,nd,s. The simulated excess returns then

can be computed as Re
i,s = Ri,s −Rb,s, such that it becomes possible to evaluate G(ϑ)

in Equation (3.233.23).

3.4.3 Identifying the IES

ThimmeThimme (20172017) points out that a joint estimation of the investor preference parame-

ters that relies exclusively on moment restrictions obtained from conditioning down

the basic asset pricing equations in (3.43.4) yields rather imprecise estimates of the

IES. Although the moment restrictions used in the present study account for the

possibility of disasters, they still conform to the basic asset pricing equation with an

Epstein-Zin-Weil SDF, and the caveat applies. I therefore find it useful to identify

and estimate the IES separately from β and γ, and through moment restrictions that

can be derived from a (second-order) log-linearization of the Euler Equation (3.43.4)

with the SDF in Equation (3.53.5). YogoYogo (20042004) shows that this procedure leads to the

following regression equation

ri,t+1 = µi +
1

ψ
∆ct+1 + ηi,t+1, (3.31)

where ri,t+1 = lnRi,t+1, and ∆ct+1 = lnCt+1 − lnCt. In addition, µi is a constant, and

ηi,t+1 is a zero mean disturbance term. The derivation implies that ηi,t+1 is correlated

with ∆ct+1, such that a linear projection of ri,t+1 on ∆ct+1 and a constant would

not identify the IES. Instead, the IES is identified according to the orthogonality

conditions,

E((ri,t+1 − µi −
1

ψ
∆ct+1)zt) = 0, (3.32)

where zt consists of variables known at t (instrumental variables), which are correlated

with ∆ct+1.3434

34 Estimation of the IES by GMM or two-stage least squares based on Equation (3.313.31) (or its
reciprocal) and the moment restrictions in Equation (3.323.32) began with Hansen and SingletonHansen and Singleton
(19831983), was surveyed by CampbellCampbell (20032003), and is critically discussed by YogoYogo (20042004).

78



I adopt the instrumental variables approach to estimate the IES and use the log

T-bill return rb,t+1 = lnRb,t+1 in Equation (3.313.31), the twice-lagged log T-bill return,

log consumption growth, and a constant as instruments. The estimation is performed

on the simulated disaster-including data. Using a linear GMM with an identity

weighting matrix, the IES estimate ψ̂ must fulfill the first-order conditions:

⎡⎢⎢⎢⎢⎣

−1 −ET (∆cs) −ET (rb,s)
ET (∆cs)

ψ̂2

ET (∆cs∆cs−2)
ψ̂2

ET (∆csrb,s−2)
ψ̂2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) − µ̂b − 1

ψ̂
ET (∆cs)

ET (rb,s∆cs−2) − µ̂bET (∆cs−2) − 1

ψ̂
ET (∆cs∆cs−2)

ET (rb,srb,s−2) − µ̂bET (rb,s−2) − 1

ψ̂
ET (∆csrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(3.33)

which reflect HansenHansen’s (19821982) notation ET (⋅) = 1
T ∑

T
s=1(⋅). The estimation of the IES

is appropriate when performed separately from that of the subjective discount factor

and the RRA coefficient, which are estimated using Equation (3.243.24) with ψ̂ held

fixed, but it also is possible to augment Equation (3.233.23) with the IES-identifying

moment matches of Equation (3.333.33) to obtain:

G+(ϑ̃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
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nd,tR
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⎝
βθcg

−
θ
ψ
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⎞
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1−
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θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
nd,t −
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⎞

⎠

1−
D
T

T

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣

−1 −ET (∆cs) −ET (rb,s)
ET (∆cs)

ψ2
ET (∆cs∆cs−2)

ψ2

ET (∆csrb,s−2)
ψ2

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) − µb − 1
ψET (∆cs)

ET (rb,s∆cs−2) − µbET (∆cs−2) − 1
ψET (∆cs∆cs−2)

ET (rb,srb,s−2) − µbET (rb,s−2) − 1
ψET (∆csrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.34)

where ϑ̃ = (β, γ,ψ,µb)′. The SMM-type estimates of the preference parameters are

then obtained by:
ˆ̃ϑ = arg min

ϑ̃∈Θ̃

G+(ϑ̃)′WG+(ϑ̃). (3.35)

Choosing W such that a large weight is placed on the last two moment matches

in Equation (3.343.34) ensures that the IES will be identified by Equation (3.333.33). In

particular, I use

W =
⎡⎢⎢⎢⎢⎣

IN+1 0

0 106 × I2

⎤⎥⎥⎥⎥⎦
. (3.36)
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Because of the two-step approach, standard inference is not available for the second-

step estimates, though I could rely on asymptotic maximum likelihood inference

for the first-step ACH-PL estimates. Therefore, I combine a parametric and non-

parametric bootstrap to obtain the standard errors and confidence intervals of the

preference parameter estimates. The bootstrap procedure is detailed in Section B.2B.2

of the appendix.

3.5 Empirical results

3.5.1 First-step estimation results

Table 2020 reports the maximum likelihood estimates of the ACH-PL parameters and

the Akaike (AIC) and Schwarz-Bayes (SBC) information criteria for various ACH

specifications that emerge as special cases of the hazard rate specification in Equation

(3.163.16). The most comprehensive alternative, referred to as ACH1, estimates all

Table 20: Estimation results for the ACH-PL model
This table reports the ACH-PL maximum likelihood estimates. Here, L is the log-likelihood
value at the maximum; AIC = 2k − 2 ln(L) and SBC = −2 lnL + k ln(T ), where k is the number of
ACH model parameters, denote the Akaike and Schwarz-Bayes information criteria, respectively.
Furthermore, LR gives the p-values (in percent) of the likelihood ratio tests of the null hypothesis
that the parameter restrictions implied by the ACH0 specification are correct. The respective
alternative is the ACH1, the ACH2, the ACH3, or the ACH4 model. The estimation results are
based on the updated country panel data originally assembled by Barro and UrsúaBarro and Ursúa (20082008), using
the concatenated event data representation described in Section 3.33.3 and q = 0.145. Asymptotic
standard errors are reported in parentheses.

θ+PL θPL µ µ̃ α α̃ δ δ̃ L AIC SBC LR

ACH0 178.3 1.201 -790.3 1584.7 1600.1
(18.8) (0.023)

ACH4 64.9 1.201 441.1 -787.0 1580.0 1603.2 <1.0
(49.3) (0.023) (211.5)

ACH3 64.9 1.214 441.1 -0.375 -786.8 1581.5 1612.5 2.9
(49.3) (0.032) (211.5) (0.537)

ACH2 198.7 1.221 -0.145 -0.002 -789.9 1587.7 1618.7 63.5
(30.9) (0.052) (0.153) (0.004)

ACH1 71.4 1.237 -0.030 -0.002 431.0 -0.399 -786.6 1585.3 1631.7 11.8
(55.0) (0.058) (0.161) (0.004) (120.4) (0.542)

PL 37.255 35.687
(1.478) (1.696)

parameters in Equation (3.163.16). The most parsimonious parametrization, referred

to as ACH0, corresponds to the hazard rate in Equation (3.143.14), such that only the

baseline hazard parameters µ and µ̃ are estimated (while δ = δ̃ = α = α̃ = 0). The

ACH2 specification allows (only) for an effect of the durations between disasters and
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the disaster length on the hazard rate (while δ = δ̃ = 0), and the ACH3 allows (only)

the magnitude of the previous disaster and the size of the contraction of the previous

disaster period to affect the hazard rate (while α = α̃ = 0). In the ACH4 specification,

the aggregate size of the previous disaster has an effect on the hazard rate, but the

contraction of the previous disaster period does not (i.e., δ̃ = α = α̃ = 0).

Table 2020 shows that the AIC favors the ACH4, but the SBC prefers the ACH0, for

which the baseline hazard parameter estimates µ̂ and ˆ̃µ are highly significant. The

estimates of µ̃ and δ in the ACH4 specification are significant at the 5% level, but

the baseline hazard parameter µ is reduced in size and significance. Moreover, the

likelihood-ratio statistics reported in Table 2020 indicate that the constraints implied

by the SBC-preferred ACH0, at the 1% significance level, are only rejected in the

case of the AIC-preferred ACH4. Therefore, the subsequent analysis is confined to

ACH0 and ACH4.

I obtain maximum likelihood estimates of the ACH0 parameters equal to ˆ̃µ = 178.3

and µ̂ = 1.2. These estimates imply a probability of entering a disaster from a non-

disaster period of about 0.56%, and a probability of remaining in a disaster that is

equal to 83%. Because I use these estimates as a foundation for the second estimation

step, it is prudent to check their economic plausibility in advance. Accordingly, I

use the ACH0 and ACH4 estimates to simulate disaster-including consumption time

series with a number of observations that corresponds to the sample period, 1947:Q2-

2014:Q4. The simulation is repeated 10k times, and I count the number of replications

for which no disastrous consumption contraction occurs. The ACH0 specification

yields 21.9%, the ACH4 14.1% disaster-free replications. The estimated disaster-

including consumption process thus implies that U.S. postwar history represents a

lucky but not unlikely path, and the model-implied disaster probabilities are not

implausibly large.

Table 2020 also shows that the estimates of the power law coefficients θPL and θ+PL
are similar, so the distribution of contractions that occur before reaching the disaster

threshold q is not very different from the distribution of contractions that occur

after q is reached. The estimates θ̂PL and θ̂+PL have encouragingly small standard

errors. Figure 1616 depicts the cdf of the power law distribution and the empirical cdf

of quarterly contractions. Figure 16a16a uses the estimate θ̂+PL and illustrates the fit for

contractions that contribute to reaching the disaster threshold; Figure 16b16b uses θ̂PL

and refers to contractions that add on top of the disaster threshold. In both cases,

the fit is quite good.
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Figure 16: Fitted power law vs. empirical cdf
This figure illustrates the empirical cdfs (solid lines) and the fitted cdf (dotted lines) of the
contractions identified in Barro and UrsúaBarro and Ursúa’s (20082008) data using a disaster threshold of q=0.145.
Panel (a) captures the distribution of contractions that occur at the beginning of a disaster and
contribute to reaching the disaster threshold. Panel (b) refers to contractions that add on top of
the disaster threshold. The fitted cdfs use the PL parameter estimates from Table 2020.
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3.5.2 Second-step estimation results

Table 2121 reports the second-step estimation results based on the SBC-preferred

ACH0-PL and the AIC-preferred ACH4-PL first-step estimates. The estimation uses

different sets of test assets and copula correlation coefficients. It is based on the

moment matches in Equation (3.343.34), using the weighting matrix in Equation (3.363.36),

and T =107. The table contains the point estimates of the preference parameters β, γ,

and ψ and their bootstrap standard errors, as well as the associated 95% confidence

bounds. These bounds are computed using the percentile method, meaning that they

accord with the 0.025 and 0.975 quantiles of the respective bootstrap distribution.3535

Furthermore, Table 2121 shows the p-values of Hansen’s (19821982) J-statistic,

J = G(ϑ̂)′Âvar(G[ϑ̂])+G(ϑ̂), (3.37)

where + denotes the Moore-Penrose inverse, which is approximately χ2(N − 1) under

the null hypothesis that the financial moment restrictions are correct. The root mean

squared errors (RMSEs; reported in Table 2121) are computed as

35 More formally, for a parameter ϑ, the α-quantile is computed as Ĝ−1(α), where Ĝ(ϑ̂) =
1
K ∑

K
k=1 1(ϑ̂(k) < ϑ̂).
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R =
√

1

N + 1
G(ϑ̂)′G(ϑ̂) × 104. (3.38)

When using only the market portfolio and the T-bill return as test assets, the

number of moment restrictions is equal to the number of estimated parameters, so

empirical and simulated moments are perfectly matched.3636 Table 2121 shows that all

variants for estimating a disaster-including C-CAPM yield economically plausible

estimates for the preference parameters. The subjective discount factor estimates

are smaller but close to 1, as would be expected of an investor with a plausible

positive rate of time preference. The estimates of the subjective discount factor range

between 0.9915 and 0.9948. The RRA estimates are between 1.50 and 1.65, well

within the plausibility interval mentioned by CochraneCochrane (20052005). The estimated IES

is larger than 1, ranging between 1.50 and 1.68. The inverse of the estimated IES

is always smaller than the RRA estimate, which indicates a preference for an early

resolution of uncertainty. Previous literature has pointed out that the inequality

γ > 1/ψ is crucial for obtaining meaningful asset pricing implications (as detailed

subsequently).3737

The choice of the test assets, the copula correlation, and the first-step ACH-

PL specification exert only minor effects on the size of the preference parameter

estimates. The IES estimates based on ACH4-PL are slightly bigger than those

implied by ACH0-PL. Using only the market portfolio and the T-bill return as test

assets, the RRA coefficient and IES estimates tend to be a bit smaller than the

estimates based on industry and size-sorted portfolios. Using the ACH0-PL first-step

estimates yields a slightly smaller RMSE than using the ACH4-PL estimates.

In all instances, the estimation precision is more than satisfactory, as indicated

by the small bootstrap standard errors and the narrow confidence bounds. It is

noteworthy that the confidence bounds for the RRA estimates also fall within the

stricter plausibility range, and the lower bound of the 95% confidence interval for

the IES is above unity too. Regarding the subjective discount factor estimate β̂, the

upper confidence bound is sometimes larger than 1, but given that quarterly time

preferences should to be very close to 1, this finding is not surprising. The p-values

of the J-statistic indicate that the disaster-including C-CAPM cannot be rejected at

conventional significance levels.

36 In this case, the RMSE is 0, and R and the J-statistic are not reported.
37 It is worth noting that the estimation of ψ by reversing the regression in Equation (3.313.31) also

yields an IES estimate greater than 1. As noted by YogoYogo (20042004), such robustness cannot be
expected when disaster-free data are used for IES estimation.
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Table 21: SMM estimates of the C-CAPM preference parameters
This table reports the estimates of the subjective discount factor β, the coefficient of relative risk aversion γ, and the IES ψ using the moment
matches in Equation (3.343.34), T =107, and the weighting matrix in Equation (3.363.36). The second-step SMM-type estimates are based on the first-step
ACH4-PL and ACH0-PL estimates, reported in Table 2020. The numbers in parentheses are bootstrap standard errors. The numbers in brackets
are the upper and lower bounds of the 95% confidence intervals computed as the α=0.025 and α=0.975 quantiles of the bootstrap distribution
(percentile method). The table also reports the p-values (in percent) of Hansen’s (19821982) J-statistic (see Equation (3.373.37)) and root mean squared
errors (R), computed according to Equation (3.383.38). Panels A-C break down the results by the copula correlation assumed in the data simulation
procedure. Each panel reports the results by the set of test assets, namely, the excess returns of mkt, size dec, and industry, each augmented by
the T-bill return.

Panel A: ρ =Corr(cgnd,t,Rnd,t)

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R
ACH0 0.9917 (0.0022) 1.51 (0.30) 1.50 (0.15) 0.9939 (0.0047) 1.60 (0.29) 1.50 (0.15) 83.5 9 0.9944 (0.0038) 1.62 (0.32) 1.50 (0.15) 11.7 39

[0.9872 0.9957] [1.10 2.29] [1.31 1.88] [0.9864 1.0052] [1.24 2.34] [1.29 1.88] [0.9887 1.0032] [1.20 2.44] [1.29 1.88]

ACH4 0.9920 (0.0023) 1.54 (0.30) 1.67 (0.15) 0.9945 (0.0052) 1.63 (0.29) 1.65 (0.16) 68.7 11 0.9947 (0.0071) 1.64 (0.31) 1.65 (0.16) 7.2 40
[0.9872 0.9960] [1.08 2.33] [1.31 1.87] [0.9862 1.0057] [1.22 2.40] [1.28 1.87] [0.9891 1.0035] [1.17 2.40] [1.28 1.86]

Panel B: ρ = 0.99
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R
ACH0 0.9915 (0.0022) 1.51 (0.30) 1.51 (0.15) 0.9938 (0.0047) 1.61 (0.29) 1.51 (0.15) 83.3 9 0.9942 (0.0038) 1.62 (0.32) 1.51 (0.15) 11.9 39

[0.9870 0.9957] [1.09 2.26] [1.31 1.88] [0.9861 1.0051] [1.24 2.34] [1.29 1.87] [0.9885 1.0031] [1.20 2.43] [1.29 1.87]

ACH4 0.9917 (0.0023) 1.54 (0.31) 1.68 (0.15) 0.9942 (0.0067) 1.64 (0.29) 1.67 (0.15) 68.2 11 0.9944 (0.0053) 1.65 (0.32) 1.67 (0.16) 7.6 40
[0.9869 0.9959] [1.05 2.32] [1.30 1.87] [0.9864 1.0061] [1.19 2.33] [1.29 1.87] [0.9883 1.0035] [1.17 2.46] [1.28 1.87]

Panel C: ρ = 0
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R
ACH0 0.9917 (0.0022) 1.51 (0.30) 1.50 (0.15) 0.9939 (0.0047) 1.60 (0.29) 1.50 (0.15) 83.5 9 0.9944 (0.0038) 1.62 (0.32) 1.50 (0.15) 11.7 39

[0.9871 0.9959] [1.10 2.28] [1.31 1.88] [0.9863 1.0052] [1.24 2.34] [1.29 1.88] [0.9887 1.0032] [1.20 2.44] [1.29 1.88]

ACH4 0.9920 (0.0024) 1.54 (0.30) 1.66 (0.15) 0.9945 (0.0050) 1.63 (0.28) 1.64 (0.16) 68.7 11 0.9948 (0.0069) 1.64 (0.31) 1.64 (0.15) 7.2 40
[0.9872 0.9963] [1.07 2.26] [1.33 1.87] [0.9863 1.0055] [1.22 2.34] [1.28 1.86] [0.9889 1.0026] [1.18 2.39] [1.28 1.87]
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Compared with other prominent studies that assess empirical support for the

C-CAPM paradigm, these results are certainly encouraging. Julliard and ParkerJulliard and Parker

(20052005), for example, aggregate consumption over multiple periods and obtain an RRA

estimate of plausible magnitude (γ̂=9.1) but only moderate estimation precision

(s.e.=17.2). By measuring consumption with waste, SavovSavov (20112011) obtains an RRA

estimate of γ̂=17.0 with a rather large standard error (s.e.=9.0). In both studies,

the subjective discount factor is calibrated, with an assumption of additive power

utility (such that γ = 1/ψ). YogoYogo (20062006) splits consumption into a durable and a

non-durable component and assumes Epstein-Zin-Weil preferences, as in the present

study. His smallest RRA estimate is γ̂=174.5 (s.e.=23.3), and the IES estimates

reach ψ̂=0.024 (s.e.=0.009) at most.

3.5.3 Asset pricing implications

When assessing whether an empirical C-CAPM has meaningful asset pricing impli-

cations, the magnitude and relative size of the subjective discount factor, relative

risk aversion, and the IES all play important roles. The relative size of the RRA

coefficient and the IES reflected in the parameter θ = 1−γ

1− 1
ψ

, which shows up in the

Epstein-Zin-Weil SDF in Equation (3.53.5), is particularly important. If γ = 1
ψ , then

θ = 1, the investor is indifferent to an early or late resolution of uncertainty, and the

case of standard expected utility obtains. If γ > 1
ψ , the agent has a preference for

an early resolution of uncertainty, which is intuitively appealing, unless we were to

resort to behavioral explanations (e.g., hope, fear).

