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In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-
HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome
have been linked to adverse outcomes, most notably graft-versus-host disease
(GvHD). However, it is presently unknown whether this relationship is causal or conse-
quential. Here, we performed an integrated meta-omic analysis to probe deeper into
the GIT microbiome changes during allo-HSCT and its accompanying treatments. We
used 16S and 18S rRNA gene amplicon sequencing to resolve archaeaq, bacteria,
and eukaryotes within the GIT microbiomes of 16 patients undergoing allo-HSCT for
the treatment of hematologic malignancies. These results revealed a major shift in
the GIT microbiome after allo-HSCT including a marked reduction in bacterial diver-
sity, accompanied by only limited changes in eukaryotes and archaea. An inte-
grated analysis of metagenomic and metatranscriptomic data was performed on
samples collected from a patient before and after allo-HSCT for acute myeloid leu-
kemia. This patient developed severe GvHD, leading to death 9 months after
allo-HSCT. In addition to drastically decreased bacterial diversity, the post-
treatment microbiome showed a higher overall number and higher expression levels
of antibiotic resistance genes (ARGs). One specific Escherichia coli strain causing a
paravertebral abscess was linked to GIT dysbiosis, suggesting loss of intestinal barrier
integrity. The apparent selection for bacteria expressing ARGs suggests that prophy-
lactic antibiotic administration may adversely affect the overall treatment outcome.
We therefore assert that such analyses including information about the selection of
pathogenic bacteria expressing ARGs may assist clinicians in “personalizing” regi-
mens for individual patients to improve overall outcomes. (Translational Research
2017;186:79-94)
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Abbreviations: aGvHD = acute graft-versus-host disease; allo-HSCT = allogeneic hematopoiet-
ic stem cell fransplantation; ARG = antibiotic resistance gene; ATG = antithymocyte globulin;
bp = base pair; cDNA = complementary DNA; RHM = reference healthy microbiome; contig =
contiguous sequence; GIT = gastrointestinal tract; GvHD = graft-versus-host disease; IMP = In-
tegrated Meta-omic Pipeline; MG = metagenomic; MT = metatranscriptomic; NCBI = National
Center for Biotechnology Information; nt = nucleotide; OTU = operational taxonomic unit;
PAMP = pathogen-associated molecular pattern; IRNA = ribosomal RNA; SCFA = short-chain
fatty acid; SNV = single nucleotide variant; TP = time point

AT A GLANCE COMMENTARY
Kaysen A, et al.

Background

Allogeneic hematopoietic stem cell transplantation
is a therapy for many hematological malignancies.
However, its effects on the gastrointestinal tract
microbiome remain poorly understood.

Translational Significance

e Allogeneic hematopoietic stem cell transplan-
tation and its associated drug treatments have
detrimental effects on the gastrointestinal tract
microbiome.

e Antibiotic treatment of these patients gives rise
to overgrowth of pathogenic microbes, pos-
sessing and expressing antibiotic-resistant
genes.

e Loss of epithelial barrier function likely con-
tributes to bacterial and fungal invasions and
activation of inflammatory responses.

e Enrichment in potentially pathogenic strains
through accompanying antibiotic treatment
may further contribute to worsening overall
treatment outcome through systemic infection.

e Pathogenic microbes might provide antigens to
antigen-presenting cells, activating various im-
mune effectors that associate with acute graft-
versus-host disease.

INTRODUCTION

Humans live in a close (“symbiotic”) relationship with
an inherent “microbiome”, comprised of bacteria,
archaea, and unicellular eukaryotes. The most densely
populated human body habitat is the gastrointestinal tract
(GIT).' The GIT microbiome plays a myriad of roles vital
to human physiology, including digestion of food, synthe-
sis of vitamins, production of short-chain fatty acids, and
the prevention of colonization by pathogens through
exclusion.” In a healthy human GIT, microorganism
homeostasis is tightly regulated by the host’s immune
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system.”~ However, various perturbations, such as
antibiotic attenuation of sensitive bacteria, may disrupt
this balanced state, leading to a state typically referred
to as “dysbiosis”,** in which pathogenic microbes can
overgrow the community.® Furthermore, reduced intesti-
nal barrier function can facilitate translocation of micro-
organisms and microbial products from the GIT lumen to
mesenteric lymph nodes and/or the bloodstream,” putting
the host at risk for local infections and sepsis.”*

Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) represents an effective treatment for
several hematological malignancies. Transplantation is
preceded by a conditioning regimen, consisting of either
total body immune ablative irradiation or high doses of
chemotherapy, to facilitate engraftment of transplanted
stem cells. Moreover, allo-HSCT is known to greatly
impact the stability and integrity of the GIT micro-
biome, resulting in substantially reduced bacterial di-
versity and the emergence of dominance by (often
drug-resistant) single bacterial taxa.’

The conditioning treatment for allo-HSCT may also
lead to mucositis of the GIT, culminating in the formation
of ulcers, dysphagia, and diarrhea.'” One complication of
allo-HSCT is acute graft-versus-host disease (aGvHD),' la
systemic, inflammatory disease that is provoked by a com-
plex allogeneic immune response, primarily affecting the
skin, liver, and GIT.'? In addition, the GIT microbiome
has been implicated in the development and/or exaggera-
tion of aGvHD. Specifically, the damaged GIT epithelial
barrier in allo-HSCT patients allows translocation of mi-
croorganisms or pathogen-associated molecular patterns
(PAMPs)."> PAMPs can then activate antigen-presenting
cells, leading to alloactivation and proliferation of donor
T cells that trigger aGvHD."”