The C-CAPM literature, and in particular the branch concerned with long-run

risk, argues that an IES greater than unity combined with a preference for early

resolution of uncertainty are necessary to explain the key features of asset prices (e.g.,

Bansal and YaronBansal and Yaron (20042004); Huang and ShaliastovichHuang and Shaliastovich (20152015)). When risk aversion is

greater than unity, θ should be negative.3838 Therefore, calibration studies tend to

combine moderate risk aversion with an IES>1 to illustrate the explanatory power of

the asset pricing model (e.g., Bansal and YaronBansal and Yaron (20042004) assume γ=10 and ψ=1.5), yet

none of the previously cited empirical C-CAPM studies reports conforming RRA and

IES estimates. Rather, the IES point estimate in most empirical studies is smaller

than 1 (see the meta-analysis by HavránekHavránek (20152015); survey by ThimmeThimme (20172017)).

Table 2222 reports the ACH0-PL-based, model-implied estimates of θ. We observe

38 An alternative interpretation of θ is given by Hansen and SargentHansen and Sargent (20102010), where a θ < 0 captures
the agent’s aversion to model mis-specification.
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that for the alternative sets of test assets and choices of the copula correlation, θ̂ is

always negative. Moreover, the confidence bounds reveal that the hypothesis that

θ > 0 can be rejected at conventional significance levels, so there is empirical evidence

for early resolution of uncertainty, along with an IES greater than 1. According

to the previous reasoning, the empirical disaster-including C-CAPM thus should

yield meaningful asset pricing implications. I test whether the model-implied mean

market portfolio and T-bill return, the equity premium, and the market Sharpe ratio

are economically plausible. To estimate the model-implied mean T-bill return and

mean market return, I approximate the population moments by averaging over the

T simulated observations, such that

Ê(Rb) =
1 − covT (m(β̂, γ̂, ψ̂),Rb)

ET (m(β̂, γ̂, ψ̂))
, (3.39)

and

Ê(Ra) =
1 − covT (m(β̂, γ̂, ψ̂),Ra)

ET (m(β̂, γ̂, ψ̂))
, (3.40)

where m(β̂, γ̂, ψ̂) is the Epstein-Zin-Weil SDF in Equation (3.53.5) evaluated accord-

ing to the parameter estimates presented in Table 2121, and covT (x, y) = ET (xy) −
ET (x)ET (y). The model-implied equity premium can be estimated by Ê(Ra)−Ê(Rb),
and the model-implied Sharpe ratio by

Ê(Ra) − Ê(Rb)
σT (Ra −Rb)

, (3.41)

where σT =
√
ET (x2) −ET (x)2. Performing the computation for each of the bootstrap

replications accounts for parameter estimation uncertainty.

Table 2222 contains the estimates of these model-implied financial indicators along

with the 95% confidence interval bounds obtained by the percentile method. The

panels break down the results by choice of the copula correlation parameter; each

panel reports the estimates for the three sets of test assets. The column labeled

data reports the values of the indicators in the sample period 1947:Q2-2014:Q4. The

table shows that the magnitude of the model-implied equity premium, mean T-bill

return, and the market Sharpe ratio are perfectly plausible and comparable to their

sample equivalents. This finding is robust with respect to the choice of the copula

correlation coefficient and the set of test assets. The model-implied Ê(Rb) and Ê(Ra)
are somewhat smaller than the average T-bill return and the market return in the
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Table 22: Model-implied key financial indicators
The table presents estimates of the mean T-bill return, mean market return, equity premium,
and market Sharpe ratio implied by the disaster-including C-CAPM and computed according to
Equations (3.393.39)-(3.413.41). The computation uses the SMM-type estimates of β, γ, and ψ based on
the ACH0 first-step estimates (see Table 2121). The numbers in brackets are the lower and upper
bounds of the 95% confidence intervals computed using the percentile method. Panels A-C break
down the results by the copula correlation coefficient used in the data simulation procedure, and
each panel reports the results by the set of test assets. The column labeled data reports the values
of the indicators in the empirical data, 1947:Q2–2014:Q4.

Panel A: ρ =Corr(cgnd,Rnd)

data mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.54 -1.81 -1.86

[-3.55 -0.21] [-3.77 -0.64] [-4.07 -0.48]

mean T-bill return 0.17 0.10 0.12 0.14
(% per qtr) [-0.13 0.29] [-0.18 0.33] [-0.17 0.36]

equity premium 1.94 1.85 2.06 2.11
(% per qtr) [0.98 2.76] [1.36 2.83] [1.23 3.08]

mean market return 2.11 1.95 2.19 2.25
(% per qtr) [1.13 2.80] [1.51 2.89] [1.38 3.09]

Sharpe ratio 0.237 0.226 0.252 0.257
(market) [0.111 0.378] [0.154 0.394] [0.139 0.427]

Panel B: ρ = 0.99

mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.53 -1.80 -1.85

[-3.51 -0.20] [-3.75 -0.63] [-4.05 -0.47]

mean T-bill return 0.10 0.13 0.14
(% per qtr) [-0.12 0.29] [-0.18 0.33] [-0.16 0.36]

equity premium 1.85 2.06 2.11
(% per qtr) [0.97 2.72] [1.36 2.83] [1.23 3.08]

mean market return 1.95 2.19 2.25
(% per qtr) [1.13 2.78] [1.50 2.89] [1.38 3.09]

Sharpe ratio 0.226 0.252 0.257
(market) [0.111 0.370] [0.153 0.394] [0.139 0.427]

Panel C: ρ = 0

mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.54 -1.80 -1.86

[-3.50 -0.21] [-3.76 -0.64] [-4.07 -0.48]

mean T-bill return 0.10 0.13 0.14
(% per qtr) [-0.12 0.29] [-0.18 0.34] [-0.16 0.36]

equity premium 1.84 2.05 2.09
(% per qtr) [0.97 2.71] [1.35 2.79] [1.22 3.05]

mean market return 1.94 2.18 2.23
(% per qtr) [1.12 2.76] [1.50 2.87] [1.37 3.07]

Sharpe ratio 0.225 0.251 0.256
(market) [0.110 0.368] [0.153 0.391] [0.139 0.423]
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empirical data, because the model-implied indicators account for the possibility of

consumption disasters that affect the simulated moments, whereas the empirical data

do not contain any disaster observation. However, the observed mean T-bill, mean

market return, and equity premium lie within the 95% confidence interval bounds,

which account for the first- and second-step estimation error.

When using only the market portfolio and the T-bill as test assets, the model

is exactly identified, which seemingly could drive the favorable results. However,

exact identification does not imply that the empirical mean market return and mean

T-bill return must be matched by their model-implied counterparts. When using the

size dec or industry portfolios, the market portfolio is not even among the set of

test assets. These specifications serve as an out-of-sample plausibility test. In these

instances, Ê(Ra) and the model-implied equity premium are still perfectly plausible

and comparable to their empirical counterparts. In all instances, the confidence

intervals overlap the empirically observed values.

The meaningful asset pricing implications of the estimated disaster-including

C-CAPM show that the model can explain the considerable postwar equity premium

and the relatively low T-bill return with plausible investor preferences. Unlike in

previous studies of the rare disaster hypothesis, risk aversion, time preferences, and

IES are not calibrated, i.e., conveniently chosen, but rather are obtained from the

application of an econometric estimation strategy. These results thus provide new

empirical evidence that the rare disaster hypothesis offers a solution to the equity

premium puzzle.

3.5.4 Robustness checks

As robustness check, I perform bias corrections on the parameter estimates and

confidence bounds, and report the results in Table 2323. Following Efron and TibshiraniEfron and Tibshirani

(19861986), I compute bias-corrected estimates of a parameter ϑ as ϑ̂BC = 2ϑ̂− 1
K ∑

K
k=1 ϑ̂

(k).

The lower and upper bounds of the bias-corrected 1 − α confidence interval are

computed as ϑlBC(α) = Ĝ−1[Φ(zα/2 + 2Φ−1[Ĝ(ϑ̂)])] and ϑuBC(α) = Ĝ−1[Φ(z1−α/2 +
2Φ−1[Ĝ(ϑ̂)])], respectively, where Φ denotes the cdf, Φ−1 is the quantile function,

and zα̃ is the α̃-quantile of the standard normal distribution.3939 Comparing the results

in Table 2323 with those in Table 2121, I find that in all instances, the corrections are

rather benign. The similarity of the the bias-corrected estimates and confidence

intervals to the uncorrected counterparts offers a sign of robustness.

39 According to this notation, the uncorrected confidence bounds in Table 2121 are computed as
ϑl(α) = Ĝ−1[Φ(zα/2)] and ϑu(α) = Ĝ−1[Φ(z1−α/2)].
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Table 23: Bias-corrected preference parameter estimates and confidence intervals
This table presents bias-corrected estimates (bold) and 95% confidence bounds (in brackets) of the
subjective discount factor β, the coefficient of relative risk aversion γ, and the IES ψ. The bias
correction of the point estimates and confidence bounds in Table 2121 follows the method proposed
by Efron and TibshiraniEfron and Tibshirani (19861986).

Panel A: ρ =Corr(cgnd,Rnd)

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂
ACH0 0.9918 1.44 1.40 0.9938 1.50 1.40 0.9942 1.52 1.40

[0.9877 0.9963] [1.01 2.11] [1.13 1.69] [0.9871 1.0068] [1.19 2.18] [1.08 1.72] [0.9893 1.0043] [1.12 2.26] [1.08 1.72]

ACH4 0.9924 1.49 1.73 0.9947 1.59 1.70 0.9948 1.61 1.69
[0.9881 0.9972] [1.05 2.29] [1.41 1.93] [0.9871 1.0088] [1.21 2.34] [1.36 1.93] [0.9894 1.0050] [1.16 2.38] [1.33 1.91]

Panel B: ρ = 0.99

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂
ACH0 0.9916 1.46 1.41 0.9937 1.51 1.42 0.9940 1.53 1.42

[0.9875 0.9961] [1.03 2.13] [1.14 1.70] [0.9869 1.0068] [1.19 2.19] [1.09 1.72] [0.9891 1.0043] [1.12 2.27] [1.09 1.72]

ACH4 0.9918 1.50 1.75 0.9940 1.59 1.74 0.9944 1.60 1.74
[0.9873 0.9963] [1.06 2.33] [1.44 1.93] [0.9876 1.0090] [1.17 2.28] [1.41 1.95] [0.9887 1.0050] [1.16 2.44] [1.42 1.94]

Panel C: ρ = 0

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂
ACH0 0.9918 1.45 1.39 0.9938 1.50 1.40 0.9942 1.51 1.40

[0.9877 0.9965] [1.00 2.12] [1.13 1.68] [0.9871 1.0068] [1.19 2.18] [1.08 1.71] [0.9894 1.0045] [1.12 2.26] [1.08 1.71]

ACH4 0.9923 1.50 1.73 0.9949 1.57 1.69 0.9950 1.59 1.69
[0.9878 0.9968] [1.07 2.25] [1.39 1.92] [0.9877 1.0104] [1.17 2.27] [1.35 1.90] [0.9896 1.0041] [1.16 2.36] [1.38 1.93]

A second robustness check investigates the effect of varying the disaster threshold q.

Panel A of Table 2424 uses q=0.095, and Panel B reports the results for q=0.195. These

values are chosen in accordance with Barro and JinBarro and Jin (20112011) and feature prominently

in rare disaster literature. The results in Table 2424 convey that the choice of q barely

affects the parameter estimates; this finding may seem surprising at first, but it is a

consequence of the multi-period character of the disasters. The effects of different

choices of q enter the data simulation procedure through the ACH-PL estimates θ̂ACH

and θ+PL, θPL, obtained from quarterly (contraction) data that have been computed

from annual (disaster) periods. Because θ+PL and θPL contain information about the

distribution of quarterly contractions, they could vary strongly with q only if the

distribution of the annual contraction sizes of disasters detected with a threshold of

0.095 were pronouncedly different from that of disasters that had been detected with

q=0.195. This was not the case.

Therefore, the estimation results are robust with respect to alternative data

simulation procedures, test assets, and disaster thresholds. The fact that they are

also quite unbiased serves as a further recommendation.

89



Table 24: C-CAPM preference parameters with varying disaster thresholds
This table presents the SMM-type estimates of the preference parameters β, γ, and ψ using ρ = Corr(cgnd,Rnd). Panel A relies on q=0.095, and
Panel B contains results for q=0.195. Other estimation settings and the reported statistics correspond to Table 2121.

Panel A: q=0.095/ρ=Corr(cgnd,Rnd)

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9918 (0.0047) 1.49 (0.29) 1.48 (0.14) 0.9938 (0.0050) 1.56 (0.26) 1.49 (0.14) 78.9 10 0.9942 (0.0090) 1.57 (0.32) 1.49 (0.14) 11.5 39

[0.9878 0.9960] [1.03 2.15] [1.33 1.86] [0.9864 1.0050] [1.24 2.24] [1.34 1.87] [0.9891 1.0047] [1.14 2.41] [1.34 1.87]

ACH4 0.9919 (0.0023) 1.51 (0.30) 1.58 (0.14) 0.9941 (0.0051) 1.56 (0.29) 1.58 (0.14) 67.0 11 0.9942 (0.0089) 1.57 (0.32) 1.58 (0.14) 8.9 39

[0.9874 0.9962] [1.07 2.23] [1.34 1.87] [0.9868 1.0053] [1.22 2.33] [1.31 1.86] [0.9893 1.0037] [1.14 2.39] [1.31 1.86]

Panel B: q=0.195/ρ=Corr(cgnd,Rnd)

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9917 (0.0023) 1.51 (0.30) 1.49 (0.16) 0.9938 (0.0044) 1.58 (0.27) 1.47 (0.16) 84.9 9 0.9943 (0.0034) 1.60 (0.31) 1.47 (0.16) 13.1 39

[0.9869 0.9958] [1.08 2.25] [1.26 1.86] [0.9863 1.0044] [1.24 2.28] [1.27 1.86] [0.9893 1.0021] [1.21 2.34] [1.27 1.86]

ACH4 0.9917 (0.0023) 1.57 (0.30) 1.63 (0.17) 0.9940 (0.0061) 1.66 (0.36) 1.63 (0.19) 80.2 9 0.9943 (0.0087) 1.68 (0.48) 1.63 (0.20) 11.4 39

[0.9869 0.9959] [1.08 2.22] [1.26 1.89] [0.9862 1.0063] [1.15 2.32] [1.19 1.88] [0.9886 1.0040] [1.08 2.44] [1.17 1.88]
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3.6 Discussion and conclusion

This study adopts BarroBarro’s (20062006) specification of a disaster-including consumption

process and derives moment restrictions that facilitate the estimation of a disaster-

including C-CAPM by an SMM-type strategy. The approach presented herein takes

into account three main drawbacks of previous studies that aim to test the rare

disaster hypothesis empirically. First, I allow for multi-period disasters. It has

been argued that the success of the rare disaster hypothesis in calibration studies

relies on the assumption that the entire disastrous contraction occurs in one period

(see Julliard and GhoshJulliard and Ghosh (20122012); Constantinides (20082008)). Second, I use Epstein-Zin-

Weil preferences instead of a power utility to acknowledge preferences for an early

resolution of uncertainty. Third, I allow for the possibility of a partial government

default. Accounting for these three issues is crucial for finding empirical support for

the RDH.

For an SMM-type estimation, I simulate disaster-including consumption growth

and return series by means of a discrete-time marked point process that models the

time duration of and between disasters, as well as the magnitude of contractions

using a power law distribution. Parameter estimates of the MPP model are obtained

through maximum likelihood, using chained country-panel data. Neither the choice of

test assets nor the disaster thresholds change the results qualitatively: The magnitude

of the estimated preference parameters is economically plausible, and the estimation

precision is much higher than in previous C-CAPM studies. The subjective discount

factor estimate is about 0.99 in all specifications; the RRA estimates (and 95%

confidence bounds) fall within a strict plausibility range, and the IES parameter

estimates are significantly greater than unity. The relative magnitude of the estimated

IES and RRA coefficients indicate a preference for early resolution of uncertainty,

which, in conjunction with an IES greater than unity, is an important condition for

obtaining meaningful asset pricing implications. Computing the model-implied mean

market return, T-bill rate, and market Sharpe ratio reveals that the disaster-including

C-CAPM can explain these key financial indicators based on economically meaningful

preference parameter estimates.

To the best of my knowledge, the present study is the first research to estimate

all the preference parameters of a C-CAPM with Epstein-Zin-Weil preferences and

multi-period disasters. It corroborates the notion that the rare disaster hypothesis

can provide a solution to the equity premium puzzle, even when disasters do not

shrink to one-period events.
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B Appendix

B.1 Transformation of annual into quarterly consumption contractions

The ACH-PL model assumes a quarterly observation frequency. To obtain four

quarterly contractions from an annual observation, I draw from a standard uniform

distribution and determine the fraction of the annual contraction that is assigned to

the first quarter. How much of the remaining contraction is allocated to the second

quarter is determined by another standard uniform draw. The contraction assigned

to the third quarter is determined the same way. The last quarter takes what is left.

This procedure implies that the contraction in the first (last) quarter will be the

largest (smallest), on average. To avoid such a seasonal pattern, I re-shuffle the four

quarterly contractions randomly. This procedure applies to a year that is not the

first or the last of a disaster. When dealing with the first (last) year of a disaster, or

if the disaster consists of only one annual contraction, I determine the quarter when

the contraction begins (ends) by a draw from a discrete uniform distribution, such

that each quarter has a 1/4 probability of becoming the quarter when the disaster

begins (ends). The annual contraction is then distributed across the disaster quarters

in a way analogous to the method used for a “within” disaster year.

B.2 Bootstrap inference

Bootstrap inference for the second-step preference parameter estimates is based on a

mix of parametric and non-parametric bootstraps. Using the first-step maximum

likelihood estimates θ̂ACH , θ̂PL, and θ̂+PL, I simulate a series of hazard rates, con-

sumption contractions, and disaster indicators ds and d+s as described in Section

3.4.23.4.2. The length of the simulated series is equal to the number of observations

in the concatenated country data. Next, θACH and θPL are re-estimated on the

simulated series. These steps are repeated K times, and the estimates are collected

in {θ̂
(k)

ACH , θ̂
(k)
PL, θ̂

+(k)
PL }Kk=1. Because I draw from the parametric ACH-PL distribution

using the maximum likelihood estimates, this procedure can be characterized as a

parametric bootstrap. It complements the asymptotic inference that is available

for the first estimation step, but it is also crucial input for inference about the

second-step SMM estimates of the preference parameters.

For each of the K replications, I perform a block-bootstrap to obtain series of

non-disastrous consumption growth {cg(k)nd,l}Tl=1, market and T-bill returns {R(k)nd,a,l}Tl=1,

{R(k)nd,b,l}Tl=1, and test asset returns {R(k)nd,i,l}Tl=1 . As described previously, I determine

the mean of the geometric distribution, from which the block-lengths are drawn using
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Politis et al.Politis et al.’s (20092009) automatic block-length selection algorithm. The length of the

bootstrap data series (T ) is the same as in the original financial and macro data.

Draws from the series are exerted simultaneously to retain their contemporaneous

dependence (see Maio and Santa-ClaraMaio and Santa-Clara (20122012) for a similar approach).

To compute the simulated moments for each replication, I proceed as described in

Section 3.4.23.4.2 and generate disaster-including data of length T , {cg(k)s }Ts=1, {R(k)i,s }Ts=1,

{R(k)b,s }Ts=1, and {R(k)a,s }Ts=1. For that purpose, I use the parametric bootstrap esti-

mates θ̂
(k)

ACH , θ̂
(k)
PL, and θ̂

+(k)
PL obtained from the maximum likelihood estimation on

the simulated data (instead of the original data). The block-bootstrap from non-

disastrous data that is required to compute the simulated moments is performed

on {cg(k)nd,l}Tl=1, {R(k)nd,a,l}Tl=1, {R(k)nd,b,l}Tl=1, and {R(k)nd,i,l}Tl=1 (instead of the original data).