Supportive care of patients receiving allo-HSCT in-
cludes prophylactic broad-spectrum antibiotic treatment,'*
an intervention that also selects for potential pathogens
carrying antibiotic resistance genes (ARGs),"” within the
GIT microbiome. Such antibiotics also drive horizontal
transfer of ARGs among commensal bacteria, often
including numerous opportunistic pathogens.'® Antibiotic
treatment has ambiguous effects on treatment outcome.
On the one hand, a low bacterial diversity at engraftment,
possibly caused by chemotherapy, total body irradiation,
and/or broad-spectrum antibiotics, has been linked to
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detrimental outcomes.'” On the other hand, GIT decon-
tamination using antimicrobials has been observed to
lower the rate of aGvHD.'®"”

Previous studies have demonstrated altered micro-
biome community structures directly after allo-HSCT or
conditioning treatment.'’"> Abnormal bacterial GIT
communities, especially following antibiotic treatment,
can facilitate expansion of yeasts, including potentially
fatal, invasive Candida albicans infections.>>**
However, it is not yet known how GIT microbial
communities including archaea and eukaryotes evolve
over longer periods of time. It is also uncertain how
disruption of the microbiome, via antibiotic regimens
and aGvHD, affects the human host and overall
treatment outcome.

Here, we analyzed in detail the GIT microbiome of
patients undergoing allo-HSCT. The main objectives
were to describe the changes in the prokaryotic (bacte-
rial and archaeal) community as well as in the eukary-
otic subpopulation during treatment. Based on this
data, the samples from one patient were subjected to
detailed characterization using a combination of high-
resolution metagenomic (MG) and metatranscriptomic
(MT) analyses. Population- and strain-level resolutions
highlighted higher expression of ARGs in samples
following treatment driven by apparent selection of
organisms encoding ARGs. This study serves as a
proof-of-concept for future meta-omic studies of the
GIT microbiome in the context of allo-HSCT and other
intensive medical treatments.

MATERIAL AND METHODS

Study participants and fecal sample collection. This
study was approved by the Ethics Review Board of
the Saarland Amendments 1 and 2 (Reference Number
37/13) and by the Ethics Review Panel of the University
of Luxembourg (Reference Number ERP-15-029).
Following written informed consent, 16 patients
undergoing allo-HSCT were enrolled in the study.

For microbial diversity and richness analyses, patients
were included only if fecal samples were obtained from
at least 2 of the following time points: (1) up to 8 days
before allo-HSCT (designated time point-1, “TP1”); (2)
directly after allo-HSCT (up to 4 days after allo-HSCT,
“TP2”); and/or (3) shortly after the expected time of
engraftment (between days 20 and day 33 after allo-
HSCT, “TP3”). One additional patient was selected for
in-depth analysis of treatment effects over an extended
period of time. From this patient, fecal samples were
collected 13 days before allo-HSCT, as well as 75 and
119 days after allo-HSCT. Fecal samples were immedi-
ately flash-frozen onsite and preserved at —80°C to ensure
the integrity of the biomolecules of interest.
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Extraction of biomolecules from fecal samples. Fecal
samples were pretreated as described in Heintz-
Buschart et al.””> DNA and RNA were extracted from
this pretreated sample as described previously using
the DNA/RNA/Protein kit (Qiagen, Hilden,
Germany),%‘27 and additional DNA was obtained
using the PowerSoil DNA isolation kit (MO BIO
Laboratories, Carlsbad, Calif). Extracted biomolecules
were stored at —80°C until sequencing.

16S and 18S rRNA gene amplicon sequencing and data
analysis. Amplification and paired-end sequencing of

extracted and purified DNA was performed on an
Nlumina  MiSeq platform at the  Groupe
Interdisciplinaire de Génoprotéomique Appliquée
(GIGA, Belgium). The V4 region of the 16S rRNA
gene, used for identifying bacteria and archaea, and
the 18S rRNA gene, used for resolving the eukaryotic
community structure, were amplified and sequenced
as previously described.”® 16S rRNA gene sequencing
reads were processed using the LotuS pipeline”
(version 1.34) with default parameters. Processed
reads were clustered into operational taxonomic units
(OTUs), designating taxa with similar amplicon
sequences, at an identity level of 97%. For taxonomic
assignment of 16S rRNA gene amplicon sequencing
data, we used the Ribosomal Database Project
classifier.’” OTUs with a confidence level below 0.8 at
the domain level were filtered out as well as OTUs
with no more than 10 reads in any given sample.

To process the 18S rRNA gene sequencing reads, a
workflow specifically designed to process nonoverlap-
ping reads was used.”’ For classification of 18S rRNA
gene amplicon sequencing data, the Protist Ribosomal
Reference database™ was employed. After processing,
OTUs with less than 10 reads in all samples were
removed, as well as unclassified OTUs and OTUs
belonging to the taxon Craniata. For analyses, the 16S
and 18S rRNA gene sequencing data were rarefied to
the lowest number of respective reads for any sample
(16S: 71,051 reads and 18S: 1020 reads).

Statistical analyses and plots were generated in R
(version 3.2.1).” Microbial alpha-diversity and rich-
ness were determined at the OTU level, by calculating
the Shannon diversity index and the Chaol index, us-
ing the R package “vegan”.” Statistical comparison
of diversity and richness was carried out using the
Kruskal-Wallis test, the non-parametric Wilcoxon
rank sum test, or, when applicable, the Wilcoxon
signed-rank test. Comparisons with P values <0.05
were considered statistically significant. Differential
analyses of taxa, based on 16S rRNA gene sequencing
data, were performed using the Bioconductor package
DESqu,35 combined with the Wald test, after
multiple-testing adjustment.


http://dx.doi.org/10.1016/j.trsl.2017.06.008

82 Kaysen et al

Metagenomic and metatranscriptomic sequencing,
processing, and assembly. MG and MT sequencing of

the extracted DNA and RNA fractions was conducted
by GATC Biotech AG (Konstanz, Germany). Ribo-
somal RNA (rRNA) was depleted from the RNA frac-
tions using a Ribo-Zero Gold rRNA Removal kit
(Illumina, San Diego, Calif). Libraries representing
both nucleic acid fractions were sequenced using a
100-bp paired-end approach on an Illumina HiSeq
2500 using HiSeq V3 reagents (Illumina). MG and
MT data sets were processed using the Integrated
Meta-omic Pipeline (IMP) version 1.1.°° Further
information on this pipeline and on calculations used
in this work can be found in Supplementary File 1.

Population-level binning of contigs from the co-
assembly. To analyze and compare the population-
level structure of the microbial communities based on
the assembled genomic information, contiguous
sequences (contigs) were binned. Using VizBin,”’~*"
2D embeddings based on BH-SNE of the contigs of at
least 1000 nt were produced, as part of IMP.
Population-level clusters’ were selected as previously
described.” The resulting bins are hereafter referred
to as “population-level genomes.”

Within a community, the relative size of a population-
level genome was determined by dividing the number of
MG reads mapping to the contigs forming this cluster by
the total number of MG reads mapping to all the contigs
used in the assembly.

Taxonomic dffiliation, reassembly, and sequence

comparisons of reconstructed population-level
genomes. Taxonomic affiliation, reassembly, and

sequence comparisons were performed using a modified
workflow of previously described complementary tools
and methods."”® Details are described in
Supplementary File 1.

Detection of antibiotic resistance genes. Antibiotic
resistance genes (ARGs) within a community or popula-
tion were searched against Resfams version 1.2*7 using
HMMer version 3.1b2.** We used the core version of
the Resfams database, which includes 119 protein
families.”” In accordance with the HMMer user
manual, only genes identified with a bitscore higher
than the binary logarithm of the total number of genes
(of the community or population) were retained.

Variant identification. Variants were identified in
population-level ~ reassembled  genomes  using
SAMtools mpileup” with default settings, which
include the calling of single nucleotide variants as
well as the identification of small insertions/
deletions. The output of SAMtools mpileup was
filtered using a conservative heuristic established in
Eren et al.,”’ which reduces the effect of sequencing
eITors.

Translational Research
August 2017

Extraction, sequencing, and analysis of bacterial DNA
from a blood culture. DNA was extracted from a blood

culture of an organism identified as a multidrug-
resistant Escherichia coli and sequenced on an
[lumina MiSeq, 300 bp paired-end at GIGA. To
assess the relationships between different E. coli
genomes, PanPhlAn”' and the provided database,
including 118 E. coli reference strains, was applied. In
accordance with the PanPhlAn manual, only genes
present in 10 or more genomes were further considered.

Availability of data and materials. Reassembled
population-level ~ genomes of E. coli (ID
6666066.166711) and Enterococcus faecium (ID
6666666.166708) are accessible via the RAST guest
account (http://rastnmpdr.org, login: guest; password:
guest). Preprocessed MG and MT reads were submitted
to the NCBI Sequence Read Archive (SRA) repository
under the BioProject ID PRINA317435 (http://www.
ncbi.nlm.nih.gov/bioproject/317435). Supplementary
tables are archived on Zenodo (https://doi.org/10.5281/
zen0do.268914).

RESULTS

Patient characteristics and treatment. Anthropometric
and clinical information of the 10 female and 6 male pa-
tients included in the study are provided in Table I. Five
patients with relapsed or refractory lymphoma received
FluBuCy (fludarabine, busulfan, cyclophosphamide)
as conditioning treatment, 6 acute myeloid
leukemia (AML) patients received BuCy (busulfan,
cyclophosphamide), 1 myeloma, and 1 AML patient
received Treo/Flu (treosulfan, fludarabine), 1 AML
patient received FluBu (fludarabine, busulfan [total dose
9.6 mg/kg, 3 days of intravenous Bu]), and 2 refractory
AML patients received FLAMSA-Bu (fludarabine,
amsacrine, busulfan) conditioning treatments. Grafts
from 8 fully matched unrelated, 3 single antigen
mismatched unrelated, and 5 sibling donors were used.
1.5 years after allo-HSCT, 10 patients were still alive and
6 deceased. Twelve patients developed aGvHD and were
treated with corticosteroids (0.5-2 mg/kg/d). Even so, 3
of them progressed to at least grade IIl aGvHD.””

As a prophylactic treatment, patients received a
fluoroquinolone antibiotic during leukopenia. On the
occurrence of fever, patients were treated with
piperacillin-tazobactam, followed by meropenem and
subsequently vancomycin, if necessary. As antifungal
prophylaxis, patients received 200 mg fluconazole. In
case of suspected fungal infection, patients also
received antifungal treatment with liposomal amphoter-
icin B or caspofungin (Table I).