Then the SMM-type estimation of the preference parameters β, γ, and ψ proceeds

as described in Section 3.2.13.2.1. Performing these steps for each of the K replications

yields {β̂(k), γ̂(k), ψ̂(k)}Kk=1, for which standard deviations and confidence intervals can

be computed using the percentile method.
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CHAPTER 4

Asset Pricing with Multi-Period Disasters and
Two Consumption Goods‡‡

4.1 Motivation

In this chapter, I extend YogoYogo’s (20062006) study, which uses recursive preferences and

assumes that utility is nonseparable in durable and nondurable consumption by

allowing for disastrous contractions in both consumption goods. Whilst YogoYogo (20062006)

finds that his model can explain the cross-section of stock returns, the estimates of

the coefficient of constant relative risk aversion and the intertemporal elasticity of

substitution are implausible in size. Accounting for multi-period disasters in both

consumption goods and allowing for partial government defaults, I use the simulated

method of moments and obtain plausible estimates of these preference parameters.

The simulation of the disaster-including series is inspired by Bansal and YaronBansal and Yaron (20042004)

and GabaixGabaix (20122012), and a discrete-time marked point process (MPP) models the

timing, length, and severity of the disasters; some of which are accompanied by a

destruction of the stock of the durable consumption good. Whilst the estimation is

generally built on U.S. data, the identification of the disaster process parameters is

performed using cross-country panel data. A two-step bootstrap procedure is applied

to evaluate the precision of the estimates. To the best of my knowledge, this is the

first study that considers different types of consumption goods when estimating the

preference parameters of a disaster-including C-CAPM.

The resulting RRA and IES estimates are economically sensible and qualitatively

insensitive with respect to a battery of robustness checks that critically question

the main assumptions that must be made throughout the analysis. Furthermore,

the relation of the parameters is such that a preference for early resolution of

uncertainty is implied; not only for the point estimates but also for the vast majority

of the bootstrap replications performed to assess the estimation precision. The 95%

confidence intervals of the IES are narrow. For the RRA coefficient, which features

wider confidence intervals, more than 85% of the bootstrap replications result in

estimates that lie in the (0,5] interval that is considered economically plausible.

‡ This chapter is based on SönksenSönksen (2017b2017b), available on ssrn:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=2939039
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The remainder of this chapter is structured as follows: Section 4.24.2 outlines the

model specification that relies on recursive preferences and considers consumption of

durable and nondurable goods. Furthermore, it illustrates through which channels

multi-period disasters enter consumption growth and returns. Section 4.34.3 introduces a

marked point process used to model the timing and size of multi-period disasters, and

it explains how to link contraction sizes in overall consumption growth to those in the

durable and nondurable good, respectively. Section 4.44.4 contains the macroeconomic

and financial data used in this study. Section 4.54.5 explains the two-step estimation

strategy and Section 4.64.6 addresses the caveats that must be dealt with when bringing

the model to the data. Section 4.74.7 presents estimation results and robustness checks

and Section 4.84.8 concludes.

4.2 Model outline

YogoYogo (20062006) differentiates between consumption of durable and nondurable goods,

and specifies an investor’s intraperiod utility by the following function:

u(C,D) = [(1 − α)C
ρ−1
ρ + αD

ρ−1
ρ ]

ρ
ρ−1
, (4.1)

which implies a constant elasticity of substitution ρ ≥ 0 between the nondurable

good C and the stock of the durable good D. For the weighting of the goods, it

has to hold that α ∈ (0, 1). Using the intraperiod utility specification from Equation

(4.14.1) and assuming that the investor’s interperiod utility follows recursive preferences

introduced by Epstein and ZinEpstein and Zin (19891989), and WeilWeil (19891989), YogoYogo (20062006) derives the

stochastic discount factor (SDF):

mt+1 =
⎡⎢⎢⎢⎢⎣
β (Ct+1

Ct
)
− 1
ψ

(v(Dt+1/Ct+1)
v(Dt/Ct)

)
1
ρ
− 1
ψ

R
θ−1
θ
a,t+1

⎤⎥⎥⎥⎥⎦

θ

,

where v (D
C

) =
⎡⎢⎢⎢⎢⎣
1 − α + α(D

C
)
ρ−1
ρ
⎤⎥⎥⎥⎥⎦

ρ
ρ−1

and θ = 1 − γ
1 − 1

ψ

.

(4.2)

In Equation (4.24.2), β denotes the subjective discount factor, which measures time

preference and should be < 1, as it is generally assumed that investors prefer immediate

over future consumption. γ is the coefficient of constant RRA and 0 < γ ≤ 10 is

considered to describe reasonably risk-averse investors.4141 ψ denotes the intertemporal

41 For example: Mehra and PrescottMehra and Prescott (19851985), RietzRietz (19881988), Bansal and YaronBansal and Yaron (20042004), and BarroBarro
(20062006). CochraneCochrane (20052005) caps the interval at 5.
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elasticity of substitution. Regarding the range of plausible IES values, there is

no consensus in related literature: Whilst the vast majority of empirical studies

points towards ψ < 1,4242 there are theoretical arguments in favor of ψ > 1. For

instance, Nakamura et al.Nakamura et al. (20132013) argue that ψ must exceed 1 to accord with the

observed behavior of asset prices during consumption disasters, and BarroBarro (20092009)

as well as Bansal and YaronBansal and Yaron (20042004) further claim that the observed dynamics of the

price-dividend ratio cannot be replicated if 0 < ψ < 1. Epstein and ZinEpstein and Zin (19891989) argue

that, apart from the specific parameter values, γ > 1
ψ implies a preference for early

resolution of uncertainty, which is what we would expect from rational investors.4343

Letting Et denote the units of the durable consumption good purchased in period

t, I consider log consumption growth gC,t+1 = ln(Ct+1Ct
) and gE,t+1 = ln(Et+1Et

) and claim

that the respective processes evolve as:

xt+1 = ϕeet+1,

gC,t+1 = µC + xt + ln(1 − bC,t+1)dt+1 + σCηC,t+1,

gE,t+1 = µE + xt + ln(1 − bE,t+1)dt+1 + σEηE,t+1,

et+1, ηC,t+1, ηE,t+1 ∼ N(0,1),

(4.3)

where xt+1 denotes a fundamental growth component that is independent of the

idiosyncratic innovations in the consumption growth processes. However, no restric-

tions are imposed on E[ηC,t+1ηE,t+1]. dt+1 is a disaster indicator that turns 1 if period

t + 1 is a disaster period and 0 otherwise. If dt+1 = 1, log consumption growth of the

nondurable good contracts by the random factor ln(1 − bC,t+1). For log consumption

growth of the durable good, this factor is labeled ln(1 − bE,t+1), respectively. For

both factors, it holds true that b ⋅,t+1 ∈ (0,1].
gC,t+1 and gE,t+1 can be combined to the overall log consumption growth process:

gt+1 = ln( Ct
Ct +Et

exp(gC,t+1) +
Et

Ct +Et
exp(gE,t+1))

= µ + xt + ln(1 − bt+1)dt+1 + σηt+1,

(4.4)

42 HavránekHavránek (20152015) performs a meta-analysis of 169 published articles and concludes that IES
values > 0.8 are inconsistent with empirical evidence.

43 Equivalently, γ < 1
ψ

indicates a preference for late resolution of uncertainty and γ = 1
ψ

means
indifference regarding the timing of the uncertainty resolution. From a behavioral perspective, a
preference for late resolution of uncertainty can be explained by emotions like fear and hope.
However, early resolution of uncertainty allows the inclusion of information on the outcome of
the random experiment into considerations regarding the smoothing of the consumption path
and is thus preferable from a rational perspective.
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where bt+1 is the overall consumption contraction. The weighting in Equation (4.44.4)

implies that bt+1 ∈ (0, 1], which means this multi-period disaster framework does not

require the contractions of each respective disaster period to be severe. Rather, I

define a disaster as a succession of contractions that starts in period s1 and lasts

until period s2 with s1 ≤ t + 1 ≤ s2 such that:

1 −
s2

∏
j=s1

(1 − bj) ≥ q, (4.5)

where q denotes the disaster threshold. Each period that contributes to shaping a

disaster is denoted a disaster period.

The development of the stock of the durable consumption good is an important

component of the SDF in Equation (4.24.2). Following YogoYogo (20062006), I assume the stock

of the durable consumption good D evolves as follows:

Dt = (1 − δt)Dt−1 +Et, (4.6)

where δt is a random depreciation factor:4444

δt = (δ∗t + bE,t(1 − δ∗t )dt)(1 − dDt ) + dDt with δ∗t = a + βδδ∗t−1 + εt,
and εt = N(0, σ2

ε).
(4.7)

The binary variable dDt indicates if a given disaster period is affected by the destruction

of the stock of the durable good. If so, dDt = 1, otherwise dDt = 0. Considering

the evolution of historic consumption disasters, such a differentiation is plausible:

Wars and political or economic turmoils are the most frequent causes of the severe

consumption contractions that we observed in the last 200 years in the Western

world. Some of these disasters – and especially those linked to wars – also brought

about a destruction of the stock of the durable good. I will refer to such cases as

destructive disasters. By including the term bE,t(1−δ∗t )dt, Equation (4.74.7) furthermore

implies that the stock of the durable good is subject to a stronger depreciation during

disaster periods that do not belong to a destructive disaster. This extra depreciation

should be understood as being caused by a lack of maintenance and repair due to

financial constraints rather than a straightforward demolition of the good. During

a destructive disaster, when the stock of the durable good is wiped out, the SDF

reduces to the standard Epstein-Zin-Weil specification.

44 In YogoYogo’s (20062006) study, this depreciation factor is deterministic at 6%.
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The theoretical foundation of the log consumption growth specifications in Equa-

tion (4.34.3) results from combining BarroBarro’s (20062006) model, in which non-disastrous

consumption growth is scaled by a contraction factor in the event of a disaster, and

Bansal and YaronBansal and Yaron’s (20042004) log consumption growth specification, which is stripped

from its long-run characteristic but still includes a joint fundamental component

in the form of xt+1. I rely on BarroBarro’s (20062006) scaling approach to account for disas-

trous consumption contractions, because it features prominently in the rare disaster

literature (e.g., BarroBarro (20092009); Nakamura et al.Nakamura et al. (20132013); GabaixGabaix (20122012)), and I use

Bansal and YaronBansal and Yaron’s (20042004) joint fundamental growth component to model the de-

pendencies between log consumption growth and the log dividend growth (gd,i) and

log price-dividend ratio (zi) of a test asset i. These dependencies are of particular

importance, because the gd,i and zi series will be combined to obtain log returns of

test asset i according to Campbell and ShillerCampbell and Shiller (19881988):

ri,t+1 = − ln(ρi) + gi,d,t+1 + ρi(zi,t+1 − zi,t), (4.8)

where ρi = exp(z̄i)
1+exp(z̄i)

.4545

For this purpose, I assume that the log dividend growth process and the log

price-dividend ratio can be expressed as:

gd,i,t+1 = µd,i + φixt + ln(1 − bt+1)dt+1 + σd,iui,t+1,

zi,t+1 = µz,i + βz,ixt+1 + ln(1 − bt+1)dt+1 + ρz,izi,t,
(4.9)

where ui,t+1 ∼ N(0,1) with E[ui,t+1εt+1] = 0 ∀i. Again, no restrictions are im-

posed on the correlation between ui,t+1 and the idiosyncratic consumption growth

innovations.4646 The processes in Equation (4.94.9) are disaster-including extensions

of Bansal and YaronBansal and Yaron’s (20042004) log dividend growth and log price-dividend ratio. In

the case of the latter, a further extension comes in the form of the lagged log

price-dividend ratio. This term is needed to preserve the persistent pattern of zi.

GabaixGabaix (20122012) proposes to express disastrous dividend growth as a scaled version

of non-disastrous dividend growth, which is in line with the gd,i specification in

Equation (4.94.9). Regarding the size of zi in case of a disaster, BarroBarro (20092009) argues the

price-dividend ratio decreases if disasters are more severe and/or likely – a behavior

also displayed by the process in Equation (4.94.9).

There are two returns for whose specification I do not rely on Equation (4.84.8): the

45 A derivation of Equation (4.84.8) can be found in Section C.1C.1 of the appendix.
46 This assumption is in line with Bansal and KikuBansal and Kiku (20112011).
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T-bill return and the return on the wealth portfolio. For the log T-bill return (rb), I

propose the following specification:

rb,t+1 = µb + φbxt + δb(rbt(1 − dbt+1) + r∗b,tdbt+1) + σbηb,t+1 + ln(1 − bt+1)dbt+1,

r∗b,t+1 = µb + φbxt + δbr∗b,t + σbηb,t+1,
(4.10)

where ηb,t+1 ∼ N(0,1) with E[ηb,t+1εt+1] = 0. Dependencies between ηb,t+1 and the

idiosyncratic consumption and dividend growth innovations are not restricted. dbt+1

highlights those disaster periods in which there is also a partial government default,

meaning a contraction of rb,t+1. In these cases, dbt+1 = 1, otherwise dbt+1 = 0. It is

important to note that either all periods of a disaster are affected by such a default or

none, and that a government default can only occur if there is a consumption disaster

(dt+1 = 1) in the first place. Whilst the rb,t+1 specification in Equation (4.104.10) allows for

disastrous contractions, r∗b,t+1 is its non-disastrous counterpart. This differentiation in

the autoregressive component ensures the overall contraction size cannot be grossly

overstated due to the high persistence of the process.4747

The return on aggregate wealth is frequently proxied by the return on the market

portfolio (e.g., YogoYogo (20062006)). However, Lustig et al.Lustig et al. (20132013) find that stock market

wealth only accounts for roughly 1% of total household wealth, thus casting doubt

on its suitability as a proxy. An alternative approach used by Thimme and VölkertThimme and Völkert

(20152015) is a decomposition of Ra,t+1 using the budget constraint Wt+1 = (Wt−Kt)Ra,t+1,

where Kt = Ct +Dt denotes overall consumption:

Ra,t+1 =
Wt+1

Wt −Kt

= Kt+1

Kt

Kt/Wt

Kt+1/Wt+1

(1 − Kt

Wt

)
−1

= exp(gt+1) exp((kt −wt) − (kt+1 −wt+1))(1 − exp(kt −wt))−1.

(4.11)

I combine the decomposition in Equation (4.114.11) and CampbellCampbell’s (19931993) definition of

the log consumption-wealth ratio to study how consumption disasters diffuse into

the return on aggregate wealth:

kt −wt =
∞

∑
j=1

λj(rm,t+j − gt+j) +
λl

1 − λ
,

where λ = 1 − exp(kt −wt),

l = ln(λ) − (1 − 1

λ
) (kt −wt).

(4.12)

47 Considering the high first-order autocorrelation of the T-bill return, it can be assumed that δb is
smaller but very close to 1.
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In Equation (4.124.12), rm denotes the log return of the market portfolio and can be

obtained from the general return specification in Equation (4.84.8). To model the

consumption-wealth ratio using Equation (4.124.12), λ and l, which in turn depend on

kt −wt, are required. Because the consumption-wealth ratio is unobserved, I follow

Thimme and VölkertThimme and Völkert (20152015) in using Lettau and LudvigsonLettau and Ludvigson’s (20012001) cay-variable as

a proxy; that is, Kt
Wt

= κ exp(cayt), where κ is a scaling parameter.4848

4.3 Specification of the disaster process

The consumption disaster process requires a model specification which can account for

the length and size of disasters as well as for the duration between them. The RDH

literature contains different suggestions for such processes. For example, WachterWachter

(20132013) suggests a recursive time-varying disaster intensity but does not allow for multi-

period disasters. Nakamura et al.Nakamura et al. (20132013) account for the time dimension of disasters

by using a heavily parametrized process that differentiates between permanent

and transitory effects of contractions and allows for different disaster types (world

disasters, individual disasters). The estimation is performed using a cross-country

consumption dataset assembled by Barro and UrsúaBarro and Ursúa’s (20082008).4949 As I want to retain

the multi-period character of disasters whilst allowing for a flexible parametrization,

I turn to the class of discrete-time marked point processes, which provides a suitable

framework in which the disaster periods represent the points and the respective

contraction sizes the marks.

4.3.1 Timing and size of consumption disasters

The choice of the disaster threshold q determines the size and length of disasters as

well as the time durations between them. Hamilton and JordaHamilton and Jorda’s (20022002) autoregressive

conditional hazard (ACH) model constitutes a structure for modeling these durations.

It implies the hazard rate:

ht = P(N(t) ≠ N(t − 1)∣Ft−1), (4.13)

48 Related literature considers different values for κ. I choose κ = 0.05, and decrease the time series
mean of the cay-series by the average consumption contraction per period, when computing λ
and l. Section 4.7.34.7.3 contains a robustness check in which the mean of the cay-variable is not
adapted. This approach implies a consumption-wealth ratio of about 0.05, which is close to
Lettau and LudvigsonLettau and Ludvigson’s (20012001) specification which suggests a consumption-wealth ratio of 0.04.

49 The extensive parametrization in this approach limits the possible choices for the disaster
threshold.
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where – assuming that the sequence of disaster events is considered at a quarterly

frequency – N(t) is the number of disaster periods that occur as of period t = 1, . . . , T .

Due to the discrete-time set up, ht can be understood as the conditional disaster

probability in period t.

The hazard rate in Equation (4.134.13) is flexible regarding the information included

to model the conditional disaster probabilities. A parsimonious specification is:

ht = [(π(1 − dt−1) + π̃dt−1)(1 − d+t−1) + d+t−1]
−1
, (4.14)

where the indicator d+t is defined as d+t = 1(dt = 1) ⋅1([1−∏t−1
j=s1(1− bj)] < q), meaning

that d+t = 1 if period t is a disaster period but the disaster threshold q has not yet

been reached, thereby setting ht+1 = 1.5050 π and π̃ are parameters.

A more general hazard rate specification also includes information on the durations

of and between disasters, as well as on contraction sizes. Assuming that M(t) gives

the number of disasters that have occurred as of quarter t, I propose to use:

ht = [[(π + ᾰτM(t−1)−1 + δ̆b+M(t−1))(1 − dt−1)

+(π̃ + α̃τ̃M(t−1)−1 + δ̃bN(t−1))dt−1](1 − d+t−1) + d+t−1]
−1
,

(4.15)

where τm refers to the duration (in quarters) between the mth and (m+1)th disaster,

τ̃m gives the number of quarters that the mth disaster lasted, bn is the contraction

factor of the nth disaster period, and b+m denotes the aggregate size of the mth

disaster. The parsimonious hazard rate in Equation (4.144.14) evolves as a special case

of Equation (4.154.15) when setting ᾰ = δ̆ = α̃ = δ̃ = 0. Both specifications – and others

nested in Equation (4.154.15) – will be considered in the empirical analysis in Section

4.7.14.7.1.

Because of d+t , modeling the size distribution of contractions in disaster periods is

already interwoven with specifying ht. I fit a generalized pareto (GP) distribution to

a series of transformed macroeconomic contractions z = 1
1−b in order to model b. This

approach is inspired by Barro and JinBarro and Jin (20112011), who suggest using a double power law

(DPL) distribution that consists of two power laws that morph into each other at a

certain threshold value. This approach is very elegant, because it allows for a heavier

tail of the density whilst still capturing the fact that most of the observations are

small. However, when estimating the DPL parameters with the quarterly contraction

50 d+t proves to be particularly useful in simulations of the disaster process in which it ensures that
all the simulated contractions indeed form disasters.
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data used in this study, numerical optimization fails as the threshold that links the

two power laws cannot be identified. It turns out, however, that using the additional

flexibility of a GP is preferable compared to a one-parameter pareto distribution.