Changes within the GIT microbiome of patients
undergoing allo-HSCT. We assessed the diversity and rich-
ness of the microbial community, separately, for
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Table I. Anthropometric and clinical information of the study cohort

Patient Sex Age Underlying disease” Donor relationship and HLA' Conditioning regimen’ Antimicrobials® GvHD!" Outcome 1.5 y after allo-HSCT
AO1 m 43 lymphoma MRD FluBuCy F, M, P-T, V Skin I° alive

A03 m 56 lymphoma MRD FluBuCy AF, F, M, P-T, other - deceased day 66, relapse

AO4 f 43 AML MUD BuCy AF, F, M, V Skin I° alive

A05 m 49 lymphoma MMUD FluBuCy AF, F, M, P-T, V Skin II° deceased day 275, pneumonia
AO6 m 52 AML MRD BuCy AF, F, M, P-T, V, other - alive

AO7 f 63 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other  Skin II°, GIT llI° deceased day 268, GvHD

A08 f 50 AML MUD BuCy AF, F, M, P-T, V Skin I° alive

A09 m 30 lymphoma MUD FluBuCy F, M, P-T - deceased day 212, pneumonia
A10 m 54 AML MRD BuCy F, M, P-T Skin I°, GIT II° alive

A12 m 57 lymphoma MUD FluBuCy F, M, P-T, V, other Skin lll° alive

A13 m 57 AML MRD BuCy AF, F, M,V Skin I°, lung 1I° alive

A17 m 66 AML MUD BuCy F, M,V Skin II° alive

A18 f 67 AML MUD FluBu F, M, P-T, V, other Skin llI°, GIT llI° deceased day 184, GvHD

A19 f 58 myeloma MUD Treo/Flu F, M, P-T - deceased day 39, relapse

A20 m 51 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other  Skin II°, GIT II° alive

A21 f 64 AML MUD Treo/Flu AF, M, P-T, V, other Skin II° alive

*AML: acute myeloid leukemia.

TMRD: matched related, MUD: matched unrelated, MMUD: mismatched unrelated, HLA: human leukocyte antigen.
*Bu: busulfan, Cy: cyclophosphamide, Flu: fludarabine, FLAMSA: fludarabine, amsacrine, Treo: freosulfan.
SAF: antifungal (other than prophylaxis), F: fluoroguinolone, M: meropenem; P-T: piperacilin-tazobactam, V: vancomycin.

lorgan involvement, stages according to Glucksberg et al.®?

IBold: aGvHD with summed stages = 4 considered as severe aGvHD.
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prokaryotic (bacteria and archaea; 16S rRNA gene
sequencing) and eukaryotic (18S rRNA gene sequencing)
community structures. From TP1 to TP3, the prokaryotic
subpopulation drastically and significantly decreased in di-
versity (2.2-fold reduction, Fig 1, A) and richness (1.3-fold
reduction, Fig 1, B). On the genus level, average decreases
of 119-, 47-, and 44-fold relative abundances of the
genera  Roseburia, Bifidobacterium and  Blautia,
respectively, were observed from TP1 to TP3 (Fig 1, C).
At the taxonomic rank of order, decreased Bacteroidales
relative abundance was observed in parallel with
increased Bacillales (Fig 1, D). Moreover, we identified
only 1 OTU belonging to the domain archaea, the
methanogen Methanobrevibacter smithii,”” that was
detected in 13 of 35 total samples (and 10 of 15
patients) with a total of 914 reads.”

Analysis of the eukaryotic community did not reveal sta-
tistically significant differences in Shannon diversity
(Fig 1, E) or Chaol richness (Fig 1, F), between the
different TPs, with no apparent statistically significant
difference being observed for the 8 patients undergoing
specific antifungal treatments. Overall, around 99% of
classified eukaryotic OTUs belonged to the fungal domain,
with the majority representing the genera Saccharomyces,
Candida, and Kluyveromyces. Only a few different and
lowly abundant protists could be identified including Vorti-
cella sp., Prorodon teres, and Phytophthora sp.”*

In summary, we found generally decreased bacterial
diversity after allo-HSCT, while the eukaryotic commu-
nity stayed relatively stable. To further explore the ef-
fects of treatment on the structure and function of the
GIT microbiome, we applied a detailed meta-omic
approach on 1 patient.

Patient A07: description of treatment and status of the
patient. Due to the uniqueness of the case, we chose to
focus on 1 patient, patient AO7, who displayed a marked
reduction in bacterial diversity, with high relative abun-
dances of opportunistic pathogens (Fig 2, A and B) and a
fatal treatment outcome. This 63-year-old female patient,

<
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being treated for AML (with deletion 7q), was refractory
to conventional induction (3 + 7) and salvage
chemotherapy = with  high-dose  cytarabine and
mitoxantrone and, therefore, needed further treatment.
As a second-line therapy, FLAMSA-Bu,”” a modified
sequential  conditioning regimen for allo-HSCT
treatment of refractory AML, was implemented
(fludarabine 30 mg/m?* on days —11 to —8, cytarabine
2000 mg/m? on days —11 to —8, amsacrine 100 mg/m?
on days —11 to —8 and busulfan 3.2 mg/kg on days —7
to —4) for remission induction and transplantation (Fig
2, D). She then received peripheral hematopoietic stem
cells from a single HLA-C antigen mismatched,
unrelated donor. After engraftment on day 26, her bone
marrow was hypocellular, but free of leukemia. Further
immunosuppression therapy consisted of antithymocyte
globulin (anti-T-cell antibodies) from days —4 to —2,
mycophenolate mofetil until day 28, and cyclosporine
until day 100.

Indicating elevated inflammation, a high level of
C-reactive protein before and around allo-HSCT
was observed, which decreased slightly, but stayed
considerably high throughout the entire observation
period’ (Fig 2, C). After initial onset of neutropenia
after allo-HSCT, the leukocyte count increased to
3500/ul 20 days after allo-HSCT, and then further
increased to a normal value 80 days after allo-
HSCT. However, considerable fluctuations and later
a decrease in the leukocyte count was observed™*
(Fig 2, O).