I allow the parametrization of contractions that went along with a destruction of

the stock of the durable good (dD = 1) to be different from the parametrization of

contractions that did not coincide with such a blight (dD = 0). The joint probability

density function of the disaster period indicators dt and dDt and the transformed

contraction size zt can then be written as:

f(dt, dDt , zt∣Ft−1;θACH ,θ
D
GP ,θGP ) = f(dt, dDt ∣Ft−1) × f(zt∣dt, dDt ,Ft−1)

= [ht(θACH)]dt × [1 − ht(θACH)]1−dt

× (fGP (zt;θDGP )d
D
t × fGP (zt;θGP )1−dDt )

dt
,

(4.16)

where θACH contains the parameters of the hazard rate. fGP denotes the GP density

with parametrization θDGP (dDt = 1) and θGP (dDt = 0), respectively.

The maximum likelihood estimation of the ACH and GP parameters is performed

on consumption data for several countries that Barro and UrsúaBarro and Ursúa (20082008) assembled.

As the parameters are variation-free, it is possible to estimate the GP and the ACH

parameters separately.5151 Hereafter, I will refer to this MPP as ACH-GP.

4.3.2 Splitting bt into bE,t and bC,t

The ACH-GP process models the distribution of consumption contractions bt, but it

does not determine the relationship between bt and the decrease in log consumption

growth of the durable and nondurable good, bE,t and bC,t, respectively.5252 To obtain bE,t

and bC,t from bt, I introduce ωt, which denotes the fraction of the overall consumption

contraction that is due to durable goods and follows the mixture distribution:

fω(ωt) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P(ωt = 0) if ωt = 0

Γ(e+f)(1−P(ωt=0)−P(ωt=1))
Γ(e)Γ(f) ωe−1

t (1 − ωt)f−1 if 0 < ωt < 1

P(ωt = 1) if ωt = 1

, (4.17)

51 See EngleEngle (20002000).
52 This problem arises due to restrictions regarding data availability. The cross-country consumption

dataset assembled by Barro and UrsúaBarro and Ursúa (20082008), which features prominently in the rare disaster
literature and allows the estimation of the ACH-GP process, does not differentiate between
durable and nondurable goods. Hence, using the available data, it is not possible to observe
bE,t and bC,t directly and use Equation (4.44.4) to combine them to bt. Instead, it is necessary to
propose a way to derive bE,t and bC,t from bt that is in line with Equation (4.44.4).
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where Γ denotes a gamma distribution and e and f are parameters. Equation (4.174.17)

allows for the fact that consumption contractions may result entirely from the durable

or nondurable good – with probabilities P(ωt = 1) and P(ωt = 0), respectively – whilst

using a beta distribution to model the density of ωt ∈ (0,1).5353

The weighting factor ωt+1 then can be applied to the overall consumption con-

tractions bt+1 to obtain bE,t+1 and bC,t+1, viz:

bE,t+1 = ωt+1 (1 − Ct
Et

exp(g∗t+1)(1 − bt+1) − exp(g∗C,t+1)
exp(g∗E,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗E,t+1)

)

bC,t+1 = (1 − ωt+1)(1 − Et
Ct

exp(g∗t+1)(1 − bt+1) − exp(g∗E,t+1)
exp(g∗C,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗C,t+1)

) ,

(4.18)

where g∗E,t+1 = gE,t+1∣(dt+1=0) and g∗C,t+1 = gC,t+1∣(dt+1=0) are non-disastrous counter-

parts of gE,t+1 and gC,t+1.5454

4.4 Data

The estimation of the parameters that occur throughout the consumption, financial or

disaster processes requires two different sources of data: Series that carry information

on the behavior of consumption and financial series in non-disastrous times and data

that is informative regarding the size distribution and time dimension of disasters.

4.4.1 Non-disastrous consumption and financial data

The estimation of the structural and preference parameters is based on quarterly U.S.

data that span the period 1947:Q2–2014:Q4. Nondurable consumption is measured

as the sum of real personal consumption expenditures per capita on services and

nondurable goods (both in chained 2009 U.S. dollars), as provided by the Federal

Reserve Bank of Saint Louis.5555 Data on the consumption of durable goods can be

obtained from the same source.5656 The Bureau of Economic Analysis provides year-end

estimates of the stock of the durable good.5757 I use this series in combination with

53 The use of the beta distribution requires a rescaling with 1 − P(ωt = 0) − P(ωt = 1).
54 Appendix C.2C.2 provides details on the derivation of Equation (4.184.18).
55 For services: http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA. For non-

durable goods: http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA. Both accessed
06/22/2016.

56 https://fred.stlouisfed.org/series/A795RX0Q048SBEA, accessed 06/22/2016.
57 https://www.bea.gov/national/FA2004/Details/Index.htm, accessed 06/22/2016
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the estimates of durable consumption to back out the depreciation rate recursively

from Equation (4.74.7). Table 2525 contains the descriptive statistics for these data.

Table 25: Descriptive statistics: consumption and financial data 1947:Q2–2014:Q4
Panel A of this table contains the descriptive statistics of log consumption growth,
Lettau and LudvigsonLettau and Ludvigson’s (20012001) cay-variable, the log T-bill return rb, as well as the log dividend
growth and the log price-dividend ratio of the market portfolio. Panel B holds descriptive statistics
of the log dividend growth and log price-dividend ratios of the ten size-sorted portfolios. The data
range is 1947:Q2–2014:Q4, except for the cay series which starts in 1952:Q1. In Panel B, gd,1 and z1
refer to the log dividend growth and log price-dividend ratio of the first decile of the ten size-sorted
portfolios. The column labeled ac gives the first-order autocorrelation, and std is the standard
deviation.

Panel A: consumption growth and market portfolio

mean std ac correlations

cay rb gd,m zm gE
gC 0.0047 0.0051 0.311 0.046 0.209 0.113 0.055 0.360

gE 0.0095 0.0368 -0.086 0.031 0.084 0.206 0.115
zm 3.4932 0.4216 0.976 -0.195 0.116 0.064
gd,m 0.0056 0.0221 0.491 0.074 -0.090
rb 0.0018 0.0045 0.855 0.216
cay -0.0000 0.0200 0.906

Panel B: size-sorted portfolios

mean std ac correlations

gC gE gd,10 gd,9 gd,8 gd,7 gd,6 gd,5 gd,4 gd,3 gd,2
gd,1 0.0111 0.0640 0.389 0.153 0.146 0.242 0.247 0.253 0.388 0.339 0.390 0.480 0.427 0.482

gd,2 0.0069 0.0674 0.199 0.190 0.088 0.198 0.442 0.168 0.280 0.418 0.540 0.470 0.572

gd,3 0.0087 0.0649 0.251 0.101 0.104 0.185 0.355 0.312 0.288 0.366 0.495 0.267

gd,4 0.0075 0.0529 0.257 0.110 0.089 0.160 0.410 0.318 0.387 0.362 0.323

gd,5 0.0084 0.0550 0.316 0.143 0.133 0.289 0.409 0.233 0.290 0.468

gd,6 0.0080 0.0480 0.284 0.074 0.138 0.226 0.398 0.215 0.310

gd,7 0.0076 0.0358 0.299 0.069 0.052 0.142 0.384 0.190

gd,8 0.0073 0.0543 0.200 0.051 0.136 0.151 0.118

gd,9 0.0066 0.0330 0.349 0.102 0.041 0.268

gd,10 0.0045 0.0254 0.404 0.058 0.192

gC gE z10 z9 z8 z7 z6 z5 z4 z3 z2
z1 4.1793 0.6540 0.968 0.094 0.133 0.748 0.809 0.811 0.883 0.929 0.918 0.939 0.954 0.972

z2 3.9604 0.7090 0.974 0.046 0.113 0.830 0.889 0.886 0.938 0.968 0.964 0.978 0.986

z3 3.8563 0.7062 0.975 0.007 0.100 0.860 0.916 0.919 0.961 0.981 0.977 0.986

z4 3.7769 0.6751 0.978 0.008 0.098 0.878 0.937 0.936 0.976 0.987 0.987

z5 3.7206 0.6805 0.978 -0.001 0.104 0.896 0.952 0.943 0.981 0.991

z6 3.6576 0.6126 0.978 0.005 0.110 0.896 0.953 0.946 0.984

z7 3.6306 0.5837 0.977 -0.006 0.097 0.919 0.975 0.963

z8 3.5592 0.5389 0.974 -0.023 0.095 0.929 0.967

z9 3.4777 0.4793 0.974 -0.015 0.096 0.952

z10 3.4702 0.4332 0.979 0.036 0.103

i 1 2 3 4 5 6 7 8 9 10

Corr(zm,zi) 0.832 0.898 0.918 0.934 0.946 0.948 0.959 0.951 0.973 0.987

Corr(gd,m,gd,i) 0.403 0.416 0.377 0.415 0.493 0.427 0.398 0.391 0.540 0.857

Corr(zi,gd,i) 0.145 0.150 0.135 0.091 0.140 0.150 0.119 0.131 0.128 0.038

Returns on the market portfolio, comprised of NYSE, AMEX, and NASDAQ
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traded stocks (mkt ; including and excluding dividends) at a monthly frequency come

from CRSP and can be used to extract the quarterly dividend growth and price-

dividend ratio series.5858 The dividend growth thus obtained is very erratic and has a

strong negative autocorrelation, which results because dividend payments occur very

unevenly over time. I circumvent this problem by following CochraneCochrane (19961996), who

smoothes a quarterly dividend series by computing means using the contemporaneous

observation and the three preceding quarters. The ten size-sorted portfolios (size

dec) serve as further test assets and returns (including and excluding dividends) can

be obtained from Kenneth French’s data library.5959 The same smoothing procedure

is applied to the dividend growth series of the size-sorted portfolios. All portfolios

are value-weighted.6060 In line with Beeler and CampbellBeeler and Campbell (20122012), I approximate the

ex-ante non-disastrous T-bill return Rb (the “risk-free rate” proxy) by forecasting the

ex-post Rb based on the quarterly T-bill yield, obtained from the CRSP database,

and the average of quarterly log inflation across the past year.

The estimation of the elasticity of substitution between the two goods furthermore

requires the price indexes for personal consumption expenditures on durable goods,

nondurable goods, and services.6161

As described in Section 4.24.2, I proxy the mean log consumption-wealth ratio in

Equation (4.124.12) using Lettau and LudvigsonLettau and Ludvigson’s (20012001) cay-variable and a constant.

The quarterly series are provided by the authors and continuously updated.6262

4.4.2 Disaster-including cross-country data

Relying solely on U.S. data for the estimation of the ACH-GP parameters is of no

use, because even when using long consumption series, there will not be enough

disaster observations to identify the parameters reliably.6363 As frequently done in the

58 As it is done in Beeler and CampbellBeeler and Campbell (20122012) and illustrated in their supplementary dataset DOI:
10.1561/104.00000004 data, accessed 06/22/2016.

59 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html, ac-
cessed 03/09/2016. Due to the frequent changes in the underlying CRSP data, newer or older
downloads may results in different series.

60 These data are provided by the Federal Reserve Bank of Saint Louis:
http:// research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 03/09/2016.

61 For services: https://fred.stlouisfed.org/series/DHCERG3Q086SBEA. For nondurable
goods: https://fred.stlouisfed.org/series/DNDGRG3Q086SBEA. For durable goods:
https://fred.stlouisfed.org/series/DDURRG3Q086SBEA. All accessed 08/01/2016.

62 http://faculty.haas.berkeley.edu/lettau/data cay.html, accessed 11/12/2016.
63 Even CampbellCampbell’s (20032003) dataset, which starts in 1890 and serves as a robustness check in

Julliard and GhoshJulliard and Ghosh (20122012), only includes two multi-period contractions that fulfill BarroBarro’s
(20062006) definition of a disaster.
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RDH literature, I identify the disaster parameters from annual cross-country panel

data on consumption that Barro and UrsúaBarro and Ursúa (20082008) assembled for 42 countries.6464

From these data, I select the same 35 countries as BarroBarro (20062006). To detect disaster

events, I use BarroBarro’s (20062006) identification scheme, according to which any sequence of

downturns in consumption growth greater or equal to q=0.145 qualifies as a disaster.6565

A disaster may pan out over multiple periods or occur as one sharp contraction.

Positive intermezzos of consumption growth within a disaster are allowed if (1) the

positive growth is smaller in absolute value than the negative growth in the following

year and (2) the size of the disaster does not decrease by including the intermezzo.

Table 2626 provides information on the consumption dataset and the identified disaster

periods and sizes.

Table 26: Country panel data used for the first-step estimation
This table lists the 35 countries and time periods with available data that provide the basis for
the MPP estimation. The second column reports the time periods for which consumption data
assembled by Barro and UrsúaBarro and Ursúa (20082008) are available (beginning with 1800 onwards). The third
column reports the disaster periods that result from q=0.145. The respective contraction sizes (in
percent) are given in parentheses. The forth column lists the associated origins of these consumption
contractions. Disasters that were allegedly related to a destruction of the stock of durable goods
are underlined.

Country Barro and UrsúaBarro and Ursúa Disasters Origin

Argentina 1875−2009 1895−1898 (28.3) aftermaths of Baring crisis
1899−1900 (19.5) aftermaths of Baring crisis
1912−1917 (17.2) World War I
1928−1932 (18.9) Great Depression
1987−1990 (16.0) Argentine Great Depression

Australia 1901−2009 1913−1918 (23.8) World War I
1927−1932 (23.4) Great Depression
1938−1944 (30.1) World War II

Austria 1913−1918, 1924−1944, 1913−1918 (45.1) World War I
1947−2009 1929−1934 (21.8) Great Depression

1939−1947 (52.9) World War II
Belgium 1913−2009 1913−1917 (44.5) World War I

1937−1942 (53.0) World War II
Brazil 1901−2009 1902−1905 (14.8) Vaccine revolt; depression;

Revolt of the Lash
1906−1909 (15.7) Vaccine revolt; depression;

Revolt of the Lash
1920−1921 (14.7) aftermaths of World War I
1928−1931 (20.1) Great Depression
1984−1990 (16.3) Stagnation after Mexican debt crisis

Canada 1871−2009 1873−1876 (15.2) Canadian Confederation aftermaths
1918−1921 (19.6) World War I
1929−1933 (23.0) Great Depression

Chile 1900−2009 1911−1915 (32.2) World War I
1921−1922 (18.5) political instabilities
1926−1927 (19.6) political instabilities
1929−1932 (37.4) Great Depression

Continued on next page

64 The data are available at http://scholar.harvard.edu/barro/publications/barro-ursua-
macroeconomic-data, accessed 04/24/2015.

65 The same disaster threshold is used by BarroBarro (20062006, 20092009) and Barro and JinBarro and Jin (20112011). Other
thresholds that feature prominently in RDH literature are q=0.195 and q=0.095, with the latter
gaining popularity as the parametrization of the disaster process tends to increase.
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Continued from previous page

Country Barro and UrsúaBarro and Ursúa Disasters Origin

1972−1976 (40.1) economic crisis and military coup
1981−1985 (32.7) economic collapse

Colombia 1925−2009 1929−1932 (18.1) Great Depression
1939−1943 (22.8) World War I

Denmark 1844−2009 1919−1921 (24.1) World War I
1939−1941 (26.1) World War II

Finland 1860−2009 1913−1918 (36.0) World War I; civil war
1928−1932 (19.9) Great Depression
1938−1944 (25.4) World War II; Winter War

France 1824−2009 1824−1828 (20.1) financial crisis
1912−1915 (21.5) World War I
1938−1943 (58.0) World War II

Germany 1851−2009 1912−1918 (42.5) World War I
1939−1945 (41.2) World War II

Greece 1938−2009 1938−1944 (63.6) World War II
India 1919−2009 1932−1942 (21.7) World War II

1947−1950 (17.7) decolonization
Indonesia 1960−2009
Italy 1861−2009 1939−1945 (28.6) World War II
Japan 1874−2009 1937−1945 (63.9) World War II
Malaysia 1900−1939, 1947−2009 1914−1920 (43.4) World War I

1929−1932 (25.8) Great Depression
1938−1947 (33.6) World War II
1951−1953 (16.9) Malayan Emergency
1984−1987 (14.8) political instabilities

Mexico 1900−2009 1909−1913 (17.2) Mexican Revolution
1914−1916 (15.8) World War I; Mexican Revolution
1926−1932 (31.2) Great Depression

the Netherlands 1807−1809, 1814−2009 1807−1809 (18.3) reign of Napoleon Bonaparte
1912−1918 (44.0) World War I
1939−1944 (54.5) World War II

New Zealand 1878−2009 1939−1944 (22.4) World War II
Norway 1830−2009 1916−1918 (16.9) World War I

1919−1921 (16.1) economic aftermaths of World War I
the Philippines 1946−2009
Peru 1896−2009 1975−1979 (17.9) military coup

1987−1992 (30.0) chronic inflation;
economic turbolences

Portugal 1910−2009 1914−1919 (21.5) World War I
South Korea 1911−2009 1942−1945 (37.5) World War II

1949−1952 (37.1) Korean War
Spain 1850−2009 1892−1896 (18.2) Cuban Independence War;

Philippine Revolution
1935−1937 (46.1) Spanish civil war

Sri Lanka 1960−2009 1969−1972 (15.6) decolonization
Sweden 1800−2009 1810−1819 (18.8) World War I

1939−1942 (15.6) World War II
Switzerland 1851−2009 1852−1853 (17.2) fundamental political reorganization

1858−1860 (29.3) fundamental political reorganization
1861−1864 (15.9) fundamental political reorganization
1865−1867 (23.9) fundamental political reorganization
1870−1872 (19.0) fundamental political reorganization
1876−1878 (22.5) fundamental political reorganization
1887−1888 (15.7) fundamental political reorganization
1939−1945 (17.3) World War II

Taiwan 1901−2009 1903−1905 (21.9) Guerrilla fighting under Japanese rule
1936−1945 (68.4) World War II

UK 1830−2009 1915−1918 (16.7) World War I
1938−1943 (16.9) World War II

USA 1834−2009 1917−1921 (16.4) World War I
1929−1933 (20.8) Great Depression

Uruguay 1960−2009 1981−1984 (26.7) civil-military rule
1998−2002 (21.9) Uruguay Great Depression

Venezuela 1923−2009 1930−1933 (31.2) Great Depression
1948−1952 (20.3) coup d’état
1957−1958 (15.9) coup d’état
1982−1986 (26.4) oil crisis

Thereafter, I check each disaster for its historical origin and evaluate whether it
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can be associated with a deletion of the stock of the durable good in the respective

country. According to this approach, 22 of the 89 disaster events can be termed

destructive disasters; they are highlighted as such in Table 2626. In most of the

cases, this applies to countries that suffered from military invasions during the world

wars. Whilst this strategy is, admittedly, limited in precision, its results should be

understood as benchmarks that allow studying the effects of a complete destruction

of belongings.6666

Figure 17: Consumption disasters
This figure depicts the 89 consumption disasters identified from Barro and UrsúaBarro and Ursúa’s (20082008) country
panel data (updated). The sampling period is 1800–2009. Red lines denote destructive disasters
that allegedly were accompanied by an annihilation of the stock of the durable good and blue lines
represent disasters for which this behavior is not assumed. The dotted horizontal line depicts the
average contraction size.
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Figure 1717 shows the size and the period over which the disasters accrue. Appar-

ently, disasters that are assumed to be accompanied by a destruction of the stock

of durable good are on average larger than non-destructive disasters. As previously

mentioned, I assume the ACH-GP process is observable at the quarterly frequency.

However, the Barro and UrsúaBarro and Ursúa (20082008) data only permit the computation of annual

contractions. I therefore generate quarterly observations by randomly distributing

the annual contraction. Appendix C.3C.3 explains the details.

Whilst Barro and UrsúaBarro and Ursúa’s (20082008) overall consumption data allow estimating the

66 A robustness check that does not differentiate between destructive and non-destructive disasters
is carried out in Section 4.7.34.7.3.
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parameters of the ACH-GP process, they do not suffice to obtain the parameters

of the (mixed) beta distribution that models the weighting factor ωt. As can be

seen from Figure 1717, most consumption disasters took place before the middle of the

20th century; detailed information on consumption of durable and nondurable goods,

however, are not available until after World War II. To circumvent this problem,

I assume that the distribution of ωt can be estimated using consumption data on

both goods during recession periods. As my study considers multi-period disasters,

for which the contractions during the individual disaster periods are not necessarily

sharp, this is not a bold assumption.

Information on the business cycles of various countries can be obtained from

the Economic Cycle Research Institute.6767 The dataset contains business cycle dates

for 21 countries. I select those countries for which data on the consumption of

durable goods, nondurable goods, and services are available.6868 Recession periods do

not necessarily coincide with negative consumption growth. I consider only those

periods in which overall consumption growth was negative and compute the observed

weighting factors as the fraction of the total consumption decline due to a reduced

consumption of the durable good.

4.5 Estimation strategy

The estimation strategy follows a two-step approach. First, the fundamental macroe-

conomic and financial parameters that appear in Equations (4.34.3)-(4.124.12) must be

estimated. In combination with the disaster process parameters, they allow for

the simulation of consumption growth and return processes that are, in the second

estimation step, used to obtain estimates of the preference parameters.

4.5.1 Estimating non-disastrous macro parameters

The U.S. postwar consumption growth, dividend growth, and price-dividend ratios

do not include any disastrous observations. Hence, a GMM estimation of the funda-

67 https://www.businesscycle.com/ecri-business-cycles/international-business-cycle-dates-
chronologies, accessed 05/03/2016.

68 Namely: Austria, Canada, France, Germany, Italy, Japan, South Korea, Mexico,
Spain, Sweden, U.K., U.S.A. For Canada, consumption data come from Statistics
Canada: http://www5.statcan.gc.ca/cansim/pick-choisir?lang=eng&p2=33&id=3800084, ac-
cessed 05/03/2016. For all other countries, consumption data are provided by the OECD:
http://stats.oecd.org/index.aspx?queryid=218#, accessed 05/03/2016. The U.S. recession dates
that are listed by the Economic Cycle Research Institute are identical to those provided by the
National Bureau of Economic Research.
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mental macroeconomic and financial parameters in Equations (4.34.3)-(4.124.12) cannot be

performed using unconditional moments. However, as the disastrous contractions

affect the log price-dividend ratios, as well as the consumption and dividend growth

processes in an additive manner, it is possible to estimate these parameters using

moments conditional on no disasters (dt = 0).

I use an exact identification strategy to estimate the vector of fundamental param-

eters ζa = (µC , µE, µb, ϕe, δb, φb, σC , σE, σb,µd,µz,σd,ρz,βz,φ,κ)′, where bold sym-

bols denote vectors (e.g., µd = (µd,m, µd,1, . . . , µd,10)) and the contemporaneous correla-

tions between innovations in the log consumption, dividend growth series, and the log

T-bill return are collected in κ = (κgC ,gE , κgC ,r∗b , κgE ,r∗b ,κgC ,gd,i ,κgE ,gd,i ,κr∗b ,gd,i ,κgd,j ,gd,i).
The estimation builds on the following set of moment matches:

Ga
T (ζa) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ET (gC,t+1∣dt+1 = 0) −µC
ET (gE,t+1∣dt+1 = 0) −µE
ET (zm,t+1gC,t+1∣dt = dt+1 = 0) −µz,mµC1−ρz,m

− ρz,mβz,m
ET (z2

m,t+1∣dt = dt+1 = 0) −( µz,m
1−ρz,m

)
2
− β2

z,mϕ
2
e

1−ρ2z,m

ET (g2
C,t+1∣dt+1 = 0) −µ2

C − ϕ2
e − σ2

C

ET (g2
E,t+1∣dt+1 = 0) −µ2

E − ϕ2
e − σ2

E

ET (r∗b,t+1r
∗
b,t) −( µb

1−δb
)

2
− δb

1−δ2
b

(φ2
bϕ

2
e + σ2

b )
ET (r∗b,t+1) − µb

1−δb

ET (r∗b,t+1zm,t+1∣dt = dt+1 = 0) − µbµz,m
(1−δb)(1−ρz,m)

− φbρz,mϕ
2
eβz,m

1−δbρz,m

ET ((r∗b,t+1)2) −( µb
1−δb

)
2
− φ2bϕ

2
e+σ

2
b

1−δ2
b

ET (gC,t+1gE,t+1∣dt+1 = 0) −µCµE − ϕ2
e − κgC ,gEσCσE

ET (gC,t+1r
∗
b,t+1∣dt+1 = 0) −µbµC1−δb

− φbϕ2
e − κgC ,r∗bσCσb

ET (gE,t+1r
∗
b,t+1∣dt+1 = 0) −µbµE1−δb

− φbϕ2
e − κgE ,r∗bσEσb

ET (gd,i,t+1∣dt+1 = 0) −µd,i
ET (zi,tzi,t+1∣dt = dt+1 = 0) −( µz,i

1−ρz,i
)

2
− ρz,iβ

2
z,iϕ

2
e

1−ρ2z,i

ET (zi,t+1∣dt = dt+1 = 0) − µz,i
1−ρz,i

ET (zi,tgd,i,t+1∣dt = dt+1 = 0) −µd,iµz,i1−ρz,i
− φiϕ2

eρz,iβz,i

ET (g2
d,i,t+1∣dt+1 = 0) −µ2

d,i − φ2
iϕ

2
e − σ2

d,i

ET (gC,t+1gd,i,t+1∣dt+1 = 0) −µCµd,i − φiϕ2
e − κgC ,gd,iσCσd,i

ET (gE,t+1gd,i,t+1∣dt+1 = 0) −µEµd,i − φiϕ2
e − κgE ,gd,iσEσd,i

ET (r∗b,t+1gd,i,t+1∣dt+1 = 0) −µbµd,i1−δb
− φiφbϕ2

e − κr∗b ,gd,iσbσd,i
ET (zj,t+1zm,t+1∣dt = dt+1 = 0) − µz,mµz,j

(1−ρz,m)(1−ρz,j)
− βz,jϕ

2
eβz,m

1−ρz,mρz,j

ET (gd,i,t+1gd,j,t+1∣dt+1 = 0) −µd,iµd,j − φiφjϕ2
e − κgd,i,gd,jσd,iσd,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.19)

where i = m,1, . . . ,10, j = 1, . . . ,10, i ≠ j, and ET (⋅) = 1
T ∑

T
t=1(⋅). If one was solely

interested in using the market portfolio as a test asset, it would suffice to consider the

first 13 moment conditions and moments 14-21 for i =m. For additionally obtaining
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the returns of the ten size-sorted portfolios, one must consider the entire set of

moment matches, which amounts to 145 further moment restrictions and parameters

to be estimated.

A second set of moment conditions is used to identify the three parameters of

the non-disastrous depreciation factor that are collected in ζb = (a, βδ, σε)′:

Gb
T (ζb) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ET (δ∗t+1) − a
1−βδ

ET ((δ∗t+1)2) − σ2
ε

1−β2
δ

− ( a
1−βδ

)
2

ET (δ∗t δ∗t+1) − βδσ
2
ε

1−β2
δ

− ( a
1−βδ

)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.20)

I compute parameter estimates of ζ = (ζa′,ζb′)′ by stacking the vectors of moment

conditions GT (ζ) = (Ga
T (ζ

a)′,Gb
T (ζ

b)′)′ and minimizing:

ˆ̃ζ = arg min
ζ̃∈Ξ̃

G(ζ̃)′G(ζ̃), (4.21)

where – as the problem is exactly identified – the value of the GMM objective function

should indeed be zero.

4.5.2 Estimating the asset pricing parameters

The SDF presented in Equation (4.24.2) relies on five preference parameters (α, β, γ, ψ,

ρ), but some are extremely difficult to identify. For reasons outlined in Section 4.6.14.6.1,

I decide to estimate the elasticity of substitution between the two goods, ρ, and their

weighting factor, α, upfront and fix them to that estimated value. Furthermore, I will

reduce the complexity of the problem by building the estimation strategy on excess

returns – a framework in which the subjective discount factor β is not identified

and can thus be set to any value. This approach allows to set the focus on the two

preference parameters whose size is most discussed in recent literature: the RRA

coefficient, γ, and the IES, ψ.

The starting point of my estimation is the basic asset pricing equation:

Et(mt+1(γ,ψ, βfix, αfix, ρfix)Re
i,t+1) = 0, (4.22)

where Re
i,t+1 = Ri,t+1 − Rb,t+1 is the excess return of test asset i. We can rewrite

Equation (4.224.22) as:

E(Re
i,t) = −

cov(mt(γ,ψ, βfix, αfix, ρfix),Re
i,t)

E(mt(γ,ψ, βfix, αfix, ρfix))
, (4.23)
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which facilitates an estimation of γ and ψ by the simulated method of moments. For

this purpose, I suggest approximating the left-hand side expectation by a sample

mean of the observed, non-disastrous excess return series:

E(Re
i,t) ≈

1

T

T

∑
t=1

Re
i,t. (4.24)

For the right-hand side moments, the approximation will be based on simulated,

and thus possibly disaster-including, consumption and (excess) return series. Such a

simulation is possible using the process specifications described in Section 4.24.2, once

the fundamental macroeconomic and financial parameters have been estimated as

detailed in Section 4.5.14.5.1 and the parametrization of the disaster process is obtained

from the maximum likelihood approach outlined in Section 4.34.3. Whether a certain

disaster is accompanied by a partial government default or a destruction of the stock

of the durable good, is randomly determined at its onset by drawing from binary

distributions, such that db,t = Be(0.42) and dDt = Be(22
89).6969 Either all periods of a

disaster are affected by the default/destruction – or none. The disaster-including

consumption and excess return series are simulated of length T , which must be large

enough to achieve a good approximation of the moments:

cov(mt(γ,ψ, βfix, αfix, ρfix),Re
i,t)

E(mt(γ,ψ, βfix, αfix, ρfix))
≈

1
T

T

∑
s=1

(Re
i,s − 1

T

T

∑
s=1
Re
i,s)ms(γ,ψ, βfix, αfix, ρfix)

1
T

T

∑
s=1
ms(γ,ψ, βfix, αfix, ρfix)

.

(4.25)

The approximations in Equations (4.244.24)-(4.254.25) can be combined to the SMM

moment matches:

G(ϑ) =
⎡⎢⎢⎢⎢⎢⎣

1
T

T

∑
t=1

Re
t +

1
T

T

∑
s=1
(Re

s−
1
T

T

∑
s=1

Re
s)ms(γ,ψ,β

fix,αfix,ρfix)

1
T

T

∑
s=1

ms(γ,ψ,βfix,αfix,ρfix)

⎤⎥⎥⎥⎥⎥⎦
, (4.26)

where Re denotes a vector of excess returns. Using the moment conditions in

Equation (4.264.26) implies choosing the preference parameters in such a way that the

simulated moments computed on series that are allegedly more representative of the

69 The parameter of the first binary distribution is set to 0.42, because BarroBarro (20062006) finds there
was a partial government default during 42% of the historical disasters he uses in his calibration
study. For the second binary distribution, the success probability of 22

89
results, because I claim

in Section 4.44.4 that 22 of the 89 consumption disasters were accompanied by a destruction of the
stock of the durable good.
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possibly disaster-including consumption processes are maximally close to the means

computed for actually observed excess returns. The idea is that these representative

consumption and return processes must also account for the observed Re
t series which

coincidentally do not feature such disasters.

It turns out, however, that the moment conditions in Equation (4.264.26) do not

suffice to identify the IES. For this reason, I estimate ψ separately by means of

a simulation-based instrumental variables approach that relies on a second-order

log-linearization of the basic asset pricing equation for returns, which leads to the

following regression equation:

ri,t+1 = wi +
1

ψ
(ln(Ct+1

Ct
) − ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)) + νi,t+1, (4.27)

where wi is an asset-specific constant and νi,t+1 denotes a zero-mean disturbance

term.7070 Because νi,t+1 is correlated with ln (Ct+1
Ct

) − ln (v(Dt+1/Ct+1)v(Dt/Ct)
) by construction,

it would not be possible to identify the IES with a linear projection of ri,t+1 on

ln (Ct+1
Ct

)− ln (v(Dt+1/Ct+1)v(Dt/Ct)
) and a constant. Thus, I resort to an instrumental variables

estimation strategy which implies the orthogonality constraints:

E((ri,t+1 −wi −
1

ψ
∆cvt+1)zt) = 0, (4.28)

where ∆cvt+1 = ln (Ct+1
Ct

) − ln (v(Dt+1/Ct+1)v(Dt/Ct)
) and zt denotes a vector of instrumental

variables that are known at t.7171 Any log return can be used in Equation (4.284.28)

to identify the IES; in this study, I choose the log T-bill return for this purpose.

A constant as well as the twice-lagged log T-bill return and ∆cv-variable serve as

instruments. The estimation is performed on the simulated disaster-including data.

Applied to a GMM context with an identity weighting matrix, the IES estimate

must fulfill the first-order conditions

[
−1 −ET (∆cvs) −ET (rb,s)

ET (∆cvs)
ψ̂2

ET (∆cvs∆cvs−2)
ψ̂2

ET (∆cvsrb,s−2)
ψ̂2

]

⎡⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) − ŵb − 1

ψ̂
ET (∆cvs)

ET (rb,s∆cvs−2) − ŵbET (∆cvs−2) − 1

ψ̂
ET (∆cvs∆cvs−2)

ET (rb,srb,s−2) − ŵbET (rb,s−2) − 1

ψ̂
ET (∆cvsrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎦

= 0,

(4.29)

where ET (⋅) = 1
T ∑

T
s=1(⋅). As the IES identification strategy is not entangled with

any of the other preference parameters, it is possible to perform the estimation of

70 Appendix C.4C.4 details the derivation of Equation (4.274.27).
71 Similar approaches that use standard Epstein-Zin-Weil preferences are well documented in

related literature, e.g., Hansen and SingletonHansen and Singleton (19831983), CampbellCampbell (20032003), and YogoYogo (20062006).

113



ψ and γ sequentially. Alternatively, the moment matches listed in Equations (4.264.26)

and (4.294.29) can be combined to:

G+(ϑ̃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 Re

t +
1
T

T

∑
s=1
(Re

s−
1
T

T

∑
s=1

Re
s)ms(γ,ψ,β

fix,αfix,ρfix)

1
T

T

∑
s=1

ms(γ,ψ,βfix,αfix,ρfix)

[
−1 −ET (∆cvs) −ET (rb,s)

ET (∆cvs)
ψ2

ET (∆cvs∆cvs−2)
ψ2

ET (∆cvsrb,s−2)
ψ2

]×
⎡⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) −wb − 1
ψET (∆cvs)

ET (rb,s∆cvs−2) −wbET (∆cvs−2) − 1
ψET (∆cvs∆cvs−2)

ET (rb,srb,s−2) −wbET (rb,s−2) − 1
ψET (∆cvsrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.30)

where ϑ̃ = (γ,ψ,wb)′. The SMM-type estimates of the preference parameters are

then obtained by:
ˆ̃ϑ = arg min

ϑ̃∈Θ̃

G+(ϑ̃)′WG+(ϑ̃). (4.31)

I choose the weighting matrix W, such that the identification of ψ is ensured to work

through the IV-based moments in Equation (4.294.29):

W = [IN 0
0 106 × I2

] , (4.32)

where N denotes the number of test assets.

Due to the non-standard character of the estimation approach, it is not possible

to rely on standard asymptotic inference when trying to assess the precision of the

preference parameter estimates. Whilst this would still be possible for the first-step

estimates, meaning the fundamental macroeconomic and finance parameters, and

the parameters of the ACH-GP process, the first-step parameter uncertainty must

be accounted for when addressing the estimation precision of γ and ψ. For this

purpose, I propose using a mixture of different parametric bootstraps that allows the

computation of confidence intervals. This approach is detailed in Section C.5C.5 of the

appendix.

4.6 Caveats and how to deal with them

The estimation strategy proposed in this chapter of my dissertation faces some

caveats that require special attention. Some of these challenges are of a theoretical

nature and others of an econometric nature; some are disaster-related and other

problems stem from YogoYogo’s (20062006) original model. In the following, I will briefly
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outline these caveats and how I deal with them.

4.6.1 Estimation of ρ and α on simulated data

The constant elasticity of substitution ρ between the two consumption goods and

their weighting factor α are important features of the SDF in Equation (4.24.2). Because

their identification is non-trivial, YogoYogo (20062006) proposes further moment conditions for

this specific purpose. In the case of ρ, he argues in favor of a cointegrating relation

between ct − dt and pt, where lowercase letters denote logs and pt is the (log) price of

the durable good in units of the nondurable good, computed as the ratio of the price

index for personal consumption expenditures on durable goods to the price index for

personal consumption expenditures on nondurable goods and services. The elasticity

of substitution then occurs in the normalized cointegrating vector (1,−ρ)′.
The identification of α requires at least one further moment condition and for

this purpose, YogoYogo (20062006) uses the equality between the marginal rate of substitution

between the two consumption goods and the relative price of the durable good:

uDt
uCt

= Pt − (1 − δt)Et[mt+1Pt+1] with
uD
uC

= α

1 − α
(D
C

)
−1/ρ

. (4.33)

The problem that arises from these two identification approaches is that an

estimation of α and ρ in a disaster-including world would require the simulation of

a Pt series that accounts for disaster risk – which is not straightforward and would

need further assumptions. It may be possible to use the cointegrating relation for

this purpose but then the estimation of ρ based on that property would follow from

circular reasoning. Trying to identify these parameters from standard asset pricing

moment conditions (i.e., the pricing of (excess) returns) fails.7272

Due to the fact that the SDF reduces to the standard Epstein-Zin-Weil case

during destructive disasters, it may be possible to argue that the α and ρ parameters

that feature in the utility function when there are either no disasters at all or at least

no destructive ones, can be estimated from non-disastrous data. In this case, the

values could be estimated upfront and then be used throughout the different model

specifications and in the bootstraps; meaning that α and ρ will be held constant. For

ρ, this is easy as the identification strategy can be perfectly disentangled from the

other preference parameters. The same cannot be said for the α-identifying Equation

72 Meaning, there is a strong dependency on the starting values of the optimization.
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(4.334.33), however, as all preference parameters are included through mt+1.7373 It turns

out this obstacle can be circumvented by rewriting the conditions in Equation (4.334.33),

viz:
α

1 − α
(Dt

Ct
)
−1/ρ

= Pt − (1 − δt)Et(mt+1Pt+1)

= Pt (1 − (1 − δt)Et (mt+1
Pt+1

Pt
))

= Ptδt

Pt =
α

1 − α
(Dt

Ct
)
−1/ρ

δ−1
t .

(4.34)

One moment condition that is implied by Equation (4.344.34) is:

E (Pt) =
α

1 − α
E((Dt

Ct
)
−1/ρ

δ−1
t ) , (4.35)

from which α̂ can be obtained by replacing expectations by sample means of the non-

disastrous data and using the ρ̂ that results from the cointegration-based estimation.