Since this patient had prolonged neutropenia due to
refractory leukemia and intensive chemotherapy,
various antibiotics and antifungals were used to treat in-
fectious complications before and during transplanta-
tion including piperacillin/tazobactam, meropenem,
vancomycin, tigecycline, levofloxacin, ceftazidime
and amphotericin B (Fig 2, D).

74 days after allo-HSCT, the patient developed
aGvHD overall grade III, skin stage 2, and GIT stage 3.

Fig 1. Changes in the gastrointestinal microbial community structure in patients receiving allo-HSCT. Boxplots
depicting (A and E) diversity (Shannon diversity index) and (B and F) richness (Chaol richness estimator) per
collection time point (TP), for (A and B) prokaryotes and (E and F) eukaryotes, respectively. The number of sam-
ples per collection TP is indicated at the top of each box. Diversity and richness were determined after rarefaction
of the data set. Statistically significant decreases in prokaryotic diversity, between TP1 and TP3 (P value 0.014 in
Kruskal-Wallis rank sum test), and in prokaryotic richness, between TP1 and TP3 (P value 0.026, Wilcoxon rank
sum test), were observed. (C) Changes in the relative abundances of 3 symbiotic bacterial genera between TP1 and
TP3. Genera with =1.5-fold decrease, adjusted P values < 0.05, and a relative abundance =5%, in one sample,
were included (adjusted P values of 0.0025, 0.026, and 3.68 X 1073, Wald test). (D) Changes in the relative abun-
dance, of two bacterial orders, between TP1 and TP3 (adjusted P values of 0.0054 and 0.009, Wald test). (C and D)
Data from all 8 patients who had samples collected at TP1 and TP3 are displayed. TP1 included samples taken (up
to 8 days) before allo-HSCT. TP2 included samples taken up to 4 days after transplantation. TP3 included samples
taken between days 20 and 33, after transplantation. Significant differences between TPs are indicated by asterisks
(*P value < 0.05, **P value < 0.01). allo-HSCT, allogeneic hematopoietic stem cell transplantation.
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Fig 2. Variation of the microbial community structure over the course of allo-HSCT treatment in patient AQ7.
(A) Relative proportions of the 10 most abundant operational taxonomic units (OTUs) based on 16S rRNA
gene sequencing. The remaining OTUs are summarized as “others.” Similar shades of the colors represent
genera belonging to the same phylum. (B) Prokaryotic (triangles) and eukaryotic (circles) diversity repre-
sented by Shannon diversity indices at sampling TPs throughout the treatment. (C) C-reactive protein
(CRP) blood levels (green lines) and leukocyte blood count (blue lines). (D) Drugs (antibiotics, antifungals,
chemotherapeutics, and antithymocyte globulin) administered throughout the treatment. X-axis indicates
days relative to the day of transplantation. Vancom, vancomycin; Tigecycl, tigecycline; Fluoroq, fluoroquino-
lone; Antif, antifungal; FLSA-Bu, FLAMSA-Bu (fludarabine, cytarabine, amsacrine, and busulfan); ATG, an-
tithymocyte globulin; TP, time point; allo-HSCT, allogeneic hematopoietic stem cell transplantation; GvHD;

graft-versus-host disease.

As the patient did not respond to 2 mg/kg prednisolone
and deteriorated rapidly, antithymocyte globulin (5 mg/
kg) was administered for 4 days as second-line GVHD
treatment. Partial remission of intestinal GVHD was
noted, with a reduction of diarrhea from >20 stools
per day (35004500 ml) to 45 (formed but soft) stools
per day. She was bedridden with general fatigue and
malaise. Moreover, signs of infection continued, and
due to lower back pain, an MRI scan of the spine was

performed, showing a paravertebral abscess, which
was surgically removed on day 126.

A multidrug-resistant E. coli strain was isolated, both
from the abscess and from a blood culture, for further
analysis. The patient’s health status improved, she was
able to walk again, and was discharged from hospital
on day 209. However, she was readmitted on day 260
and deceased on day 268, due to GvHD and systemic in-
flammatory response syndrome, suspected to be
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In each representation, clusters representing Escherichia coli and Enterococcus faecium are indicated.

contigs, contiguous sequences.

bacterial sepsis. However, no pathogen could be recov-
ered from blood cultures.

Patient A07: changes in the microbial community
structure during treatment. Fecal samples were taken,
as indicated in Fig 2, D, at days —13 (sample “A07-
1), day 75 (sample “A07-2”), and day 119 (sample
“A07-3”). Fecal prokaryotic diversity decreased
markedly after allo-HSCT (Fig 2, B). Similarly, in
sample AQ07-1, 177 different OTUs were detected,
while A07-2 and AO07-3 contained only 62 and 79
OTUs, respectively.

Dominant OTUs of sample A07-1, including several
OTUs representing Bacteroides spp., Escherichia/

Shigella sp. and Enterococcus sp., reappeared in AQ7-
3 (Fig 2, A). However, many less-abundant OTUs,
belonging to 25 different normal gut genera, disap-
peared entirely, including Anaerostipes and Clostridium
cluster IV.”* OTUs that were decreased in sample A07-3
(compared with sample A07-1) represented 50 genera,
including Alistipes, Barnesiella, Blautia, Clostridium
(clusters XIVa and XI), Prevotella, Roseburia, and Ru-
minococcus. In addition, OTUs belonging to the genus
Lactobacillus exhibited a 10-fold increase in relative
abundance, while those of Bacteroides spp. increased
from 27% to 63% in A07-3 (Fig 2, A). In total, 19
different OTUs belonging to the genus Bacteroides
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Fig 4. Number and distribution of variants in Escherichia coli and Enterococcus faecium. (A and C) Violin
plots representing distributions of depth of coverage of the contigs contained in each population-level
genome. (B and D) Venn diagrams indicating the number of variant positions exclusive to each sample,
and respectively, the number of variant positions found in both samples. (E and F) Representation of exem-
plary sections of the reassembled population-level genomes with aligned reads of both samples, thus high-
lighting the occurrences of variants in each population, visualized with the Integrative Genomics Viewer.
Lengths of the represented sections are indicated, as well as the average MG depths of coverage, of each
reconstructed population-level genome. (G and H) Histograms of the variant frequencies of the minor nucle-
otide at all variant positions. Panels on the left represent results for E. coli and panels on the right represent
results for E. faecium. Colored figure elements refer to the pretreatment sample (blue; A07-1) and the post-

treatment sample (red; A07-3).

were detected in the first sample, 23 in the last sample,
and only 5 in A07-2, accounting for 0.07% overall.
Similar to the short-term changes in the whole cohort,
and as described above, the eukaryotic microbial com-
munity exhibited no pronounced changes over time
(Fig 2, B). Taken together, we observed a drastic
decrease in prokaryotic diversity, with relative expan-
sion of few bacteria, including potential pathogens.

Metagenomics- and metatranscriptomics-based
analysis of the pre- and post-treatment microbiome. To

analyze in detail the changes in the GIT microbiome
with emphasis on identification of ARGs and strain-
level analysis of specific bacterial populations,
coupled MG and MT data sets of samples A07-1
(pretreatment) and AO07-3 (post-treatment) were
generated. This allows to focus more distinctly on the
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effects of allo-HSCT and concurrent antibiotic use on
the GIT microbiome.

The visualizations of the two BH-SNE embeddings
(Fig 3, A and B) reflect the drastic change in the GIT mi-
crobiome; in particular, the decrease in diversity with
the representation of the post-treatment sample A07-3
being exceptionally sparse (Fig 3, B). In agreement
with our 16S rRNA gene sequencing—based results
(Fig 2, A), the most abundant populations in A07-3
were identified as Escherichia coli, Enterococcus fae-
cium, Lactobacillus reuteri, Lactobacillus rhamnosus,
and several species from the genus Bacteroides. Also,
in accord with those results, most of the clusters were
only found in the pretreatment sample (representation
of both samples within a single plot, Fig 3, C).

Given the potential role of opportunistic pathogens in
aGvHD,"” we were specifically interested in 2
population-level reconstructed genomes that were
found in both samples, and whose genomes could be
recovered with high completeness, namely E. coli and
E. faecium.

Evidence for selective pressure at the strain level. The
average MG depths of coverage indicated a decreased
population size of E. coli after allo-HSCT (in sample
A07-3, Fig 4, A), while that of E. faecium remained
rather constant (Fig 4, C). To reveal possible selective
“sweeps” in the populations of interest, caused by
antibiotics, we performed a gene-wise protein
sequence comparison of the different population-level
genomes. This analysis revealed that 97.4% of the
genes found in the different population-level genomes
of E. coli, reconstructed from samples A07-1 and
A07-3, were 100% identical, and only 1.1% of the
genes were less than 95% identical. In E. faecium,
only 76% of the genes were completely identical and
13.2% of the genes showed less than 95% identity. In
E. coli, a similarly high number of variants were
identified in the pre- and post-treatment samples, with
an important overlap of variants identified in both
populations (Fig 4, B and E), whereas only a few
variants were present in E. faecium of both samples
(Fig 4, D and F).
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Table Il. Antibiotic resistance genes identified in population-level genomes of GIT E. coli from patient A07

Resfams_ID Number of genes Resfam Family name Mechanism
RF0O005 1 AAC6-Ib Aminoglycoside modifying enzyme
RF0O007 3 ABCAntibioticEffluxPump ABC Transporter

RF0027 1 ANT3 Aminoglycoside modifying enzyme
RFO035 1 baeR Gene modulating resistance
RF0053 1 ClassA Beta-Lactamase

RF0055 1 ClassC-AmpC Beta-Lactamase

RF0056 1 ClassD Beta-Lactamase

RF0065 1 emrB MFS transporter

RF0088 1 macA ABC Transporter

RF0089 1 macB ABC Transporter

RF0091 1 marA Gene modulating resistance
RF0098 1 MexE RND antibiotic efflux
RFO101 1 MexX RND antibiotic efflux
RF0O112 1 phoQ Gene modulating resistance
RFO115 6 RNDAntibioticEffluxPump RND Antibiotic Efflux
RFO121 1 soxR Gene modulating resistance
RFO147 1 tolC ABC transporter

RFO168 6 TE_Inactivator Antibiotic inactivation
RFO172 1 APH3Z” Phosphotransferase
RF0173 1 APH3' Phosphotransferase
RFO174 1 ArmA_Rmt rRNA Methyltransferase

Observed nucleotide variant frequencies (Fig 4, G and
H) and patterns of variant distributions (Fig 4, E and F)
indicated that the treatment may have constituted a ge-
netic bottleneck for E. faecium, culminating in the
observed lower genetic diversity. This also suggests that
2 different mechanisms influenced the respective compo-
sitions of E. coli and E. faecium populations. While the E.
coli population (composed of different strains) remained
relatively unaffected, the E. faecium population (mainly
represented by a single strain) underwent a selective
sweep in response to the antibiotic treatment with selec-
tion of a specific genotype expressing ARGs.