The estimates obtained from this identification strategy are α̂ = 0.12 and ρ̂ = 0.75,

where α̂ differs strongly from YogoYogo’s (20062006) results, according to which it is in the

range of 0.8. Considering that α ∈ (0,1) and that both estimations were performed

using non-disastrous data, this result is indeed striking. It is, however, in line with

the findings of Borri and RagusaBorri and Ragusa (20172017), who obtain values between 0.11 and 0.14.7474

The estimate of the elasticity of substitution between the two consumption goods is

in the range of YogoYogo’s (20062006) values that vary – depending on the set of test assets

used – between 0.52 and 0.87. The question of whether ρ is larger or smaller than

1 is of some importance as it determines how the ratio of durable and nondurable

consumption goods is valued in the SDF. Because there are other studies that argue

in favor of ρ > 1 (e.g., Ogaki and ReinhartOgaki and Reinhart (19981998); Borri and RagusaBorri and Ragusa (20172017)), I also

calibrate ρ=1.25 in the empirical applications.

4.6.2 Potential non-stationarity of the stochastic discount factor

Another caveat arises from the ratio of the stock of the durable consumption good to

consumption of the nondurable good and services that is part of the SDF presented

73 YogoYogo (20062006) uses the constraints implied by Equation (4.334.33) in the form of

E ((1 − uDt
PtuCt

− (1 − δ)mt+1
Pt+1
Pt

)zt) = 0, where zt denotes a vector of instrumental variables.
74 The authors try to replicate the results from YogoYogo’s (20062006) study and argue that the values

reported in the original paper were caused by a failed optimization.
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in Equation (4.24.2): If the long-run growth rates of C and D are not identical, this

will cause a non-stationary SDF. To outline the mechanisms behind this problem,

reconsider the way in which the D-C ratio affects mt+1

mt+1 =
⎡⎢⎢⎢⎢⎣
β (Ct+1

Ct
)
− 1
ψ

(v(Dt+1/Ct+1)
v(Dt/Ct)

)
1
ρ
− 1
ψ

R
θ−1
θ
a,t+1

⎤⎥⎥⎥⎥⎦

θ

,

where v (D
C

) =
⎡⎢⎢⎢⎢⎣
1 − α + α(D

C
)
ρ−1
ρ
⎤⎥⎥⎥⎥⎦

ρ
ρ−1

(4.36)

and assume that the average long-run growth rate of D (πD) is larger than that of C

(πC), such that limj→+∞ (DjCj ) = +∞.

If we further assume that the elasticity of substitution between the two goods is

smaller than unity, this implies:

lim
j→+∞

v (
Dj

Cj
) = [1 − α]

ρ
ρ−1

and thus lim
j→+∞

(
v(Dj+1/Cj+1)
v(Dj/Cj)

)
1
ρ
− 1
ψ

= 1,

(4.37)

meaning that YogoYogo’s (20062006) SDF converges towards the standard Epstein-Zin-Weil

case.

If the elasticity of substitution between the two goods is larger than unity, a

similar picture arises:

lim
j→+∞

v (
Dj

Cj
) = +∞

and lim
j→+∞

(
v(Dj+1/Cj+1)
v(Dj/Cj)

)
1
ρ
− 1
ψ

= (πD
πC

)
1
ρ
− 1
ψ

.

(4.38)

Again, this signifies the SDF reduces to a scaled version of standard recursive

preferences.

Consequently, the moments of the SDF depend on t and the process is not

stationary.7575 This caveat is caused by the model specification and is not a result

of allowing for rare disaster risk. In fact, the assumption of destructive disasters,

75 Consider the variance of the SDF: For small j and ρ < 1, we have var(ms+1) =

var(βθ (Cs+1
Cs

)
− θψ (v(Ds+1/Cs+1)

v(Ds/Cs)
)
θ
ρ−

θ
ψ
Rθ−1a,s+1), but limj→+∞ var(ms+1)=var(βθ (Cs+1

Cs
)
− θψ

Rθ−1a,s+1).
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during which the stock of the durable consumption good is wiped out, helps resolve

the problem as the D-C ratio is temporarily returned to zero. There may still be

long periods during which the D-C ratio increases and the volatility of the SDF

is reduced but when allowing for destructive disasters, the timing, frequency, and

length of these periods is random and does not depend on t.

4.6.3 bC and bE ∈ [0,1] are not ensured

Different growth rates of C and E (and thus D) also can hamper the splitting of bt+1

into bC,t+1 and bE,t+1, as described in Equation (4.184.18). The reasoning is as follows:

Assume that period t + 1 is a disaster period and that Et+1 ≫ Ct+1 and ωt+1 = 0,

meaning bE,t+1 = 0 and the overall consumption contraction bt+1 is entirely caused

by bC,t+1 > 0; in such a scenario, it would be likely for Equation (4.184.18) to result in

bC,t+1 > 1. Such a contraction factor is, however, not meaningful from theoretical

considerations: It cannot get worse than consuming nothing (bC,t+1 = 1).

To circumvent this problem, I only split bt+1 using ωt+1 if it is ensured that any

value of ωt+1 would yield bC,t+1 and bE,t+1 ∈ [0, 1]. The constraints on bt+1 implied by

this approach, are:7676

bt+1 ≤ 1 − Et
Et +Ct

exp(g∗E,t+1)
exp(g∗t+1)

and bt+1 ≤ 1 − Ct
Et +Ct

exp(g∗C,t+1)
exp(g∗t+1)

.

(4.39)

If the inequalities in Equation (4.394.39) hold, I draw an ωt+1 and proceed as described

in Section 4.3.24.3.2; if they are violated, I resort to bt+1 = bC,t+1 = bE,t+1, instead.

4.6.4 Estimated correlation matrix may not be positive semidefinite

The moment matches listed in Equation (4.194.19) identify the correlations between the

innovations in the log consumption growth, dividend growth, and log T-bill return

series. However, it is not ensured that combining these thus identified individual

estimates to the estimated correlation matrix indeed results in a positive semidefinite

object. In order to overcome this caveat, I choose to take the estimated (potentially)

not positive semidefinite matrix Â and find the closest proper correlation matrix B.

There is a substantial branch of literature in mathematics that deals with finding

the closest correlation matrix to some arbitrary square matrix. However, the definition

76 See Appendix C.2C.2 for a detailed derivation of Equation (4.394.39).
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of closeness is not a trivial issue and there are multiple approaches that differ in

their manner of weighting the distances between the single elements of Â and B. I

propose to choose B as the (n × n) correlation matrix that minimizes the Frobenius

norm of Â −B:

∥Â −B∥
F
=
¿
ÁÁÀ

n

∑
i=1

n

∑
j=1

∣âij − bij ∣2. (4.40)

Both Â and B are real matrices, so B can be understood as the proper correlation

matrix whose individual entries are closest to those of Â in the least squares sense.

As the minimization of the sum of squared residuals is an often-applied concept in

economics, the Frobenius norm is a natural choice for the problem at hand. However,

the computation of B is challenging. For its purpose, I use an algorithm developed by

Qi and SunQi and Sun (20062006), who propose a quadratically convergent Newton method based

on theoretical considerations by HighamHigham (19881988).7777

4.7 Estimation results

Using the estimation approach outlined in Sections 4.34.3 and 4.5.14.5.1 on the data presented

in Section 4.44.4 allows the simulation of disaster-including consumption and return

series, which facilitates the SMM estimation proposed in Section 4.5.24.5.2. Section

4.7.14.7.1 presents the first-step fundamental macroeconomic and financial parameter

estimates used for this purpose, as well as the estimation results for various ACH-GP

specifications. Section 4.7.24.7.2 contains the estimates of the preference parameters and

Section 4.7.34.7.3 provides the results for a variety of robustness checks.

4.7.1 First-step estimation results

Table 2727 contains the estimates of the fundamental macroeconomic and financial

parameters that result from combining the data presented in Section 4.44.4 with the

moment conditions in Equation (4.194.19). Standard errors are reported in parentheses.

The parameter estimates in Panels A and B are plausible with respect to their

signs and magnitude. However, the estimation precision is mixed. Whilst some

parameters feature small standard errors, other estimates are quite imprecise (e.g.,

φ̂i and β̂z,i). There may be alternative identification approaches that would allow

improvement of the overall first-step estimation precision; however, one should be

realistic regarding the limited informational content of the available data. The series

77 I thank the authors for making their code available.
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are not particularly long and – in the case of the dividend growth processes – even

had to be transformed to make the estimation feasible in the first place. So, yes,

some of the estimates are rather imprecise, but at least that imprecision is accounted

for when assessing the precision of the second-step preference parameter estimates.

Table 27: First-step estimates: fundamental macroeconomic and financial data
This table contains the estimates of the fundamental macroeconomic and financial parameters. Panel
A reports the parametrization of the log consumption growth, T-bill return, and depreciation rate
processes. Panel B contains asset-specific parameter estimates that describe the log price-dividend
ratio and dividend growth processes for the return on the market portfolio (i =m) and the returns
on the ten size-sorted portfolios (i = 1, . . . , 10). The estimated correlations between the idiosyncratic
innovations in log consumption growth, dividend growth, and the T-bill return are presented in
Panel C. These are the individual correlations for which the closest correlation matrix is computed
using Qi and SunQi and Sun’s (20062006) algorithm. Correlations that are statistically significantly different from
0 on a 5% significance level are reported in bold.

Panel A: Basic macroeconomic and financial parameters

µ̂C µ̂E σ̂C σ̂E ϕ̂e µ̂b δ̂b φ̂b σ̂b â β̂δ σ̂ε
0.0048 0.0095 0.0049 0.0366 0.0010 0.0002 0.9039 0.0501 0.0016 0.0158 0.6995 0.0016

(0.0003) (0.0022) (0.0008) (0.0033) (0.0029) (0.0002) (0.1042) (0.1870) (0.0008) (0.0154) (0.2932) (0.0007)

Panel B: Asset-specific parameters

i m 1 2 3 4 5 6 7 8 9 10
µ̂d,i 0.0056 0.0111 0.0069 0.0087 0.0075 0.0084 0.0080 0.0076 0.0073 0.0066 0.0045

(0.0014) (0.0039) (0.0041) (0.0040) (0.0032) (0.0034) (0.0029) (0.0022) (0.0033) (0.0020) (0.0016)

φ̂i 1.32 53.23 55.46 46.04 30.38 44.46 33.90 26.66 23.36 20.14 3.30
(8.94) (142.79) (130.02) (109.16) (69.15) (98.90) (78.08) (62.11) (59.33) (49.42) (11.84)

σ̂d,i 0.0220 0.0377 0.0405 0.0470 0.0439 0.0341 0.0349 0.0247 0.0491 0.0265 0.0252
(0.0020) (0.1118) (0.1236) (0.0781) (0.0458) (0.1300) (0.0669) (0.0560) (0.0216) (0.0247) (0.0032)

µ̂z,i 0.0606 0.0849 0.0704 0.0651 0.0520 0.0488 0.0527 0.0555 0.0694 0.0665 0.0558
(0.2599) (0.2519) (0.2256) (0.2204) (0.2242) (0.2277) (0.2153) (0.2147) (0.2250) (0.2051) (0.2834)

ρ̂z,i 0.9827 0.9798 0.9824 0.9832 0.9863 0.9870 0.9857 0.9848 0.9806 0.9810 0.9840
(0.0742) (0.0599) (0.0566) (0.0568) (0.0590) (0.0609) (0.0585) (0.0588) (0.0630) (0.0588) (0.0814)

β̂z,i 79.66 109.48 121.02 120.65 106.95 106.38 100.40 99.81 103.48 93.25 78.20
(382.90) (422.34) (498.84) (509.59) (498.59) (511.64) (457.29) (443.15) (425.75) (379.65) (398.72)

Panel C: Correlations

u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 um ηb ηE
ηC 0.09 -0.05 0.03 -0.15 -0.19 -0.28 -0.05 -0.12 -0.08 -0.23 0.10 0.42 0.39
ηE 0.20 0.02 0.06 0.03 -0.11 -0.02 0.08 -0.03 0.03 -0.03 0.16 0.27
ηb -0.13 -0.15 -0.08 -0.13 -0.23 -0.23 -0.08 -0.21 0.05 -0.56 -0.15
um 0.86 0.63 0.40 0.52 0.53 0.72 0.46 0.46 0.62 0.61
u1 0.24 -0.49 -0.16 -0.48 -0.50 -0.67 0.06 -0.30 -0.46
u2 0.16 -0.07 -0.31 -0.72 -0.30 -0.24 0.05 0.05
u3 0.14 -0.09 0.03 -0.42 -0.20 -0.10 -0.19
u4 0.11 0.12 0.11 -0.03 -0.03 -0.22
u5 0.31 -0.12 -0.17 -0.65 -0.16
u6 0.19 -0.02 -0.11 -0.38
u7 0.07 -0.08 -0.19
u8 0.11 -0.18
u9 0.24

The correlations between the innovations of the log consumption growth, dividend

growth, and log T-bill return processes often display unexpected signs and generally

are not statistically significant. However, it turns out it is important to include them

in the estimation, because setting them to zero and thus enforcing that all innovations

are independent, imposes a severe restriction on the model and has negative effects
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on the plausibility of the parameter estimates depicted in Panels A and B.

Table 2828 reports the parameter estimates of the GP distribution (separately

for destructive and non-destructive disasters) and estimation results for different

ACH model specifications that vary in terms of their parsimony. The ACH1-GP

model corresponds to the specification in Equation (4.154.15). It is the most heavily

parametrized of the considered models and accounts for the effects of past durations

between and the lengths of disasters, as well as the aggregate size of the last disaster

and the magnitude of the contraction in the preceding disaster period. All other

disaster processes that I consider are nested in the ACH1-GP model. For example,

Table 28: Estimation results for the ACH-GP model
This table reports the ACH-GP maximum likelihood estimates. Here, L is the log-likelihood value at
the maximum; AIC = 2k−2 ln(L) and SBC = −2 lnL+k ln(T ), where k is the number of ACH model
parameters, denote the Akaike and Schwarz-Bayes information criteria, respectively. Furthermore,
LR gives the p-values (in percent) of the likelihood ratio tests of the null hypothesis that the
parameter restrictions implied by the ACH0 specification are correct. The respective alternative
is the ACH1, the ACH2, the ACH3, or the ACH4 model. σGP denotes the scale parameter of a
generalized pareto distribution and ξ is its shape parameter. Parameter estimates are reported
for GP distributions estimated on contractions that belong to destructive disasters (dD = 1) and
on those that belong to non-destructive disasters (dD = 0). The estimation results are based
on the updated country panel data originally assembled by Barro and UrsúaBarro and Ursúa (20082008), using the
concatenated event data representation described in Section 4.44.4 and q = 0.145. Asymptotic standard
errors are reported in parentheses.

σGP ξ π π̃ ᾰ α̃ δ̆ δ̃ L AIC SBC LR

ACH0 178.3 1.201 -790.3 1584.7 1600.1
(18.8) (0.023)

ACH4 64.9 1.201 441.1 -787.0 1580.0 1603.2 <1.0
(49.3) (0.023) (211.5)

ACH3 64.9 1.214 441.1 -0.375 -786.8 1581.5 1612.5 2.9
(49.3) (0.032) (211.5) (0.537)

ACH2 198.7 1.221 -0.145 -0.002 -789.9 1587.7 1618.7 63.5
(30.9) (0.052) (0.153) (0.004)

ACH1 71.4 1.237 -0.030 -0.002 431.0 -0.399 -786.6 1585.3 1631.7 11.8
(55.0) (0.058) (0.161) (0.004) (120.4) (0.542)

GP (dD=1) 0.015 0.708
(0.002) (0.097)

GP (dD=0) 0.010 0.736
(0.001) (0.081)

the ACH2-GP model sets δ̆ = δ̃ = 0 and thus focuses on the duration of and between

disasters, whilst the ACH3-GP model only allows for the aggregate size of the last

disaster and the preceding disaster period to affect the hazard rate by setting ᾰ = α̃ = 0.

In the ACH4-GP model, ᾰ = α̃ = δ̃ = 0 and only the aggregate size of the last disaster

is included in the estimation. The most parsimonious specification is given by the

ACH0-GP model, in which ᾰ = α̃ = δ̆ = δ̃ = 0 and the hazard rate is solely determined

by the constants π and π̃, meaning the conditional disaster probability of the next
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period only depends on whether the current period is a disaster period or not.

To compare the empirical performance of the proposed ACH specifications, Table

2828 also reports the Akaike (AIC) and Schwarz-Bayes (SBC) information criteria,

and the p-values of a likelihood-ratio statistic that tests whether the constraints

implied by the ACH0 model can be rejected when compared to any of the other

specifications. I find that ACH0 is preferred by the SBC, whilst ACH4 is the best

choice according to AIC. Furthermore, the ACH4 is the only specification that rejects

the ACH0-implied constraints on a significance level of 1%. For these reasons, I will

focus on the ACH0-GP in the second estimation step. Its estimates π̂ = 178.3 and
ˆ̃π = 1.2 imply that the quarterly probability of entering a disaster is 0.56%, with a

quarterly probability of remaining in a disaster of 83%. Section 4.7.34.7.3 also contains a

robustness check which considers the ACH4-GP instead.

Figure 18: Distribution of weighting factor ωt
This figure depicts the estimated distribution of the weighting factor ωt that is described in Equation
(4.174.17). The probabilities of the corner solutions ωt = 0 and ωt = 1 are indicated in red. The estimates

and their (bootstrapped) standard errors are: P̂(ωt=0) = 0.19 (0.03), P̂(ωt=1) = 0.16 (0.03), ê = 1.15

(0.16), and f̂ = 1.68 (0.24).
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Figure 1818 depicts the estimated distribution of the disaster weighting factor

ωt. According to this distribution, there is a 19% probability of the consumption

contraction being entirely caused by a drop in consumption of the nondurable good;

the probability of a pure durable consumption disaster is 16%.

The fitted beta distribution accounts for the distribution of the weighting factor
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for those cases in which both the durable and the nondurable good contract during

the disaster. The shape of the density reveals that most of the probability mass

is assigned to smaller weighting factors, which (keeping all else equal) implies an

increased importance of the nondurable good in the decomposition of the consumption

disaster.

4.7.2 Second-step estimation results

Table 2929 presents the SMM-estimates of the C-CAPM preference parameters. The

estimations are performed using disaster-including consumption growth and return

series that are simulated based on the ACH0-GP disaster process, a series length

T =107, and K=1k bootstrap replications.

Table 29: Second-step: SMM estimates of the C-CAPM preference parameters
This table reports the estimates of the RRA coefficient γ and the IES ψ using the moment matches in
Equation (4.304.30), T = 107, and the weighting matrix in Equation (4.324.32). The second-step SMM-type
estimates are based on the first-step ACH0-PL estimates, reported in Table 2828. The numbers in
brackets are the upper and lower bounds of the 95% confidence intervals computed as the 0.025 and
0.975 quantiles of the bootstrap distribution (percentile method). The table also reports the p-values
(in percent) of Hansen’s (19821982) J-statistic (see Equation (4.414.41)) and root mean squared errors (R),

computed according to Equation (4.424.42). p̂ = 1
K ∑

K
k=1 1(γ̂(k) > 1/ψ̂(k)) denotes the fraction of the

bootstrap replications in which a preference for early resolution of uncertainty is implied. Panels A
sets the elasticity of substitution between the two goods to 0.75; in Panel B, ρ = 1.25. Both panels
use α = 0.12 and break down the results by the set of test assets, namely, the excess returns of the
market portfolio (mkt) and the ten size-sorted portfolios (size dec).