Coupled metagenomic and metatranscriptomic
analysis of antibiotic resistance genes, in pre- and post-
treatment samples from patient A07. ARGs were more

often detected post-treatment (0.39% of all genes) than
pretreatment (0.28% ARGs, P value = 6.9 X 1074,
Fisher’s exact test). The relative abundances of ARGs
of both the pre- and post-treatment samples were
higher (P value 5.601 X 10~7 and 3.278 X 10~'%)
than those in samples from healthy donors (reference
healthy microbiomes (RHMs), mean 0.20% = 0.01%
[standard deviation]). Moreover, ARG expression was
higher in both samples from patient AO7 compared
with ARG expression in RHMs (Fig 5, B).

We were then interested in whether higher numbers of
ARGs could also be detected in the specific populations
of E. coli and E. faecium. Within the population-level
genome of E. coli, 31 ARGs were identified in both sam-
ples and 2 additional genes were detected in the
post-treatment sample only. In E. faecium, 25 ARGs

were identified in both samples of which 21 genes were
identical (summaries of the ARGs identified in each
population-level genome are listed in Tables IT and IIT).”*
In E. coli, 20 of the 31 ARGs that were found in both sam-
ples exhibited higher levels of expression in the post-
treatment sample, while in E. faecium, 18 out of 21
ARGs showed higher expression post-HSCT.™ Although
patient AO7 was only treated with antibiotics until day
18 (Fig 2, D), ARG expression was, in general, higher in
the post-treatment sample, both in the whole sample
(Fig 5, B) as well as in specific populations (Fig 5, C).

Genomic characterization of a blood culture E. coli
isolate and comparison to GIT populations. The genomes
of a blood culture isolate, and GIT population-level
genomes of E. coli from patient A07, exhibited an
average nucleotide identity of 99.995%. A heatmap
and its corresponding dendrogram reflecting the
presence and absence of genes in different strains of
E. coli indicated that all the E. coli genomes from
patient AQO7, the isolate and the genomes from the GIT
MG, were more closely related to each other than to
the reference genomes (Supplementary Fig. SI). In
the genome of the E. coli isolate, the same ARGs as
in the pre- and post-treatment GIT E. coli could be
identified, with 4 additional ARGs, compared with the
post-treatment GIT E. coli.

DISCUSSION

Short-term structural changes in the gastrointestinal
microbiome following allogeneic hematopoietic stem
cell transplantation. In this study, we observed that
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Table lll. Antibiotic resistance genes identified in population-level genomes of GIT E. faecium from patient AQ7

Resfams_ID Number of genes Resfam Family name Mechanism

RF0004 1 AACE-I Aminoglycoside modifying enzyme
RF0O007 9 ABCAntibioticEffluxPump ABC transporter

RFO033 1 APH3 Aminoglycoside modifying enzyme
RF0O066 1 emrE Other efflux

RFO067 1 Erm23SRibosomalRNAMethyltransferase rRNA Methyltransferase

RFO104 1 MFSAntibioticEffluxPump MFS transporter

RF0134 1 Tetracycline_Resistance_MFS_Efflux_Pump Tetracycline MFS efflux

RFO154 1 vanR Gylcopeptide resistance

RF0155 2 vanS Gylcopeptide resistance

RF0O168 1 TE_Inactivator Antibiotic inactivation

RF0O172 2 APH3” Aminoglycoside modifying enzyme
RFO173 2 APHZ Aminoglycoside modifying enzyme
RFO174 6 ArmA_Rmt Aminoglycoside resistance

allo-HSCT and its accompanying treatment (including
antibiotics), strongly impacted the GIT microbiome,
markedly decreasing its bacterial diversity. Moreover,
our observed decreased diversity indices agree with
values found in an earlier study.”

Also in accordance with a study focusing on bacterial
diversity around engraftment and its association with
survival, we found a reduced bacterial diversity shortly
after engraftment in patients who did not survive.'” A
significant decrease in important short-chain fatty acid
(SCFA) producersj(”5 8 (the 3 bacterial genera
Roseburia, Bifidobacterium, and Blautia, Fig 1, C)
was observed. SCFAs, especially the histone deacety-
lase inhibitor butyrate, are the main energy source for
colonocytes, as well as anti-inflammatory agents which
regulate NF-«B activation in colonic epithelial cells and
cytokine release.’® In addition, butyrate induces differ-
entiation of regulatory T cells’” and enhances the intes-
tinal barrier function by regulating the assembly of
epithelial tight junctions,”” and a recent study showed
that local administration of exogenous butyrate miti-
gated GVHD in mice.®' Depletion of these important
SCFA-producers in the GIT enhances the risk for devel-
oping GvHD after allo-HSCT.””%* The ensuing loss of
intestinal barrier integrity facilitates translocation of
pathogenic bacteria and PAMPs, activating antigen-
presenting cells and consequently CD8 " T cells.

We further found that fungi were the most prominent
eukaryotes in the GIT microbiome, and that the eukary-
otic diversity was stable during treatment (including
antibiotic and antifungal treatment), despite changes
in bacterial subpopulations. However, antibiotic treat-
ment may indirectly increase the risk for invasive fungal
infections, by opening niches to these organisms, which
were previously occupied by commensal bacteria.”*%
In this patient cohort, we did not observe strong
treatment-induced effects on eukaryotic communities.
Nevertheless, these organisms remain important for

future studies as their overgrowth has previously been
linked to adverse treatment outcomes.””

Long-term effect of allogeneic stem cell transplantation
on the gastrointestinal microbiome. Employing detailed
integrated meta-omic analyses, we demonstrated the
effects of allo-HSCT and accompanying treatment on
the GIT microbiome over an extended period of time.
Only one study to date has followed the GIT
microbiome trajectory up to 3 months after allo-
HSCT.®* Contrary to that study, which showed that the
richness and metabolic capacity of the microbial
community recovered after 2 months,(’4 we found that
the GIT microbial community never fully regained its
initial composition, even 4 months after allo-HSCT,
with dysbiosis likely conducing to detrimental
treatment outcomes. Diversity remained decreased and
many bacterial taxa remained absent or drastically
decreased, including bacteria whose presence in the
human GIT associate with health-promoting properties
(such as butyrate production) and whose absence has
been linked to negative consequences (such as
inflammation).®” The genus Blautia, for instance,
has been linked to reduced aGvHD-associated
mortality and improved overall survival,”” while
Barnesiella effectively blocked intestinal domination
by vancomycin-resistant enterococci in allo-HSCT
patients.’® On the other hand, potential pathogens, like
Fusobacterium sp. and Proteus sp., appeared only in
the post-treatment sample. Also, loss in intestinal
barrier integrity may have allowed a GIT-borne E. coli
to cause a paravertebral abscess (Supplementary
Fig. S1).

Identification of antibiotic resistance genes in

population-level genomes of opportunistic pathogens
and evidence for selective pressure at the strain level. A

higher ratio and expression of ARGs within the micro-
bial community was observed post-treatment, even
several months following antibiotic treatment (Fig 5,
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A and B). Strains that carry or horizontally acquired
mutations which lead to higher expression of ARGs
might have been selected for by the antibiotic
treatment.®” Overall, our observations indicate that
antibiotic pressure, and its associated selection of
bacteria encoding ARGs, is likely an essential factor
in governing the observed expansion of opportunistic,
drug-resistant, pathogens.

Interestingly, the multidrug-resistant E. coli, isolated
from a post—allo-HSCT blood culture, was closely
related to the GIT-borne E. coli populations. The over-
lap of ARGs identified in each genome further indicated
their association. These findings demonstrate the poten-
tial fatal effects of dysbiosis-associated pathogen domi-
nance of the GIT microbiome, and subsequent systemic
infections on allo-HSCT patient survival.

CONCLUSION

We observed drastic changes in the composition of
the gastrointestinal microbiome of patients after allo-
HSCT and supportive care, driven mainly by a decrease
in bacterial diversity, but only limited changes in eu-
karyotes and archaea. Pronounced changes in commu-
nity structure, especially decreased diversity and
expansion of potential pathogens, along with transloca-
tion of pathogens and PAMPs could affect overall treat-
ment outcome. Here, we applied novel high-resolution
molecular methods to describe the different ways in
which GIT bacterial populations respond to antibiotic
stress. We identified an increased number and expres-
sion of ARGs linked to specific potentially pathogenic
strains of clinical relevance during allo-HSCT. Such in-
formation could be used to individually tailor patient
treatment. Sustaining or restoring diversity, either by:
(1) limiting the usage of broad-spectrum antibiotics;
(2) fecal microbiome transplantation; and/or (3) admin-
istration of specific probiotics could help to increase
tolerance or improve the overall efficacy of the therapy.

In summary, we assert that detailed microbiome ana-
lyses may be established as a diversified tool for
enhancing personalized treatment of immune dysho-
meostasis.
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Processing and assembly of metagenomic and
metatranscriptomic data sets. Within IMP, the average

depth of coverage of a gene or contig was determined
both for the metagenome and the metatranscriptome,
by calculating the average number of reads mapping
to each nucleotide within a gene, respectively, to a con-
tig. Here, gene expression was calculated as the ratio of
the average MT depth of coverage to the average MG
depth of coverage for individual genes.

Published human GIT microbiome MG and MT read
data from 4 healthy individuals was obtained from the
NCBI Sequence Read Archive of data sets [MG:
SRX247379, SRX247391, SRX247401, SRX247405;
MT:  SRX247335, SRX247345, SRX247349,
SRX247340]." Sequencing reads were processed using
IMP version 12.1° Data from the individuals
“X310763260,” “X316192082,” “X317690558,” and
“X316701492” are referred to as the “reference healthy
microbiome” (RHM).

Taxonomic dffiliation of reconstructed population-level
genomes. Taxonomic affiliation of population-level
genomes was determined using complementary
methods. Contigs forming the population-level
genomes were first aligned to the NCBI nucleotide
collection (nr/nt) database using the BLAST
webservice,” with default parameters for megablast.
The output was analyzed using the MEtaGenome
ANalyzer (MEGAN version 5.10.5)." Whenever the
rpoB gene could be recovered within a population-
level genome, the closest neighbor (in terms of
sequence identity) was determined in the nucleotide
collection (nr/nt) database using the MOLE-BLAST
web service.” In addition, AMPHORA2® was used to

Kaysen et al 94.el

identify the taxonomic affiliation of up to 31 bacterial
or 104 archaeal phylogenetic marker genes.

Reassembly. Population-level genomes were reas-
sembled using all MG and MT reads mapping to the
contigs of the population-level genomes with the same
taxonomic assignment. Reassembly of all recruited
reads was carried out using SPAdes™® (version 3.5.0)
using standard parameters. MG and MT reads were
subsequently mapped to the contigs forming this
reassembly to determine expression levels and variant
density.

Sequence comparison of population-level
genomes. The average nucleotide identity calculator’’
was used with standard settings to compare the
reassembly from population-level genomes to publicly
available reference genomes. A gene-wise protein
sequence comparison of different population-level
genomes was performed using the RAST server'®
using standard parameters.
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