Panel A: α = 0.12 and ρ = 0.75
mkt size dec

γ̂ ψ̂ p̂ γ̂ ψ̂ J R p̂
1.31 2.03 0.97 1.06 1.40 1.7 94 0.99

[0.87 42.63] [0.72 4.41] [1.00 12.84] [0.65 4.41]

Panel B: α = 0.12 and ρ = 1.25
mkt size dec

γ̂ ψ̂ p̂ γ̂ ψ̂ J R p̂
1.31 2.00 0.93 1.04 1.20 1.7 94 0.95

[-0.70 31.71] [0.64 4.96] [1.00 9.88] [0.41 5.21]

Table 2929 contains the estimates of the RRA coefficients and the IES, together

with their respective 95% confidence bounds, which are computed according to the

percentile method as the 0.025 and 0.975 quantiles of the bootstrap distribution. It

can be seen from Figure 1919 that the distribution of γ̂ is strongly skewed to the right.

In light of this finding, I choose not to report bootstrap standard errors, because

they do not qualify as an appropriate measure of estimation precision.
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Figure 19: Kernel density estimates of bootstrapped preference parameters
This figure illustrates the kernel density estimates of the bootstrapped RRA and IES estimates that
result from using the model specification in Panel A of Table 2929 and the excess return of the market
portfolio as test assets. Panel (a) depicts the kernel density estimate for γ̂ and Panel (b) zooms into
the interval that is generally assumed to make up the range of economically plausible RRA values.
Panel (c) refers to ψ̂. Panel (d) contains the kernel density estimate of γ̂ − ψ̂−1. The number of
bootstrap replications is K = 1k and I use a Gaussian kernel with a bandwidth as suggested by
SilvermanSilverman’s (19861986) rule of thumb.
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Furthermore, Table 2929 reports p-values of HansenHansen’s (19821982) J-statistic,

J = G(ϑ̂)′Âvar(G[ϑ̂])+G(ϑ̂), (4.41)

which – under the null hypothesis that the financial moment restrictions are correct

– is approximately χ2(N − 1), where N is the number of test assets used for the

estimation and + denotes the Moore-Penrose inverse. The root mean squared errors

(RMSEs) are computed as:

R =
√

1

N
G(ϑ̂)′G(ϑ̂) × 104. (4.42)
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When the estimation of γ is exclusively based on the excess return of the market

portfolio (N = 1), the moments in Equation (4.304.30) are exactly matched, thus setting

R = 0 and leaving no room for testing overidentifying restrictions using the J-statistic.

Using the bootstrap replications, Table 2929 also reports:

p̂ = 1

K

K

∑
k=1

1(γ̂(k) > 1

ψ̂(k)
) , (4.43)

which is the relative frequency with which γ̂ exceeds ψ̂−1 such that preference for

early resolution of uncertainty is implied.

Table 2929 shows that both choices for the elasticity of substitution between the

two goods, ρ, and both sets of test assets yield economically plausible point estimates

of the RRA coefficient and the IES. The point estimates for γ range between 1.04

and 1.31 and the IES estimates lie between 1.20 and 2.03. The confidence interval of

ψ is reasonably narrow and covers values of a sensible size.

For the RRA coefficient γ, the confidence interval is rather wide and its bounds

are sometimes implausible. The kernel density estimates in Figure 1919 reveal, however,

that the vast majority of the estimates lies in the interval (0, 5], which is considered

economically sensible. When using ρ = 0.75 and the market portfolio as the test

asset, the fraction of estimates that fall in this range is 87.5%; it is even 94.9% when

using the ten size-sorted portfolios. Choosing 10 to be the upper plausibility bound,

the fractions change to 88.3% and 96.9%, respectively. For all choices of ρ and test

assets, a preference for early resolution of uncertainty is implied in more than 90%

of the replications.

When using the size-sorted portfolios as test assets, the p-value of the J-statistic

and the RMSE are virtually unaffected by the choice of ρ as can be seen by comparing

the results in Panels A and B. In both cases, the restrictions imposed by the asset

pricing moment matches cannot be rejected on the 1% significance level, but could

be on 5%.

The parameter estimates obtained in this C-CAPM that explicitly accounts for

rare disaster risk and two different consumption goods are strikingly different from

those reported by YogoYogo (20062006). In his study, ψ̂ ≤ 0.0024 and γ̂ exceeds 170 for all

considered sets of test assets. These parameter estimates are far away from the

ranges considered economically plausible; and also at odds with a preference for early

resolution of uncertainty.
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4.7.3 Robustness checks

The estimation results reported in the previous section indicate that plausible

estimates of the preference parameters can be obtained once rare disaster risk is

accounted for in YogoYogo’s (20062006) model. Due to the fact that a variety of assumptions

had to be made to facilitate such an estimation, it should be checked how crucial

these assumptions are for the results. In this section, robustness is checked with

respect to (1) the ACH-GP specification, (2) synchronicity of consumption and

return disasters, (3) computation of the mean cay-variable in Equation (4.124.12), (4)

the moment matches used to identify the preference parameters, (5) the choice of

the SDF (YogoYogo (20062006) versus standard Epstein-Zin-Weil), and (6) the differentiation

between destructive and non-destructive disasters. Table 3030 contains the preference

parameter estimates and 95% confidence bounds that result from performing these

robustness checks. All panels labeled A use the market portfolio as test asset, while

those labeled B refer to the size-sorted portfolios, instead.

Chosen ACH-GP specification

Panels A1 and B1 contain the parameter estimates of the RRA coefficient and the

IES that are obtained when using the ACH4-GP to model the disaster process. The

plausibility of the preference parameter point estimates is not affected by changing

the MPP specification. Compared to the results reported in Table 2929, the estimates

vary slightly, but there is no clear indication for a systematic direction in which they

change: When considering the market portfolio as test asset, the point estimates of

ψ and γ decrease slightly though there is barely a difference regarding the confidence

bounds. When considering the size-sorted portfolios, estimates increase slightly

and so do the upper bounds of the confidence interval. Furthermore, the reported

p̂-statistics, and thus the implication regarding the preferred timing of uncertainty

resolution, is robust with respect to the ACH specification. Using the ACH4-GP,

the computed RMSEs are more than twice the size of their ACH0 counterparts,

meaning the additional variation that enters through the more variable disaster

probability poses a challenge to the model fit. This can also be seen from the

p-value of the J-statistic, which no longer allows not rejecting the hypothesis that

the constraints implied by the financial moments are correct on a 1% significance level.

Synchronicity of consumption and return disasters

The model setup defined in Section 4.24.2 assumes that every consumption disaster

is accompanied by a return contraction. This synchronicity follows from the zi,t+1 and
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Table 30: Robustness checks: SMM estimates of the C-CAPM preference parameters
This table reports the estimates of the RRA coefficient γ and the IES ψ that result from the
robustness checks that are described in Section 4.7.34.7.3. The estimates in Panel A are obtained when
using the excess return of the market portfolio as test asset; Panel B uses the excess returns of
the ten size-sorted portfolios. Panels A1 and B1 rely on the first-step ACH4-GP estimates; in
Panels A2 and B2, returns do not contract during every consumption disaster. The mean of the
cay-variable is not adapted by the average contraction size in Panels A3 and B3. Panels A4 and
B4 use the conventional representation of the basic asset pricing equation and entirely simulated
consumption and return series. The estimates in Panels A5 and B5 are obtained from using standard
Epstein-Zin-Weil preferences without explicitly accounting for consumption of the durable good.
Panels A6 and B6 do not allow for a destruction of the stock of the durable good during some
disasters. Other estimation settings and the reported statistics correspond to Table 2929.

Panel A: excess return of the market portfolio (mkt)

Panel A1: ACH4 Panel A2: partial contractions

γ̂ ψ̂ p̂ γ̂ ψ̂ p̂
ρ = 0.75 1.25 1.52 0.97 1.51 1.76 0.94

[0.85 42.96] [0.78 4.64] [-1.35 50.42] [0.74 4.45]
ρ = 1.25 1.20 1.36 0.94 1.31 1.35 0.91

[-0.53 30.22] [0.63 5.39] [-1.35 33.61] [0.61 4.96]

Panel A3: cay w/o disasters Panel A4: standard pricing equation

γ̂ ψ̂ p̂ γ̂ ψ̂ p̂
ρ = 0.75 1.31 2.03 0.95 1.43 2.03 0.96

[0.74 43.57] [0.70 4.30] [0.94 1.82] [0.69 4.37]
ρ = 1.25 1.31 2.00 0.94 1.42 2.00 0.91

[0.30 32.25] [0.64 4.88] [0.80 2.02] [0.61 4.30]

Panel A5: standard EZW-preferences Panel A6: no destruction of D

γ̂ ψ̂ p̂ γ̂ ψ̂ p̂
2.60 1.65 0.68 2.08 0.43 0.00

[-3.33 9.50] [0.30 4.25] [2.56 4.46] [0.01 0.05]

Panel B: excess returns of the ten size-sorted portfolios (size dec)

Panel B1: ACH4 Panel B2: partial contractions

γ̂ ψ̂ p̂ J R γ̂ ψ̂ p̂ J R
ρ = 0.75 1.29 1.52 1.00 0.5 215 1.00 1.40 0.98 1.3 244

[1.01 18.65] [0.72 4.78] [1.00 16.80] [0.64 4.45]
ρ = 1.25 1.23 1.36 0.97 0.4 216 1.00 1.20 0.95 1.3 244

[1.01 11.28] [0.42 5.39] [1.00 17.02] [0.41 5.02]

Panel B3: cay w/o disasters Panel B4: standard pricing equation

γ̂ ψ̂ p̂ J R γ̂ ψ̂ p̂ J R
ρ = 0.75 1.06 1.40 0.99 1.7 94 1.07 1.40 0.99 0.0 261

[1.00 19.05] [0.67 4.57] [1.00 1.73] [0.66 4.47]
ρ = 1.25 1.04 1.20 0.95 1.7 94 1.04 1.20 0.94 0.0 261

[1.01 13.97] [0.41 4.94] [1.00 2.29] [0.40 4.97]

Panel B5: standard EZW-preferences Panel B6: no destruction of D

γ̂ ψ̂ p̂ J R γ̂ ψ̂ p̂ J R
1.42 1.02 0.66 0.2 508 1.80 0.42 0.01 0.2 26

[-3.76 5.65] [0.29 4.34] [-12.41 6.21] [0.01 0.05]

gd,i,t+1 specifications in Equation (4.94.9) and it could be argued the correlation between

consumption and returns is thus artificially increased. In order to check whether

the second-stage parameter estimates are driven by this assumption, I perform a

robustness check in which log dividend growth and the log price-dividend ratio are

only affected by the consumption disaster if the respective disaster entails a partial
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government default:

gd,i,t+1 = µd,i + φixt + ln(1 − bt+1)db,t+1 + σd,iui,t+1,

zi,t+1 = µz,i + βz,ixt+1 + ln(1 − bt+1)db,t+1 + ρz,izi,t.
(4.44)

Panels A2 and B2 contain the parameter estimates that result from this robustness

check. Again, the point estimates remain plausible and are not much affected by the

reduced synchronicity of consumption and return disasters; the same holds true for

the fraction of the bootstrap replications that implies a preference for early resolution

of uncertainty. However, the 95% confidence interval of γ widens compared to the

results of the base study and the RMSEs increase. The p-values of the J-statistic

are slightly reduced but still lead to a non-rejection of the model-implied constraints

on a 1% significance level.

Computation of the mean cay-variable

Panels A3 and B3 provide the estimation results for a robustness check that com-

putes the time series mean of the cay-variable entirely on the non-disaster-including

series that are provided by Lettau and LudvigsonLettau and Ludvigson (20012001). As this is only a minor

adjustment, one would not expect to see a strong reaction of the second-step esti-

mation results, and indeed, the parameter estimates, confidence bounds, and test

statistics are robust with respect to this change in the mean of the cay-variable.

Second-step moment matches

A further robustness check entails estimating the preference parameters using

the basic asset pricing equation and entirely simulated series that potentially include

disasters:

E [ms(γ,ψ, βfix, αfix, ρfix)Re
s] = 0, (4.45)

where the theoretical moment will be approximated by sample means of the simulated

series for the estimation purpose. Using the constraints in Equation (4.454.45) in

combination with the IES-identifying moment conditions in Equation (4.294.29), yields

G+(ϑ̃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T

T

∑
s=1

ms(γ,ψ, βfix, αfix, ρfix)Re
s

⎡⎢⎢⎢⎢⎣

−1 −ET (∆cvs) −ET (rb,s)
ET (∆cvs)

ψ2
ET (∆cvs∆cvs−2)

ψ2

ET (∆cvsrb,s−2)
ψ2

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) −wb − 1
ψET (∆cvs)

ET (rb,s∆cvs−2) −wbET (∆cvs−2) − 1
ψET (∆cvs∆cvs−2)

ET (rb,srb,s−2) −wbET (rb,s−2) − 1
ψET (∆cvsrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.46)
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which can be used in the objective function in Equation (4.324.32). Panels A4 and B4

in Table 3030 contain the results of this estimation strategy. It turns out the point

estimates are close to their counterparts from the base analysis, but the confidence

interval of γ is pronouncedly more narrow. The p̂-statistics are basically not affected

by the change in the estimation strategy. However, the RMSEs increase and the

p-value of the J-statistic decreases, such that the null hypothesis can be rejected on

any conventional significance level.

Stochastic discount factor

The results in Panels A5 and B5 of Table 3030 belong to robustness checks that used

the standard Epstein-Zin-Weil SDF without allowing for a differentiation between

durable and nondurable goods, hence:

mt+1 = βθ (
Ct+1

Ct
)
− θ
ψ

Rθ−1
a,t+1, where θ = 1 − γ

1 − 1
ψ

. (4.47)

The point estimates of γ and ψ reveal the results do not crucially depend on differ-

entiating between the two goods in the SDF. The confidence interval of γ gets more

narrow, however, now its lower bound is decidedly smaller than 0. Furthermore, the

p-value of the J-statistic shrinks and allows the rejection of the null hypothesis on all

conventional significance levels, and the RMSE is reduced. This is the first robustness

check, in which results in a pronounced reaction of p̂: In this model specification,

a preference for early resolution of uncertainty is only implied in about 68% of the

bootstrap replications.

Destructive and non-destructive disasters

The final robustness check, the results of which are reported in Panels A6 and

B6, considers an economy in which there are no destructive disasters. As described

in Section 4.6.24.6.2, it follows that the D/C-ratio increases. Estimates are reported

for ρ=0.75. This is the only robustness check that results in point estimates of

the IES that are smaller than 1. It is furthermore striking that the bootstrapped

confidence bounds are even smaller than these point estimates (for the market

portfolio: ψ̂ = 0.43 with 95% confidence bounds 0.01 and 0.05). The RRA estimate

is plausible and precise when using the market portfolio as test asset, but the lower

confidence bound is pronouncedly negative when using the size-sorted portfolios,

instead. A preference for early resolution of uncertainty is implied in maximally 1%

of the bootstrap replications and the p-value of the J-statistic allows the rejection of

the null hypothesis on all conventional significance levels, whilst the small RMSE
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indicates a good model fit.

Overall, the results presented in Table 2929 appear to be robust with respect to the

assumptions made regarding the disaster process, the behavior of consumption and

financial series during disasters, as well as with respect to the SDF and the moment

matches. The assumption of destructive disasters is apparently important for the

outcome of the estimation. However, even if a complete destruction of the stock of

the durable good is not accounted for by the model, the RRA estimates still remain

in a plausible range, and, though ψ̂ is decidedly smaller than unity, this is not an

uncommon result in other studies that try to estimate the IES.

4.8 Discussion and conclusion

This is the first study that accounts for two consumption goods in the context of

asset pricing with rare disaster risk. I propose a framework that draws on different

strands of asset pricing literature, such as the seminal contributions by BarroBarro (20062006),

Bansal and YaronBansal and Yaron (20042004), GabaixGabaix (20122012), and YogoYogo (20062006), to link multi-period

consumption disasters transparently to return contractions, and thus to facilitate

a simulation-based estimation of a disaster-including C-CAPM. For this purpose, I

assume the disaster process can be modeled using a discrete-time MPP, in which the

duration of and between disasters is determined by autoregressive conditional hazard

models, and the size of the contractions follows a generalized pareto distribution. Some

disasters are accompanied by a destruction of the stock of the durable consumption

good or a partial government default. Different datasets must be used to estimate the

parameters of the disaster process: a cross-country consumption dataset facilitates

the estimation of the MPP parameters and an assortment of international business

cycle dates allows the study of how contractions in the durable and nondurable good

contribute to overall consumption disasters.

The results show that asset pricing models that account for different consumption

goods, such as YogoYogo’s (20062006) model, can explain the high U.S. equity premia with

plausible values of the IES and RRA preference parameters once the possibility of

unlikely but severe consumption contractions is accounted for. The estimates of the

RRA coefficient and the IES are plausible and so is the implication that investors

have a preference for an early resolution of uncertainty. As indicated by the 95%

bootstrap confidence bounds, the IES estimates are even quite precise. The bootstrap

distribution of the RRA coefficient is spread more widely; however, closer analysis

reveals the vast majority of bootstrap estimates lie indeed in the (0,5] interval, which
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is generally considered to describe the range of plausible risk aversion estimates.

Of course, assumptions must be made in order to account for the risk of rare

disasters. However, far-reaching robustness checks are performed to question these

assumptions and assess their importance for the estimation results. These robustness

checks entail the use of an alternative specification of the disaster process, a reduced

correlation between consumption and return disasters, different moment conditions to

identify the preference parameters, the application of standard recursive preferences

that do not differentiate between different types of goods, and the assumption that

the stock of the durable good cannot be entirely destroyed during consumption

disasters. It turns out that only the last assumption has a pronounced effect on

the estimation results – but even then, the plausibility of the RRA estimates is not

affected.

Consequently, this chapter extends previous literature from two angles. It con-

tributes to the set of rare disaster studies by proposing a simulation-based strategy

that enables the estimation of the preference parameters of a two consumption good

C-CAPM. Thereby, it not only considers a new SDF specification but furthermore

addresses the question how consumption of the durable and the nondurable good are

affected by disaster risk. The study also adds to the literature that contemplates

asset pricing models that differentiate between different types of consumption by

showing that this class of models can explain the high U.S. excess returns at plausible

preference parameters once rare disaster risk is adequately accounted for.
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C Appendix

C.1 Campbell and ShillerCampbell and Shiller’s (19881988) return representation

Equation (1) in Campbell and ShillerCampbell and Shiller (19881988) states that the realized log gross return

on a portfolio i that was held from the beginning of t to the beginning of t + 1 can

be written as:

ri,t = ln(Pi,t+1 +Di,t) − ln(Pi,t), (C.1)

where Pi,t denotes the price of the portfolio at the beginning of period t and Di,t
refers to the real dividend paid on the portfolio during period t. Rewriting Equation

(C.1C.1) as:

ri,t = ln(Pi,t +Di,t−1) +∆ ln(Pi,t+1 +Di,t) − ln(Pi,t) (C.2)

allows a first-order Taylor expansion around ∆ ln(Pi,t+1 +Di,t), evaluated at Pi,t+1 +
Di,t = Pi,t +Di,t−1:

∆ ln(Pi,t+1 +Di,t) = ln(
Pi,t+1 +Di,t
Pi,t +Di,t−1

)

≈ ln (
Pi,t+1 +Di,t
Pi,t +Di,t−1

)∣
Pi,t+1+Di,t=Pi,t+Di,t−1

+ 1

Pi,t+1 +Dt
∣
Pi,t+1+Di,t=Pi,t+Di,t−1

(Pi,t+1 − Pi,t +Di,t −Di,t−1)

= 1

Pt +Di,t−1

(Pi,t+1 − Pi,t +Di,t −Di,t−1)

=
Pi,t+1 − Pi,t
Pt +Di,t−1

+
Di,t −Di,t−1

Pt +Di,t−1

.

(C.3)

Furthermore, Campbell and ShillerCampbell and Shiller (19881988) assume there exists a time-invariant

constant ρi that approximates the ratio of Pi,t and Pi,t + Di,t−1, such that Pi,t ≈
ρi(Pi,t +Di,t−1) and Di,t−1 ≈ (1− ρi)(Pi,t +Di,t−1). This approximation can be used to

rewrite Equation (C.3C.3) viz:

∆ ln(Pi,t+1 +Di,t) ≈ ρi (
Pi,t+1 − Pi,t
Pi,t

) + (1 − ρi)(
Di,t −Di,t−1

Di,t−1

)

≈ ρi∆ ln(Pi,t+1) + (1 − ρi)∆ ln(Di,t).
(C.4)
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Going back to Equation (C.2C.2) finally yields Equation (4.84.8):

ri,t ≈ ln(Pi,t +Di,t−1) + ρi∆ ln(Pi,t+1) + (1 − ρi)∆ ln(Di,t) − ln(Pi,t)

= ln(
Pi,t +Di,t−1

Pi,t
) + ρi∆ ln(Pi,t+1) + (1 − ρi)∆ ln(Di,t)

= − ln(ρi) + ρi(ln(Pi,t+1) − ln(Pi,t)) − ρi(ln(Di,t) − ln(Di,t−1)) + gd,i,t
= − ln(ρi) + ρi(ln(Pi,t+1) − ln(Di,t)) − ρi(ln(Pi,t) − ln(Di,t−1)) + gd,i,t
= − ln(ρi) + ρizi,t − ρizi,t−1 + gd,i,t.

(C.5)

C.2 Derivation of bE,t+1 and bC,t+1

The derivation of bE,t+1 and bC,t+1 starts from dividing the consumption growth

specifications into their disastrous and non-disastrous components:

Kt+1

Kt

= exp(g∗t+1)(1 − bt+1) with g∗t+1 = µ + xt + σηt+1,

Et+1

Et
= exp(g∗E,t+1)(1 − bE,t+1) with g∗E,t+1 = µ + xt + σEηE,t+1,

Ct+1

Ct
= exp(g∗C,t+1)(1 − bC,t+1) with g∗C,t+1 = µ + xt + σCηC,t+1.

(C.6)

Using the notation in Equation (C.6C.6), the equality Kt+1 = Et+1 +Ct+1 can be put as:

(Ct +Et) exp(g∗t+1)(1 − bt+1) = Ct exp(g∗C,t+1)(1 − bC,t+1) +Et exp(g∗E,t+1)(1 − bE,t+1),
(C.7)

which links bE,t+1 and bC,t+1 to bt+1. Let us now consider the specific values that the

weighting factor ωt+1 can take.

Assuming that ωt+1= 1 ∶
In this scenario, the entire consumption contraction bt+1 arises solely from the

durable good, meaning that bE,t+1 > 0 and bC,t+1 = 0. Using these restrictions in

Equation (C.7C.7) thus allows determining bE,t+1:

(Ct +Et) exp(g∗t+1)(1 − bt+1) = Ct exp(g∗C,t+1) +Et exp(g∗E,t+1)(1 − bE,t+1)

bE,t+1 = 1 − Ct
Et

exp(g∗t+1)(1 − bt+1) − exp(g∗C,t+1)
exp(g∗E,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗E,t+1)

.

(C.8)
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Assuming that ωt+1= 0 ∶
With this ωt+1 specification, the entire consumption contraction comes from

the nondurable good, meaning that bE,t+1 = 0 and bC,t+1 > 0. Applying this

setting to Equation (C.7C.7) results in:

(Ct +Et) exp(g∗t+1)(1 − bt+1) = Ct exp(g∗C,t+1)(1 − bC,t+1) +Et exp(g∗E,t+1)

bC,t+1 = 1 − Et
Ct

exp(g∗t+1)(1 − bt+1) − exp(g∗E,t+1)
exp(g∗C,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗C,t+1)

.
(C.9)

Assuming that 0 < ωt+1< 1 ∶
When 0 < ωt+1 < 1, bC,t+1 and bE,t+1 are obtained by weighting the expressions

in Equations (C.8C.8) and (C.9C.9) appropriately:

bE,t+1 = ωt+1 (1 − Ct
Et

exp(g∗t+1)(1 − bt+1) − exp(g∗C,t+1)
exp(g∗E,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗E,t+1)

)

bC,t+1 = (1 − ωt+1)(1 − Et
Ct

exp(g∗t+1)(1 − bt+1) − exp(g∗E,t+1)
exp(g∗C,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗C,t+1)

) .

(C.10)

As mentioned in Section 4.6.34.6.3, the expressions in Equation (C.10C.10) do not yet

ensure that 0 ≤ bE,t+1, bC,t+1 ≤ 1, with bC,t+1 ≤ 1 being the most critical condition. To

obtain the restrictions in Equation (4.394.39), which must be imposed on bt+1 to ensure

the plausibility of bC,t+1 and bE,t+1, I consider the corner solutions that ωt+1 = 0 and

ωt+1 = 1, meaning that either bC,t+1 or bE,t+1 must account for the entire consumption

contraction. If these cases would yield plausible contraction factors for the durable

and the nondurable good, then so would any ωt+1 ∈ (0,1).
First, I consider ωt = 0:

1 ≥ bC,t+1

1 ≥ 1 − Et
Ct

exp(g∗t+1)(1 − bt+1) − exp(g∗E,t+1)
exp(g∗C,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗C,t+1)

0 ≥ −(Et
Ct

+ 1) exp(g∗t+1)(1 − bt+1)
exp(g∗C,t+1)

+ Et
Ct

exp(g∗E,t+1)
exp(g∗C,t+1)

(Et +Ct
Ct

) (1 − bt+1) ≥
Et
Ct

exp(g∗E,t+1)
exp(g∗t+1)

bt+1 ≤ 1 − ( Et
Et +Ct

)
exp(g∗E,t+1)
exp(g∗t+1)

.

(C.11)

134



Second, I proceed analogously for ωt+1 = 1:

1 ≥ bE,t+1

1 ≥ 1 − Ct
Et

exp(g∗t+1)(1 − bt+1) − exp(g∗C,t+1)
exp(g∗E,t+1)

− exp(g∗t+1)(1 − bt+1)
exp(g∗E,t+1)

0 ≥ −(Ct
Et

+ 1) exp(g∗t+1)(1 − bt+1)
exp(g∗E,t+1)

+ Ct
Et

exp(g∗C,t+1)
exp(g∗E,t+1)

(Et +Ct
Et

) (1 − bt+1) ≥
Ct
Et

exp(g∗C,t+1)
exp(g∗t+1)

bt+1 ≤ 1 − ( Ct
Et +Ct

)
exp(g∗C,t+1)
exp(g∗t+1)

.

(C.12)

C.3 Transform annual into quarterly consumption contractions

The estimation of the ACH-GP model is performed on quarterly data, but the

consumption dataset assembled by Barro and UrsúaBarro and Ursúa (20082008) is of an annual frequency.

To obtain quarterly contractions from the annual data, I proceed as follows: For a

year that is neither the first nor the last of a disaster, I draw from a standard uniform

distribution to determine which fraction of the annual contraction is assigned to the

first quarter. A second draw from a standard uniform distribution determines the

fraction of the remaining contraction that is assigned to the second quarter; the same

technique is applied for the third quarter and the last quarter takes what is left of

the contraction. Applying this procedure implies that the contraction in the first

(last) quarter will be the largest (smallest), on average. Thus, I re-shuffle the four

quarterly contractions randomly to avoid such a seasonal pattern. When dealing

with the first (last) year of a disaster, or if the disaster consists of only one annual

contraction, I determine the quarter when the contraction begins (ends) by a draw

from a discrete uniform distribution, such that each quarter has a 1/4 probability of

becoming the quarter when the disaster begins (ends). The annual contraction is

then distributed across the disaster quarters in a way analogous to the method used

for a “within” disaster year.

C.4 Derive IES-identifying regression

The derivation of the IES-identifying regression starts from the basic asset pricing

equation to which a law of total expectations was applied to get rid of the time
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conditioning:

E[mt+1Rt+1] = 1

ln (E[mt+1Rt+1]) = 0.
(C.13)

In line with related literature (e.g., YogoYogo (20042004)), I proceed by assuming mt+1Rt+1

to be log-normally distributed. This assumption would certainly be discarded in

the context of single period disasters, but when considering a multi-period disaster

framework, the contractions in the respective disaster periods are far less extreme.

Using the properties of the log-normal distribution, it is possible to rewrite Equation

(C.13C.13) as:

0 = E [θ ln(β) − θ

ψ
ln(Ct+1

Ct
) + (θ

ρ
− θ

ψ
) ln(v(Dt+1/Ct+1)

v(Dt/Ct)
) + (θ − 1)ra,t+1 + ri,t+1]+0.5σ2

t ,

(C.14)

where σ2
t denotes the variance of mt+1Rt+1, which I assume to be time-invariant.

Rewriting Equation (C.14C.14) yields:

0 = θ ln(β) + 0.5σ2 − θ

ψ
E [ln(Ct+1

Ct
)] + (θ

ρ
− θ

ψ
)E [ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)]

+ (θ − 1)E[ra,t+1] +E[ri,t+1].
(C.15)

Next, an expression for E[ra,t+1] can be found by pricing the return of aggregate

wealth:

E[ra,t+1] = ln(β) + σ
2

2θ
− 1

ψ
E [ln(Ct+1

Ct
)] + (1

ρ
− 1

ψ
)E [ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)] .

(C.16)

Substituting the expression in Equation (C.16C.16) into Equation (C.15C.15) gives:

0 = θ ln(β) + 0.5σ2 − θ

ψ
E [ln(Ct+1

Ct
)] + (θ

ρ
− θ

ψ
)E [ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)]

+ (1 − θ)(ln(β) + σ
2

2θ
− 1

ψ
E [ln(Ct+1

Ct
)] + (1

ρ
− 1

ψ
)E [ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)]) +E[ri,t+1],

(C.17)

and thus:

E[ri,t+1] =
1

ψ
(E [ln(Ct+1

Ct
) − ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)])

− 1

ρ
E [ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)] − ln(β) − σ

2

2θ
.

(C.18)
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Finally, I assemble invariant components of Equation (C.18C.18) in the asset specific

constant wi:

E[ri,t+1] = wi +
1

ψ
(E [ln(Ct+1

Ct
) − ln(v(Dt+1/Ct+1)

v(Dt/Ct)
)]) . (C.19)

C.5 Bootstrap inference

The parametric bootstrap consists of several components, the first of which refers to

the parametrization of the mixed beta distribution from which the ωt weights are

obtained. In this part of the bootstrap, I draw from the mixed beta distribution

with the number of draws equaling the number of observations in the original sample.

Next, the parameters of the distribution are re-estimated on the bootstrapped sample,

which gives P̂(ωt = 0)(k), P̂(ωt = 1)(k), ê(k), and f̂ (k). Repeating this procedure K

times thus yields {P̂(ωt = 0)(k), P̂(ωt = 1)(k), ê(k), f̂ (k)}
K

k=1
.

In the second part of the bootstrap, I use the disaster process parameters θ̂ACH ,

θ̂GP , and θ̂
D

GP to simulate a series of hazard rates, consumption contractions, disaster

dummies, and dummies that determine whether the respective disaster is a destructive

disaster. Again, the length of the simulated series is identical to the number of

observations in the concatenated cross-country data. Then, the ACH-GP parameters

are re-estimated using the simulated series. These steps are repeated K times and

thus result in {θ̂
(k)

ACH , θ̂
(k)

GP , θ̂
D,(k)

GP }
K

k=1

.

In the third part of the bootstrap, I fit an AR(2) process to Lettau and LudvigsonLettau and Ludvigson’s

(20012001) cay series and perform a residual bootstrap where the length of the boot-

strapped series is identical to that of the original cay series.7878 Using the thus obtained

bootstrapped cay series, I resort to the relationship between the cay-variable and

the consumption-wealth ratio Kt
Wt

= κ exp(cayt), where κ=0.05. This procedure yields

bootstrapped values of the λ and l parameters in Equation (4.124.12) and after K

replications: {λ̂(k), l̂(k)}
K

k=1
.

The last component of the bootstrap uses the estimated fundamental macroe-

conomic and financial parameters presented in Table 2727 to simulate non-disaster-

including log consumption and dividend growth series, as well as the log price-dividend

ratio and T-bill return. The number of simulated periods equals the length of the

original series. The fundamental macroeconomic and financial parameters are then

78 According to a Ljung-Box 19781978 test, the null hypothesis of zero serial correlation could not be
rejected at conventional significance levels when allowing for two lags in the specification of the
autoregressive process.
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re-estimated on the simulated series as outlined in Section 4.5.14.5.1. Under certain

circumstances, the set of estimates ζ̂
(k)

thus obtained is discarded and the sim-

ulation and re-estimation is performed anew. This is done, when the estimated

parameters are evidently unsound, meaning that (a) the means of the processes

have an implausible sign, or (b) some of the resulting estimates have a non-zero

imaginary component (e.g., standard deviations computed from negative estimates of

variances). Again, this procedure is repeated K times and yields {ζ̂
(k)

}
K

k=1

, as well as

the non-disaster-including series {g(k)C,l }
T

l=1
, {g(k)E,l}

T

l=1
, {g(k)d,i,l}

T

l=1
, {z(k)i,l }

T

l=1
, {(DlCl )

(k)}
T

l=1
,

{R(k)a,l }
T

l=1
, {R(k)b,l }

T

l=1
, and {R

e,(k)
l }

T

l=1
.

Finally, for each of the K replications, I combine the respective bootstrapped

parameters from these four components to repeat the simulation and estimation

procedure outlined in Section 4.5.24.5.2, where the simulation of the disaster-including

SDF and excess return series of length T is now based on the bootstrapped first-stage

parameters and the non-disastrous Re
t in Equation (4.304.30) is replaced by R

e,(k)
l . Each

of these K replications results in estimates of the IES and the RRA coefficient. The

precision of the point estimates can then be measured by computing confidence

intervals of γ and ψ using the percentile method and {γ̂(k), ψ̂(k)}
K

k=1
.
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CHAPTER 5

Conclusion

Empirical tests of Hansen and SingletonHansen and Singleton’s (19821982) canonical C-CAPM have been

notoriously disappointing. Yet the model approach cannot be easily discarded, be-

cause it represents a rational link between the real economy and financial markets,

such that many attempts have been made to vindicate the C-CAPM paradigm.

Within the canonical C-CAPM, scaled factors have been constructed to account

for time-varying risk aversion (Lettau and LudvigsonLettau and Ludvigson (20012001)) and alternative mea-

sures for the errors-in-variables-prone consumption data have been employed (e.g.,

Julliard and ParkerJulliard and Parker (20052005); YogoYogo (20062006); SavovSavov (20112011)). The main theoretical exten-

sions of the canonical C-CAPM focus on habit formation (Campbell and CochraneCampbell and Cochrane

(19991999)), investor heterogeneity (Constantinides and DuffieConstantinides and Duffie (19961996)), and long-run-

risks (Bansal and YaronBansal and Yaron (20042004)). Although these efforts can claim some empirical

success, the problem of implausible and imprecise preference parameter estimates

and problematic asset pricing implications of the estimated model (e.g., too low

model-implied equity premium, too high risk-free rate) has been mitigated at best.

RietzRietz (19881988) has offered another explanation for the model’s poor empirical

performance: the rare disaster hypothesis, according to which the apparent failure

of the C-CAPM is a consequence of the positive path that the U.S. economy took

after World War II. However, this path may not be representative of the potentially

disastrous future consumption that investors in the 1950s to 1980s had in mind. In

the middle of the Cold War, the benign U.S. consumption path was just one among

multiple more unfavorable histories.

A variety of calibration studies supports the RDH, in the sense that the high

U.S. excess returns and plausible preference parameters can be reconciled in a C-

CAPM that explicitly allows for disasters. However, there are also critics, such as

Constantinides (20082008) and Julliard and GhoshJulliard and Ghosh (20122012), who suspect the frequently

used simplification to model disasters as single-period events to be the driving force

behind the hypothesis’s empirical success.

My dissertation contributes to previous literature by proposing SMM-type esti-

mation strategies that facilitate econometrically assessing and testing the RDH. The

studies are performed using single- (Chapter 2) and multi-period disasters (Chapters

3 and 4) and consider different SDF specifications, simulation approaches, and test

assets. Further robustness checks are conducted regarding the specification of the
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disaster process, disaster threshold, the choice of test assets and moment conditions.

The results are unambiguous: The preference parameter estimates of a disaster-

including C-CAPM are plausible and precise for all model-specifications and the

same holds true for the model-implied key financial indicators which are reported

in Chapters 2 and 3. This thesis thus also contributes to the ongoing debate on

accounting for the duration of disasters.

I argue that BarroBarro’s (20062006) reasoning regarding the high correlation of consump-

tion during disasters holds some value, however, I agree with Julliard and GhoshJulliard and Ghosh

(20122012) and ConstantinidesConstantinides (20082008) that multi-period disasters are certainly more realis-

tic. If one assumes that disasters appear as single-period events, they only exhibit one

risk dimension, which is their size, and a power utility function suffices to deal with

that. Accounting for multi-period disasters – contrarily to what Julliard and GhoshJulliard and Ghosh’s

(20122012) approach implies – does not simply decrease per-period contraction sizes, but

rather adds a second risk dimension, which must be accounted for. This can be done

by recursive preferences, such as the utility function by Epstein and ZinEpstein and Zin (19891989), and

WeilWeil (19891989), which allows disentangling the IES from the RRA coefficient and which

is used in Chapters 3 and 4. Interestingly, the estimation results in both chapters

indicate that investors are plausibly risk averse and willing to substitute consumption

over time (with IES and RRA coefficient both > 1). Additionally, this relation of the

RRA and IES estimates implies a preference for early resolution of uncertainty – a

characteristic that cannot be accounted for by a power utility function.

The results reported in this thesis should encourage those who believe that

rational investor behavior prevails in financial markets. What was suggested by

calibration exercises is also supported by empirical evidence using econometric

analysis: The canonical C-CAPM can explain the high market equity premium and

the low risk-free rate with plausible risk and time preferences, once rare disaster risk

is accounted for. The nexus between finance and the real economy postulated by the

consumption-based asset pricing model is, after all, empirically not refuted.
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Gillman, M., M. Kejak, and M. Pakoš (2015): “Learning about Rare Disasters:

Implications For Consumption and Asset Prices,” Review of Finance, 19(3), 1053–

1104.

Gourio, F. (2012): “Disaster Risk and Business Cycles,” American Economic

Review, 102(6), 2734–2766.

(2013): “Credit Risk and Disaster Risk,” American Economic Journal:

Macroeconomics, 5(3), 1–34.

Grammig, J., and J. Sönksen (2016): “Consumption-Based Asset Pricing with

Rare Disaster Risk: A Simulated Method of Moments Approach,” Working paper.

Hall, A. (2005): Generalized Method of Moments, Advanced Texts in Econometrics.

Oxford University Press, Oxford.

Hamilton, J. D., and O. Jorda (2002): “A Model of the Federal Funds Rate

Target,” Journal of Political Economy, 110(5), 1135–1167.

Hansen, L., and T. Sargent (2010): “Fragile Beliefs and the Price of Model

Uncertainty,” Quantitative Economics, 1(1), 129–162.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments

Estimators,” Econometrica, 50(4), 1029–1054.

Hansen, L. P., and K. J. Singleton (1982): “Generalized Instrumental Variables

Estimation of Nonlinear Rational Expectations Models,” Econometrica, 50(5),

1269–1286.

(1983): “Stochastic Consumption, Risk Aversion, and the Temporal Behavior

of Asset Returns,” Journal of Political Economy, 91(2), 249–265.
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